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Determining Muscle Forces in the Leg During
Normal Human Walking—An Application and
Evaluation of Optimization Methods

The individual muscle forces in the leg during human walking are unknown, because
of a greater number of muscles when compared to degrees of freedom at the joints., The
muscle force-joint torque equaltions can be solved, however, using optimizalion tech-
nigues. A linear programming solution of these equations applied at discrele, time-~
independent sieps in the walking cycle using dynamic joint torque data is presented.
The use of this technique, aithough capable of providing unigue solutions, gives ques-
tronable muscle force histortes when compared to electromyographic data. The reasons
for the lack of confidence in the solution are found in the inherent limilations imposed
by the linear programming algorithm and in the simplistic treatment of the muscles
a8 tensile force sources rather than complex mechanochemical transducers. The defini-
tion of a physiologically rationalized optimal criterion requires both a global optimiza-

tion approach and mere complete modelling of the system.

Introduction

Classical mechanical analysis of human gait has been pri-
marily concerned with those quantities most readily messured
on human subjects. Consequently, the oldest area of study is
the photographic measurement of human motion begun by
Muybridge [1]! in the 1880’s and now exemplified in the elegant
classification studies of Murray (2. More complete characteriza-
tion of the system was provided by the work of Bresler and
Frankel (3] who combined motion data with the mass properties
of the human body and the measured foot-floor reaction to
permit modelling of the lower limb dynamics. These techniques
have since been applied many times {4, 5] to determine the torques
at the skeletal joints caused by gravitational and inertial forces
during movements of the lower limbs.

These calculated torques represent the requirements for dy-
namic equilibrium placed upon the muscles and ligaments of the
musculoskeletal system. Since the lower limbs possess a me-
chanically redundant set of muscles, direct solution of muscle
force—moment arm-joint torque equations and consequently
the muscle force-joint reaction equations—is not possible. In
addition, noninvasive techniques of measuring muscle force
such as electromyography (EMG) do not provide the quantita-
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tive aceuraey required for do they permit access to all muscles
of interest. It is for these reasons that gait research has not been
able to complete the mechanical characterization of the lower .
limb system and has not yet found wide application to clinical
problems.

The importance of considering muscle action cannot be over-
stated. Besides being the actuators of the musculoskeletal sys-
tem, muscular forces often exceed body weight and hence can
dominate the loading on bones both at the joints and at the
muscle attachment areas. It is clear that a complete mechanical
description of human gait would have many applications in-
cluding bone and joint mechanics, (osteoarthritis research, bone
pathologies, prosthetic design) and muscle function research
{in-vivo muscle activity or muscle as the final conirol element in
overall movement strategies) as well as clinical studies of patho-
logical gait arising from muscular activation abnormalities.

The indeterminant nature of the muscle force equations has
been approached in several ways and for differing purposes. In
relation to the hip joint reaction forces during gait and other
activities, Paul {6] circumvented the intrinsic redundancy by
grouping funetionslly similar muscles and their attachment
points until the system was soluble, Morrison (7] followed the
same concept for the knee and both authors produced data which
gives valuable insight iato the total joint reaction, that is the
muscular component as well as the externally calculable gravita-
tional and inertial eontribution, however, detail as to individual
muscle activity was lost. In areas other than human gait the
concept of mathematical optimization has been used to deter-
mine muscle forces for eye movements [8], kicking movements
{9] and static postures [10].
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This paper addresses the problem of oblaining individual force
histories of all important muscles of the lower limb during normal
level walking. The solution techaique is static optimizatior and
the full three dimensional dynamic equilibtium of the system is
considered. While such an approach has been applied to quasi-
static walking [11] and even. considered as an accepted technique
{12, 13] it has never been fully demonstrated. Indeed it will be
shown that this technique applied only to the mechanical aspects
of the problem leads to physiologically unreasonable results. In
this sense the following is a feasibility study and can serve as a
foundation for more refined approaches to this complex and multi-
disciplinary problem.

The System

Fig. 1 is an idealized represeatation of a pelvis and lower limb
system. The hip and ankle joints are represented by perfect
ball joints (3 orthogonal rctatory degrees of freedom) while the
knee is shown as a simple binge (flexion-extension only). The
muscle geometry is represented by point attachments with
muscle force vectors directed along a line connecting these two
points. The muscle is considered solely as a tension source with
no time-varying qualities.

A model of the dynamies of this system could take the form

f(x, x) + g(u) (1)
x = three-dimensionsl joint angles

% = joint angular velocities
u = vector of all muscle forces
where the function f(z, ) contains mass and geometric properties

of the system while g(u) effectively tiansforms muscle forces to
joint torques. The problem is, therefore, to find a unique con-
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Fig.1 Skeletal modsl and coordinate framos used. (Frame 1 is fixed
to the pelvis, 2 to the femur, 3 to the tibia and 4 to the talus or foot.)
Both the ankie and foot are ball joints while knee is a simpls hinge.
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trol vector u{t) that will give the required trajectories. However,
since the joint angles (x(¢)) are prescribed, i.e., can be measured,
they can be differentiated with respect to time to provide
f{x, k) and differentiated again to provide &(t). Equation (1) is
now reduced to:

m{t) = gu(®)) 2}
where
m(t) = & — Kx, x) 3)

With appropriate adjustment of the units involved, (2) can be
interpreted as a vector of dynamic momeat trajectories equated
to & vector of muscle torques. All explicit dynamics have
vanished and are contained implicitly in m{¢) (hence the label
“dynamic” moments). It is now clear that the general function
g is a matrix of orthogonal moment arms which transforms the
muscle forces into joint torques. These moment arms are in
general limb position depeudent, therefore the complete system
equation is

R(x(0))u(t) = m(t) 4)

where B = matrix of position dependent moment arms. Now
the problem of muscle-joint redundancy becomes evident, since
the dimension of u, (31 muscles in the present model), is greater
than three times that of m, (7 degrees of freedom) precluding
any unique solution of (4) as it stands.

The solution approach followed here is to provide an optimal
criterion for selecting one member from the infinite set of pos-
sible u(l) trajectories that will satisfy (4). Further simplification
is made by:

1 tresting equation (4) as a time sequence of time independent
states,
2 defining a penalty function (J) that is linear in u,

These conditions prepare the problem for solution by a linear
programming algorithm, (a static optimization method), which
takes the general form:

minJ ; J =Ty

Y
[eT = transpose of ¢, a vector of constants] subject to the con-
straints

Ay = b [A and C are matrices of constants]
Cy < d [bandd are vectors of constants]
yz290

If we definey = u, then A = R, b = m and C = 0 (o inequality
constraints). The restriction y 2> 0 is fortuitous since muscle
force is in fact unidirectional. For the present application, the
eycle of walking is defined from heel contact to heel contact of
one foot and is quantized into 50 equidistant intervals [T
= 1/50 7; 7 = period of cycle]l, The final form of the optimiza-~
tion aow becomes

for n=1...50 (%)

min (¢Tu(nT))
uw(nT)

subject to the constraints: R(nT)u(nT') = m(nT) and: u(nT)

=0

u(nT) = muscle forces at time nT

m(nT) = dynamic joint torques at time nT'

R(nT) = position and therefore time-dependent moment arm
matrix at time nT

A revised simplex algorithm, implemented on a PDP11-40, was
used to solve the equation system (5).

As discussed in the foregoing, data for joint angle and torque
trajectories, x(nT') and m(nT'), plus the matrix of muscle moment

MAY 1978, Vol. 100 / 73



-2 -

— X

Fig. 2 Joint torque data from Bresler and Frankel [3] for one hes!
striks to heel strike cycle. (Z is in direction of progression, Y is ver-
tical and X is out from tha saggital plane.)
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arms R(x(nT)), for the hip, knee and ankle must be available for
the force optimization. If limb angles are measured and mass
properties of the body segments are known (or approximated),
the joint torques can be found by solving equation (3). For this
study, the measurement of joint angles and the derived torques,
of Bresler and Frankel [3] (using a lumped mass assumption),
were used, (see Fig. 2). R(x(nT)), the matrix of muscle-joint
moment arms, was found by representing each muscle by posi-
tion vectors from the assumed center of rotation of the appro-
priate joint to both the origin and insertion of each muscle with
the limbs in a reference position. The data of Arvikar {14], who
treated the muscles as straight line actuators with point attach-
ments, was used for this purpose with the exception of the tensor
fascia lata muscle which was treated as & uniarticular hip muscle
a8 suggested by Hollingshead [15].

The attachment point veectors were referred to a coordinate
frame fixed on the skeletal member of their attachment and rela-
tive rotations at the joints were represented by a 3 X 3 rotation
matrix. Matrices for each joint were derived from the motion
data by the use of modified Euler angles updated at the discrete
time intervals. By applying the appropriate rotation matrix the
origin and insertion vectors were put into a common coordinate
frame and the individual muscle moment arm vectors were cal-
culated by forming the cross product of the muscle origin
vectors with their respective muscle length unit vect..rs. The
right hand side of the constraint equation was also made con-
sistent by referring the joint torque vectors (caleulated in an
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absolute or inertial frame) to the frames appropriate to the
moment arm vectors at each joint.

The above information completes the constraint equations of
(5) and attention can turn to definition of the cost of coefficients
in the penalty function J = ¢7u. Ideally this funetion should
reflect a physiologically relevant quantity which is in fact
minimized by the natursl control system. However, the choice
of such a function can be quite difficult, as illustrated by the
penalty function *‘shopping list” given by Chao and An (16}

The simplest fuaction, from the point of view of interpreting
the results,-sets all elements of ¢, the cost coefficients, equal to
one thereby making J the sum of all muscle forces, which are
then to be minimized. The first optimization discussed in the
next section used this: minimum force criterion.

Results

The muscle forces resulting from the minimum force optimiza-
tion are shown in Fig. 4. Before discussing individaal muscle
force histories, however, the convenient integration of these
forces at the joints will be exploited for comparison with other
studies. In Fig. 3, the resultant joint force magnitudes are shown
by the solid line. This represents the sum of the muscular forces
predicted by the optimization and the gravitational and inertial
forces due to the mass of the limbs., The latter two quantities
were again borrowed from the study of Bresler and Frankel {3].
For the hip, (Fig. 3(e)), the result from Paul (6] and the in-vive
data rom the instrumented prosthesis of Rydell [17] are cross-
plotted. There is good agreement with Paul, in both magnitude
and temporal aspects, with variations probably due to individual
subject differences. The high force at 50 percent of the cycle
(5.7 body weights), is primarily due to the large force in the
tensor fascia lata muscle (see Fig, 4). The need for such a high
force is possibly a result of imposing full three-dimensional
moment equilibrium and the exclusion of the iatrinsic hip rotator
muscles from the Arvikar {14} model. In the three-dimensional
treatment of dynamic equilibrium at the joints, the classical
definition of agonist-antagonist musele pairs breaks down since
in general each muscle will have finite moment arms about all
three axes and therefore antagonistic pairs cannot always be
defined. This situation could lead to higher joint forces than if
the muscles were arranged orthogonally.

At the knee (Fig. 3(b)), the calculated resultant when com-
pared to that of Morrison [7] again shows good magnitude
agreement, but does not contain the initial peak just after beel
strike. This can be traced directly to differences between the
moment data of Bresler and Frankel used here and that used by
Morrison, since the general shape of the joint force curve mimics
that of the rectified joint torgue curve. The presence of antago-
nistic muscle activity (here well defined with only one degree of
freedom allowed), is indicated by the simultaneous activity of
the quadriceps muscles, (rectus femoris, and vastus medialis,
intermedius and lateralis), and the gastrocnemius, and it has
reduced the valleys in the 30 to 50 percent region of the curve,
Morrisoa predicted that this would occur and that his solution
represented a minimum joint force since he specifically excluded
antagonist activity.

The ankle resultant (Fig. 3(c)) appears reasonsble and the
double peak ai about 3.5 body weights (1 due to gravitational
aad interial forces and 2.5 arising from muscular forees) is closely
correlated with the flexion-extension moments required at that
joint.

When individual muscle forces are examined (Fig. 4) the mask-
ing effect of considering only tbe resultant is apparent. In addi-
tion to the impossible force requirements placed on the tensor
faseia lata muscle, the lack of activity in seven of the muscles,
despite electromyographic evidence of their use, raises questions
as to the overall fidelity of the solution. Although several
muscles, notably the gluteus maximus, gluteus medius and the
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Fig.3 Magnitude of the resuitant force at each joint. The solid pilot
is the sum of the muscular forces from optimization pius inertial and
gravitational forces from Bresier and Franke) [3]. Abscissa notations:
h.s.—~heel strike, {.f.—foot flat, h.o.— heel off, t.0.—~tos off.

biceps femoris, show good temporal sgreement with the EMG
envelopes, most other active muscles show less than acceptable
timing. The good agreement found is best explained in geometric
terms: those muscles and the requirements placed upon them
during level walking correspond closely to their geometric
adaptation to these functions, this is, there is little choice but
to use these particular muscles. However, when a true mechani-
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" cal redundancy exists, as in the case of the quadriceps for ex-

ample, the distinction based on the information included in this
model is not so clear. Indeed the placing of only moment con-
straints on the system is clearly responsible for the apparent
paradox of reasonable joint forces with unreasonable muscle use.

A closer look at the implications of the minimum force eriterion
reveals that it yields a purely geometric optimization, whereby
the set of muscle moment arm vectors which produce the lowest
muscle forces will be chosen over all other possibilities. Con-
sequently, the only representation of the muscles in the mathe-
maties is in the form of their moment arms, ignoring the phys- .
iology of the system and the dynamio properties of the muscles.
It is imperative, therefore, that muscles be considered more than
just ideal unidirectional force actustors, since the central
nervous system must surely consider their dynamic and static
properties when devising the control strategy which this solution
addresses.

As foree sources, muscles have the following properties relevant
to this study:

« nonlinear maximal force-velocity and maximal force-length
relationships
+ power producing and absorbing capability but with “impure”
dissipation in the latter (i.e., input power still required)
« nonconstant mechanochemical efficiency
o different modes and therefore dynamics of energy storage
{PCr, aerobic and anaerobic energy sources)
« functional adaptation to various types of activity
low power-low fatigue (“slow” muscles)
bigh power-high fatigue (“fast’’ muscles)
« passive force contribution due to elastic structural elements.

To incorporate some of these properties into the present
formulation, it is proposed to define a cost function that will
minimize the instantaneous energy requirements of the muscles.
This involves representing the muscle thermodynamics, a deserip-
tion not presently available. Therefore, to approximate muscle
energetics while conforming to the linear programming format,
the following assumptions are made:

1 When actively contracting, the energy flux into a muscle
is proportional to the mechanical power developed. (This im-
plies a constant mechanochemical efficiency which is known not
to be true {18].)

2 The energy requirement of the muscle when actively
lengthening (absorbing power) is nonzero and is a small constant
value which is independent of force or velocity {19].

3 The internal work during isometric contraction provides a
bias for the entire positive power mode.

The elements of ¢ (the cost coefficients) are shown as s function
of shortening velocity in Fig. 5.

Therefore

E¢ = fooe + 1.0 when o; > 0 (ith muscle)
E; = 0.1 wheno <0
o = ghortening velocity of muscle ¢

and over the entire sequence

Ll % m
Eowi = ), ¢HnT) = Y, ¥ a(aT)finT)

-t nel =l
for m muscles (m = 31)
where
E = free energy input to the muscles

E = rate of free energy input to the muscles
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Fig. 4 Force trajectories from the minimum force optimization. The cycle is from
heel strike to hael strike of one lag. Dashed envelopes indicate average presence of
EMG activity as reported by UCLA Berkeley [24].

The results of such a cost function are shown in Fig. 8. The
shortening velocities were determined by numerical differentia~
tion of the muscle length trajectories precomputed saccording
to the methods described previously. This overly simplified cost
function again has a less elegant interpretation and in effect
treats those muscles that are lengthening as the least costly.
Next those with shorter moment arms and therefore lower
shortening velocities are favored over those with longer moment
arms. The general pattern has changed in that more musecles are
_participating in the movement, however, the forgoing cormments
still apply. The increased input as to the dynamic state of the
muscle has distributed the duty but the problem of mechanical
redundancy remains unresolved.

Conclusions

The mechanical aspects of the muscle force-limb movement
problem can be suitably expressed mathematically and the in-
determinancy of the solution can be resolved by linear program-
ming, However, to accept this technique solely on this basis
would be bazardous since the foregoing application illustrates the
lack of agreement with those measures available. On the other
hand, it would be just as perilous to assert that optimization
solutions in general are inadequate or inappropriate for this
problem. On the contrary, when motor control is viewed in a
! var
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context larger than just the mechanieal requirements the concept
of optimization arises {19] not because of its property of resolving
indeterminancy, but in its proper role of providing a unifying
criterion for decision making. Indeed, motor control can be
analytically viewed within the formalism of adaptive control
theory, where the basic elements—feedback of the outputs,
monitoring the control signal and modification of the controller

cOST
COEFFICIENT (C)) 4

0.1

e

*

0
Shortening Velocity

Fig. 5 Minimum muscle energy cost coefficient dependence on
muscle shortening velocity
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according to a performance index—, all have neurophysiological
parallels in the rich kinesiological feedback from the muscles and
joints [21], the direct feedback of the control signal (sometimes
called corollary discharge [22]), and the gradual refinement of
motor coordination with repeated trials or practice. This sug-
gesis that a natural process of optimization is at work, thus a
purely biomechanical approach such as presented here is in-
adequate since the intrinsic qualities of the system being con-
trolied, (primarily the muscles), are not sufficiently represented
in the model.

The use of linear programming can be extended well beyond
that demonstrated here, particularly with respect to additional
constraiats such as maximum force capabilities, intrinsic musele
response time or by direct incorporation of EMG temporal data.
However, several severe limitations are imposed by this algo-
rithm. A property of a linear constraint space with a linear per-
formance index is that it limits the number of nonzero variables
in a particular solution to a range between the number of equality
constraints and the total number of constraints (equality + in-
equality), the so-called basic feasible solution. Since the demon-
strated solvtion involved seven equality and no inequality con-
straints, only seven of the 31 muscles were active a; any time
step. 'This is an artificial restriction imposed on muscle use
before the optimization is performed. The linear penalty func-
tion is also unnecessarily restrictive and as illustrated here and by
others (10, L1, 14, 16 leads to function definitions that are em-

pirical in nature and may not, therefore, have any physiological
analog. This is particularly tiue in the muscle force problem since
no direct measure of muscle force exists.

Finally the fact thai s static optimization is performed at
discrete times implies that each of these events is independent of
the others, (except for the connectivity of the moment data men-
tioned earlier). This is most severely reflected in the objective
function where the local optimality implies that a global opti-
mum has been found. This is not consistent with known muscle
dynamics and muscle energy requirements which are clearly state
dependent with a finite bandwidth of operation {23].

Summary

Optimization techniques are not only applicable but desirable
in the determination of musele forces during walking, However,
the proper solution will require more input as to the physiclogy

_ of the system since the optimization process itself must be viewed
and therefore formulated as an analog to the real system rather
than as solution convenience. Attention can then be focused
more complete models of the system, such as thermodynamic
descriptions of muscle function, and on defining optimal criteria
which parallel possible natural criteria. It is ounly in this way
that confidence can be placed in a solution for which there is no
direct means of experimental verification.
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