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TECHNICAL NOTE

A FIVE BODY — THREE DIMENSIONAL DYNAMIC ANALYSIS OF WALKING*

This note describes a technique for the dynamic analysis of
articulated linkages (e.g. the lower limbs) employing a fuil
three dimensional kinematic description of the segments and
producing dynamic joint-force components without the use
of a foot—floor force measuring device. The method is an
extension of that described by McGhee et al. (1976) to three
dimensions, and the results have been used with success as
- input data to a muscle force optimization procedure (Hardt,
1978).

For this development, it is assumed that the position of the
center of gravity of each segment is known as a function of
time as well as the angular displacement history of the
i segment. This data was provided here by a system developed
; at MIT. (called TRACK, Telemetered Real-Time Acqui-
~ sition and Computation of Kinematics) that employs the
Selspot (a trademark of SELCOM AB, Sweden) system
~ combined with a PDP11/40 minicomputer to measure the 3-
. D position of points in space and then, by associating these
 points with body fixed coordinate frames, calculates the
complete kinematic description of each segment without any
assumption as to its connection with other segments. Details
of this system can be found in Conati (1977). In addition,
techniques are presently being developed to automatically
locate the center of gravity given the assumption that it lies on
a line connecting the instant centers of the segment articu-
fations (see Antonsson, 1978).

The model is based on a Newtonian formulation (which
. might not immediately suggest itself for such a complex
- linkage) because this is an “inverse dynamics” problem, that is
: the forces and moments are the desired outputs rather than
* | inputs and a full kinematic description of each free body in the
system is assumed. It is scon obvious that a Lagranian
method would be inappropriate here since the system model
;. ¢an be developed by simple repetition of the free body model
. of each segment.

DYNAMIC MODEL OF THE LOWER LIMBS

The human body can be approximately modelled as a
system of articulated, rigid, massy links, and, given infor-
- mation about the motion of these links, the forces and
- moments acting on a system can be calculated. H each link is
Tepresented by a free body with a general set of forces and
moments acting on its end points, as shown in Fig. 1, the
- ¢quation of motion for each body can be written:

IF =ni%,, =F, +F, + nig, (1)
o d — = —
Mo = — (e, @) = My + My +7F 4 xFa, )

1.F; = end forces applied at joint centers

F,F,
ﬁ,,Mz = joint moments

* Received 8 November 1979.
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m = mass
I 5. = inertia tensor about the center of gravity

Fy.F, = moment arms of force vectors about the center
of gravity,

where all vector quantities are referred to a common inertial
reference frame. (Notice that the effect of muscle forces have
been condensed into pure moment generators on the limb.
This makes the problem solvable, but it also leaves the joint
forces, F; and F, incomplete since the muscular component
of this force must also be included.)

From complete kinematic information the accelerations ¥
and d/d: @ can be derived using numerical differentiation and
the mass distribution information of Braune and Fischer
{1889), for example, can be used to estimate m and I, given
characteristic lengths and diameters for each subject. With
this information, equation 1 can be solved for the forces

Fi+ Fy=mi,, ~ mig. &)

If a force plate is available to measure the foot—floor force, -
equation (3) can be solved completely for the foot segment
with the foot forces as the input and the ankle force as the
output. Since no force attenuation occurs across the joints,
subsequent proximal segment equations can now be solved
provided their motion is known. Similarly, knowing all forces
and measuring the foot-floor moment, equation (2) can be
used to solve for all the joint moments. This is essentially the
method pioneered by Bresler and Frankel (1950) and used by
many contemporary investigators.

If a force plate is not available, as was the case here, the
most distal force {the foot force) cannot be measured and a
slightly different approach must be taken. If the links are
assembled into a complete lower limb system, such as shown
in Fig. 2, there will be five force and five moment vector
equations, one for each link. However, there are six unknown
force and moment vectors. This indeterminateness can be
resolved by considering the normal walking cycle. During
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Fig. 2.

most of the cycle one of the legs is swinging above the ground,
thus the most distal force and moment on that leg is zero and
the syster of equations is solvable. However, a problem arises
when both fect are on the ground, which occurs during double
leg stance. During this time the distribution of forces and
moments between the feet is unknown. McGhee et al. (1976)
approximated this force and moment transfer between the
present stance foot and the present swing foot as a linear
function of double leg stance time. To apply this to the present
model consider the right leg in contact with the ground with
the left leg completing its swing phase. The dependence of the
forces and moments would be expressed:

Fo=F, +Fs Mo=M, + M,

T

= 4
s 4

_, t, —t .
M, =2 M,, . (5)
ty 1y i

where
t, = beginning of double leg stance
t, = end of double leg stance

F,,M, = forces and moments on right ankle
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F,, M4 = forces and moments on left ankle.

This dependence between the force and moment vectors of the
ankle again yields a solvable set of equations and all forceg
and moments for the model can be found for the entire
walking cycle provided the timing of the double leg stance
portion is measured. (The latter was accomplished by the use
of foot switches on the heel and toe of the subjects shoes )

This solution procedure was implemented in the followi
manner. Combining link equations (1) and (2) into a system,
describing the 5 link model of Fig. 2, the matrix equations

MZ=T] +mg 03

d . . . N
a(lw) =I'm + rxF, 7

can be written, where:

M = mass matrix (15 x 15 diagonal)

¥ = acceleration vector (15 element)
‘mg = gravity vector

7 = force vector (15 elements)

1 = inertia matrix (15 x 15)

o = angular velocity vector (15 elements)
__m = moment vector (15 elements)
rxF = cross product vector

T" = matrix of constants relating forces across the joints

and the ankle dependence during double leg stance

(15 x 15).

Solving these for the force and moment vectors yields: -
F=r"" (MZ - mg) @
E:r*l(i(la—??c?). ©

dt

Implementation of the single leg stance—double leg stan
algorithm is accomplished by using the appropriate set o
force and moment vectors (i.e. for left leg stance, the right le
ankle forces are dropped from the vectors) and by using th
proper " matrix for that set. There will be three I" matrices
one for each single leg stance phase and one for the double |
stance phase. In single leg stance, the T matrix reflects th
coupling of equal and opposite forces across the joints, but fo
double leg stance the I matrix also incorporates equations (4
and (5) into the elements relating ankle forces and momen
The calculation routine must switch between these three
matrices depending upon which phase of gait is occurrin
During double leg stance the dependent ankle forces and’.
moments must be calculated separately by application of
equations (4)and (5) to the force set found above, which yield
all six force and moment vectors. .

The use of a five segment human body model necessitates
several assumptions. By not including the feet their inerti
contribution to the ankle moments is neglected. This does n
seem severe since the feet represent only 5.7% of the total le
weight (Drillis and Contini, 1964). A greater loss is the lack of
information about the foot position and the ankle angle. (Asa
result the assumption must be made that the ankle remains:
locked at zero degrees of flexion.) .

By lumping the head, arms, trunk, and pelvis into one bo
(the HAT) the independent motion of these four elements
neglected. Probably the most significant of these motions
rotation of the trunk with respect to the pelvis and head about’
the vertical axis, which is normally accompanied by the:
characteristic swinging of the arms. The swing of the arms af
rotation of the trunk tend to counterbalance an opposilé
rotation of the pelvis as the legs swing forward. By neglecting’
the arm swing, the calculated moments at the HAT—femur”
joints (the hips) will be higher than if arm swing were
included. Although the HAT is rather massive, representing
63% of total body weight, this trunk rotation is of small
magnitude and the concomitant error is not expected t0 be
significant.



A final note on the actual calculations: the kinematic data
used here was essentially position and orientation data
erenced 1o the center of gravity of each segment in the
solute or fixed reference frame, therefore equation 8 can be
<olved by direct use of this data for the forces. The moment
equation 9, on the other hand, is considerably more difficult
1o solve in the fixed reference frame because the inertia matrix
as seen in this frame will change with time. However, if the
equation is written instead in a body fixed reference frame the
inertia matrix will be constant, and if the body fixed frame is
gned with the principal axes of the segment the inertia
atrix becomes diagonal. To properly evaluate the term

d U_) .
— (o),
dr

th  expressed in a body fixed or relative frame, the angular
omentum vector (Iw) is treated exactly like any other
neral vector, and the formula for the time rate of change ofa
ector in a rotating frame (Crandall et al., 1968) is used:

E(Iw) =law+w x I 0

is relationship is then applied to each segment in its
pective body fixed frame. Before pre-multiplication by
1, as dictated by equation (9), each segment in the system
“must be referred to a common frame, the best choice being the
fixed reference frame. With this modification, the moment
‘equation of equation (9) becomes

m=T"1(C* (Io + wxlo — rxF),), (10)

here the elements of I and 7xF are all referred to their
spective body fixed frames and C~* represents a 15 x 15
trix that collects the individual segment rotation matrices
ong its diagonal. The resulting joint moments are thus
ferred to the fixed frame consistent with the joint force
lculation.

‘The result of these calculations are moment—time histories
r all of the leg joints and those components of the joint
caction forces arising from inertial and gravitational in-
uences only. (As stated earlier the total joint force will also
ve a large contribution due to the muscular forces that can
uly be determined after the joint moments are known.)

RESULTS AND DISCUSSION

‘The calculation procedure detailed above was applied to
ta from three subjects. The resulting joint forces and
ments for one of these frials isshown in Fig. 3. Considering
12 overall shape of the curves, they compare favorably with
12 from other investigators (e.g. Bresler and Frankel, 1950;
aul, 1965) or Crowninshield et al., 1978). Clearly evident in
e moment results, for example, is the abductive component
M.} during stance required to support the trunk, and the
trong extensive and flexive moments (M,) at each double leg
lance period. However, closer examination reveals several
blems all of which can be traced to the assumed force
spendence during double leg stance.
oints of preatest concern are: the sometimes abrupt
sition at left toe-off and left heel-strike (see F,) and the
: .n_dence of peak magnitudes (e.g. M, and F,) on the
Yration of double leg stance. This latter point places a great
portance on the accurate determination of foot contact
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times during the walking cycle.

With only these reservations, however, this method ap-
pears quite powerful. Perhaps the greatest virtue is not the
simultaneous calculation of bilateral dynamic joint forces and
moments, but the illustration of the simplicity of the dynamic
equations when the input kinematic data is presented as
absolute motion of the segment centers of gravity. This
eliminates relative rotations and the resulting Coriolis for-
mulation, and yields a completely general set of equations
from which any mechanical quantity of interest can be
derived. Thus there is not “built-in” data structure that would
restrict the application of this tool.

The double leg stance problems with this method can be
resolved with force plate data and the resulting system would
provide accurate limb dynamics for the entire lower limb
system. This approach, which places fewer restrictions on the
detail with which data parameters can be calculated, holds
the promise of greater clinical use where, for example, lateral
symmetry arguments are often unfounded.
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