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ABSTRACT

During the early stage design of large-scale engineering systems, design teams are challenged to bal-

ance a complex set of considerations. Established structured approaches for optimizing complex system

designs offer strategies for achieving optimal solutions, but in practice sub-optimal system-level results

are often reached due to factors such as satisficing, ill-defined problems or other project constraints.

Twelve sub-system and system-level practitioners at a large aerospace organization were interviewed to

understand the ways in which they integrate sub-systems in their own work. Responses showed sub-system

team members often presented conservative, worst-case scenarios to other sub-systems when negotiating

a trade-off as a way of hedging against their own future needs. This practice of biased information
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passing, referred to informally by the practitioners as adding “margins,” is modeled in this paper with

a series of optimization simulations. Three “bias” conditions were tested: no bias, a constant bias and

a bias which decreases with time. Results from the simulations show that biased information passing

negatively affects both the number of iterations needed and the Pareto optimality of system-level solu-

tions. Results are also compared to the interview responses and highlight several themes with respect to

complex system design practice.

1 Introduction

Large-scale engineering systems require design teams to balance complex considerations using a wide range

of design and decision-making skills. Formal approaches for optimizing complex systems offer strategies for

arriving at optimal solutions in situations where system integration and design optimization are well-formulated.

However, in practice sub-optimal results are often reached at the system level. This can be due to many factors:

satisficing decision-making [1], time or budget constraints, ill-defined problems [2], or difficulties associated with

human-to-human interrelations [3].

Simulation tools can be used to explore the impact of the factors mentioned above. Simpson, et al. present a

wide range of problems that can be addressed through these mathematical models and associated algorithms [4].

Simulations are also used to evaluate formal design approaches. Sobieszczanski-Sobieski and Haftka’s survey

[5] demonstrates the range of applications in the aerospace industry. Common components studied by these

simulations are 1) the team structure or roles, 2) the form of the information passed between sub-systems and 3)

how each sub-system makes decisions and trade-offs.

This paper presents results from a dozen field interviews of sub-system and system-level practitioners within

one aerospace organization. The interviews focused on how real-world human decision-making process differed

from formal design strategies. The intent was to understand how sub-system designers reach agreement with each

other as part of an overall system design, and what strategies designers use in deciding how to share and pass

information.

This study consists of two distinct phases. The first uses an interview-based methodology to develop insight

and describe the behavior of inter-disciplinary design teams performing complex system design in the aerospace

industry. Based on the results of the interviews, the second part utilizes formal multi-disciplinary optimization

techniques to simulate the described behavior of sub-systems negotiating to a system-level optimum.

This study seeks to answer the following questions:

1. What strategies do real-world aerospace designers and engineers use when negotiating design parameters with
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other sub-systems?

2. What impact might these strategies have on system-level optimality?

3. What impact might these strategies have on the speed of system optimization?

Speed and optimality are important criteria for comparing optimization algorithms and can lead to a better

understanding of the impact of the real-world strategies described. The research questions aim to answer the

broader questions of whether these strategies are an issue that should be considered and if so can we develop

processes robust to this type of behavior?

2 RELATED WORK

This paper draws on previous work in both formal mathematical models of the design process as well as more

qualitative studies of team behavior. Perspectives from both are used to gain insight into the effect of biased

information passing.

2.1 Complex System Design Process Models

A rich body of literature exists investigating the modeling of the complex system design process. Game

Theory is one approach for modeling the multidisciplinary design process and was first proposed by Vincent [6]

and further developed by Lewis and others [7, 8]. These traditional game theoretic approaches have also been

combined with Decision-Based Design [9] and adopted in a broad range of design research [10–13] to become a

prominent framework for the study of multidisciplinary design problems [14]. Game Theoretic design attempts to

identify a rational design (Nash Equilibrium [15]) given limits to the amount and form of information being passed

between designers. The complex system design process can also be viewed as a multi-objective optimization

problem. Multi-disciplinary Optimization (MDO) is one approach which utilizes this philosophy [16]. MDO

models generally rely on a system facilitator to make optimal trade-offs that will benefit the overall system.

Design researchers draw from this literature to appropriately model their particular instance of complex system

design.

Design research has also considered uncertainty and its propagation through complex systems. Takamatsu

used the concept of formal design margins to manage risk throughout the complex system design process [17].

Margins are often defined as probabilistic estimates of the uncertainty of design parameters relative to either

worst-case estimates or performance goals. Formal design margins are one replacement for heuristic margins

and intuition previously used by design teams. Thunnissen proposed methods for determining these margins and

using them to manage risk tolerances [18]. Other reseachers have demonstrated the range of applications of these

concepts in supporting complex system design [19–21].
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2.2 Key components of Formal Models

Simulations based on these formal models have allowed researchers to observe the effect of changes, at an

abstract level, in team structure, information passed and individual decision-making on performance metrics such

as the speed and accuracy of the optimization. Yi, et al. [22], Honda, et al. [23] and Martins, et al. [16] com-

pared different team structures in both Game Theoretic and MDO approaches. The studied MDO team structures

vary from hierarchical formulations where a system integrator makes system-level decisions to non-hierarchical

formulations where information flows equally between all actors within the system. Information passing has

been studied from both a robustness perspective [24] and the effect of the amount of information on system

performance [25]. Collopy outlines a strategy for reaching an optimal design based on passing of gradient in-

formation [26]. Lewis and Mistree presented a Game Theoretic approach where each agent is involved in the

decision-making part of the optimizing task. Agents made decisions using a compromise decision support prob-

lem [27]. Robust design also explores the use of uncertainty models in the decision-making process [28]. Limits

to the decision-making process have also been described by researchers investigating bounded rationality [29]. In

doing this type of analysis, researchers have suggested best practices for design processes.

2.3 Negotiation in Complex System Design

Negotiation in the context of engineering design is a topic with contributions from a variety of fields including

design research, management science, economics and psychology. Smith and Eppinger [30] present a method

utilizing a Work Transformation Matrix to help design teams identify controlling features of a physical design

and sub-systems that will require more iterations than others. Yassine and Braha [31] present a method using

an information exchange model to help subsystems represent complex task relationships better when negotiating.

Yassine, et al. [32] examines the phenomena of information hiding in complex system design. This occurs when

local subsystem optimization and system-level optimization occur asynchronously and information gained from

the local development is hidden from the system-level process. Klein, et al. [33] model the effect of the team or

network structure on the negotiations during the complex system design process. Di Marco, et al. [34] examined

the effect of individual team member culture on the negotiation process in complex system design teams. This

paper draws on these sources to help model the negotiation between sub-systems.

2.4 Team Communication

Literature from organizational behavior, psychology, engineering and sociology have all examined how com-

munication affects team performance [35]. Nardi and Whittaker [36] demonstrated that social communication

within a team requires a shared team understanding. Face-to-face communication in during distributed design
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was shown to be particularly important. In collocated teams, design quality was found to be highly dependent on

networking in the physical space [37]. Team cognition is a related area in which communication has also been

addressed. Cooke and Gorman [38] use team communications to measure the team decision-making process and

ability to accomplish high-level processing of information and reach an optimal decision. These lessons have

also been used to develop design tools which support teams in communicating more effectively and in different

mediums [39] This paper draws on these works to provide a framework for understanding and modeling team

communication in a more effective manner.

2.5 Problem Selection

A key issue in validating and understanding results of simulations of the design process is the selection of

test problems. Coello, et al. [40] categorize the types of multi-objective optimization test problems and provide

an overview of existing test suites. This work is part of a larger body of literature addressing many of the issues

involved in developing appropriate test suites [41]. It should be noted that test suites can be useful for comparing

and evaluating optimization algorithms but may not be representative of algorithm performance on “real-world”

problems. In order to gain the maximum insight from the simulations a test suite should be comprised of a

variety of types of problems. This paper draws from several sources to incorporate as many different types of test

problems as possible.

2.6 Research Gap

This paper focuses on the interactions between sub-systems in complex system design. Current literature

either focuses on improving mathematical formulations of formal models of the design process, or developing

qualitative frameworks of team behavior. This paper seeks to bridge the gap between the two and use the power

of both approaches to gain a better understanding of how sub-systems interact in complex system design tasks.

In particular, this study hopes to both improve the effectiveness of the simulations by more realistically modeling

the social component of human behavior and to improve the qualitative frameworks by quantifying the estimated

effect of the human factors.

3 Phase 1: Interviews with Practitioners

3.1 Interview Methods

The interview phase consisted of twelve interviews with lead subsystem designers and system integrators

within a large aerospace organization. Subsystem designers were drawn from a diverse set of sub-systems such as

structures, propulsion, avionics, guidance and navigation control, materials and manufacturing, systems integra-
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tion, operations, liquid engines, and testing.

Each interview consisted of an hour of open-ended discussion on system integration management and inter-

subsystem communication. The primary question asked was, “How do you manage the integration of your sub-

system with other sub-systems?” Biographical information such as job title and description were also recorded.

The interviews were not recorded due to confidentiality. Notes were taken separately by two investigators. Select

quotes and themes from the interviews are presented below. These concepts were incorporated into and informed

the second phase of the study.

3.2 Interview Results

Finding #1: Structure of Negotiations

The interviewees described a number of modes of interacting with other sub-systems. The notable finding is

that their patterns of interactions could be characterized fairly well in the formal terminology of MDO and Game

Theoretic models depending on the level of agreement between the sub-systems. The basic mode of negotiation

followed a Game Theoretic model, with sub-system designers connecting with their counterparts in other sub-

systems to manage trade-offs on an informal level. Larger disputes were negotiated following a heirarchal MDO

model with disagreements between sub-systems settled by a committee of upper management.

All ten sub-system designers and the two system integrators mentioned direct personal relationships as a

conduit for negotiation with designers in the other sub-systems they interfaced with regularly. One example of

this type of negotiation is the “volume envelope” mechanism. One sub-system set “envelopes” or volumes other

sub-systems could use as a volume constraint early in the design process. If another sub-system needed more

space, the sub-system designer first went to sub-system designers of nearby envelopes to reach a compromise on

the volume needed.

A similar negotiation was described with respect to power requirements. Power requirements for one sub-

system were negotiated between the appropriate level of sub-system designer early on and then adjustments and

compromises were made throughout the process. This was facilitated by the placement of personnel physically

near each other. Engineers from other sub-systems have offices or “sit” in the relevant sub-system office suite.

Compromises are also facilitated by engineers designated as leads for integrating subsystems. These engineers

are representatives from the different sub-systems and negotiate at a more formal level during planned meetings.

A three level structure of negotiation was proposed by several of the designers. The lowest level is within the sub-

system; this happens routinely on a daily basis and focuses on optimizing the sub-system and setting requirements.

Most of the negotiation of tolerances and requirements happens at a cross-cutting second level. Two engineers

independently estimated that 80-90% of issues raised were resolved at this level. The third level involves upper
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management and a formal conflict resolution process. For example, a disagreement between two sub-systems

which could not be resolved at either of the two lower levels could be brought before the weekly chief engineers

meeting and a panel of upper management would then make a decision. These levels were described by multiple

participants as “down and in” and “up and out” exemplifying the correlation between level of formality and

interaction within or without the team.

The higher level of parameter conflict resolution follows a hierarchical model of negotiation used in some

formulations of MDO. Subsystems no longer negotiate between themselves, but bring it to a system integrator

who makes a decision. This view was supported in the interviews with the system integrators. One system

integrator described his role as “finding problems and fixing them.” Another difference between the self-reporting

on the levels was the formality. The levels increase in formality with the third level requiring documentation

of the conflict and a presentation of both sides of the issue before a panel of upper managers. All such third

level conflicts are tracked throughout the process and system integrators are required to resolve them at different

major milestones. This is in stark contrast with the informality of the second level at which sub-system designers

simply make changes by talking to another sub-system designer. Estimates for the relative amount of problems

which reached the third level ranged from 2 to 5%. All sub-system designers expressed their trust in the upper

management board to resolve conflicts in an optimal way.

Finding #2: Biased Information Passing Over Time

An important aspect of negotiation that arose in the interviews was the concept of biased information passing.

This negotiation tactic was used primarily at the cross-cutting second level between subsystem designers from

different subsystems as described above. Interviewees reported using the tactic when deciding the value of a

single parameter during repeated negotiations over time. Although this behavior was described by subjects for

different types of variables, it does not include negotiating tradeoffs between multiple design variables.

The phrase “margins” was used by interviewees to refer to this practice of reporting “conservative” param-

eters to other sub-systems during the negotiation process. The subjects’ definition of “margins” is distinct from

the formal definition of risk or performance margins detailed in the related work section. In these cases, the

“conservative” estimates of the parameters are used as a negotiation tool between sub-systems and do not reflect

the level of uncertainty attached to the design parameter. The phrase “keeping something in my back pocket”

was used independently by a majority of the sub-system designers to describe this issue. For example, one sub-

system designer highlighted the use of conservative estimates in the development of the budget for a previous

project. The sub-system built an extra 30% cushion into their budget estimate as insurance against future budget

cuts. The cushion consisted of “budget off-ramps” or extra tests and tasks that were not strictly necessary and
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could be cut easily near the end of the project. This structure was due to the sub-system designers belief they

would be later asked to cut down their budget, thus the higher budget at the outset offsetting future losses. One

interviewee reported that conservative estimates were one factor which contributed to cost overruns and negative

consequences for the project. A similar practice was used with parameters that interfaced between sub-systems

such as mass, volume and estimated time to completion of a task. One of the engineers reported that estimated

mass was reported with a 30% cushion at the outset, which was reduced over time to 10% near the final design

review to allow for negotiation, thus becoming a decreasing margin over time.

It should be noted that this practice is not necessarily sub-optimal, and can lead to highly robust systems.

However, many of the participants felt that the practice had some negative effects. The most common example

raised was both parties being conservative in a negotiation and reaching a highly sub-optimal compromise. Some

sub-system designers believed large design decisions, such as the switch in the overall structure of one project to

a substantially different architecture, were based on overly-conservative estimates and led to major cost overruns.

System integrators also discussed the difficulty in obtaining accurate information from sub-systems. One system

integrator discussed how conservative estimates in both the inputs as well as the system models used by the sub-

systems led to cost and schedule failures. They also reported the use of formal risk mitigation procedures which

can be inaccurate when presented with conservative inputs.

4 Phase 2: Simulations of Real-world Behavior

4.1 Simulation Structure

The simulation phase consisted of the development of a series of MDO simulations aimed at recreating and

quantifying the themes introduced in the interview process. The main purpose of the simulation phase was to

simulate the behavior of biased information passing and quantify the effect on system optimization. Simulations

were performed on a two-player system because this represented the scenario in the non-hierarchical second level

in which biased information passing was reported to occur and to simplify initial calculations.

The interview results suggested that the organization’s design team uses a sequential design optimization ar-

chitecture, also known as fixed-point iteration [42]. In this portion of the study a series of optimization simulations

were created to mimic this design process. Interviewees reported that the vast majority of resolved conflicts oc-

curred during informal negotiations between two sub-system designers, and not in the formal hierarchical process

established within the organization. Thus, only a two-player system was considered for demonstration of the core

concept. The two-player system consisted of two subsystems (subsystem-1 and subsystem-2) each with their own

objective function. Optimization was performed sequentially with subsystem-1 optimizing its design parameters

and then passing point design information to subsystem-2. Subsystem-2 then minimized its design parameters
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based on this information, and subsystem-2 then passed point design information back to subsystem-1 completing

a single system iteration. This is presented in Figure 1.

The concept of biases is introduced in the passing of point design information between subsystems. The

proposed concept of bias is distinct from the traditional use of “margins” from complex system design literature.

The new concept of biased information passing proposed by the authors is described in the interviews as occurring

in addition to the traditional “margins” estimated by the subsystem designers based on uncertainty. In this model,

the original point design information before bias includes the subsystem designers best estimate including all of

the probabilistic uncertainty or safety factors included in the definition of margins from previous work such as

Thunnisen [18]. The bias proposed here is in addition to these risk tolerances. The additional bias is excess

capacity used over time as a bargaining chip and is not related to physical reality of the system. A key assumption

is that the subsystem designers do not have sufficient information about the behavior of the other subsystems to

be able to discern when the information is biased. This may be a poor assumption when the subsystems have

worked together for a long period of time or are in closely related fields. Additionally, because this negotiation

is happening informally between subsystem designers, the information is not passed to the system integrator who

would likely have a better understanding of the larger system behavior.

The simulations were performed in three different conditions: no bias, static bias and decreasing bias. In

the first condition, no bias was used and point design information was passed normally as in traditional MDO

processes. In the static bias condition, the point design information was multiplied by 1.3 during the transfer to

the other subsystem to reflect an added bias of 30%. This number was chosen based on the estimates reported in

the interviews. Each subsystem was in effect biasing the information passed by 30% in the same direction at every

iteration. In the decreasing bias condition, the bias was decreased after each system iteration. The design point

information was multiplied by b = 1.3− .1i for i = 0,1,2,3 . . . & b ≥ 1. This again reflects information reported

during the interview process. Subsystem designers reported the bias was decreased from 30% to 0% in 10%

increments at each design review. There are many other negotiation strategies that could be used to determine this

additional bias. A proportional method with a time dependence was modeled because it was the strategy described

in the interviews. Future work could include investigating other behaviors or functions for this bias.

Additionally, the constant bias and decreasing bias conditions were evaluated in asymmetrically-biased sys-

tems. In these simulations, only one of the subsystems biased the passed information. For example, an asym-

metric bias in subsystem-1 indicate that subsystem-1 multiplied the passed information by the bias factor b and

subsystem-2 did not. These test conditions reflected interview results which indicated that different subsystems

could have varying levels of bias in their information passing strategies. In particular, less experienced subsystem

designers may be less likely to use this negotiation strategy.
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All test conditions were simulated on a test suite of fifteen two-objective problems drawn from Multi-objective

Evolutionary Algorithms by Coello, et al. [40] and from a test suite proposed by Deb, et al. [41]. This test suite

was chosen for its variety in the type of problems provided. It is well-understood that test suites do not necessarily

reflect real-world behavior. However, when comparing algorithms test suites can be used to provide a base level

of comparison. This was important in this study to allow for comparison between the three conditions.

Comparison between the different conditions was made along two metrics, optimality and speed. These

are two common metrics used for comparing algorithms [40]. Optimality was measured using the normalized

distance to Pareto Frontier, which is the shortest Euclidean distance between the Pareto Frontier and the final

system design after satisfying the stopping condition, normalized by the Euclidean distance between the Pareto

maximum and minimum [1]. The stopping condition was defined as either convergence for both subsystems

f1(i) = f1(i−1); f2(i) = f2(i−1) or reaching a Nash Equilibrium f1(i) = f1(i−2); f2(i) = f2(i−2). The Pareto

Frontier for these test problems was often given as an analytical solution in the test suite. If not available, the

Pareto Frontier was estimated using the MATLAB Genetic Algorithm function GAmultiobj. Speed was measured

by the number of iterations until the stopping condition was met. The minimization of each subsystem was

performed using the MATLAB optimization function f min con with the interior-point algorithm. Therefore, a

system whose final system design has a greater Euclidean distance to the Pareto Frontier or which uses more

iterations to reach a stopping condition is defined as “less optimal.”

Several parameters were varied at each condition. Each simulation was tested using 100 random starting

points to check for robustness to initial conditions. The mode value of results from the 100 random trials were

used for analysis. The order of sequential optimization was also varied for each testing condition. This checked

whether having the first or second subsystem optimize first in each system iteration changed the behavior of the

system.

The system optimization behavior was then analyzed to determine what the effect of each testing condition

was on the performance metrics. The behavior was also compared to the specific problem characteristics such as

types of constraints and objective functions. This analysis is presented in the results and discussion sections.

4.2 Simulation Results

Simulations were performed on a test suite of problems from Evolutionary Algorithms by Coello et al. as well

as from the test suite provided in Deb, et al. [41]. Solution paths for Multi-Objective Problem 4 (MOP4) under

the three test conditions are presented as they display behavior exhibited by many of the test problems. MOP4

was chosen as the display case for two reasons: 1) the number of iterations was relatively small and 2) the Pareto

Frontier and solution space had the same order of magnitude. These characteristics make MOP4 easy to visualize.
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However, the behavior demonstrated by MOP4 is representative of the system response to biased information

passing shown by a large majority of the other test problems.This is demonstrated in the overall performance

figures.

The normalized distances to Pareto Frontier and number of iterations from all of the test problems under

the symmetric bias conditions are shown in Figure 2 and Figure 3 respectively. For the normalized distance

measurements, a value of zero would indicate a solution directly on the Pareto Frontier and a value of 100%

would indicate a solution at the normalizing distance. In Figure 2 three of the problems have values above 100%

of the normalizing factor, their values are displayed in text boxes to accommodate the spread in chart values.

Solution paths from the same starting point for MOP4 under the different conditions are shown in the three figures

below. The Pareto Frontier on each plot is shown as circles. Figure 4 shows the solution path for the no bias

condition. Figure 5 shows the solution path in the static bias condition with b = 1.3. The final system design in

the static bias case was at a normalized distance of 10%, while the no bias and decreasing bias cases ended on the

Pareto Frontier. Figure 6 show the solution path in decreasing bias case.

The normalized distance to Pareto Frontier and number of iterations from all test problems under the asym-

metric bias conditions are shown in Figures 7 through Figure 10. In these figures, the results for each test suite

problem with no bias, asymmetric bias in subsystem-1, asymmetric bias in subsystem-2, and symmetric bias are

shown. This is done for the constant bias and decreasing bias conditions. For example, Figure 7 shows results for

the normalized distance to Pareto Frontier for each test suite problem under those four conditions for a constant

bias strategy.

5 DISCUSSION

Several themes emerge from analysis of the results presented above. First, the interview data clearly demon-

strates the use of biases, and in particular decreasing bias, over time between subsystems in the organization

studied. All of the negotiation structures in the organization, both formal and informal, are susceptible to this type

of error. However, based on the interview reports, this study focuses on the informal negotiation strategies be-

cause they comprise the majority of the resolved negotiations and may also influence outcomes during the formal

process. The framework used in the simulations is derived from this information. Second, the use of biases leads

to both sub-optimal and increased number of iterations in simulations. Third, this behavior was observed across a

variety of multi-objective problem types and structures.

The use of a decreasing bias strategy was described by almost all of the subsystem engineers and also by the

system integrators as a possible cause of system sub-optimality. In practice, subsystem engineers report that they

provide conservative, worst-case estimates of design parameter and point design information in discussions with
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other subsystems. Interviews indicated that this was due to a desire to “under-promise and over-deliver.” It may

have also be driven by a competition for resources such as personnel and money between the different subsystems.

Decreasing biases is one strategy for ensuring the sub-system has the resources it needs to complete the required

tasks and be robust to unexpected design constraints. Although a risk-averse strategy of using conservative param-

eters was reported, there exist potential benefits to subsystems which promise performance or delivery times early

on in the process even if they can not meet it. This is especially true in complex system development processes

which occur over long periods of time. In these cases, the bias factor could have values which are less than 1. The

use of an initial coefficient of b = 0.3 and then decreasing over time was motivated by interview results. This is

only one possible strategy for biasing information passed. Subsystem designers could use a different deterministic

function for determining bias based on iteration number such as starting at a different initial coefficient or using a

non-linear decrease in bias. Designers could also choose use a probabilistic method in which the bias coefficient

was chosen with some probability of increasing or decreasing.

This can be an effective strategy at the subsystem level, but the simulations demonstrated that it may lead to

system-level issues. For example, Figure 4 shows the final system design to be directly on the Pareto Frontier. In

Figure 5, the final system design found using the static bias strategy from the same starting point is further away

from the Pareto Frontier and clearly less optimal. The decreasing bias condition shown in Figure 6 did not lead to

sub-optimal results but did take more iterations. Although commonly used to compare optimization algorithms,

the number of iterations is also an important metric when considering the design process. An increased number

of iterations reflects a longer overall design process and time is an important resource in any design project. For

example, time constraints can be viewed as constraining a design team to a fixed number of design iterations. A

team using the decreasing bias strategy may reach a less optimal result given the same number of iterations when

compared to a team using no biases, especially if the number of iterations required to reach the Pareto Frontier

is large. However, given an infinite amount of time and other resources, results from the test suite of problems

suggest that the decreasing bias strategy actually may be preferable to the no bias case because it reaches the same

level of optimality and the “refinement” period near the end gives the design team more confidence they explored

the area near the Pareto Frontier extensively and that feasibility of the results are not sensitive to small changes in

inputs.

The system response to the test conditions demonstrated in MOP4 was similar across many of the test suite

problems tested. Figure 2 shows how in most of the problems the static bias condition was less optimal than the

no bias and decreasing bias conditions. In the two problems which do not fit this pattern, MOP6 and DTLZ7,

the structure of the problem caused the optimization algorithm to find the edge of the design space in a single

iteration. The boundary of the design space was also on the Pareto Frontier. Thus all conditions found this point
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and the optimality of the final system design of these problems was insensitive to changes in the bias.

The system response demonstrated in MOP4 was also similar to many of the other test problems with respect

to the number of iterations needed to reach a stopping condition, as shown in Figure 3. The number of iterations

needed in the decreasing bias case was also higher than in the other two cases for most of the test problems.

Problems whose objective functions were conical, such as MOP5, MOP7, MOPC1, and MOPC3, the behavior

was more sporadic. Although it is unclear exactly how the conical structure caused the differences in behavior,

the optimization algorithms used many iterations refining the final system design near the Pareto Frontier in the

overlap of the two conic sections. The relative size of the static bias to the size of the overlap may have producing

a stopping condition either before reaching this refinement stage, such as in MOP5, or kept it in the refinement

stage longer as in MOP7, MOPC1, and MOPC3.

The results from the tests of the asymmetric bias conditions showed that the system response was for the test

suite considered least optimal in the symmetric case. This is to be expected, since having both people bias the

information passed between them would suggest a less optimal scenario. However, it is interesting to observe

that many of the test suite problems were sensitive to biased information passing from a particular subsystem.

For example, in DTLZ6, the no bias case converged to a solution a normalized distance of 19% from the Pareto

Frontier. In the symmetric constant bias case, the normalized distance was 796% from the Pareto Frontier. In the

asymmetric constant bias condition, subsystem-1 resulted in a normalized distance of 773%, while subsystem-2

resulted in a normalized distance of only 19%. This suggests that almost all of the error in the symmetric case

was due to bias in the information passing from subsystem-1. Similar results were found in many of the other test

suite problems. This echoes results from the interviews, in which subsystem designers felt that biased information

passing from particular subsystems greatly affected the system-level result.

Another notable finding from the asymmetric bias condition results from this test suite is that iterations were

not greatly affected. In three of the problems, MOP7, MOPC1, and MOPC3, a particular subsystem caused the

optimization algorithm to converge slowly. However, for the majority of cases, the results for asymmetric biasing

did not significantly change the number of iterations required for convergence.

In practice, subsystem engineers also reported that sub-optimal irreversible design decisions were made early

in the design process based on biased information from other subsystems. For example, a complicated and expen-

sive structure may be designed and integrated into many subsystems based on mass constraints that are reported

early on. The scale of the effect is due to not only the highly-connected nature of the subsystems but also the

non-linear nature of the subsystem response to design inputs. Small changes in inputs can have large effects on

performance and cost.

This study was limited by several factors. The simulations were performed over a large number of problem
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types in the two test suites used. However, test suite problems do not necessarily accurately represent algorithm

behavior in real-world problems. As such it is difficult to determine what the exact meaning of the increase in

the distance from the Pareto Frontier or the increase in the number of iterations. However, this simulation does

reflect insights provided by the interviewees. This study also only describes behavior reported by members of

one organization. The information may not be representative of all design teams working on engineering complex

systems.

Finally, this study presents results of a simplified two-player system. Since the two-player case shows that

biased information affects the quality of design outcome, it could be argued that biased information passing in a

multi-player system would also have adverse affects on design outcome. However, since the information passing

model developed in this study cannot be directly adapted to a multi-player system, these results may not indicate

trends in simulations of larger systems. The sub-optimal system-level results reported in the interviews may not be

directly or wholly due to biased information passing. The two-player system model is an initial step in expanding

the concept of information biasing to larger systems. For a multi-agent system, a more complex model would

need to be developed. The team structure, or how and in what order the subsystems communicate the biased

information, would need to be defined. The majority of problems in the test suite used in this study can be easily

extended to a multi-agent system. In addition, there may be issues of computational complexity or time with very

large multi-agent systems.

6 CONCLUSIONS AND FUTURE WORK

Interview results from a large aerospace organization demonstrated the use of biased information passing

at the subsystem level as a negotiation tactic. This behavior reportedly led to sub-optimal system-level results.

Simulations of three bias conditions showed significant changes in system behavior. Two types of errors were

observed regarding speed and optimality.

1. What strategies do real-world aerospace designers and engineers use when negotiating design parameters with

other sub-systems?

Practitioners interviewed reported using both MDO and Game Theoretic structures for negotiating trade-offs

between sub-systems. Lower-level negotiations were done informally in a Game Theoretic structure, while

higher-level negotiations were done formally in front of upper management committees. Interviewees also

reported the use of biased information passing between sub-systems during negotiations at all levels. The

biased information passing was reported as starting at approximately 30% and decreasing over time. Practi-

tioners also reported asymmetric situations in which the subsystems were biasing the information unevenly.
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2. What impact might these strategies have on system-level optimality?

Although the size of the effect was problem-dependent, biased information passing negatively effected system-

level optimality across all problem types tested. Solutions that resulted from strategies incorporating fixed

biased information passing negatively affected system-level optimality to a high degree. Solutions resulting

from strategies incorporating a decreasing bias had the same level of optimality as those with no bias. Asym-

metric bias conditions also negatively affected system-level optimality, but system performance was highly

sensitive to which subsystem biased the information.

3. What impact might these strategies have on the speed of optimization?

The speed as measured by number of system iterations was not affected by the use of a fixed bias in most

test problems. However, a decreasing bias strategy increased the number of iterations significantly and the

amount increased for more complex problem types. Asymmetric bias conditions had the same affect on the

number of iterations as the corresponding symmetric bias condition.

Future work should involve investigating more organizations to see if the use of biased information passing as

defined in this study is widespread. Secondly, the simulations investigating the size of the effect were simplified

to two-player systems. The structure within the company for managing negotiations between subsystems seemed

to follow a “hybrid MDO-game theoretics” model in which the larger organization follows a hierarchal MDO

model, but lower level subsystems adopt a game theoretic approach [43, 44]. Braha et al. provide a framework

for examining information flow between design tasks and teams in a distributed design environment [45]. Future

work should involve simulations of this type to investigate the effect of biased information passing on larger

systems. Results found in this study may not reflect the system behavior for the described negotiation strategy

across many nodes. Future work should also include real-world problems in which domain knowledge may more

heavily impact the decision-making process.
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Fig. 1. System schematic for one iteration

Fig. 2. Normalized distance to the Pareto Frontier for all three test conditions

Fig. 3. Average number of system iterations for all three test conditions

−20 −18 −16 −14 −12
−15

−10

−5

0

5

10

f
1

f 2

 

 
Pareto−Front
Game Result
Game Path

Fig. 4. Solution path in the no bias condition. b = 0
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Fig. 5. Solution path in the static bias condition. b = 1.3
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Fig. 6. Solution path in the decreasing bias condition. b = 1.3− .1∗ i

Fig. 7. Normalized Distance to Pareto Frontier for Asymmetric Constant Bias Conditions
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Fig. 8. Normalized Distance to Pareto Frontier for Asymmetric Decreasing Bias Conditions

Fig. 9. Number of Iterations for Asymmetric Constant Bias Conditions

Fig. 10. Number of Iterations for Asymmetric Decreasing Bias Conditions
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