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A Method for In-Process Failure
Prediction in Cold Upset Forging

This paper addresses the prediction of plastic tensile instability and ductile fracture
of a specimen undergoing a compression test (simple upsetting). The method used
to predict failure is based primarily on Thomason’s approach for predicting tensile
plastic instability in compression tests. However, to apply this method to in-process
prediction, a means for calculating the flow stress-strain properties from in-process
measurements is needed. A method is introduced that is derived from Bridgman’s
correction factor for effective stress after necking occurs in the tensile test, but with
a different approach that is suitable for compression specimens. The new correction
Jactor enables one to correct the effective stress after barreling occurs, which
eliminates the need for an ideal test (without barreling) to find the effective stress
of a specimen. The results were in agreement with those derived from an ideal
compression test. Stress data found using this correction factor was then used to
predict failure using Thomason’s method.

Introduction

Forging is basically a compression process and is classified
by the geometry and by the type of equipment used, Forging
may be done in open or closed dies; open die forgings are
nominally struck between two flat surfaces while closed die
forgings are formed in die cavities (Fig. 1 (a, b)). The simplest
operation in forging is upsetting (Fig. 2). The process is
generally limited to cylindrical workpieces whose length,
because of the tendency to buckle, is usually less than three
times their diameter. Barreling takes place (Fig. 2(c)) because
of friction between the workpiece and the die that introduces
radial shear stresses at the interface.

The quantitative study of simple compression in upsetting is
central to the understanding of the behavior and charac-
teristics of the process. Three basic questions arise with regard
to this deformation process {1]: 1) What is the relationship
among force required, material properties, and process
variables; 2) how is the metal deformed throughout the
workpiece; and, 3) how much can the height of the specimen
be reduced before it begins to fail? The first question is
significant because the change in the mechanical properties of
an element in the workpiece depends on the degree of
deformation. The relevance of the second question is self-
evident in view of the type of data required for the design-of
forging equipment. The third question is representative of the
important and complex area of formability in materials
processing and has direct bearing on various factors, such as
choice of workpiece material and selection of process
variables to accomplish a given task.
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Fig. 1(a) Closed die forging process; (b) open die forging process
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Fig. 2{a) Before; (b) after, without friction; (c) after, with friction

The objective of the present work is to predict failure of
specimens undergoing compression so as to permit maximum
deformation before unloading and stress relieving. The aim is
to use data taken during the process (geometry configuration
and applied load) to reach this prediction, so that on-line
failure avoidance can be accomplished.

The basis of this prediction is the failure detection method
of Thomason [9], which essentially states that failure will
occur soon after the onset of tensile plastic instability at the
surface of the material. To apply this method, the state of
stress at the equatorial surface of the cylinder must be known.
In this paper, a method for determining flow stress charac-
teristics of a cylindrical compression specimen is introduced,
so that the state of stress at the surface can be found. The
novelty of this method is that flow stress is determined using
measurements that can be made in-process, i.e., compression
force, height reduction, and bulge radius.
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Background

Stress-Strain Relations. In upset forging of cylinders, the
stress distribution is uniform, and assuming a perfectly plastic
material, the stress is equal to the uniaxial (compressive) yield
strength of the workpiece material in the absence of friction
(Fig. 2(b)) (ideal compression} or
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Owing to the initial isotropy, the natural strains at a par-
ticular stage of the test are:
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When friction develops one cannot use the previous ‘‘ideal”
relations to find the effective stress-effective strain during a
compression test. In the past, investigators have taken two
approaches to solving this problem. In one, the friction
during the process is determined from a separate test, then
used to calculate the effective stress using analytical formulas
[2-5], where the other approach derives the stress-strain
relation from an ideal (frictionless) compression test and uses
these results for a nonideal test (with friction) [6].

Schroeder and Webster [2] is a good example of the first
group. They studied the effect of friction, area, and thickness
on pressures required in the process of press-forging of thin
sections. Their results, in which they introduced the non-
dimensional equations of pressure distribution on the in-
terfacial surfaces under three different cases of friction, have
been represented graphically. The solution for one value of
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Fig. 4a) The “ordinary” compression test; (b} the thres main direc-
tions (a, 6, and 1)

the coefficient of friction depends on the values of the two
other nondimensional ratios. Friction values were obtained
from a separate test.

Bridgman [6] is at the head of the second group. He in-
troduced a method for avoiding the effect of increasing
nonuniformity of stress and strain caused by bulging as
compression progresses. The method suggests performing the
compression in stages, each followed by machining of the
specimen back to the original proportions with continual
decrease in the absolute size. A disadvantage of this method is
that stress and strain do not increase monotonically, and
disturbances are introduced by the stepwise release and
reapplication of stress. However, and as Bridgman stated,
these disturbances arise anyway from nonuniformity when a
large compression is made in a single stage. This method was
apparently first applied by Taylor and Quinney [7] to a study
of copper.

Failure Prediction in Compression. A state of tensile plastic
instability occurs when the rate of decrease in the cross-
sectional area of an element and the rate of increase in the
tensile component of stress reach a point where the load-
carrying capacity of the element starts to decrease with
continued deformation. When a cylindrical specimen is
deformed in uniaxial compression the circumferential stress
component on the equatorial free surface becomes in-
creasingly tensile as ‘‘barreling’’ develops [8,9]. It is therefore
possible for tensile instability to occur at some stage in the
process of compression.

Many investigators have done work in this area and have
developed different methods for predicting instability and
fracture in compression tests. For example Kuhn [10] ob-
served that unexpected deviations from smooth strains at the
equator preceded surface failure. Shaw {11] introduced the
maximum active tensile strain criterion which assumes that
fracture will occur when the active tensile strain, g, reaches a
critical value, €5*, where the active strain is defined as the
actual strain minus the Poisson component of strain due to an
orthogonally oriented principal stress, or

= the effective stress = Y2[(0.—0,)? + (0,—
05)* + {ap— 0. )*1"2, N/m?(Psi)

axial, radial, and circumferential principal
stress components, respectively, N/m? (Ps;)
the applied load, N (ibf)

the current diameter in an ideal compression
test without friction, m {(in.)

axial, radial, and circumferential principal
strain, respectively

effective strain

initial and current height of cylindrical
specimen, respectively, m (in. )
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K = thecurrentslope: = ~de,/de;
de,,de, . deg = axial, radial, and circumferential principal
strain increments, respectively
R = radius of the bulge, m (in.)
d,,d, = minimum and maximum diameters of a
bulged specimen, m (in.}
I = calculated point of tensile instability at
equatorial free surface
F = observed point of macroscopic: fracture at
equatorial free surface
C’ = bulge correction factor
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eb=1.33(eq +€./2)

and eg > ¢€q” at fracture.

An approximate solution for the conditions for instability
on the equatorial free surface of a compression specimen was
introduced by Thomason [12]. He analyzed the equilibrium
conditions of a thin ring element and deduced that instability
will occur when

g‘fﬁ =0,(2—K), whereK= de;

deg ]
The method is easy to apply, and most of the required
parameters are directly measurable from the test.

Approximate Solutions for Stresses Developed in
Compression Test in the Presence of Barreling: Bulge
Correction Factor

In order to apply Thomason’s predictor, the surface
stresses must be known. These can be found if the effective
stress on the specimen at any time is known. Methods for
finding this stress involve premeasurement of friction
properties (as detailed above) and are thus impractical for on-
line use. A method for finding the effective stress is in-
troduced here that uses in-process measurements (force,
height reduction, and bulge dimensions). This method is
based on Bridgman’s correction factor {6] used to determine
the effective stress in the neck of a cylindrical tensile test
specimen. A new correction factor is derived from the same
arguments that have been used for necking in the tensile test,
but in a way suitable for compression.

Referring to Fig. 3, it is assumed that a cylindrical specimen
is being plastically deformed between two parallel-faced dies.
As the thickness of the specimen is reduced, the major radius
is increased. It is further assumed that the material is
homogeneous and isotropic in its properties. Also, the
principal stresses are assumed to be constant on the faces.
Principal stresses are justified because the shearing stresses in
the neighborhood of the maximum section must be negligible,
since these stresses, because of symmetry, are zero at the
maximum section of the bulge itself.

A detailed derivation of the compression test ‘‘correction
factor’” is presented in Appendix. The result is given by:

S (3 T T

where

4L
Tiave = ﬂ,dzz '

and the correction factor, C’, which accounts for the presence
of friction, is given by:

B R

{This is of the same form as Bridgman’s correction factor for
stresses in the necked section of a uniaxial tensile specimen
except for the sign of R.) The essential feature of equations (1)
and (2) is that is easily computed given the compressive load
(L), and the correction factor C’, and the bulge radius R.
Notice that if there is no friction, R=c and C’ = 1.0.

Experiments

A series of experiments were performed to: 1) test the
validity of the compression bulge radius correction factor,
and 2) use the effective stress data, calculated using equation
2}, in Thomason’s plastic instability criterion to predict
failure.
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Part 1: Effective Stress

Experimental Procedures and Measurements. Compression
tests were carried out on a 530,000 N (60-t) universal testing
machine. The specimens were upset between flat parallel dies
mounted on a die subset placed on the testing machine. Two
different friction conditions were utilized:

(@) polished dies with lubricant (oil-Moli #3) applied before
each increment of deformation (for the zero friction—
nonbarreling test), and .

(#) polished dies without lubricant (for the ordinary test in
the presence of friction and barreling).

The solid cylinders were prepared from commercially
available aluminum of two alloys: Al 6661-T6 and Al 1100.
Specimens were cut (from different bars) into different
lengths giving height-to-diameter ratios of 0.965, 1.04, 1.15,
1.27, and 1.43, and they were used without any heat treatment
in both tests (g and b).

The stress-strain measurements for the cylinders in com-
pression were obtained according to the test to be performed
{a or b). Axial and hoop strain measurements were made with
a micrometer to an accuracy of 2.54 X 10-¢% m (0.0001 in.).
Three different methods were used for calculating the stresses:
1) In the zero friction — no-barreling test, the effective stress is
simply the applied load over the area; 2) in the ordinary test
(in the presence of barreling and friction), the effective stress
is calculated by using the bulge correction factor (equation
(2)); and 3) the average stress was calculated without the bulge
correction factor based on the average diamieter.
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Fig.8 Comprassion test results, specimens 7 and 8

The bulge curvature R was calculated using two methods
based on Kulkarni and Kalpakjian [13], which depends on
using templates of known radii to measure the curvature, and
an empirical formula {14], which relates the radius of cur-
vature to the minor and major diameters (d;, and 4,,
respectively) and the height (Fig. 4):

_ W +(dy-d\)
4d, - dy)

The second method is more practical, but the first method is
also used as a check of the validity of the empirical formula.

Two different sets of experiments were performed, one
based on running compression tests without the bulge
correction factor discussed earlier, and the second based on
Bridgman's modified test, which avoids nonuniformity by
performing the compression in stages remachining the
specimens back to the original proportions. (This latier
procedure produced the ‘‘exact” data which the corrected
data from tests with friction should mimic.)

Ten specimens were used, five for each experiment.
Compression was done in stages, each differing by 4500 N
(1000 1bf) from the other. Deformation was carried to a range
between 45-70 percent for all the tests. In Figs. 5 to 9, the
effective stress from the experiment and the average stress are
sho':vn as a function of the corresponding strains. The ef-
f’e:in:ec(s)tress 'resuflts from the ordinary test and by using the
fro%n thl:'egzlroon f:licctt?r behaves essepnally the same as 'thgase
between the two is ne J;l_—nqnbarrehng test. The dev;atlon

gible in most cases, and the maximum
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difference is less than 7 x 105 N/m? (1000 Psi). The average
stress, on the other hand, behaves in a different way. It
decreases and deviates from the others after a strain of 0-1
and reaches a maximum difference of about 41 x 10® N/m?
(6000 Psi). One more interesting thing about the curves of
Figs. 5-9 is that the effective stress-effective strain behavior
differs from one another for the same material. Usually at the
same conditions (temperature, loads, and geometry) the
effective stress-effective strain relationship is the same for the
same material. In these experiments, different bars with
different diameters were used, which is possibly the reason for
this behavior.

Figure 10 gives all the data points for an ideal {zero bulging)
test, showing that the effect of releasing load and reloading is
a depression of the yield point below that reached in the
previous application of stress. The interval between release
and reapplication of load varied between half an hour and one
day, with no apparent correlation between the interval of
testing the excess or defect of yield point.

Conclusions. The experiments indicate that the effective
stress results from the ordinary test by using the buige
correction factor to behave in a similar way to the zero
friction — no-barreling test, The deviation is negligible be-
tween the two parts in most of the experiments.

Part II: Failure Prediction. To test the validity of the new

Transactions of the ASME
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stress correction factor, failure prediction was used, along
with surface strain increment measurements, in the following
experiment to compute Thomason’s plastic instability
criterion. A number of compression tests, with various
combinations of specimen geometry, were carried out to the
point of fracture on the barreled surface, thus giving a wide
variation in the history of the stress components and the strain
increments at the equator.

The solid cylinders were prepared from commercially
available 13x1073m- (1/2 in.)-dia aluminum (6061-T6).
Specimens were cut into five different lengths, giving height-
to-diameter ratios of 1.37, 1.29, 1.25, 1.19, and 0.94. The
specimens were not given any heat treatment. (The effective
stress is calculated by using the bulge correction factor after
barreling occurs.) Compression tests were carried out on a
530,000 N (60 t) universal testing machine. The specimens
were upset between flat parallel dies mounted on a die subset
placed on the testing machine. The tests were carried out
without lubrication.

For strain measurements, marks were indented at the
midheight of the specimens, shown schematically in Fig. 11.
Axial and hoop strain measurements were made with a tool-
maker microscope to an accuracy of 2.54x 10-% m (0.0001
in.), with calculations in accordance with Fig. 12. The stress
component at any stage of deformation on the free surface of
the cylinder is calculated by the use of Levy-Mises equations,
according to
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The effective stress & was calculated for every test using the
correction factor developed above. The current slope, K, was
calculated according to K= —de,/de;. The ¢, and the ¢
principal strains, calculated from the equatorial grid
measurements (Fig. 12), give scatter values which make any
direct determination of the K value highly inaccurate. This
problem was overcome by assuming 2 power function
relationship between e, and ¢,. The K values were obtained by
differentiating this function for ¢, with respect to €p.
Determination of point of instability was measured ac-
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Tablel! Various quantities at fracture

Speci- o5 ~g. &
men é £g —€; Pst* Psi® Psi®
1 0.7477 0.4250 0.4926 70,193 44,820 100,408
2 0.7750 0.4005 0.4728 64,821 51,422 100,892
3 0.8614 0.4697 0.5863 80,997 34,125 102,418
4 0.8059 0.4395 0.5359 79,966 38,003 101,454
5 0.7319 0.4052 0.53%0 60,573 54,939 100,076

I Psi =7 x 10°N/m?

Table 2 Tensile work to fracture and post-instability strain
to fracture, no lubrication

effective strain to point effective strain from

Hy/Dy of instability instability to fracture
1.379 0.4611 0.2265
1.298 0.4859 0.2657
1.259 0.5820 0.1665
1.161 0.6362 0.1136
0.948 0.5475 0.1802

cording to Thomason's method of predicting failure in
compression [12]. The condition for tensile plastic stability
under an internal pressure is
9% — o(2-K) ®
dEg
According to equation (3), two conditions for instability can
be recognized: 1) If K<1, instability will occur under an
internal pressure, and 2) if K>1, instability will occur first
under the action of g,. In the present work, K was always less
than one.

The method adopted here to determine the point of in-
stability was to plot graphs of the circumferential stress g, and
the surface strain increment ratio (2-—K) against the cir-
cumferential sirain e,. By trial and error, a point along the ¢,
base-line could be found at which the tangent to the g, curve
had a gradient of ¢ (2—K), thus giving the theoretical point
of tensile instability (see Fig. 12).

Experimental Results and Discussion

The stress components on the equatorial free surface were
calculated from the strain measurements and are plotted
against the compression strain  for the various conditions in
Figs. 13 and 14. All various quantities at fracture of the ex-
periments are given in Table 1. The results in Table 2 show
that the effective strain varies considerably over the range
0.461 10 0.636 from the start of compression to the estimated
point of tensile instability, for_the various test conditions.
However, the effective strain from instability to the point of
fracture varies only slightly over the range 0.113 to 0.265.
These resuits suggest that during stable plastic flow there is
very little contribution to the conditions which cause ductile
fracture; but when tensile instability occurs, ductile fracture
progresses rapidly {12].

The estimated point of instability for each compression test
was determined by means of equation (3) and is indicated by
point 1 in Figs. 13 and 14. The effect of experimental errors
on the calculated values of ¢, and ¢, were estimated to be less
than =7 percent. The resultant error in the o, stress com-
ponents was therefore less than + 1 percent.

Fracture occurred at 45 deg for all the specimens which
means that the axial stress on the equatorial surface was
compression at this point [12].

Summary

N ::da result of the present study, the following results can be

1 The effective stress can be found during normal
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compression tests with friction by using a bulge correction
factor that can bé applied using in-process measurement. This
step eliminates the separate test that is usually performed to
find the effective stress.

2 The new correction factor is based mainly on arguments
similar to those Bridgman used to find a correction factor for
stresses in the neck of a tensile specimen.

1 The effective stresses found by use of the new factor
behaved in a similar manner to those found by Bridgman’s
modified compression test- (ideal compression without
barreling) (Figs. 5t09).

4 Thomason’s method of predicting tensile instability and
ductile fracture was applied to normal tests using the stress
prediction method and the results were in agreement with
Thomason's results. The main difference between the present
work’s approach and Thomason’s is that the effective stress
was found from in-process measurements and was used
directly in the method without the need for a separate test.
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APPENDIX

Approximate Solutions for Stresses Developed in a Com-
pression Test in the Presence of Barreling

The following equation results from the condition of
equilibrium in the r~direction in Fig. 3:
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do ., dr
(az+—a?zh)sm¢ r+ —z-)d&dr

- (0, + %dr) (dr+r)doh ~ (ogsind8) + o, hrdf=0 )
r

Geometrical equations for 4 and 4’ can be derived from Fig. 3
intermsof R, R =a/¢, pand ¢’

h =R¢— g {Cosg” —cosg}

h'=Rep— g[cos(q&’ +dé")—cose) @)

Introduction of equation {2) into equation (1) and neglecting
al} terms except those of lowest order yields:

rk 372 a ) da,[l az—r") ]
o35 -5+R) g [ ()R

L R

Symmetricai deformation requires that on the maximum
section

1
deg =de= — 3 de, “4)

From the plasticity equations it follows that
0, =0y )

Introduction of equation (5) into the effective stress equations
yields

Gd=u, ~0, 6)
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Assuming that = constant on the bulge and introducing this
into equation (3):

do, [t ra*~r? ] ra
w3 R0 o

Separation of variables and introduction of the boundary
condition r=a at the free surface

g,=0 7=g, ®)
permit ready integration, and the stresses become:
at—2ar-r
—on (22220 5
0= e ©)

__[I_Hn(az-ZaR#rz ]
2= Z2aR

Introduction of o, into the condition that the load across any
section of the bar is given by

- (10)

(i1

a
F=27rS0 o rdr=ma*(0, ) sue
resulting in:
a
71a%(8, ) 4y = 75(a* — 2aR)in (I - 3R (12)

from which the relation between the average axial stress
(0. )ave and & is given by

et (- E)ul1- 2)]

Thus the correction factor for converting the average stress
into a correct effective stress is given by the factor:

e -[(- 2o 2)]

(13)
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