Next: Boundary-layer Thickness, Skin friction,
Up: Similarity Solution.
Previous: Vorticity.
The normal components of the stress perpendicular and parallel to the flat plate expressed non-dimensionally are
![\begin{displaymath}\frac{\tau_{xx}}{\rho U^{2}} = -\frac{p}{\rho U^{2}}+\underse...
...underbrace{2\frac{\nu}{U^{2}}\frac{\partial u}{\partial x}}} ,
\end{displaymath}](img84.gif) |
(68) |
![\begin{displaymath}\frac{\tau_{yy}}{\rho U^{2}} = -\frac{p}{\rho U^{2}}+\underse...
...underbrace{2\frac{\nu}{U^{2}}\frac{\partial v}{\partial y}}} .
\end{displaymath}](img85.gif) |
(69) |
Therefore, in the limit
,
we have that
![\begin{displaymath}\tau_{xx} = \tau_{yy} = -p
\end{displaymath}](img86.gif) |
(70) |
The shearing stress over surfaces parallel to the wall is
![\begin{displaymath}\tau_{xy} = \mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right),
\end{displaymath}](img87.gif) |
(71) |
which is approximated in the same way as the vorticity, as follows.
![\begin{displaymath}\begin{split}
\rho U^{2}\tau'_{xy} & = \rho \nu\left(\underse...
...}+\rho U^{2}R^{-3/2}\frac{\partial v'}{\partial x'} \end{split}\end{displaymath}](img88.gif) |
(72) |
In the limit
,
the shear stress is given by
![\begin{displaymath}\tau'_{xy} \sim R^{-1/2}\frac{\partial u'}{\partial y'}
\end{displaymath}](img89.gif) |
(73) |
or in terms of dimensional variables
![\begin{displaymath}\tau_{xy} = \mu\frac{\partial u}{\partial y}.
\end{displaymath}](img90.gif) |
(74) |
For the Blasius laminar boundary layer similarity solution given by equation (3.47), the shear stress
is given by
![\begin{displaymath}\tau_{xy} \sim \mu\frac{\partial^{2} \psi}{\partial y^{2}} = \mu\left(\frac{U^{3}}{2\nu x}\right)^{1/2}f''(\eta),
\end{displaymath}](img92.gif) |
(75) |
Next: Boundary-layer Thickness, Skin friction,
Up: Similarity Solution.
Previous: Vorticity.
Karl P Burr
2003-03-12