
THE ROLE OF SPATIAL-VISUAL SKILLS IN A PROJECT-BASED 
ENGINEERING DESIGN COURSE 

  
Although spatial-visual skills have been found to be a strong predictor of success in and aptitude 
for engineering practice and related technical fields, comparatively little research has been 
conducted on its function in engineering coursework, particularly engineering design.  The 
purpose of this study was to examine the role of spatial-visual skills in a core undergraduate 
mechanical engineering design course requiring each student to design and build a robot to 
accomplish a complex task in a competition.  The researchers hypothesized that students with 
higher spatial abilities would produce more complex designs (although complexity is not 
necessarily desirable); as spatial abilities are associated with understanding how physical objects 
can be assembled, students with high spatial ability may be better able to understand and design 
intricate integrated systems.  The Purdue Spatial Visualization test was administered to 137 
students (79 male, 58 female) at the start of the course, and these results were analyzed with self-
assessments of each student’s experience in tasks associated with spatial skills (such as creating 
origami models, sketching, and creating CAD models), the complexity of their produced robot, 
and their robots’ performance in the culminating class competition.   
 
For all students, the correlation between spatial test score and the percentage of moving 
components in a design was found to approach significance with a negative correlation.  Spatial 
reasoning was positively correlated with origami experience for male students in the study. 
Spatial test scores did not seem to be linked to competition performance.  However, although not 
statistically significant, the total number of components and number of moving components for a 
mechanism were negatively correlated with students’ scores in seeding rounds of the 
competition.  These results suggest that strong spatial-visual abilities may not directly relate to 
design outcomes and that simplicity rather than complexity may be desirable for competition 
performance.   
 
Introduction 
 
Spatial-visual skills incorporate a person’s ability to visualize and mentally transform or 
manipulate an object in space.  For example, engineers may utilize spatial-visual skills when 
designing a part; they must understand features of the part from multiple perspectives (e.g. top or 
isometric projection) while integrating the part among a variety of other components in an 
assembly.  Although much research has been devoted to how spatial reasoning may be improved 
through instruction1,2 comparatively little research has been conducted to understand the role 
theses skills play in engineering design.  
 
The purpose of this study was to study the role of spatial-visual design within the context of an 
undergraduate engineering design course.  In particular, the researchers aimed to explore 
possible connections between spatial-visual skill and ability in engineering tasks associated with 
spatial reasoning such as sketching, physical prototyping, and creating CAD models.  Design 
complexity was also analyzed with respect to spatial-visual skills.  Although not necessarily 
valued over simplicity3, complexity was hypothesized to be a characteristic of designs produced 
by students with high spatial-visual abilities.  Because spatial ability is associated with 
understanding how objects can be assembled and move with respect to other subcomponents, 



students with higher spatial ability may be better able to understand such integrated systems and 
may therefore be more likely to design them. 
 
Spatial-visual skills of undergraduate mechanical engineering students in a requisite design and 
manufacturing course at MIT were assessed using the Purdue Spatial Visualization Test: 
Visualizations of Views (PSVT:V)4.  The test was administered at the start of the semester along 
with a survey in which student self-reported their abilities in the following tasks, which are 
associated with spatial-visual skills: sketching, using CAD software, building physical 
prototypes, and making origami figures.  Robots that students developed for the course were 
examined with several metrics for complexity including the number of components composing 
their design and the percentage of moving components.  Finally, performance in the culminating 
competition was analyzed to discover trends between performance and spatial-visual ability.  
The purpose of this study was to address the research question: 
 

“How might spatial-visual ability affect systems design and design outcomes?”   
 
Results from this work may aid educators of engineering design courses to understand the impact 
graphics courses may have on student design work. 
 
Background 
 
Spatial-Visual Skills 
Spatial-visual skills are a measure of a person’s dexterity in performing mental transformations 
of objects.  According to developmental psychologist Howard Gardner, who includes visual-
spatial intelligence as an intelligence in his multiple intelligences theory, visual-spatial reasoning 
consists of several distinct skills including mental recall and transformation of objects in a 
physical domain5. 
 
Educational psychology literature defines spatial-visual skills in multiple ways and uses several 
closely related terms to refer to spatial-visual abilities and skill (for further reference, refer to 2).  
In this paper, spatial-visual skills will be used interchangeably with spatial reasoning and refers 
to ones ability to mentally manipulate an object in space through one or multiple steps1.   
 
Spatial-visual skills evolve from an understanding of space that emerges during infancy, 
typically categorized under the sensorimotor stage of cognitive development6.  Children at this 
stage, who are usually under the age of two, develop navigation skills and learn to appreciate and 
predict the trajectory of moving objects.  Once the child develops into the preoperational stage, 
usually from ages 2 to 7, the child is able to actively manipulate objects, which is known as 
operative knowledge.  Operative knowledge may be contrasted with figurative knowledge where 
the former describes one’s ability to imagine an object from different perspectives by mentally 
transforming the object while the latter describes one’s ability to simply remember how an object 
appears. 
 
It is believed that operative knowledge and spatial reasoning can be fostered through activities 
that require hand-eye coordination such as playing 3D video games or using physical 
manipulatives such as tangible construction kits1,2.  In a longitudinal study of students identified 



as intellectually talented during the 7th grade, Shea et al. found that students with strong spatial 
skills relative to verbal ability in the 7th grade were likely to pursue engineering and mathematics 
fields as their undergraduate major and full-time occupation7.  They characterized signs of spatial 
giftedness as including strong grades in science, math, and vocational courses and hobbies in 
building and tinkering.  Prior work supports the idea that children with exceptional spatial skills 
may gravitate towards engineering and scientific disciplines. 
 
Spatial reasoning is believed to be an important skill for engineers when performing tasks such 
as designing mechanisms and assemblies and creating digital models of parts using CAD 
programs1. In interviews conducted with ten engineering instructors and industry professionals, 
Hsi et al. found that their interviewees learned spatial reasoning in different ways.  Some cited 
natural ability or hands-on experience as sources for gaining spatial skills.  They also believed 
that spatial reasoning was rarely used in isolation, and although they were unsure of how spatial 
reasoning specifically applies to engineering practice, they nonetheless thought spatial reasoning 
skills were important.  These interviews suggests that further research into the role that spatial 
skills plays in engineering practice may be needed to understand its impact on design outcomes. 
 
Spatial Reasoning Assessment 
A variety of tests are used to assess spatial-visual skills including the Mental Cutting Test8, the 
Differential Aptitude Test9, and the Purdue Spatial Visualization Test10.  These assessments test 
a person’s spatial ability in a variety of ways such as having the test-taker determine the cross-
sectional view of an object, determine how a three-dimensional object would appear when a two-
dimensional image is folded, and imagine how an object would appear when viewed from a 
particular perspective.   
 
For this study, the Purdue Spatial Visualization Test: Visualization of Views (PSVT:V) was 
utilized because it has been used to assess spatial-visual skills in a previous study on spatial 
ability of engineers11.  This test involves perspective-taking, which requires test-takers to image 
how an object would appear when seen from a perspective other than their own.  An example of 
a test question on the PSVT:V is shown in Figure 1.  Test-takers imagine how the three-
dimensional object, located in the center of the cube, would appear from the perspective 
indicated by the black dot on the edge of the cube.  In the example shown, the black dot is in the 
top left corner, and the answer is (c).   
 

 
Figure 1: Sample PSVT:V question10 

 
 



Gender Differences with Spatial-Visual Skills 
A significant amount of research is dedicated to gender differences found on spatial-visualization 
assessments.  Generally, males tend to significantly outperform females on spatial reasoning 
tests12,13.  Differences have been attributed to a multitude of factors including biological, social 
and cultural, and educational factors and are believed to contribute to the fact that males 
outnumber females in science and mathematics fields.  For example, brain lateralization studies 
have found that males have a greater degree of lateralization, meaning that the left side of the 
brain that is primarily responsible for visual-spatial operations is dominant14.  Others believe that 
spatial ability may be a recessive trait carried on the x-chromosome15.  Test taking conditions 
may also contribute to differences in scores; in a study conducted by Goldstein, no significant 
differences were found between male and female scores on spatial reasoning tests for untimed 
tests although differences were noted when the test was timed16.  Despite initial differences, it 
has been shown that spatial reasoning can improve through instruction1,2.    
 
Spatial-Visual Skills and Engineering Design 
As summarized in the literature review, much research has been dedicated to the predictive 
power of spatial-visual skills in determining major and occupation and gender differences in 
spatial-visual ability.  Although spatial reasoning is often associated with engineering tasks that 
require visualization skills such as sketching or creating mechanical assemblies, little research 
has been conducted to explore the role spatial reasoning plays in engineering design.  This study 
adds to the literature to better understand how spatial-reasoning may affect design outcomes. 
 
Methodology 
 
Testbed 
Students tested in this study were enrolled in the undergraduate mechanical engineering course 
Design and Manufacturing I (2.007) at MIT.  The course is typically taken by sophomore 
students who have taken introductory statics and dynamics courses.  Before enrolling in 2.007, 
students are required to have completed a two-week long course offered directly before 2.007 
that introduces students to various mechanical engineering design tools and machinery such as 
Computer-Aided Design (CAD), mills, and lathes.  Besides this short course, students are not 
required nor expected to have any previous background in mechanical design. 
 
Over the course of a semester, each student in 2.007 builds their own remote-controlled robot 
using stock materials such as aluminum extrusions, plastic rods, and lumber.  All students are 
given the same set of materials and have access to the same set of tools in the machine shop.  At 
the end of the semester, students use their robots to compete in a competition where they aim to 
score points by accomplishing various tasks on a contest table.  Certain tasks are worth more 
points than others, so students must develop a design for their robot that incorporates their 
strategy for the competition.  During the competition, students compete against each other in 
sixty-second rounds, and the rounds continue until there is one overall winner.   
 
The course is structured such that students design separate components of their robot before a 
final integration process.  Each mechanism of the robot is called a module, and each robot has a 
Most Critical Module (MCM), or a component that performs the task the student believes is the 
most important to their robot’s success.  Students spend the first half of the semester developing 



their MCM and use the remainder of their time to integrate their MCM with the rest of their 
design.  In this paper, mechanism will be used interchangeably with MCM as the MCMs of 
students’ robots were analyzed in this study.  
 
For most students, 2.007 is their first chance to work in a machine shop and build a complete 
mechanical system from scratch.  Several visualization techniques are taught in the course 
including basic drafting, solid modeling, and prototyping.  Students in 2.007 were a valuable 
resource for testing whether students’ visual-spatial abilities at the beginning of the course 
affected the design of their mechanisms. 
 
Spatial-Visual Assessment and Skill Set Survey 
The PSVT:V test was administered to 137 mechanical engineering undergraduate students (79 
male, 58 female) during the second week of the course before any formal visualization 
techniques were taught.  Along with the test, students were administered a short survey in which 
they indicated their skill level in several tasks associated with spatial reasoning: sketching, using 
CAD software, building physical prototypes, and making origami figures (Figure 2).  Skill level 
was scored on a Likert scale from one to five with one indicating no experience, three indicating 
basic experience, and five indicating substantial experience. 
 

 
Figure 2: Skill set survey 

 
Responses for each category were totaled for each student for a cumulative survey score 
indicating their experience level in all four tasks.  The purpose of the survey was to compare 
each student’s PSVT:V score with their self-reported skill levels to examine any possible 



correlations between experiences in certain activities and spatial ability.  Students were given ten 
minutes to complete both the survey and the PSVT:V test of thirty multiple-choice questions.  
Students were not expected to finish the exam as eighteen minutes are usually given for the test.  
Course time constraints limited the amount of time available to administer the test during class.   
 
Exam scores were calculated as the number of correct answers minus one quarter of the number 
of incorrect answers (of the questions answered) in order to minimize random guessing and 
avoid heavily penalizing for not completing the test.  The scoring algorithm was used in a prior 
study on spatial-visual skills conducted by the MIT Man-Vehicle Laboratory11. With this 
scoring, the maximum possible score is 30. 
 
Measuring Design Complexity 
Students were required to design, build, and test their robot’s Most Critical module (MCM) by 
the middle of the semester.  Mechanisms of 34 randomly-selected students (19 males and 15 
female) who had taken the PSVT:V were examined on several objective and subjective metrics 
for measuring complexity.  Each MCM was photographed and analyzed in person to accurately 
account for all of their components.   
 
Objective metrics hypothesized to indicate complexity were as follows: the total number of 
components composing the MCM, the percentage of components custom-made by students, the 
number of moving components, the percentage of moving components, degrees of freedom, and 
planar versus three-dimensional movement.  These criteria were selected as measures of 
complexity with the assumption that an MCM with a larger number of components may require 
more thought and time, both in design and manufacturing, to complete.  Furthermore, 
mechanisms with a larger number of degrees of freedom or ones that exhibit three-dimensional 
rather than planar movement may be more complex.  Mechanisms that were constrained to 
planar movement were given a score of 1 while three-dimensional movement was given a score 
of 2.  The number of components in an MCM did not include fasteners such as screws and rivets.  
Pre-made components such as gears and motors were included.   
 
Custom-made components were components that students machined from stock material or 
modified from its original form.  For example, although air cylinders and motors were counted in 
the total number of components, the parts were not included in the count for custom-made 
components since they were pre-made. 
 
The number of moving components was determined to be the number of parts that rotated with 
respect to a stationary component or components of the MCM.  Two examples of MCMs are 
shown in Figure 3.  For the omni-directional wheels shown in Figure 2a, each plastic piece 
rotated with respect to the aluminum frame.  As a result, the rotating plastic pieces were counted 
as moving components, leading to a total of 32 moving parts.  For the crane shown in Figure 2b, 
all parts moved with respect to a stationary base, which is held by the student in the picture.  All 
parts excluding the ones on the base were counted as moving, leading to a total of 38 moving 
parts.   
 



     
               (a) Omnidirectional wheels (32 moving parts)  (b) Crane (38 moving parts) 

 
Figure 3: Examples of MCMs with moving components 

 
Two subjective criteria were used to judge the MCMs: originality and complexity.  Both were 
judged on a scale from 1-5 with 5 being the highest score.  Each MCM was judged by both the 
primary author and a lab instruction for the course.  The averages of scores for each MCM was 
utilized in analysis. 
 
An example of two claw mechanisms is shown in Figure 4.  Many students in the course 
designed claws to pick up components on the contest table.  As a result, most claws were given 
an average originality score of 3 unless there was a factor that made the MCM distinctive.  
Figure 4a exhibits a claw mechanism that utilizes an air cylinder to open and close the claw.  It 
has one degree of freedom and was given an originality score of 2.5.  Figure43b shows a claw 
mechanism that was designed with three different gear trains, allowing the claw to open and 
close, rotate side to side, and move vertically; this MCM was given a higher originality score of 
3.5.   
 

    
           (a) Claw MCM 1    (b) Claw MCM 2 
 

Figure 4: Two claw mechanisms 
 



Complexity was defined as an overall impression of how intricate the mechanism was compared 
to the other MCMs analyzed in the study and was a combinatory score that took into account the 
total number of parts and degrees of freedom.  Figure 3a was given a complexity score of 5 while 
Figure 4a was given a complexity score of 3.  
 
Student Competition Performance 
At the end of the semester, students entered their robots into a class competition.  All students 
participated in seeding rounds before the competition in which they attempted to score as many 
points as they could.  In seeding rounds, students did not compete directly against another robot.  
Points in the seeding rounds were used to determine brackets for the competition; highest scoring 
robots were paired against lowest scoring robots in initial brackets.  Competition rounds 
consisted of two students competing against one other to score the most points in a sixty-second 
match. 
 
Seeding score, seeding rank, competition score, and competition rank was recorded for all 
students that participated in the competition.  Seeding scores and ranks may be significantly 
different than competition score and competition rank both because of inconsistency in 
performance but also because the dynamics of a competition matches can change when students 
are competing head-to-head.  Some students specifically design their robots to interfere with an 
opponent rather than score points on the table, thus preventing their opponent’s robot from 
scoring as many points as it may have been able to without interference. 
 
Data Analysis 
As the purpose of the study was to determine whether spatial-ability affected design complexity, 
Spearman correlations were used to compare PSVT:V scores with competition perforance and 
MCM metrics for complexity.  Spearman correlation coefficients Rs can range from -1 and 1 
with -1 < Rs < 0 indicating a negative correlation and 0 < Rs < 1 indicating a positive correlation 
between two quantities.  Statistically significant Rs values were determined for each given sample 
size for a significance level α: 0.05.  Wilcoxon rank-sum tests were used to test for differences 
between males and females on the PSVT:V test, and double sided t-tests at a significance level of 
p: 0.05 were used to compare differences between groups of students. 
 
Results 
 
Spatial-reasoning test scores were analyzed and compared with MCM complexity criteria and 
competition performance to analyze emergent correlations.  Significant differences between 
students of varying spatial ability are outlined in the sections below. 
 
Spatial Test Results 
On average, students completed 24 out of 30 questions on the PSVT:V test (SD: 6.3 questions) 
with test scores ranging from 0.75 to 30.  Thirty-nine percent of all students completed all 30 
questions, and five students received a perfect score (4 male, 1 female).  Three students that 
answered less than ten questions on the exam were removed from the sample since the number of 
questions they completed was lower than two standard deviations below the mean.  It was 
possible that these students did not have the full ten minutes for the test as a result of arriving 



late for the experiment.  Excluding these three students, a total of 134 students were tested (78 
male and 56 female).   
 
As shown in Table 1, students did not differ significantly in the average number of questions 
completed; however, a statistically significant difference was found between test scores of male 
and female students (p<0.001).  Although both genders answered a similar number of questions, 
females answered a greater percent of questions incorrectly.  These differences are consistent 
with prior work on gender differences in spatial reasoning2.   
 
Table 1: Number of questions answered and PSVT:V scores  

Sample Average Number of Questions 
Completed (SD) 

Test score (SD) 

All students (n: 134) 23.9 (6.3) 17.9 (8.0) 
Females (n: 56) 22.7 (6.5) 15.3 (7.4) 
Males (n: 78) 24.8 (6.0) 19.9 (7.5) 

 
Survey Results and Spatial Test Scores 
Students completed a self-evaluation survey on their experience sketching, using CAD software, 
building physical prototypes, and making origami figures.  Experience was rated on a Likert 
scale from 1-5 where 5 indicated substantial experience.  Skill set total represents a cumulative 
score for experience in all four skill-sets.  Because three students did not complete the survey, a 
total of 131 surveys were used for analysis.  As indicated in Table 2, students rated themselves 
slightly below average in all four categories, representing their belief that they have “basic 
experience” in each of these skills. 
 
Table 2: Self-evaluation survey responses for experience in various tasks 

 
Correlations between survey responses and spatial-test scores are shown in Table 3. A 
statistically significant positive correlation was found between experience with origami and 
PSVT:V scores for male students.  
 

All Students (n: 131) Females (n: 54) Males (n: 77)  
 
Skill Set 

Average Rating (SD) Average Rating (SD) Average Rating (SD) 

Sketching 2.8 (1.1) 2.8 (1.2) 2.8 (1.0) 
Using CAD software 2.3 (1.2) 2.3 (1.2) 2.3 (1.2) 
Building Physical 
Prototypes 

2.8 (1.2) 2.7 (1.0) 2.9 (1.3) 

Origami Skills 3.0 (1.3) 2.6 (1.3) 2.1 (1.2) 
Skill Set Total 10.1 (3.4) 10.2 (3.5) 10.0 (3.3) 
PSVT:V Score 17.9 (8.0) 15.3 (7.4) 19.9 (7.5) 



Table 3: Correlation between survey responses and PSVT:V test scores.  Statistically significant 
correlations bolded. 

All Students (n: 131) Females (n: 54) Males (n: 77)  
Skill Set Rs Rs Rs 

Sketching -0.007 0.161 -0.155 
Using CAD software -0.035 -0.144 0.014 
Building Physical Prototypes -0.023 0.043 -0.137 
Origami Skills 0.074 -0.043 0.248 
Skill Set Total 0.017 -0.0349 0.0281 

Rs > 0.224 is considered statistically significant at α = 0.05 (two-tailed) for a sample size n = 34. 
 
Mechanism Complexity and Spatial Test Scores 
Thirty-four robots were randomly selected for analyzed for complexity using the aforementioned 
criteria.  Nineteen of the robots were designed by male students.  Most Critical Modules were 
analyzed for planar or three-dimensional motion where a score of 1 was given for planar motion 
and a score of 2 was given for three-dimensional motion.  Originality and complexity were 
scored on a scale of 1-5 with five being the most original or complex.  A summary of complexity 
data collected is shown in Table 4. 
 
Table 4: Complexity data for 34 student robots 

Complexity Metric Range Average (SD) 
Number of components 3-64 21.6 (15.2) 
Percentage of custom-made components 7.8-100% 67.4% (32.0%) 
Number of moving components 0-58 12.0 (12.2) 
Percentage of moving components 0-100% 55.6% (28.6%) 
Degrees of freedom 1-3 1.4 (0.5) 
Planar / 3D Motion 1-2 1.4 (0.05) 
Originality 1-4.5 3.2 (0.9) 
Complexity  1-5 3.1 (1.0) 

 
Students with MCM complexity data were categorized into one of three groups: lower tier, or 
students who scored more than a standard deviation below average on the PSVT:V test; middle 
tier, or students who scored between one standard deviation below and one standard deviation 
above average; and upper tier, or students who scored above one standard deviation above 
average.  Because a significant gender difference was found for the spatial reasoning assessment, 
students were divided into tiers based on gender; for example, female students were compared to 
the average female PSVT:V score while male students were compared to the average male 
PSVT:V score.  The lower tier contains a total of 3 students while the middle tier and upper tier 
contain 19 and 12 students respectively. 
 
There was limited data on the mechanisms of lower tier students; only data from three students 
was available for the lower tier, while the middle tier had 19 and the upper tier had 12.  Eight 
percent of the mechanisms studied were of lower tier students, while 17% of the students who 
took the PSVT:V test were in the lower tier.  As a result, students that scored in the lower tier on 
the PSVT:V were underrepresented.  Students in the upper tier were overrepresented (34% of the 
MCM data set while they represented 20% of the entire class).   
 



As displayed in Figure 5, students in the lower tier of spatial test scores had, on average, less 
components in their mechanisms than students in the middle of upper tier.  Although students 
had a similar number of moving components, lower tier students had a higher percentage of 
moving components in their most critical modules.  No differences between tiers of students 
were found to be significant except differences in PSVT:V score.  However, when mechanism 
complexity was correlated with spatial test score, the percentage of moving components was 
found to be negatively correlated with test score (α: 0.059, Rs: -0.328).   

 
Figure 5: Mechanism component analysis by tier 

 
Ratings for originality and complexity did not differ for students by tier as shown in Figure 6.  
Further, students who scored higher on the spatial-reasoning test were more likely to have 
mechanisms with greater degrees of freedom and which incorporated three-dimensional motion 
rather than planar motion. 

 
Figure 6: Degrees of freedom, planar vs. three-dimensional motion, originality, and complexity 

of mechanisms 



Competition Performance and Spatial Test Scores 
Not all students were able to compete in the competition for a variety of reasons such as having 
an incomplete robot or being unable to attend the competition.  Eighty-nine of the 134 students 
who took the PSVT:V test competed in the competition.   
 
During seeding rounds, students attempted to score as many points as possible on the 
competition table.  Seeding round scores ranged from 0 to 9 points with an average score of 1.4 
(SD:1.55).  Seeding score and competition rank were positively correlated (Rs: 0.502, α < 1x10-

6), so for the sake of brevity, only analysis for seeding score will be discussed.   Competition 
score was omitted since several students competed in multiple rounds, and scores were highly 
variable as a result of differences in strategy.  For example, some robots were designed to 
interfere with others to prevent an opponent from scoring as many points as she may have been 
able to otherwise.  In contrast, robots did not compete directly against each other in seeding 
rounds, enabling students to more accurately test their robot’s ability to score points. 
 
Spatial test scores were not found to correlate with seeding score (Rs: 0.0608, α: 0.5715); 
furthermore, survey responses were not found to correlate with seeding score (Table 5).  Students 
in the lower, middle, and upper tier of spatial test scores did not differ in their performances in 
seeding or competition rounds. 
 
Table 5: Correlations between survey responses and seeding score  

Skill Set Correlation Coefficient Rs 

Sketching 0.0254 
Using CAD software 0.0999 
Building Physical Prototypes 0.0723 
Origami Skills 0.0106 
Total Skill Set 0.0803 
Spatial Test Score 0.0608 

For a sample size of n = 89, Rs > 0.208 is considered statistically significant at α = 0.05 (two-tailed).  
 
Twenty-eight of the thirty-four robots that were analyzed for complexity competed in the 
competition.  Correlations between complexity metrics and seeding score are shown in Table 6. 



 
Table 6: Correlation between seeding score and complexity metrics 

 Correlation Coefficient Rs 

 
All Students 

(n=28) 
Male Students 

(n=17) 
Female Students 

(n=11) 
Spatial Test Score -0.143 -0.149 0.387 
Number of Components -0.149 -0.284 -0.540 
Percentage of Custom-Made 
Components 0.111 0.0903 0 
Number of Moving Components -0.269 -0.388 -0.361 
Percentage of Moving 
Components -0.135 -0.200 0.120 
Degrees of Freedom -0.135 -0.220 -0.0690 
Planar/3D Motion 0.0277 -0.112 -0.463 
Originality 0.223 -0.0547 0.307 
Complexity 0.0172 -0.0301 0.213 

For a sample size of n=28, Rs > 0.375 is considered statistically significant at α = 0.05 (two-tailed).  
For a sample size of n=17, Rs > 0.488 is considered statistically significant at α = 0.05 (two-tailed).  
For a sample size of n=17, Rs > 0.618 is considered statistically significant at α = 0.05 (two-tailed).  
 
Spatial-visual ability does not appear to directly impact a robots’ performance in seeding rounds.  
Although no correlations are statistically significant, several approached significance.  In 
particular, the number of moving components was negatively correlated with seeding score for 
all students (p: 0.1658) and for male students in particular (p: 0.1243).  Furthermore, the number 
of components and three-dimensional motion appeared to be negatively correlated with spatial 
test score for female students (p: 0.0862 for number of components, p: 0.1076 for three-
dimensional motion).  These results suggest that simplicity rather than complexity may be more 
desirable for improved competition performance.  
 
Discussion  
 
Survey Results 
The correlation between origami experience and PSVT:V scores was found to be statistically 
significant for male students (p: 0.030, Rs: 0.248).  This result suggests that experience with 
origami may be linked to spatial-visual ability, although for female students, no statistically 
significant correlation was found.  It may be possible that this difference may result from self-
reporting skill level or because of a small sample size. 
 
A possible limitation of the survey is that it asked students what their experience level was with 
particular tasks, which may or may not correlate with skill level.  While the skill sets selected 
were chosen because they were believed to be relevant to spatial-visual thinking, it may be 
possible that other skills play a larger role; for example, sketching may rely more heavily on 
motor coordination, and prototyping may be more dependent on experience working in a 
machine shop.  Since engineers draw on many different types of skills to perform these tasks, 
spatial-visual ability alone may not necessarily play a dominant role.  This is consistent with 
interview responses with engineers where they believed spatial skills to be important but 
believed that they were rarely used in isolation1.   
 



Mechanism Complexity 
The correlation between the percentage of moving components in an MCM and PSVT:V scores 
approached significance with a negative correlation (α: 0.059, Rs: -0.328).  However, the number 
of components grew slightly with increasing spatial-test score while the number of moving 
components remained consistent.  As a result, differences in the percentage of moving 
components are a result of an overall increase in the number of components for students with 
higher spatial-test scores.    
 
Seeding Scores 
Competition performance was found to be uncorrelated with spatial test scores or survey 
responses; as a result, it does not appear that spatial ability alone impacts students’ competition 
rankings or scores.  However, correlations between performance and design complexity metrics 
revealed that complexity may negatively impact competition performance.  The number of total 
components, number of moving components, and complexity of motion (three-dimensional 
motion versus planar motion) were negatively correlated with seeding score.  In other words, 
reducing complexity in the design of mechanical mechanisms appeared to be connected to 
improved competition performance. 
 
Conclusions & Future Work 
 
The analysis outlined in this paper characterizes several design outcomes of engineering students 
based on their spatial ability.  Spatial-ability appeared to have little direct impact on design 
complexity, suggesting that other factors may more strongly impact mechanism design.  
Examples of factors that may influence design outcomes are sketching ability, skill working in a 
machine shop, and prior-experience with engineering design.   
 
Correlations between design complexity criteria and competition performance indicated that 
complexity may negatively impact competition scores.  This result suggests that simplicity rather 
than complexity may lead to better design outcomes. 
 
Future work may more closely monitor spatial-ability over the course of the semester to 
determine whether participation in a mechanical design course may improve spatial-visual 
ability.  Furthermore, a large sample size may help substantiate some of the trends noted in this 
preliminary study.   
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