Next: Stress.
Up: Similarity Solution.
Previous: Similarity Solution.
The vorticity of the flow in Cartesian coordinates in term of dimensional variables is given by
![\begin{displaymath}\omega = \frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}.
\end{displaymath}](img76.gif) |
(61) |
If we non-dimensionalize the vorticity, according to
![\begin{displaymath}\omega = \frac{U}{L}\omega',
\end{displaymath}](img77.gif) |
(62) |
the non-dimensional form of the equation (3.61) is
![\begin{displaymath}\frac{U}{L}\omega' = \frac{U}{\delta}\frac{\partial u'}{\partial y'}-\frac{U\delta}{L^{2}}\frac{\partial v'}{\partial x'},
\end{displaymath}](img78.gif) |
(63) |
and since
,
we have that
![\begin{displaymath}\omega' = R^{1/2}\frac{\partial u'}{\partial y'}-R^{-1/2}\frac{\partial v'}{\partial x'},
\end{displaymath}](img80.gif) |
(64) |
and in the limit
we have
![\begin{displaymath}\omega' \sim R^{1/2}\frac{\partial u'}{\partial y'}.
\end{displaymath}](img81.gif) |
(65) |
In the context of the boundary-layer approximation, the vorticity in terms of dimensional variables is given by
![\begin{displaymath}\omega = \mu\frac{\partial u}{\partial y}.
\end{displaymath}](img82.gif) |
(66) |
We can write the vorticity for the Blasius boundary layer similarity solution by placing equation (3.47) for
into the equation (3.66), which gives
![\begin{displaymath}\omega = \mu\frac{\partial^{2}\psi}{\partial y^{2}} = \mu\left(\frac{U^{3}}{2\nu x}\right)^{1/2}f''(\eta)
\end{displaymath}](img83.gif) |
(67) |
Next: Stress.
Up: Similarity Solution.
Previous: Similarity Solution.
Karl P Burr
2003-03-12