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Three-dimensional forming of sheet metal parts is typically accomplished using one
or two shaped tools (dies) that impart the necessary complex curvature and induce
sufficient in-plane strain for part strength and shape stability. This research pro-
poses a method of applying closed-loop process control concepts to sheet forming in
a manner that automatically converges upon the appropriate tooling design. The
problem of controlling complex deformation is reduced to a system identification
problem where the die-part transformation is developed as a spatial frequency do-
main transfer function. This transfer function is simply the ratio of the measured
change in spatial frequency content of the part and the die. It is then shown that
such a transfer function can be used fo implement closed-loop process control via
rapid die redesign. Axisymmetric forming experiments are presented that establish
the apprapriateness of the linear transfer function description (via a test of super-
position) end demonstrate the convergence properties of the proposed control

method.

Introduction

Forming of three-dimensional sheet metal parts is one of the
most efficient and material conservative methods of creating
farge complex shapes. It is used in both high volume (e.g.,
automobile) and low volume (e.g., airframes) production, but
in both cases the cost of tooling development is dominant and
often prevents use of this process for small lots of parts and
for prototypes. Aside from expense, the time consuming pro-
cess of fine-tuning a set of complex dies virtually eliminates
sheet forming as a flexible manufacturing operation. One
alternative is to create and store numerous die sets and imple-
ment rapid changeover systems. This alternative, however,
does little to enhance design freedom, flexibility, or minimize
the econormic lot size, since the tooling must still be developed
in the conventional manner. Thus, adaptation of sheet metal
forming to effective small lot or prototype manufacturing will
succeed only if the methods of designing and developing the
tooling are simplified and automated.

Once it is acknowledged that the forming process is aimed at
producing only in smail lot sizes, it is clear that the robustness
of the tooling must be relaxed in favor of reducing the cost
and lead time of the tooling. A logical execution of this con-
cept is to replace hardened, ground tooling with ‘‘soft”
machined tooling. Beyond this, the ideal solution is to
eliminate fixed tooling altogether, by using, for example, a die
set of variable configuration. Such devices have been
developed based on the concept of discrete forming surfaces,
and a full scale, matched tooling draw press has been con-

*Now with The Timken Company, Canton, OH.

Contributed by the Production Engineering Division for publication in the
JOURNAL OF ENGINEERING FOR INDUSTRY. Manuscript received April 1988; re-
vised November 1989,

44 ] Vol. 113, FEBRUARY 1991

structed as part of this research project {1], and is shown in
Fig. 1. For tooling with nonsmooth surfaces, a neoprene inter-
face between the tool and the part is a necessity, and the added
compliance of the ‘‘tool” must be accounted for in the die
design procedure.

Backgronnd

Forming of sheet metal can be accomplished in many ways,
but the primary features of such deformation are general bi-
axial in-plane strain, combined with two-dimensional bending
to produce net (often compound) curvature in the final part. A
typical means for achieving such strains involves the use of
matched dies plus a separate binder that is used to regulate the
flow of material (in a draw forming operation) or to create a
net stretching condition (in a stretch forming operation). (See
Fig. 2.) While both die and binder design are relevant to pro-
duction success, the latter is primarily concerned with
regulating formability of the sheet by maintaining a strain
state that avoids either an in-plane tensile or compressive in-
stability condition. This stability problem has also been ap-
proached as a process control problem by Lee and Hardt [2],
and Fenn and Hardt [3], but in this work it is treated separate-
ly from the shape control problem.

Assuming an appropriate binder condition, the process con-
trol task addressed here is to develop tooling shapes that will
yield the correct part shape. The relationship between the die
shape and the resuiting part shape is a strong function of the
elastic springback of the material, which in turn depends on
both the loaded state of strain and the flow stress-strain prop-
erties of the workpiece. The complex geometries involved as
well as the complex nature of sheet plasticity makes die design
a formidable task.
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Fig. 1{a) Overall view of varlable configurabie die machine

Flg. 1{c) Resulting part

Fig. 1 The MIT discrete die forming machine. The forming surface
comprises a 12 in. x 12 in. bundie of 1/4 in. square elements, and the
torming capacity is 60,000 Ibs.

The approach taken here is to seek in-process measurements
that reflect the forming result for a given die shape and to use
part shape “‘errors” to correct the die shape in a consistent
and predictable fashion (as opposed to purely heuristic
iteration).

Complete in-process monitoring of deformation would re-
quire that the state of strain at all points in the sheet as well as
the local stress-strain characteristics of the material be known
throughout the process. This in turn mandates measurement
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Flg. 3(b} A closed-loop sheet forming system

of the three-dimensional strains (i.¢., including thinning or
thickening strains) as well as surface pressure and shear
distributions. The impracticality of such an approach is clear,
and it is equally important to realize that shape estimates
based on strain measurements would be error prone, since
they would require large scale spatial integration of potentially
biased measurements.

Based on this simple observation, and on the overall goal of
creating parts of the correct shape, the method adopted here
uses the three-dimensional shape of the formed part as the key
measurement for process control. Thus the process is now
viewed as shown in Fig. 3(a), and the corresponding control
problem is shown in Fig. 3(b).

The conventional alternative to this control approach is to
seek a more analytical description of the process and to predict
current tooling shapes based on process simulation. Because
of the complex shapes involived, the strong dependence upon
nonlinear material properties, and the complex interface
geometries that occur during forming, this problem can only
be attacked using numerical methods.

Major progress has been made recently in codes for large
strain deformation [4] and in their application to complex
forming [5]. However, there remain several severe limitations
of this approach when considered for process control. Most
prominent among these are the need for accurate constitutive
relationships and the formidable computations required for
parts of realistic geometric complexity. This recent history of
Finite Element Analysis (FEA) in sheet forming is a
chronology of progressively more complete material descrip-
tion with a concomitant penalty in computation time
[5,6,7,8,9]. Also, the frictional characteristics of the die-
workpiece and binder workpiece interactions have yet to be
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carefully characterized [5, 10]. Finally, it must be understood
that the objective of the work presented here and that of
typical process analysis are in fact quite different. While pro-
cess control seeks to answer the question ‘‘what tooling will
produce the desired part?’’ FEA answers the inverse question:
““what part will this tooling produce?’’ Such numerical models
can be quite useful in understanding the details of a given
deformation process, but their use in process control is limited
by long computation time, and {more importantly), the
noninvertability of the solution,

Control of forming based on in-process measurements has
been demonstrated for several different forming methods.
Stelson [11] has presented a method whereby in-process
measurements are used to develop a material characterization
in real-time that is then used to control a simple three point
bending operation. Hardt et al. [12} have demonstrated the
use of direct springback estimation from in-process meas-
urements for simple roll bending, and further extended this to
automatic straightening {13] and twisting [14]. The feature of
these processes is that either elastic (springback) or extrinsic
constitutive relationships (i.e., moment-curvature) can be
estimated in-process. On the other hand, if no stress or mo-
ment information is available, it has been shown [15] that a
springback estimate can be developed from a pair of suc-
cessive deformation cycles and then used for process control.

Development of a Deformation Transfer Function
(DTF)

Earlier work by the authors [16] has explored a very simple
form of process control for three-dimensional shape control.
The actual process control law changed the local die shape in
response to local shape error regardless of any apparent cou-
pling between adjacent points on the workpiece. While this
rather blind iteration showed some amount of convergence in
basic 3D forming experiments, it in fact lead to very poor pro-
cess control accuracy. The present work seeks a means for
process control that does not ignore the obviously highly
coupled (or membrane-like) nature of sheet deformation,
while at the same time obviates an excessively detailed
mechanical analysis. To this end, it is important to consider
the process control context of this research and how best to
use the part shape measurements.

A typical description of three-dimensional surfaces com-
prises a set of Cartesian coordinaies. It is useful to envision
these as a collection of elevations (z coordinates) from a grid
of equally spaced points (x, y coordinates). Thus a part or die
shape is a matrix of elevations z(x, y) with respect to a
reference plane. If we now use this description of shape in a
part transformation description, we might look for simple dif-
ferences between corresponding matrix elements for the
desired part and the actual part and form an error matrix:

€{X, )} = Pyes (X} — Pacryar (0.1) m

If we then look at the corresponding matrix describing the die
shape d(x,y), we can conceive of a control system that
modulates this matrix in response to e. A simple feedback con-
trol scheme would take the form:

Ad{xy)=g(x.y)e(xy) 2

where Ad(x,y) is the change in the die shape and g(x,y) a con-
troller matrix. The problem now is to design g to insure rapid
convergence of the error to zero. Thus g is the embodiment of
our knowledge about the forming process, and must adequate-
ly reflect the coupling between changes in part shape and die
shape. Further, g should be continuously updated to reflect
improved information about the current forming conditions
and material properties.

However, as the forward has stated, we do not {(and cannot)
know enough about the forming process a priori to design g
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off-line, and also we know that using g=1 (the Identity
matrix) leads to poor performance (as demonstrated in {16}).
Thus we must have a method for discovering the best value for
g in-process. To do so we can borrow from system identifica-
tion concepts based on frequency response metods.

Before considering this method any further, however, it is
first necessary to discuss alternative forms of using the shape
information z(x, y). Left alone, shape change information
based on this description carries no inherent coupling to the
error equation (1) and does not reflect even a simple mem-
brane model of forming. However, if the raw coordinates are
replaced with some exact interpolating function (such as a
polynomial function or spline curve), the coefficients of those
functions can become the control variables. Since perturbing
any one of the coefficients in these functions changes the cor-
responding curve everywhere, there is an inherent coupling ef-
fect that can be exploited in more accurate system modeling.

However, the choice of an interpolating function is critical
to facilitating system identification and eventually process
control. Accordingly, it was decided to use Discrete Fourier
Transforms as the interpolating curves, since these would yield
a spatial frequency domain description of the shape, which
can then be used in a manner similar to temporal frequency
domain information in conventional system identification and
control methods.

The Discrete Fourier Transform for a given 2-D curve y(n)
(where n are discretized intervals in x) is given by:

N-—1
Y(m)= Y, y(n)e~i2mN); m=0,1,... . N~1 (3
n=l
where Y(m) is a complex array of magnitude and phase coef-
ficients for the N/2 equally spaced frequencies from 0 to 7/N.
Likewise if we consider a three-dimensional shape z(m, n},
the corresponding transform is:

M-1 N-i

Z(uw)= Y, Y, z(mn)e=2{(mu/M)+ (no/N)); @

m=0 n=—~0
u=0,1,...,M-1
v=0,1,...,N-1

where Z(u, v) is a matrix of complex (magnitude and phase)
coefficients for the orthogonal discrete frequencies for 0 to
w/M and G to w/N.

As with either polynomial or spline curve interpolators, the
spatial frequency descriptor will carry with it inherent coupl-
ing from local coefficient changes to global shape changes.
However, with shapes described by their spectral equivalent:
Z{u, v}, it is now possible to define the response of the form-
ing process in terms similar to classic frequency response of
dynamic systems.

Accordingly, the input-output transformation for the form-
ing process shown in Fig. 3 (a) can be defined as:

Plu, v)

He = e

5)
where P(u, v) and D(u, v) are the transforms of the cor-
responding part and die shapes, respectively.

Carrying the transfer function definition further, we can, by
simply algebra, express the part shape spectrum as:

P(u,v) =H(u,0)D(x,0) 6

This now illustrates the role of H as the current model of the
deformation process. Thus we define H as the Deformation
Transfer Function (DTF)

If H exists, it should also be possible to rewrite equation (6) as:
D (1,0) =H"'(u,0)P(4,0) )]
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Fig. 4 Block diagram for a closed-loop system based on transfer func-
tion identification (z ™’ indicates a delay of one forming cycle)

In doing so we have reached the goal of determining the die
(D) that will produce the part P. Now all that remains is to:

(1} Develop a method to determine H in-process.

(2} Use the in-process determination of H to control the
process of die shape design.

(3) Verify the validity of the DTF for 3-D sheet forming

In-Process Identification of the Deformation Transfer
Function

if a part is formed using a particular die described by D,
and measurement of that part yields P; (where the frequency
arguments # and v are now assumed) then simple application
of equation (5) would appear to have successfully determined
H;. That is, the best estimate of the DTF is the current ratio of
die and part spectra. However, the transfer function and at-
tendant algebra is based on a linear model of deformation (or
a linear model of the relaxation between the loaded shape of
the part, given by D;, and the unloaded shape, given by P;). If
equation (5) is treated as an absolute ratio, then it is in fact be-
ing used to describe a gross plastic deformation process.

Accordingly, the application of equation (5) must be con-
fined to incremental changes in shape, and the DTF is to be
redefined as: :

AP
H= ——— 8
D ®
or in a form representative of successive forming trials:
P,—-P;
H= —F 71 9
"~ DD, ©

where i/ is a forming cycle index.

Thus, if two forming trials are performed using two different
die shapes (D; and D;_,}, then the incremental DTF can be
calculated.

As with any system identification, the choice of the *‘excita-
tion’* shape is critical to application of the DTF in a forming
control situation. More will be said about this below, but in
general it is necessary that all frequencies present in the desired
shape be sufficiently excited in the identification steps to in-
sure accurate representation in H. Also, the stationarity of H
for forming is not guaranteed, thus continuous recalculation
of H during a cycle of forming will be necessary.

Process Control Based on DTF Identification

Given the definition of the deformation Transfer Function
H in equation (9), a method for closed-lcop control of shape
can be developed. If it is assumed that one calculation of H is
sufficient to capture the process completely, then the follow-
ing algorithm can be proposed:
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Fig.5 Magnitude of the frequency components for the desired shape.
(This Is also the spectrum for the first tooling shape)

Given H,:

D, =D;+EH,"! (10)

where:
Ei=:Pdﬁhai_'Pi

The implication is that the incremental DTF will give exactly
the correct die correction based on the current discrepancy
between the desired and actual part shape. A more general
case would be where H~! is used to determine the best control
function G(H ') to insure rapid convergence when H! is not
stationary,

Such a control system is illustrated in Fig. 4, where both the
feedback of successive forming trials (separated by one cycle
and represented by the delay function z-1) and the in-process
identification of H~! is shown, (Notice also the allowance for
a measurement filter G, in the feedback loop.) In this form it
takes on the character of self-tuning control, where the con-
troller G is continuously updated according to the current best
estimate of the process H.

A Two-Dimensional Test: Elastic-Plastic Bending

Given this definition of the DTF as a locally valid process
description, the forming control algorithmm presented above
can be explored. As a first test, the algorithm was applied
in simulation to simple two-dimensional forming without
stretching. This situation maximizes the elastic springback and
serves to illustrate clearly the operation of the algorithm.

The desired shape was composed of a circular arc and two
straight sections. Such a shape resembles a square pulse when
plotted as curvature versus arc-length. This means that the
curvature versus arc-length plots for the tooling profiles and
their resulting part shapes will also resemble square pulses.
Since the simulation calculates unloaded part shapes by
numerically integrating curvature versus arc-length, the errors
caused by numerical integration are small. The first shape is
two straight sections joined by a single circular arc, while the
second shape has three arcs. The first shape was described by:

y=-x-1.75 -2.00=x=s —~1.75
y=175-[21.752 -]V —1.75<x<1,75
y=x~1.75 1.75=x<2.00

For this simulation, Young’s modulus was 30x10% psi,
the yield strength was 30X 10° psi., and the shapes were
represented by 32 equally spaced samples. Lacking a tolerance
specification the algorithm was cycled five times.

In using this control algorithm, two precautions were taken
to insure that H~! was properly defined for each cycle. The
first was to apply a low pass filter to the sampled data from
both the tooling shapes and the part shapes. Since the system
is acting off line, the filter consisted of simply not calculating
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Fig.6 Resuits of 2D forming simulation

H~! above a predetermined cut-off frequency. The purpose of
this filter is to avoid defining transfer function elements for
those high frequency components that have insignificant
magnitudes throughout the process. This cutoff frequency was
chosen after observing the magnitude of the DFT of the
desired part shape. In first case, after observing the spectrum
of Fig. 5, the cut-off frequency was chosen as the seventh fre-
quency component. The figure shows that the magnitudes of
the frequency components above this cut-off are two orders of
magnitude smaller than the magnitude of the fundamental
frequency.

The second precaution was to define a threshold magnitude
for the DFT of the change in part shape, P. When the
magnitude of a frequency component in P fell below the
threshold, H~! was considered undefined for that frequency
and therefore set to zero magnitude. Recall that this threshold
should reflect either the resolution of the part measurement
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system, or a spatial frequency based part tolerance specifica-
tion. For this simulation the threshold was 0.006 in.

The simulation proceeded as follows:

Step 1 Sample the desired part shape; this shape is the first
tooling profile.

Step 2 Fit the samples with cubic splines.

Step3  Based on an elastic-plastic bending model find the
loaded curvature and the arc-length.

Step 4  Calculate the springback curvature at each point
and find the unloaded part curvature.

Step 5 Numerically solve the curvature-shape relationships
using a forth order Runge-Kutta routine to get the
unloaded part shape,

Step 6  Fit the part data with cubic splines.

Step 7  Sample spline fit to part as in step 1.

Step 8  Calculate part error.

Step 9  Use Discrete Fourier Transform on the part
samples. Update AP,AD, and E,.

Step 10  Filter AP, so that H-!; is properly defined.

Step 11  Calculate D;,, of new tooling shape using the con-
trol algorithm.

Step 12 Use the DTF on D, to find the samples of the new

tooling profile. Go to step 2.

The results of the simulation are shown in Fig. 6. It is clear
from Fig. 6(a) that the algorithm quickly produces parts that
are close to the correct shape. Under careful scrutiny, this
figure shows that the part formed in forming cycle two over-
shot, i.e., it was over formed. This is not surprising since in
this application of the algorithm, the first two ““parts” are the
flat blank (that will appear to be *“formed’’ from flat tooling)
and part one formed from tooling with the same shape as the
desired shape.

Figure 6(b) shows the error between the desired part shape
and the desired shape for the last three cycles. Note that the er-
ror in displacement has been confined to less than 0.005 in. for
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Fig. 8(a) Frequency spectrum for sach shape

a part that has a maximum displacement of one inch, i.e., the
error is less than 0.5 percent. This figure also suggests that the
error remaining after five cycles consists of two superimposed
sine waves.

This observation is supported by the magnitude of the fre-
quency spectrum for the part errors shown in Fig. 6(c). Note
that the magnitudes of the frequency components of the error
in the last three forming cycles are below the magnitude
threshold. This indicates that under the system limitations im-
plied by the magnitude threshold, the closed loop forming
system would have claimed success at the third part.

The conclusion here is that for the case of simple 2-D form-
ing, the DTF based algorithm shows appropriate convergence.
However, what remains is actual experiments in a 3-D forming
condition. Accordingly, both the validity of the incremental
DTF and the proposed algorithm are c¢xamined below in a
series of axisymmetric forming experiments.

Experiments

Ideally the proposed DTF and associated control method
would be tested in a general three-dimensional forming con-
text. However, it is impractical at this time to produce and
rapidly modify general 3-D tooling for forming (aithough a
programmable tooling process has been developed, see [1] and
[17], and is currently undergoing forming tests [18]). Conse-
quently, a closed loop forming system was developed based on
axisymmetric tooling that could be rapidly produced and
modified using a CNC lathe. The system developed for this
purpose is shown in Fig. 7, and in addition to the lathe, com-
prises a forming process capable of exact force control in both
the binder and punch (see [2] for details) with a 4 in. diameter
tooling capacity, a coordinate measurement machine (CMM),
and a PC to control the overall loop. The PC controlled the
CMM and used the resulting shape data to calculate new tool-
ing profile. It then produced the necessary G-code for the
lathe. Matched die sets were then machined and installed in
the press, whereupon a part was formed. All experiments
reported here also involved the use of 1/8 in. neoprene pads
on either side of the material blank. (Forming trials without
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the pads were also executed as reported in [19].) Using this
system, a complete tooling cycle took less than eight hours to
complete.

For the experiments that follow, shapes were sampled 63
times along the part diameter of four in. For the part, the
samples were taken parallel to the rolling direction of the sheet
metal. The tooling shape is the shape of the path of the CNC
cutting tool for the female (stationary) side of the tooling. The
shape of the punches were generated by offsetting the die
shape along the surface normal by the thickness of the sheet
metal. Diametrically opposite samples were averaged, and the
center point was then counted twice so that the Fast Fourier
Transform (FFT) used to obtain the spectrum could operate
upon 64 samples.

The material was 0.036 in. thick commercial quality steel.
The initial diameter of the circular blanks was 5.75 in. The
binder force was set at 1000 Ibs., and the maximum punch
force was set at 10,000 Ibs. The difficulty of insuring registra-
tion between parts and tooling required that fresh blanks be
used for each forming cycle.
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Testing the Deformation Transfer Function: Superposi-
tion. The first tests were used to ¢xamine the basic response
of the material in terms of the DTF method. In particular, the
linearity of the process when viewed in the spatial frequency
domain is of interest. All linear systems exhibit the property of
superposition, i.e., the response to a combination of inputs is
the same as the sum of responses to individual components of
the input. In the case of forming, we can test for this property
in the following way.

Given a (base case) tooling shape D that generates the part
P, suppose that two different tooling shapes D+AD; and
D+ AD, produce part shapes P+AP, and P+AP,, respec-
tively. If the deformation transfer function, H, is linear, then
the principle of super-position demands that if a third shape is
defined as:

AD, =AD, +AD, (an
then
AP, =AP, + AP, 12y
or that
(AD, + AD,)H = (ADJH + (AD,)H 13

that is, the third shape can be described either by the sum of
individual deformation trials, or a single *‘combined shape”
trial.

For this experiment, the four tooling shapes were described
by
Base:

Zyuse = — 0.25 cos(rw)—0.10 cos(2rw)—0.05 cos(3rw) in.  (14)
Base+AD;:
Z; = —0.30 cos{rw) — 0.10 cos(2rw) —0.05 cos(3rw) in. (15}
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Fig. 10(c} Magnitude of H~1 calculated from (3} and (b)
Base + ADy:
2, = —0.25 cos(rw)—0.10 cos(2rw) ~ 0.10 cos@rw} in. (16)
Base+ AD;:
z3 = —0.30 cos(rw) —0.10 cos(Zrw)—0.10 cos(3rw) in. (17)

for 0=r=2(@in.), w= /2 radians/in.

Note that relative to the base tooling shape, the first tooling
shape change is confined to the #/2 radians/in. frequency,
while the second tooling shape change is confined to the 37 /2
radians/in. frequency. The third tooling shape change com-
bines the first and second changes. The four tooling shapes
and their corresponding frequency contents are shown in Fig.
8.
The part shapes resulting from these tooling shapes are plot-
ted in Fig. 9(a). This figure shows that the neoprene pads
have heightened the differences between part shapes and tool-
ing shapes, and attenuated the higher frequency components
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Fig. 11{d) Frequency content of errors in (c)

of the part shapes. Figure 9(b) plots the part shape dif-
ferences from the base part shape. If the mechanics of part
shape changes caused by tooling shape changes were exactly
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Fig. 12 Magnitudes of the H~ 1 DTFs generated by each forming cycle

linear, then the AP, curve would lie on top of the AP, + AP,
curve, The shape difference between these two curves shows
that, in this case, the neoprene pads have decreased the radius
of curvature in the center of the AP, part. This would show up
in the frequency domain as a small magnitude high frequency
component. Overall, however, the curves are in good agree-
ment. This observation supports the linear transfer function
model of shape change that is central to the proposed control
method,

Process Control Based on DTF Identification. Given this
positive result, the control algorithm based on DTF identifica-
tion can be explored. In [19] it was shown (both analytically
and with axisymmetric experiments) that the initial tooling
shape change used to start the algorithm must be sufficiently
rich in spatial frequency content so that the first H-! can be
defined for all of the important frequency components in the
desired part shape. The data from the superposition ex-
periments described above is ideally suited to investigate this
conclusion since it involves different shapes generated by dif-
ferent magnitudes of the same frequencies.

For the following experiment, ““Cycle 1 was assigned to
the base case (tooling D, and part P) of the super-position ex-
periments. ‘“‘Cycle 2”” was assigned to the last case (tooling
D+ ADj, and part P + AP, } of the super-position experiments,
Comparing the frequency spectra of the two tooling shapes,
Fig. 10(a), and the frequency spectra of the two resulting part
shapes, Fig. 10(b) reveals that the shape changes for the two
cycles are confined to two frequencies. This means that the
inverse transfer function identified by the algorithm is also
confined to the same two frequencies, see Fig. 10(c}. The im-
plication here is that the algorithm should be able to correctly
predict the tooling shape for any part shape that is different
from the shape of the part shape of Cycle 1 (the base case) at
only these two frequencies. v

To test this assertion, a desired part shape was chosen that is
different from Cycle 1 at only these two frequencies. A new
forming trial, Cycle 3, was performed with the tooling shape
that the algorithm predicted would form this desired part
shape, based upon the shape change data from Cycles 1 and 2.
Figure 11(a) shows frequency spectra comparisons of the
desired part shape and the part shapes of Cycles 1 through 3.
This figure shows that each of these part shapes is confined to
the same frequency components, and that the frequency spec-
tra of these shapes are similar to each other. This similarity
does not transform to the spatial domain, however. Figure
11(b) compares these same part shapes in the spatial domain.

The most striking feature of this plot is that while the part
shapes of Cycles 1 and 2 do not strongly resemble the desired
part shape, the third part shape is an excellent reproduction of
that desired shape. This observation is reinforced in Fig. 11 (¢)
that shows the part shape error for these three forming cycles.
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Figure 11(d) shows the frequency spectra for these part
shape errors. There are three interesting aspects of this figure.
The first aspect to note is that Cycle 2 (part P + AP,) does have
a high frequency error as suggested for the 2-D case. The sec-
ond aspect of note is that in spite of this, the shape error for
the three forming cycles are primarily described by the same
two frequencies in the inverse transfer function in Fig. 11{a).
The final aspect to note is that the algorithm has generated
essentially the desired part shape for Cycle 3.

The fact that the part shape of Cycle 3 is not exactly the
desired part shape highlights the nonlinear nature of the shape
change process. Figure 12 shows that the inverse transfer func-
tion is not stationary, but changes depending upon which two
of these forming cycles are considered. The implication here is
that the inverse transfer function identified by considering
Cycles 2 and 3 would cause the algorithm to continue to im-
prove part shape resolution. It is not unreasonable to expect
that the algorithm would need more forming trials to converge
upon a part shape with tighter tolerances.

Discussion

" The resuits from the analysis of the three dimensional form-
ing data and from the axisymmetric experiments show that
under the proper conditions, the process of changing part
shapes by changing tooling shapes can be modeled by 2 linear
shape change transfer function acting upon spatial frequen-
cies. Basically, the proper conditions consist of keeping the
shape changes small, while insuring that these changes excite
all of the important spatial frequencies. When these condi-
tions are satisfied, this linear transfer function can be iden-
tified from forming trials on two different tooling shapes. The
axisymmetric superposition experiments with neoprene show
that this concept is valid even when there might be significant
absolute shape differences between the tooling shapes and the
resulting part shapes.

As a consequence of the conclusions concerning the validity
of the shape change transfer function concept, it is not surpris-
ing that the algorithm based upon identifving these transfer
functions is successful. As would be expected, the algorithm
performs best when the conditions are ideal for linearly
modeling the tooling-shape-change-part-shape-change interac-
tion. The first shape considered in the bending simulations
and the last axisymmetric experiment with neoprene show that
the algorithm is capable of generating essentially the proper
die shape for the third forming trial. Axisymmetric ex-
periments that were performed without neoprene [19] showed
similar rapid convergence for those frequencies for which the
transfer function could be properly defined.

Conclusions

The Deformation Transfer Function method is intended to

. be applied to process control. It makes no attempt to actually

model the physical process of deformation, rather, it provides

a means for rapid in-process modeling of the local deforma-

tion recover process so as to aid in rapid die redesign. In one

sense it is a new language for tooling and part shape descrip-
tion in the context of process operation.

Future work on this concept will concentrate on methods
for control system compensator design that will allow more
rapid convergence {(most probably through attacking the high
frequency errors that tend to remain after several forming
trials) and on extending the experiments to the general three-
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dimensional case. The authors [20] have developed the general
3-D equivalent of the DTF method and shown its applicability
to actual formed 3-D parts, but it has not yet been tested for
general 3D forming trials.

It is expected that the method will find eventual application
to both conventional die design, where tooling is designed us-
ing a combination of FEA and the proposed control
algorithm, and to Flexible Forming Systems (FFS) where
novel machines with rapidly reconfigurable tooling will
replace conventional presses and permit economical one-of-a-
kind part production.
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