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Abstract

The purpose of this research is to establish a systematic framework to design controllers for

a class of uncertain linear and nonlinear systems� Our approach utilizes a certain type of fuzzy

systems that are based on 	Takagi�Sugeno
 fuzzy models to approximate nonlinear systems�

We will show that the resulting fuzzy model has a structure very similar to popular models

used in robust control� Therefore� we use a robust control methodology to design controllers�

In other words� this thesis tends to narrow the gap between two active areas of research in

control theory� namely� robust control and fuzzy control�

Since its introduction in control theory� fuzzy control has been legitimately questioned

about the mathematical justi�cation of the promising results it tends to provide� and to the

best knowledge of the author� there are few results which have succeeded in providing such

justi�cation� This is perhaps due to the fact that fuzzy control systems are based on linguistic
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models rather than mathematical equations� and without a mathematical model� stability and

other theoretical issues become harder to study� This might be the main reason why model�

based fuzzy systems based on 	Takagi�Sugeno
 fuzzy models are becoming popular� since with

a mathematical model being present� stability and performance issues can be addressed�

Utilizing convex optimization methods� we attempt in this thesis to �ll the gap between

model�based fuzzy control and robust control� by blending the latest advances in both of these

areas and using some new results obtained in this research�

Speci�cally� we address the issue of controller fragility� which has been brought up in the

control literature quite recently� Brie�y� controller fragility can be described as the sensitivity

of the controller to variations in controller parameters� We show that the proposed method

leads to the synthesis of controllers which are not only robust with respect to uncertainty in

the plant dynamics� but also non�fragile towards a special form of uncertainty in the controller

parameters� Several theorems are presented with their proofs� and these are followed by a series

of benchmark numerical examples adopted from the literature�

The results in almost all of the studied cases turn out to be quite promising� However� the

author by no means claims that the methods proposed in this research are the best way to deal

with all control systems� but the simplicity of the methods makes them a good alternative for

controlling a class of uncertain linear� and nonlinear plants�
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Chapter �

Introduction

Over the past two decades� several researchers in the control community have come up with

di�erent techniques for designing linear time�invariant control systems that are robust and

optimal� Such control systems have the ability to tolerate and cope with uncertainty in the

dynamics of the plant� and are optimal with respect to a given performance measure� Since no

real�life plant is completely linear and time�invariant� the robustness property of the controller

makes it possible to handle some unmodeled time variations and nonlinearities�

Despite the success of robust control theory in dealing with a wide class of control prob�

lems� researchers have been looking for new and revolutionary ideas to replace the existing

methods and solve problems not addressed by the current robust controllers� Among these

revolutionary ideas� fuzzy logic control is probably one of the most popular� and at the same

time a controversial one�



Chapter �� Introduction �

��� Fuzzy Logic History

Fuzzy set theory was �rst introduced in a seminal paper by Lot� Zadeh ��� published in the

rather obscure journal of Information and Control� Zadeh� an electrical engineer by training�

was one of the leading authorities in control theory in the �����s and early �����s� However�

during the process of writing a book on linear systems with Charles Desoer in ���
� he noticed

that in spite of the richness of the existing mathematical theory of control� we have been able

to deal with a very special case of systems that are linear and time invariant� or nonlinear

but with a speci�c property ��� 
�� He traced this problem back to the Aristotlian notion of

absolute truth and falsehood� and generalized such notion to the case of partial truth and

partial membership in a set�

During the ��������� period� he extended the theory and managed to attract the attention

of one of the most prominent applied mathematicians of our time� the late Richard Bellman�

In ����� Zadeh wrote another seminal paper titled� 	A rationale for fuzzy control
 ��� in which

he pointed out the use of fuzzy logic in control� and predicted that in the future� fuzzy logic

control will play a major role in control theory� It did not take too long for the �rst use of fuzzy

logic in control to appear� In ����� Mamdani and his associates used a fuzzy logic controller to

control the temperature in a rotary cement kiln ��� ���� After that� more applications of fuzzy

logic in control were presented by researchers all over the world� By the late �����s� with the
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advent of fuzzy chips� fuzzy logic was well on its way to become a billion dollar industry in

Japan alone� Despite its success in Japan� however� fuzzy logic and its applications in control

have been faced with reluctance in the US� The most probable reason being that although

the theory resulted in promising practical results� it lacked basic theoretical veri�cations of

such concepts as stability and robustness which classical control theoreticians were used to�

This was due to the lack of mathematical models of the system and the controller� When a

mathematical model is not available� it makes little sense to talk about stability or any other

structural properties� Several researchers have tried to come up with stability conditions for

fuzzy systems and have reported some success ��� �� �� ��� However� the primary goal of fuzzy

logic is to develop an alternative to mathematical modeling for systems which either lack a

proper mathematical model because it is either too ill�de�ned� or the model is so complicated

that it is of no practical use�

��� Mamdani Versus Takagi�Sugeno Controllers

In this section� we give a brief description of the two popular methods used in fuzzy logic

control� The �rst one� known as Mamdani type fuzzy models are systems based on fuzzy

If���Then rules with linguistic fuzzy sets in both antecedents and consequents� This type of

fuzzy systems is named after E� H� Mamdani� who was the �rst researcher to use fuzzy logic

�����
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A di�erent type of fuzzy systems was introduced in ���� by Takagi and Sugeno ����� and

later by Sugeno and Kang ����� This approach is similar to the Mamdani type model in

the sense that they are both described by if��� Then rules and that their antecedents have

linguistic fuzzy sets� However� Takagi�Sugeno �T�S for short from now on� models di�er in the

consequents which are represented by analytic dynamical or algebraic equations� This type of

fuzzy modeling is very simple� The system dynamics are written as a set of fuzzy implications

which characterize local models in the state space� The main feature of a T�S fuzzy model

is that it expresses the local dynamics of each fuzzy rule by a linear dynamical model� The

overall fuzzy model is achieved by a blending of these rules�

This type of modeling was shown able to approximate nonlinear systems quite e�ciently

��
�� Since the local models are linear� linear control methodology can be used to design local

controllers� and by blending the local controllers� we obtain a global controller for the system�

Throughout this thesis� we will focus on Takagi�Sugeno fuzzy systems�

��� Controller Fragility

Fragility is an issue brought up quite recently in the robust control literature ���� ���� While

robust control has been able to handle uncertainty in the plant dynamics� it has always been

assumed that since the controller is not given� and it is rather tailor�made by the designer�

it can be implemented with any required degree of accuracy� However� the examples given
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in ���� ��� suggest otherwise� These examples show that in�nitely small perturbations in the

controller parameters might result in the instability of the closed�loop system� This property

is known as fragililty� In this thesis� we will show that we can design stabilizing Takagi�Sugeno

controllers which are non�fragile or resilient� i�e�� they are able to tolerate uncertainty in the

controller parameters�

��� Overview

This section describes the thesis outline� Takagi�Sugeno fuzzy systems will be discussed in

Chapter �� In Chapter 
� we introduce Linear Matrix Inequalities �LMIs�� and some of the

existing numerical methods for their solution� We also deal with LMI formulation of stability

conditions for T�S fuzzy systems and a brief discussion about the approximation accuracy of

these systems� Chapter � extends the previous results to the case of dynamic output feedback�

and we introduce the notion of fuzzy observers� All results are given both in continuous�time and

discrete�time� In chapter � we develop a guaranteed�cost framework to guarantee performance�

in addition to stability� for both continuous�time and discrete�time systems� We introduce

the notion of controller fragility in Chapter � and will show that resilient controllers can be

designed within the framework of T�S fuzzy models� In the remaining parts of Chapter �� we

present a scheme for the design of robust and resilient controllers for systems with polytopic

uncertainties using guaranteed�cost bounds� In all cases� we present simulations of benchmark
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systems adopted from the literature� Finally we present our conclusions and discuss some

future research directions in this area in Chapter ��
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Takagi�Sugeno Fuzzy Systems

In this chapter� we give an introduction to Takagi�Sugeno �T�S� fuzzy systems� We assume

that the reader is familiar with basic concepts of fuzzy set theory� For further details on basic

of fuzzy set theory� the interested reader is referred to ���� ����

There has recently been a rapidly growing interest in using Takagi�Sugeno fuzzy models

to approximate nonlinear systems� This interest relies on the fact that dynamic T�S models

are easily obtained by linearization of the nonlinear plant around di�erent operating points�

Once the T�S fuzzy models are obtained� linear control methodology can be used to design

local state feedback controllers for each linear model� Aggregation of the fuzzy rules results

in a generally nonlinear model� but in a very special form called Polytopic Linear Di�erential

Inclusions �PLDIs� that we will discuss in detail in chapter 
� This approach is also similar

to gain scheduling control ����� since a di�erent linear model is used based on the position of

the state variable in state space� This has led some researchers to call this method fuzzy gain

scheduling �����



Chapter �� Takagi�Sugeno Fuzzy Systems �

��� Continuous Time Takagi�Sugeno Models

����� Open Loop T�S Models

A continuous�time T�S model is represented by a set of fuzzy If � � � Then rules written as

follows �

ith Plant Rule� IF x��t� is Mi� and � � � � xn�t� is Min THEN �x � Aix

where x � IRn�� is the state vector� i � f�� � � � � rg� r is the number of rules� Mij are input fuzzy

sets� and the matrices Ai � IRn�n�Bi � IRn�m�

Using singleton fuzzi�ers� max�product inference� and weighted average de�uzi�ers ���� ���� the

aggregated fuzzy model is given as follows�

�x �

Pr
i�� wi�x��Aix�Pr

i��wi�x�
�����

where wi is de�ned as

wi�x� �
nY

j��

�ij�xj� �����

and �ij is the membership function of jth fuzzy set in the ith rule� Now� de�ning

�i�x� �
wi�x�Pr
i�� wi�x�

���
�

we can write ����� as

�x �
rX

i��

�i�x�Aix �����
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where �i � � and

rX
i��

�i � �

The interpretation of equation ����� is that the overall system is a fuzzy blending of the impli�

cations� It is evident that the system ����� is generally nonlinear due to the nonlinearity of the

membership functions� In the next section� we present su�cient conditions based on Lyapunov

stability theory for the stability of open�loop system ������ The following theorem is due to

Sugeno and Tanaka �����

Theorem � The continuous�time T�S system ����� is globally asymptotically stable if there

exists a common positive de�nite matrix P � � which satis�es the following inequalities�

AT
i P � PAi � � � i � �� � � � � r �����

where r is the number of T�S rules�

Proof� We introduce the quadratic Lyapunov function candidate

V � xTPx �����

To show that the T�S system is globally asymptotically stable� we need to show that the

derivative of the above Lyapunov function along the trajectory of the system ����� is negative
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de�nite� With a straightforward calculation� it can be shown that

�V � xT �
rX

i��

�i�A
T
i P � PAi��x �����

multiplying each inequality in ����� by �i and keeping in mind that �i � � for all values of i�

we can easily achieve the following

�V � �

therefore� the system in ����� is asymptotically stable� To show global asymptotic stability� we

note that V is positive de�nite everywhere� �V is negative de�nite everywhere� and also V is

radially unbounded�

Remark � Note that the above theorem is a su	cient condition for asymptotic stability� i�e��

it is possible for a T�S system to be asymptotically stable� but that a common positive P does

not exist�

Remark � The conditions in above theorem guarantee quadratic asymptotic stability� i�e�� sta�

bility provable by a quadratic Lyapunov function� The T�S system might be asymptotically

stable� without being quadratically asymptotically stable �

Remark � It can be shown that 
��� the non existence of a positive de�nite solution to ���
�

is equivalent to �nding Q�� � � � � Qr� not all zero� such that
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Q� � �� � � � � Qr � � Q� �
rX

i��

�QiA
T
i �AiQi�

To illustrate the above remarks� we present the following counter�example�

Example � Consider the T�S model described by the following two matrices�

A� �

�
� ���� �

� ��

�
� A� �

�
� � ��

��� ���

�
� �����

from Remark 
� this T�S system is not quadratically stable if there exist Q� � �� Q� � � and

Q� � � not all zero� such that �

Q� � A�Q� �Q�A
T
� �A�Q� �Q�A

T
�

It can be veri�ed that the matrices

Q� �

�
� ��� �

� ��

�
� � Q� �

�
� ��� 



 ��

�
� � Q� �

�
� ��� �

� �

�
�

satisfy the conditions of Remark 
� However� the piecewise quadratic Lyapunov function

V �x� � maxfxTP�x� x
TP�xg� P� �

�
� �� ��

�� �

�
� � P� �

�
� � �

� �

�
� �
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proves that the T�S system described by the two matrices A� and A� is asymptotically stable�

�See ���� for more details�� In the next chapter� we will show how to search for a common

positive de�nite Lyapunov matrix P using a Linear Matrix Inequality approach�

����� T�S Controllers and Closed�Loop Stability

In the previous section� we discussed the open�loop T�S fuzzy systems as well as su�cient

conditions for the stability of the open�loop system� Now� we introduce the notion of the

Takagi�Sugeno controller in the same fashion as the T�S system� The controller consists of

fuzzy If ��� Then rules� Each rule is a local state�feedback controller� and the overall controller

is obtained by the aggregation of local controllers� A generic non�autonomous T�S plant rule

can be written as follows

ith Plant Rule� IF x��t� is Mi� and � � � � xn�t� is Min THEN �x � Aix�Biu

The overall plant dynamics can be written as

�x �
rX

i��

�i�x��Aix�Biu� �����

in the same fashion� a generic T�S controller rule can be written as�

ithController Rule� IF x��t� is Mi� and � � � xn�t� is Min THEN u � �Kix

The overall controller� using the same inference method as before� would be

u � �
rX

i��

�i�x�Kix ������
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where� �is are de�ned in ���
�� Note that we are using the same fuzzy sets for the controller

rules and the plant rules� substituting ������ in ������ and keeping in mind that

rX
i��

�i � �

we can write the closed�loop equation as follows�

�x �
rX

i��

rX
j��

�i�x��j�x��Ai �BiKj�x ������

The following theorem presents su�cient conditions for closed�loop stability �����

Theorem � The closed�loop Takagi�Sugeno fuzzy system ������ is globally asymptotically sta�

ble if there exists a common positive de�nite matrix P which satis�es the following Lyapunov

inequalities�

�Ai �BiKi�
TP � P �Ai �BiKi� � � � i � �� � � � � r

GT
ijP � PGij � � i � j � r ������

where Gij is de�ned as

Gij � Ai �BiKj �Aj �BjKi i � j � r ����
�

Proof� The proof is similar to the open�loop case� Again we choose the quadratic Lyapunov

function candidate

V � xTPx� P � �
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To complete the proof� we note that by multiplying the �rst set of inequalities in ������ by �i

and the second set of inequalities by �i�j � and adding up all the inequalities� we obtain the

derivative of Lyapunov function V along the trajectory of the closed�loop system ������� Since

�V � �� and also V is radially unbounded� the closed�loop system is globally asymptotically

stable�

Although this theorem and the previous one present a su�cient condition for stability�

�nding a common positive de�nite matrix P both in the open�loop and the closed�loop case

is by no means trivial� Several researchers have tried to come up with heuristic methods

to �nd a common positive de�nite matrix P � but little success was reported� That is why

these theorems were found to have little use in practice� In the next chapter� we present the

recent developments in solving Linear Matrix Inequalities� and we will show that the su�cient

conditions can be checked very easily using convex optimization methods� that solve LMIs in

a numerically tractable fashion� Complete details are given in chapter �� Before moving to the

next chapter� we present the discrete�time counterparts of the Takagi�Sugeno fuzzy systems

and the stability theorems presented so far�

��� Discrete�Time Takagi�Sugeno Fuzzy Systems

The discrete time case of the T�S fuzzy systems is quite similar to the continuous�time version�

The T�S model is again made up of fuzzy If ��� Then rules with fuzzy sets in the antecedents
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and discrete�time dynamical or algebraic equations in the consequents� As in the previous

section� our attention is focused on dynamical T�S models� A generic rule of the open�loop

discrete�time T�S system can be written as�

ith Plant Rule� IF x��k� is Mi� and � � � � xn�k� is Min THEN x�k � �� � Aix�k�

The aggregated model would be�

x�k � �� �
rX

i��

�i�x�Aix�k� ������

where� �i�s are de�ned in ���
�� The stability of the system ������ can be checked using the

discrete�time Lyapunov equation� We have the following theorem to check the stability ���� �
��

Theorem � The T�S fuzzy system ������ is globally asymptotically stable� if there exist a

common positive de�nite matrix P that satis�es the following inequalities�

AT
i PAi � P � � i � �� � � � � r ������

The proof can be found in ��
��

We can de�ne the non�autonomous discrete�time T�S system in the same fashion as the

continuous�time� The non�autonomous discrete�time T�S system can be written as�

x�k � �� �
rX

i��

�i�x��Aix�k� �Biu�k�� ������

We de�ne the discrete�time T�S controller as a set of fuzzy implications� A generic implication

can be written as
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ith Controller Rule� IF x��k� is Mi� and � � � xn�k� is Min THEN u�k� � �Kix�k�

where Ki � IRm�n� The over all controller will be

u�k� � �
rX

i��

�i�k�Kix�k� ������

Replacing ������ in ������ we obtain the following closed�loop equation

x�k � �� �
rX

i��

rX
j��

�i�j�Ai �BiKj�x�k� ������

Su�cient conditions for the stability of the closed�loop can be expressed as the following the�

orem �����

Theorem � The closed�loop system ������ is globally asymptotically stable if there exists a

common positive de�nite matrix P that satis�es the following matrix inequalities�

�Ai �BiKi�
TP �Ai �BiKi�� P � � i � �� � � � � r

GT
ijPGij � P � � i � j � r ������

where� Gij is the same as in �������

The Proof of this theorem can be found in �����

In the next chapter� we present an LMI framework for the stability analysis as well as the

design of continuous�time and discrete�time T�S fuzzy systems�
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Linear Matrix Inequalities �LMIs�

In this chapter we present an overview of Linear Matrix Inequalities and their applications in

control theory� Most of the material in this chapter is adopted from ����� We will show that

the problems described in the previous chapter regarding the stability of T�S fuzzy systems can

be easily formulated in terms of LMIs� These LMIs can be solved numerically in an e�cient

and tractable way� In the next section� we present a brief history of LMIs in control theory�

��� History of LMIs In Control Theory

The history of LMIs in the analysis of dynamical systems goes back more than ��� years� In

����� A� M� Lyapunov published his seminal work introducing what we now call Lyapunov

theory� Lyapunov showed that the system of ordinary linear di�erential equations

�x � Ax�t� �
���
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is globally asymptotically stable� �all trajectories converge to zero� if and only if there exists a

positive de�nite matrix P that would satisfy

ATP � PA � � �
���

the inequality P � � as well as �
��� is a special form of an LMI� Lyapunov showed that this

LMI can be solved analytically by a set of linear algebraic equations�

In �����s Lur�e ����� Postnikov ����� and others applied Lyapunov�s method to some speci�c

practical problems in control engineering� Speci�cally� the problem of stability of a control

system with a nonlinearity in the actuator was studied� Their stability criteria had the form of

LMIs which were reduced to polynomial inequalities and then checked by 	hand
� This limited

their application to �rst� second� and third�order systems�

In the early �����s Yakubovich ����� Popov ����� Kalman ����� and others succeeded in

reducing the solution of the LMIs that arose in the problem of Lur�e to simple graphical

criteria� using what we now call the positive�real �PR� Lemma� or Kalman�Yakubovich�Popov

Lemma� This resulted in the celebrated Popov criterion ����� circle criterion ����� Tsypkin

criterion ���� and many other variations� Although these criteria worked well for systems with

one nonlinearity� they did not usefully extend to systems with more than one nonlinearity�

Perhaps the most important role of LMIs in control theory was recognized in early �����s by

Yakubovich ���� 
��� This is clear simply from title the of some of his papers from ����������
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e�g�� The solution of certain matrix inequalities in automatic control theory�

The PR lemma and its extensions were studied in the latter half of the �����s and were

found to be related to the ideas of passivity� and small�gain introduced by Sandberg �
��� and

Zames �
��� and to quadratic optimal control� By ����� it was known that the LMIs appearing

in the PR lemma could be solved not only by graphical means� but also by solving a certain

algebraic Riccati equation �ARE�� In a ���� paper by Willems �

�� we �nd the following�

	 The basic importance of the LMI seems to be largely unappreciated� It would be interesting

to see whether or not it can be exploited in computational algorithms� for example�


The above suggestion by Willems� foreshadows the next chapter in the LMI history� The

next major breakthrough� was the simple observation that the solution set of LMIs arising

in system and control theory is convex� therefore these LMIs are amenable to a computer

solution� This simple observation underscores the fact that although we may not be able to

solve many of these LMIs analytically� we can solve them numerically in a reliable way� This

observation was made for the �rst time� by Pyatnitskii� and Skrodinskii �
��� These researchers

reduced the LMIs arising in the Lur�e problem to a convex optimization problem� which then

they solved using an algorithm known as ellipsoid algorithm� They were the �rst to recast the

problem of �nding a Lyapunov function to a convex optimization problem� Despite the fact

that the ellipsoid algorithm solved the convex optimization problem in polynomial�time �i�e��

the complexity of the problem increases in a polynomial fashion when the size of the problem
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increases�� it was not practically e�cient�

The �nal chapter in the history of LMIs is quite recent and important� In ����� N� N�

Karmarkar �
�� introduced a new linear programming algorithm that solves linear programs in

polynomial�time� and in contrast to the ellipsoid method� is very e�cient in practice too� For

years� the Simplex method �
�� was thought to be the best method for solving linear programs�

and although it was an algorithm with combinatoric complexity� it was much more e�cient

than the ellipsoid algorithm� Karmarkar�s algorithm made such a big impact in mathemat�

ical programming literature� that it even made its way into the �rst page of the New York

Times� Karmarkar�s work spurred an enormous amount of research in the area of interior�point

algorithms for linear programming�

In ����� Nesterov and Nemirovskii �
�� developed interior�point methods that apply directly

to convex problems involving LMIs� These algorithms have been found to be very e�cient� In

the next section� we introduce the LMIs formally and discuss their applications afterwards�

��� What is an LMI�

A Linear Matrix Inequality �LMI� is an inequality in the following form�

F �x�
�
� F� �

rX
i��

xiFi � � �
�
�

where x � IRr is a vector variable to be found� and the symmetric matrices Fi � F T
i � IRn�n�

i � �� � � � � r� are given� The inequality symbol in �
�
� means that the matrix F �x� is positive�



Chapter �� Linear Matrix Inequalities �LMIs� ��

de�nite� i�e�� uTF �x�u � � �u �� � � IRn� Of course� the LMI �
�
� is equivalent to a set of n

polynomial inequalities in x� i�e�� according to Sylvester�s theorem� the leading principal minors

of F �x� should be positive� As was mentioned in the previous section� the solution set of the

LMI is a convex set� A proof of this fact is provided in the next theorem�

Theorem 	 The solution set of the LMI in ����� is convex�

proof� The proof is easily obtained by using the de�nition of a convex set� By de�nition�

the set fxjF �x� � �g is convex if for any two points x���� x��� in the solution set� the convex

combination �x��� � ��� ��x��� is also a solution� for all � � ��� ��� This can be shown directly

by applying the de�nition to �
�
��

Multiple LMIs

F ����x�� � � � � F �p��x� � �

can be expressed as a single LMI

diag�F ����x�� � � � � F �p��x�� � ��

Also� LMIs in terms of matrix variables can be written as �
�
�� For example� in a �� � case�

we can write the inequality

�
� p� p�

p� p�

�
� � �
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as �

p�

�
� � �

� �

�
�� p�

�
� � �

� �

�
�� p�

�
� � �

� �

�
� � � �
���

which is exactly in the form of �
�
�� We can also convert nonlinear �convex quadratic� in�

equalities into LMIs using Schur complements� or the LMI Lemma �
��� The basic idea is as

follows� the LMI

�
� Q�x� S�x�

S�x�T R�x�

�
� � � �
���

where Q�x� � QT �x�� R�x� � RT �x�� and S�x� are LMIs in the vector x in the form of �
�
��

is equivalent to

R�x� � �� Q�x�� S�x�R���x�ST �x� � � �
���

In other words� the inequalities �
��� can be written as the LMI �
���� Given an LMI F �x� � ��

the corresponding LMI problem is to �nd xfeas such that F �xfeas� � � or determine that the

LMI is infeasible� A simple example of such LMI problems is the problem of 	simultaneous

Lyapunov stability problem
� We are given r plants Ai� i � �� � � � � r� and need to �nd a positive

de�nite Lyapunov matrix P satisfying the following LMIs�

P � � AT
i P � PAi � �� i � �� � � � � r

or determine that no such P exists� We recall from the previous chapter that this is exactly

the same condition for stabilization of open�loop T�S fuzzy systems� In order to present LMI
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conditions for closed�loop T�S fuzzy systems� we �rst need to give a brief description of Linear

Di�erential Inclusions� which can be considered a general framework for T�S fuzzy systems�

and at the same time� uncertain linear time�varying systems�

��� Linear Di�erential Inclusions

A linear di�erential inclusion �LDI� is given by

�x � �x �
���

where � is a subset of IRn� The LDI in �
��� may for example describe a family of linear

time�varying systems� In this case� every trajectory of the LDI satis�es

�x � A�t�x�t�

When � is a polytope� the LDI is called polytopic or PLDI� i�e� �

A�t� � CofA�� A�� � � � � Arg

where Co is the convex hull of Ai� i � �� � � � � n� This means that we can write A�t� as a convex

combination of the vertices of the polytope as follows

A�t� x� � ���t� x�A� � ���t� x�A� � � � �� �r�t� x�Ar �
���

where fA�� � � � � Arg are known matrices and ��� � � � � �r are positive scalars which satisfy

rX
i��

�i�t� x� � �
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Using a technique known as global linearization ����� we can use PLDIs to study properties of

nonlinear time varying systems� In fact� consider the system

�x � f�t� x� u� �
���

If the Jacobian of the system matrix A�t� x� � �f
�x lies in the convex hull de�ned in �
���� then

every trajectory of the nonlinear system is also a trajectory of the LDI de�ned by ��

Much of our motivation for studying PLDIs comes from the fact that we can use them to

establish properties of nonlinear� time�varying systems using the global linearization technique�

The idea of global linearization� which is basically replacing a nonlinear system by a PLDI� is

a rather old one� and can be found in �
�� ���� According to ����� this idea is implicit in the

early Soviet literature on the absolute stability problem� e�g�� Lur�e and Postnikov ���� ���� and

Popov ����� Of course� we have to bear in mind that approximating the set of trajectories of

a nonlinear system via LDIs can be very conservative� i�e�� there are many trajectories of the

LDI which are not trajectories of the nonlinear system� so we get a rather conservative result�

Looking carefully at �
���� we note that this is exactly in the form of the T�S fuzzy model� In

fact� the whole idea of modeling a nonlinear system with T�S fuzzy rules� has the same origin

as global linearization� We will revisit the T�S fuzzy systems in the next session� and derive

the LMI stability conditions�
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��� LMI Stability Conditions for T�S Fuzzy Systems

����� Continuous�Time Case

Su�cient stability conditions for open�loop continuous time T�S systems were derived using

Theorem �� These conditions� as was discussed earlier� are LMIs in the matrix variable P �

Note that equation ����� is the equation for a PLDI�

On the other hand� the closed�loop case is di�erent� Theorem � provides su�cient conditions

for the stability of the closed�loop system� The Lyapunov inequalities in ������ are not LMIs in

P and Ki� since we have the product of P and Ki� However� using a clever change of variables

due to Bernussou� Peres� and Geromel ����� we can recast the matrix inequalities in ������ as

LMIs� The change of variables are�

P�� � Y

Xi � KiY �
����

Pre�multiplying and post�multiplying the inequalities in ������� and using the above change of

variable� we obtain the following LMIs �����

� � Y

� � Y AT
i �AiY �BiXi �XT

i B
T
i � i � �� � � � � r �
����

� � Y �Ai �Aj�
T � �Ai �Aj�Y � �BiXj �BjXi�� �BiXj �BjXi�

T i � j � r

If the above LMIs have a solution� stability of the closed loop T�S system is guaranteed� We
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can then �nd the T�S controller gains by reversing the variable transformations in �
����� i�e�

Ki � XiY
��

Again� we point out the fact that the resulting T�S controller is conservative� because we have

forced the Lyapunov matrices to be the same for all inequalities� This conservatism is helpful in

compensating the approximation errors that appear due to modeling the nonlinear system with

T�S fuzzy systems or� to be precise� as PLDIs� In the next chapter� we will extend these results

to the case were the states are not available for feedback� and we only have the outputs available

for measurement� First� however� we derive the LMI conditions for stability of discrete�time

T�S fuzzy systems in the next section�

����� Discrete�Time Case

The su�cient conditions for stability of discrete�time open�loop T�S systems given in Theorem


 are exactly LMIs in P � and like the continuous�time case for the open�loop� we do not need

any further change of variables� The closed�loop case is however more complicated than the

continuous�time counterpart� In addition to the change of variables in �
���� we need to use

the LMI lemma� discussed earlier in this chapter� Closed�loop stability conditions in ������ can

be recast as the following LMIs ���� ����

Y � �

�
� Y �AiY �BiXi�

T

�AiY �BiXi� Y

�
� � � i � �� � � � � r
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�
� Y ��Ai �Aj�Y �Mij �

T

�Ai �Aj�Y �Mij Y

�
� � � j � i � r �
����

where� Y�Xi are de�ned in �
����� and Mij are given by

Mij � BiXj �BjXi �
��
�

If the LMIs are feasible� the controller gains can be obtained from

Ki � XiY

In the remaining chapters� we extend the results obtained so far� �rst to the output feedback

case� both for continuous�time and discrete�time systems� and then� we present a guaranteed�

cost framework to achieve robust performance�
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Fuzzy Observers

��� Why Output Feedback

So far� we have developed a systematic framework for the design of Takagi�Sugeno state feedback

controllers� An implicit assumption in all previous sections was that the states are available

for measurement� However� we know that this is not true in many practical cases� Measuring

the states can be physically di�cult and costly� Moreover� sensors are often subject to noise

and failure� This motivates the question�	How can we design output feedback controllers for

T�S fuzzy systems�


We already know from classical control theory that using an observer� we can estimate

the states of an observable LTI system by measuring the output� In fact� we even know

how to estimate the states of an LTI system in the presence of additive noise in the system�

and measurement noise in the output� using a Kalman �lter ��
�� Our goal is to generalize the

observer methodology to the case of a PLDI instead of a single LTI system� or more speci�cally�

to the case of T�S fuzzy systems� We present a new approach� which is to design an observer
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based on fuzzy implications� with fuzzy sets in the antecedents� and an asymptotic observer

in the consequents� Each fuzzy rule is responsible for observing the states of a locally linear

subsystem� The following section will describe the observer design in the continuous�time case

����

��� Continuous�Time T�S Fuzzy Observers

Consider the closed�loop fuzzy system described by r plant rules and r controller rules as

follows�

�x�t� �
rX

i��

rX
j��

�i�x��j�x��Ai �BiKj�x�t�

y�t� �
rX

i��

�i�x�Cix�t� �����

We de�ne a fuzzy observer as a set of T�S If ��� Then rules which estimate the states of the

system ������ A generic observer rule can be written as

ith Rule� If Y��t� is Mi� and � � � Yp�t�is Mip THEN�

� x � Aix�Biu� Li�y �  y�

where p is the number of measured outputs� y � CiX is the output of each T�S plant rule�  y

is the global output estimate� and Li � IRn�p is the local unknown observer gain matrix� The
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de�uzi�ed global output estimate can be written as�

 y�t� �
rX

j��

�jCj x�t�

where �is are the normalized membership functions as in ���
�� The aggregation of all fuzzy

implications results in the following state equations�

� x �
rX

i��

�i�y��Ai x�Biu� �
rX

i��

rX
j��

�i�y��j�y�LiCj�x�  x� �����

since

rX
j��

�j�y� � �

we can write equation ����� as

� x �
rX

i��

rX
j��

�i�y��j�y� ��Ai � LiCj� x�Biu� LiCjx� ���
�

Note that we wrote the normalized membership functions as a function of y instead of x since�

the antecedents are measured output variables and not the states� The controller is also based

on the estimate of the state rather than the state itself� i�e�� we have

u�t� � �
rX

j��

�j�y�Kj  x�t� �����

replacing ����� in ����� we get the following equation for the closed�loop system�

�x �
rX

i��

rX
j��

�i�y��j�y��Aix�BiKj  x� �����
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De�ning the state estimation error as

!x � x�  x

and subtracting ����� from ���
� we get

�!x �
rX

i��

rX
j��

�i�y��j�y��Ai � LiCj�!x �����

To guarantee that the estimation error goes to zero asymptotically� we can use Theorem ��

The observer dynamics is stable if a common positive de�nite matrix P� exists such that the

following matrix inequalities are satis�ed�

�Ai � LiCi�
TP� � P��Ai � LiCi� � � i � �� � � � � r

HT
ijP� � P�Hij � � i � j � r �����

where Hij is de�ned as�

Hij � Ai � LiCj �Aj � LjCi �����

Although the inequalities in ����� are not LMIs� they can be recast as LMIs by the following

change of variables�

Wi � P�Li �����

Using the above variable change and also utilizing the LMI lemma� we obtain the following

LMIs in P� and Wi�

P� � �
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AT
i P� � P�Ai �WiCi � CT

i W
T
i � � i � �� � � � � r

�Ai �Aj�
TP� � P��Ai �Aj�� �WiCj �WjCi�� �WiCj �WjCi�

T � � i � j � r

������

The observer gains are obtained by the following equation�

Li � P��� Wi ������

By augmenting the states of the system with the state estimation error� we obtain the following

�n dimensional state equations for the observer�controller closed�loop�

�
� �x

�!x

�
� �

�
�
Pr

i��

Pr
j�� �i�j�Ai �BiKj�

Pr
i��

Pr
j�� �i�jBiKj

�
Pr

i��

Pr
j�� �i�j�Ai � LiCj�

�
�
�
� x

!x

�
�

y �
h Pr

j�� �jCj �
i �� x

!x

�
� ������

We have the following theorem for the stability of the closed�loop observer�controller system�

Theorem 
 The closed�loop observer�controller system ������ is globally asymptotically stable�

if there exists a common positive de�nite matrix !P such that the following Lyapunov inequalities

are satis�ed�

AT
ii
!P � !PAii � �

�Aij �Aji�
T !P � !P �Aij �Aji� � � ����
�
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where Aij can be de�ned as

Aij �

�
� Ai �BiKj BiKj

� Ai � LiCj

�
� ������

Proof� The proof directly follows from Theorem ��

Note that the above matrix inequalities are not LMIs in !P � Kis� and Lis� We would like to

know if with the same change of variables as in �
���� and ������ we can rewrite the inequalities

in ����
� as LMIs� In fact� we would like to check if we can extend the separation property of

the observer�controller of a single LTI system to the case of ������� We will show in the next

section� that in the case of ������� we indeed have the separation property� and we have two

separate sets of LMIs for the observer and the controller �����

��� Separation Property of Observer�Controller

To show that the separation property holds� we have to prove that !P � the common positive

de�nite solution of the inequalities in ����
�� is a block diagonal matrix with P � Y �� and P�

as diagonal elements� where P is the positive�de�nite solution of inequalities in ������� and P�

is the solution of ������ We can express the separation property in the following theorem�

Theorem � �Separation Theorem for T�S fuzzy systems�� The closed�loop system ������ is

globally asymptotically stable if inequalities in ������ and ����� are satis�ed independently�
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Proof� We choose !P as a block diagonal matrix with �P � and P� as the block diagonal elements�

i�e�� we have the following�

!P �

�
� �P �

� P�

�
� ������

We show that there always exists a � � � such that !P satis�es the inequalities in ����
��

provided ������ and ����� are satis�ed� Substituting for !P and Aij in ����
� we obtain the

following�

�
� �

h
�Ai �BiKi�

TP � P �Ai �BiKi�
i

�P �BiKi�

��BiKi�
TP �Ai � LiCi�

TP� � P��Ai � LiCi�

�
� � � ������

Using the LMI lemma �
��� ������ is negative de�nite if and only if the following conditions are

satis�ed�

�
h
�Ai �BiKi�

TP � P �Ai �BiKi�
i

� �

�P �BiKi�
h
�Ai � LiCi�

TP� � P��Ai � LiCi�
i��

�BiKi�
TP

�
h
�Ai �BiKi�

TP � P �Ai �BiKi�
i

� � ������

Since ������ is satis�ed� the �rst inequality is already true� The second condition is satis�ed

for any � � � such that

� min
��i�r

�i � max
��i�r

�i

where

�i � �minfP �BiKi�
h
�Ai � LiCi�

TP� � P��Ai � LiCi�
i��

�BiKi�
TPg
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and

�i � �max

h
�Ai �BiKi�

TP � P �Ai �BiKi�
i

where �min� �max are the minimum and maximum eigenvalues� Since ������ and ����� are

already satis�ed� such � always exists� Using the same argument� we can also show that the

second set of inequalities in ����
� is satis�ed� Therefore� the two sets of inequalities can be

solved independently� and the separation holds�

In the next section� we present the discrete�time fuzzy observer�

��� Discrete�Time T�S Fuzzy Observers

We can de�ne the T�S fuzzy observer in the same fashion as the continuous�time ����� A generic

rule for the discrete�time T�S fuzzy observer is�

ith Rule� If y��k� is Mi� and � � � yp�k�is Mip THEN�

 x�k � �� � Aix�k� �Biu�k� � Li�y�k��  y�k��

where p is the number of measured outputs� and y�k� � Cix�k� is the output of each T�S

plant rule�  y is the global output estimate� and Li � IRn�p is the local observer gain matrix�
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The de�uzi�ed output estimate can be written as�

 y�k� �
rX

j��

�jCj x�k�

where �i are the normalized membership functions as in ���
�� The overall output can also be

written in a similar manner�

y�k� �
rX

j��

�jCjx�k�

The aggregation of all fuzzy implications results in the following state equation�

 x�k � �� �
rX

i��

�i�y��Ai x�Biu� �
rX

i��

rX
j��

�i�y��j�y�LiCj�x�  x� ������

� Since

rX
j��

�j�y� � �

we can write equation ������ as

 x�k � �� �
rX

i��

rX
j��

�i�y��j�y� ��Ai � LiCj� x�Biu� LiCjx� ������

By de�ning the estimation error as before� we can write the estimation error !x�k� as follows�

�!x �
rX

i��

rX
j��

�i�y��j�y��Ai � LiCj�!x ������

To guarantee that the estimation error goes to zero asymptotically� we can use theorem ��

The observer dynamics is stable if a common positive de�nite matrix P� exists such that the
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following matrix inequalities are satis�ed�

�Ai � LiCi�
TP��Ai � LiCi�� P� � � i � �� � � � � r

HT
ijP�Hij � P� � � i � j � r ������

where Hij is de�ned as in ������ Although the inequalities in ������ are not LMIs� they can be

recast as LMIs using the change of variables of equation ������ Using the above variable change

and also utilizing the LMI lemma� we obtain the following LMIs in P� and Wi�

�
� P� �P�Ai �WiCi�

T

P�Ai �WiCi P�

�
� � � i � �� � � � � r

�
� P� �P��Ai �Aj��WiCj �WjCi�

T

P��Ai �Aj��WiCj �WjCi P�

�
� � � i � j � r

������

The closed�loop observer�controller system can be written as�

�
� x�k � ��

!x�k � ��

�
� �

�
�
Pr

i��

Pr
j�� �i�j�Ai �BiKj�

Pr
i��

Pr
j�� �i�jBiKj

�
Pr

i��

Pr
j�� �i�j�Ai � LiCj�

�
�
�
� x�k�

!x�k�

�
�

y �
h Pr

j�� �jCj �
i �� x�k�

!x�k�

�
� ����
�

Using Theorem �� the system ����
� is globally asymptotically stable� if there exists a positive

de�nite matrix !P � � such that �

AT
ii
!PAii � !P � � i � �� � � � � r

�Aij �Aji�
T !P �Aij �Aji�� !P � � i � j � r ������
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where Aij is the same as in �������

As in the continuous�time case� we can show that the Lyapunov matrix !P is indeed block

diagonal� i�e�� the discrete�time version of the Theorem ���� holds� and observer and controller

gains can be found via separate LMI feasibility problems� A proof of the separation proven in

the discrete�time case is given in �����

��	 Numerical Example

We present a numerical example to illustrate the results obtained in this chapter� We use the

two�rule T�S fuzzy model which approximates the motion of an inverted pendulum on a cart�

This system has been studied in ���� ���� The T�S fuzzy rules are obtained by approximation

of the nonlinear system around �� and ���� The T�S rules can be written as�

Plant Rule �� If y is around � Then �x � A�x�B�u

Plant rule �� If y is around 	�	� Then �x � A�x�B�u

Controller Rule �� If y is around � Then u � �K�x

Controller Rule �� If y is around 	�	� Then u � �K�x

Observer Rule ��If y is around � Then � x � A� x�B�u� L�C�x�  x�

Observer Rule �� If y is around 	�	� Then � x � A� x�B�u� L�C�x�  x�

where A�� A�� B�� B�� C are given as follows�

A� �

�
� � �

���
 �

�
� B� �

�
� �

������

�
�
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y

m(y)

π/2−π/2

1

Close to zero

Close to π/2

Figure ���� Membership functions for for the angle�

A� �

�
� � �

���� �

�
� B� �

�
� �

����


�
� ������

C �
h
� �

i
������

The membership functions ��� �� for the two fuzzy sets close to zero� and close to 	�	� are

plotted in Figure ���� We �x the observer and controller gains by local pole placement� and

look for common Lyapunov matrices P � and P�� We place the closed�loop poles of the system

at ������ and the poles of the observer dynamics at �������� The observer and controller

gains are�

K� �
h
������� ������

i
K� �

h
������� ������

i

L� �
h
���� ���


iT
L� �

h
���� ����

iT
������

Fortunately� the LMIs are feasible and we can �nd positive�de�nite Lyapunov matrices P and

P�� The simulation results for the states of the system x��� and x��� as well as the estimation

error x�
�� x��� are depicted in Figures ��� through ���� Although we were able to solve for
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Figure ��
� Initial Condition response of the angular velocity�

positive�de�nite Lyapunov matrices P and P� using local pole placement� this might not be

always possible� This is the reason why we need to obtain some performance in addition to

stability� In the next chapter� we will develop a guaranteed�cost approach for minimizing a

quadratic cost function �
���
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Guaranteed�Cost Design of T�S

Fuzzy Systems

We studied the stability of T�S fuzzy systems in detail in the previous chapters� However�

stability is always a primary goal� and we usually need to specify some performance objective

in the design procedure as well� There have been few results that have gone beyond stability in

order to consider performance for fuzzy systems� The authors in ���� have added a degree�of�

stability criterion� and have shown that controller design with a guaranteed degree of stability�

can be transformed into a Generalized EigenValue Problem �GEVP� ����� Recently the authors

in ���� and ���� have added an LMI condition that can bound the control action� In this

chapter� we generalize these results to the problem of minimizing the expected value a quadratic

performance measure with respect to random initial conditions� with zero mean and a covariance

equal to the identity� Using the guaranteed�cost approach �
�� ���� we minimize an upper bound

on an LQ measure representing the control e�ort and the regulation error� We show that this

problem can be transformed into a trace minimization problem� which can then be solved using
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any of the available convex optimization software packages�

The guaranteed�cost design was �rst introduced in ����� Brie�y� the idea is to replace the

uncertain cost of the system with a certain upper bound� and try to minimize that upper bound�

Using this approach� although we may not �nd the global minimum of the cost functional� we

can �nd the minimum of the upper bound� and by doing so� hope to be close to the actual

minimum� The interested reader is referred to �
�� for more details on this subject� First� we

present a brief review of linear quadratic control �LQR� theory�

	�� CASE I
 Continuous�Time Case

����� A Brief Review of Continuous�Time LQR Theory

It is a well known result from LQR theory that the problem of minimizing the cost function

J �

Z �
�

�xTQx� uTRu�dt �����

where Q � � and R � �� subject to �

�x � Ax� bu� u � �Kx

where �A�Q���� is detectable� and �A�B� is stabilizable� results in �nding a positive solution

of the following Algebraic Riccati Equation �ARE�

�A�BK�TP � P �A�BK� �Q�KTRK � �
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and K � R��BTP � We can write the minimum cost J as �
���

Jm � x���TPx���

where P is the solution of the above ARE� If we write the ARE as a matrix inequality instead of

an equality� the solution of the inequality will be an upper bound on the performance measure

J � and we can reach Jm by minimizing that upper bound�

����� Guaranteed Cost Design of Continuous�Time T�S Systems

While the above result holds for a single LTI system� we can extend it to the case of equation

������� To avoid the dependency of the cost function J on initial conditions� we assume the ini�

tial conditions are randomized variables with zero mean and a covariance equal to the identity�

i�e��

IEfx�x
T
� g � I

IEfx�g � � �����

where IE is the expectation operator� Our objective is to minimize the expected value of the

performance index J with respect to all possible initial conditions� Now we can state the fol�

lowing lemma�
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Lemma � For random initial conditions with zero mean and covariance equal to the identity�

we have

IEx�fx
T
� Px�g � tr�P � ���
�

Proof� Note that

IEfxT� Px�g � IEftr�Px�x
T
� �g � trfP IE�x�x

T
� �g � tr�P �

Using the above lemma� we have the following theorem�

Theorem � Consider the closed�loop fuzzy system ������� We have the following bound on

the performance objective J

J � IEx�

Z �
�

�xTQx� uTRu�dt � tr�P � �����

where P is the solution of the following Ricatti inequality

�Ai �BiKj�
TP � P �Ai �BiKj� �Q�

rX
i��

KT
i RKi � � �����

and u is de�ned as in equation �������

proof� We already know that J � tr�  P � where  P satis�es the following Riccati inequality

�Ai �BiKj�
T  P �  P �Ai �BiKj� �Q� �

rX
i��

�iKi�
TR�

rX
i��

�iKi� � � �����
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We just need to show that

�
rX

i��

�iKi��
rX

i��

�iKi
T � �

rX
i��

KT
i Ki �����

For simplicity� we will show that the above inequality is true when we only have two rules for

the controller� the extension to more than two can be done using induction� We need to show

that

���K� � ��K��
TR���K� � ��K�� � K�

TRK� �K�
TRK� �����

To illustrate this� we rewrite the left hand side of ����� as the following quadratic form�

h
KT

� R
��� KT

� R
���

i �� ��� ����

���� �T�

�
� h R���K� R���K�

i
�����

The right hand side of ����� can be written as�

h
KT

� R
��� KT

� R
���

i �� � �

� �

�
� h R���K� R���K�

i
������

To prove the theorem we have to show that

�
� ��� ����

���� �T�

�
� �

�
� � �

� �

�
� ������

This is already satis�ed since the di�erence of the two matrices is positive de�nite i�e�� we have

the following

�
� �� ��� �� ����

�� ���� �� ���

�
� � � ������
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This concludes the proof�

Now� using the same change of variables as �
����� and pre�multiplying and post�multiplying

equation ����� by P�� and also using Theorem �� we can write ����� as the following inequalities

� � Y AT
i �AiY �BiXi�XT

i B
T
i � Y QY �

rX
i��

XT
i RXi

� � Y �Ai �Aj�T � �Ai �Aj�Y �Mij �MT
ij � Y QY �

rX
i��

XT
i RXi

i � �� � � � � r j � i � r ����
�

where Mij is de�ned in �
��
�� Using the LMI Lemma �
��� we can write the above inequalities

as follows

� �

�
���������

Y AT
i �AiY �BiXi �XT

i B
T
i Y Q��� XT

� R
��� � � � XT

r R
���

Q���Y �In�n � � � � �

R���X� � �Im�m � � � �
���

���
���

� � �
���

R���Xr � � � � � �Im�m

�
���������

� �

�
���������

Y �Ai �Aj�
T � �Ai �Aj�Y �Mij �MT

ij Y Q��� XT
� R

��� � � � XT
r R

���

Q���Y �In�n � � � � �

R���X� � �Im�m � � � �
���

���
���

� � �
���

R���Xr � � � � � �Im�m

�
���������

i � �� � � � � r j � i � r ������

To obtain the least possible upper bound using a quadratic Lyapunov function� we have the

following optimization problem
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Min tr�Y ���

Subject To� LMIs in ������

This is a convex optimization problem which can be solved in polynomial time �
��� using

any of the available LMI toolboxes� To make it possible to use Matlab R LMI Toolbox� we

introduce an arti�cial variable Z� which is an upper bound on Y ��� and minimize tr�Z� instead�

i�e� we recast the problem in the following form

Min tr�Z�

Subject To LMIs in ������� and

�
� Z In�n

In�n Y

�
� � � ������

If the above LMIs are feasible� we can calculate the controller gains as Ki � XiY
���

Next� we present a numerical example� to illustrate these results�

����� Numerical Example

Consider the problem of balancing an inverted pendulum on a cart� We use the same model as

in ����� The equations for the motion of the pendulum are

�x� � x�

�x� �
g sin�x��� amlx�� sin��x��	�� a cos�x��u

�l	
 � aml cos��x��
������
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where x� denotes the angle of the pendulum �in radians� from the vertical axis� and x� is the

angular velocity of the pendulum �in radians per second�� g � ���m	s� is the gravity constant�

m is the mass of the pendulum �in Kilograms�� M is the mass of the cart �in Kilograms�� �l is

the length of the p endulum �in meters�� and u is the force applied to the cart �in Newtons��

Using the same values as in ����� we have a � �
m�M � m � � kg� M � ��� kg� and �l � ���m�

We approximate the nonlinear plant by two Takagi�Sugeno fuzzy rules as follows�

Plant Rule ���� If x� is close to zero Then �x � A�x�B�u

Plant Rule ���� If x� is close to 	�	� Then �x � A�x�B�u

where close to zero and close to 	�	� are the input fuzzy sets de�ned by the membership

functions �� � �� �
� jx�j �� �

�
� jx�j

respectively� �see �gure ����� and A�� A�� B�� B� are given as follows

A� �

�
� � �

g
�l���aml �

�
� B� �

�
� �

� a
�l���aml

�
�

A� �

�
� � �

	g
����l���aml��� �

�
� B� �

�
� �

� a�
�l���aml��

�
�


 � cos����� ������

We also choose the following values for Q and R

Q �

�
� 
 �

� �

�
� ������

R � � ������
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Solving the LMI optimization problem in the previous section� we obtain the following values

for the controller gain

K� �
h
������ �����

i

K� �
h
������ �����

i
������

The resulting global controller is

u � �����x��K� � ���x��K��x ������

Simulations indicate that the above control law can balance the pendulum for initial conditions

between ������ ����� Results are depicted in Figures ��� to ��
� As is evident from the simulation

results� the controller gains are much smaller than the ones given in ����� It is worthwhile to

note that we can design nonlinear controllers for the plant ������ based on feedback linearization

techniques� but these controllers are usually very complicated� One such controller was given

in �����

u � k�x�� x��

� �
g

a
tan�x���

�le�e�

a

ln�sec�x�� � tan�x���

�e�e�ml sin�x�� �
�e� � e��x�

a
�
�l



sec�x��� aml cos�x���

where e� and e� are the desired closed loop eigenvalues� Note that here we do not have any

measure for optimality� Instead� By linearizing the dynamics of the system for angles greater
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Figure ���� Initial condition Response of the Angle�
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Figure ���� Initial condition Response of Angular Velocity�

than �	� and those close to �� we can balance the pendulum at any initial condition while

feedback linearization works only in the ���	�� �	�� interval �����

	�� CASE II
 Discrete�Time Case

In the discrete�time case� the problem of minimizing the cost function

J �
�X
k��

xT �k�Qx�k� � uT �k�Ru�k� ������
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� Control Action�

reduces to �nding a positive de�nite solution P � � of the following discrete�time Riccati

equation�

�A�BK�TP �A�BK�� P �Q�KTRK � � ����
�

where Q � � and R � �� We can write the minimum cost of J as �����

minfJg � xT� Px�

Again� as in the continuous�time case� we can extend these results to the case of discrete�

time PLDIs� or discrete�time T�S fuzzy systems using a guaranteed�cost framework� The cost

function is exactly the same as in the continuous�time case� and the only di�erence is that

the Riccati equation is in discrete�time� It can be shown �
�� ��� that we can write the upper

bound on the performance objective as� J � tr�P � where P satis�es the following Lyapunov

inequalities�

�Ai �BiKi�
TP �Ai �BiKi�� P �Q�

rX
i��

KT
i RKi � � i � �� � � � � r
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GT
ijPGij � P �Q�

rX
i��

KT
i RKi � � j � i � r ������

and Gij is the same as in ����
�� With the usual change of variables and by using the LMI

lemma �
��� we can write the Riccati inequalities ������ as the following LMI�s�

�
������������

Y NT
i Y Q��� XT

� R
��� � � � XT

r R
���

Ni Y � � � � � �

Q���Y � In � � � � �

R���X� � � Im � � � �
���

���
���

���
� � �

���

R���Xr � � � � � � Im

�
������������

� �

�
������������

Y OT
ij Y Q��� XT

� R
��� � � � XT

r R
���

Oij Y � � � � � �

Q���Y � In � � � � �

R���X� � � Im � � � �
���

���
���

���
� � �

���

R���Xr � � � � � � Im

�
������������

� �

i � �� � � � � r j � i � r ������

where

Ni � AiY �BiXi

Oij � �Ai �Aj�Y �Mij ������

and Mij is de�ned in �
��
��

	�� Limitations of Our Approach

Despite the fact that the methods presented so far seem to be very appealing� they do not work

for all systems� The main limitation being the implicit assumption in our design procedure
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that the local subsystems� which are basically linearization of the original system� are quadrat�

ically stabilizable� There are many systems that can be stabilized� but are not quadratically

stabilizable� To illustrate this point� we present the following example� known as a benchmark

problem for nonlinear control design ����� This system was originally proposed as a simpli�ed

��state model of a dual�spin space craft� The problem involves a cart of mass M whose mass

center is constrained to move along a straight horizontal line� Attached to the cart is a 	proof

body
 actuator of mass m and moment of inertia I� Relative to the cart� the proof body rotates

about a vertical line passing through the cart mass center� The nonlinearity of the problem

co mes from the interaction between the translational motion of the cart and the rotational

motion of the eccentric proof mass� �See ���� for more details�� The state space representation

of the system is as follows�

�x �

�
������

x�
�x���x�� sin x�
���� cos� x�

x�
� cos x��x���x�� sin x��

���� cos� x�

�
������
�

�
������

�
�� cos x�

���� cos� x�

�
�

���� cos� x�

�
������
u ������

where � is a positive number between zero and one� We obtain the following T�S fuzzy model

for the system

Plant Rule ���� If x� is close to zero Then �x � A�x�B�u

Plant Rule ���� If x� is close to 	�	� Then �x � A�x�B�u

where close to zero and close to 	�	� are the input fuzzy sets de�ned by the membership
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functions

�� � ��
�

�
jx�j �� �

�

�
jx�j

respectively� � see Figure ����� and A�� A�� B�� B� are given as follows

A� �

�
������

� � � �
��
���� � � �

� � � �
�

����
� � �

�
������

B� �

�
������

�

� �
����

�
�

����

�
������

A� �

�
������

� � � �
��

������ � � �

� � � �
��

������ � � �

�
������

B� �

�
������

�

� ��
������

�
�

������

�
������


 � cos����� ������

Using the guaranteed�cost approach with the following weighting matrices� Q � I� and r � ����

we solve the LMI optimization algorithm� Unfortunately� we can not achieve a very satisfactory

performance� since the LMIs are marginally feasible� The simulation results are depicted in

Figures ��� through ���� Simulation results in ���� indicate that this system can be stabilized

with a better performance using a nonlinear controller� In other words� we are limiting ourselves

to quadratic Lyapunov functions� and in the case of the benchmark system� while the controller

in ���� achieves a better performance�
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Non�Fragile Controller Design via

LMIs

��� Introduction

One of the most active areas of research in linear control systems is robust and optimal con�

troller design� For the past �� years several researchers have come up with di�erent methods

that enable the controller to cope with uncertainties in the plant dynamics� Some of these

methods deal with the so�called structured uncertainty� while others deal with unstructured

uncertainty� A majority of these methods rely on the Youla�Ku"cera Q parameterization of all

stabilizing controllers� Elegant techniques for minimizing H� ��
�� H� ���� ��� and L� ����

norms of di�erent closed�loop transfer functions have been developed using this parameteriza�

tion� Although these methods cope with uncertainty in the plant dynamics� they all assume

that the controller derived is precise� and exactly implemented� Unfortunately� this is not the

case in practice� The controller implementation is subject to round�o� errors in numerical

computations� in addition to the need of providing the practicing engineer with safe�tuning
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margins� Therefore� the design has to be able to tolerate some uncertainty in the controller as

well as the plant dynamics� Recent results in ���� have brought attention to this problem� The

authors in ���� have come up with a method to deal with the uncertainty in a �xed�structure

dynamical controller� but have not taken into account the uncertainty in the plant dynamics�

The basic premise of this chapter is that one can not achieve 	resiliency
 if robustness is

all that is demanded� and as motivated by ���� and discussed in ����� there exists a trade�o�

between the system�s ability to tolerate both� The numerical examples in ���� suggest that if

the only uncertainty is in the plant� all of the available margins will be used� making the closed�

loop system extremely fragile with respect to uncertainties in the controller� Since designing

a dynamical controller as in ���� for the case where both system and controller are uncertain

makes the problem very complicated� we consider in this chapter the design of robust� yet

resilient static state feedback controllers using the methodology of T�S fuzzy Systems ����� We

also stress that recent results in ���� suggest that the order of the controller is not the only

cause of fragility� i�e� the controller can be of low order� yet still be fragile�

��� Polytopic Uncertainty

We discussed in the previous chapters the design of T�S fuzzy controllers for nonlinear systems�

Now� we are going to use the same methodology for the design of uncertain linear systems� The

main di�erence between this chapter and the previous ones is that we assume that the �is in
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�
��� are uncertainties� instead of known functions� As far as stability and robust performance

are concerned� we do not need to know the exact value of �is� In other words� the theory is the

same for uncertain systems and systems modeled by T�S fuzzy systems� Modeling uncertain

systems in a PLDI format is very common in the robust control literature� We extend the results

in ���� regarding state feedback controller design for PLDIs to the case where the controller

gains are uncertain as well� i�e�� the controller gains also lie in a polytope� The design of non�

fragile controllers with a�ne uncertainty is studied in ����� To illustrate this method� we write

the uncertain system in a polytopic form as follows �����

�x �
rX

i��

�i�t� x��Aix�Biu� �����

where� x�t� � Rn� u�t� � Rm � Ai � Rn�n � Bi � Rn�n
rP

i��
�i�t� x� � �� and �i�t� x� �

�� �i � f�� � � � � rg� For simplicity� we assume that the states are available for measurement and

feedback� Using a similar form of polytopic uncertainty for the controller� the control input

can be written as

u � �
rX

j��


j�t� x�Kjx �����

where 
j�t� x� � � �j � f�� � � � � rg� and
rP

j��

j�t� x� � �� Replacing u in ����� with ������ and

keeping in mind that
rP

i��
�i�t� x� � �� the closed�loop system can be written as

�x �
rX

j��

rX
i��

�i�t� x�
j�t� x��Ai �BiKj�x ���
�

The stability of ���
� can be checked by the following theorem�
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Theorem 
 � The closed�loop system ����� is globally asymptotically stable if there exists a

common positive�de�nite matrix P that satis�es the following Lyapunov inequalities �

�Ai �BiKj�
TP � P �Ai �BiKj� � � i� j � �� � � � � r �����

Proof�The proof is easily obtained by multiplying inequalities ����� by �i
j and adding them

up�

Pre�multiplying and post�multiplying the inequalities in ����� by Y � P��� and introducing

Xi � KiY � we can write inequalities ����� as the following LMIs

Y AT
i �AiY �Mij �MT

ij � � i� j � �� � � � � r �����

where Mij � BiXj � Note that the above conditions are more strict than the ones in theorem

�� since we assume di�erent uncertain parameters for the controller and the plant� Same as

before� we can obtain the vertices of the controller polytope from the following equations�

P � Y ��

Ki � XiY
�� i � �� � � � � r �����

��� Robust Performance

As in Chapter �� we can obtain robust performance using guaranteed�cost bounds for the

uncertain system ���
�� We use the same approach as in Chapter �� and we get the following
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LMIs for guaranteed�cost design �����

�
���������

Nij Y Q��� XT
� R

��� � � � XT
r R

���

Q���Y �In � � � � �

R���X� � �Im � � � �
���

���
���

� � �
���

R���Xr � � � � � �Im

�
���������

� �

i� j � �� � � � � r �����

where Nij is de�ned as

Nij � Y AT
i �AiY �Mij �MT

ij �����

To obtain the least possible upper bound provable by a quadratic Lyapunov function� we have

the following optimization problem

Min tr�Y ���

Subject To� LMIs in �����

To make it possible to use Matlab
R LMI Toolbox� we introduce an arti�cial variable Z as

an upper bound on Y ��� and minimize tr�Z� instead� i�e� we recast the problem in the following

form�

Min tr�Z�

Subject To LMIs in ������ and ������
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If the above LMIs are feasible� we can �nd directions in which uncertainty can be tolerated�

In other words� any convex combination of the controller gains would guarantee stability� To

illustrate our point� we go back to the same problem studied in section ����
� i�e�� the problem

of balancing the inverted pendulum on a cart� The di�erence between the current approach and

the one in chapter � is that we replace the membership functions in the control equation ������

with constant numbers between zero and one as long as the closed�loop LDI approximates the

closed�loop nonlinear system� One such choice may be

u � �����K� � ��K��x �����

To illustrate the robustness of this approach� we gave a 
�� increase to the cart mass M and

also increased the pole length by ���� Results are depicted in Figures ��� and ���� We can

also repeat these results in the case of discrete�time systems� Details are discussed in �����
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Conclusion

��� A Brief Summary of The Thesis

The purpose of this thesis was to present a systematic framework for the design of simple

controllers for nonlinear systems� The idea was to treat a nonlinear system� as a time�varying

uncertain�linear system� The methods described in this thesis present a uni�ed approach to the

design of robust controllers and Takagi�Sugeno fuzzy controllers� We showed that T�S fuzzy

systems are a special form of Linear Di�erential Inclusions which can be used for the design

of robust as well as resilient controllers� The idea of representing a nonlinear system with an

uncertain linear system is implicit in the early Soviet literature on absolute stability of control

systems� We used these ideas and extended the recent results on stability of Takagi�Sugeno

fuzzy systems to a guaranteed�cost method for achieving performance in addition to stability

using convex optimization methods� We also discussed the limitations of this approach using

numerical examples� Although the results are promising� there is still room for future research

in this area which we describe in the next section�
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��� Future Research Directions

Future research can be done in the area of non�fragile controller design by extending the results

obtained here to the case of output feedback controllers� The results can be extended to the

problem of non�fragile implementation of such controllers� Our approach was able to provide

resiliency with respect to the controller gains� However� in practice one might need to have

resilience with respect to variations in the electronic components that the controller is made

of� Also the e�ect of truncation of the parameters can be an important research direction� In

the area of T�S fuzzy systems� we need to look for stability results that take into account the

properties of fuzzy implications and membership functions to reduce the conservatism in our

stability results� In other words� we did not utilize the membership functions in proving our

stability results� i�e�� we treated the membership functions as unknown uncertainties� How�

ever� if the membership functions are available� we should look for stability results that use

the information of the membership functions� Another direction for future research is the ap�

proximation accuracy of T�S fuzzy systems� At present� this is a very active area� and several

researchers have reported some relative success� In years to come� there would perhaps be a

closer tie between the so called 	classical
 control methods and 	soft computing
 methods� We

have tried to reduce the gap between these two important disciplines� and hope that this thesis

would be one of the many in this direction�
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