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Abstract— In this paper, we study the structural properties of
optimal control of spatially distributed systems. Such systems
consist of an infinite collection of possibly heterogeneous linear
control systems that are spatially interconnected via certain
distant dependent coupling functions over arbitrary graphs.
The key idea of the paper is the introduction of a special
class of operators called spatially decaying (SD) operators.
We study the structural properties of infinite-horizon linear
quadratic optimal controllers for such systems by analyzing the
spatial structure of the solution to the corresponding operator
Lyapunov and Riccati equations. We prove that the kernel
of the optimal feedback of each subsystem decays in the
spatial domain at a rate proportional to the inverse of the
corresponding coupling function of the system.

I. INTRODUCTION

Analysis and synthesis of distributed coordination and
control algorithms for networked dynamic systems has be-
come a vibrant part of control theory research. Several au-
thors have studied the problem of optimal control of certain
classes of spatially distributed systems with symmetries in
their spatial structure. In [1], Bamieh er al. used spatial
Fourier transforms and operator theory to study optimal
control of linear spatially invariant systems with standard
Hs (LQ), and H, criteria. It was shown that such problems
can be tackled by solving a parameterized family of finite-
dimensional problems in Fourier domain. Furthermore, the
authors show that the resulting optimal controllers have an
inherent spatial locality similar to the underlying system.

Another interesting related work in this area is reported in
[2] where the authors use operator theoretic tools, motivated
by results of [3] to analyze time-varying systems, and design
optimal controllers for heterogeneous systems which are not
shift invariant with respect to spatial or temporal variables.
In [4], the authors introduce the notion of quadratic in-
variance for a constraint set (e.g. sparsity constraints on
communication structure of plant and controller). Using this
notion, the authors show that the problem of constructing
optimal controllers with certain sparsity patterns on the
information structure can be cast as a convex optimization
problem.

This paper is very close in spirit to [1]. The objective
of this paper is to analyze the spatial structure of infinite
horizon optimal controllers of spatially distributed systems.
Here, we extend the results of [1] to heterogeneous systems
with arbitrary spatial structure and show that quadratically
optimal controllers inherit the same spatial structure as the
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original plant. The key point of departure from [1] is that the
systems considered in this work are not spatially invariant
and the corresponding operators are not translation invariant
either. The spatial structures studied in [1] are Locally
Compact Abelian (LCA) groups [5] such as (Z,+) and
(Zy,,®). As a result, the group operation naturally induces
a translation operator for functions defined on the group.
However, when the dynamics of individual subsystems are
not identical and the spatial structure does not necessarily
enjoy the symmetries of LCA groups, standard tools such as
Fourier analysis cannot be used to analyze the system.

To address this issue, a new class of linear operators, called
spatially decaying (SD) operators, are introduced that are
natural extension of linear translation invariant operators. It
is shown that such operators exhibit a localized behavior
in spatial domain, i.e., the norm of blocks in the matrix
representation of the operator decay in space. It turns out
that the coupling between subsystems in many well-known
cooperative control and networked control problems can be
characterized by an SD operator. A linear control system
is called spatially decaying if the operators in its state-
space representation are SD. It is shown that the unique
solution of Lyapunov and algebraic Riccati equations (ARE)
corresponding to SD system are indeed SD themselves. As
a result, the corresponding optimal controllers are SD and
spatially localized, meaning that in the optimal controller,
the gain of subsystems that are “farther away” from a given
subsystem decays in space and the resulting controller is
inherently localized.

The machinery developed in this paper can be used to
analyze the spatial structure of a broader range of optimal
control problems such as constrained, finite horizon control
or Model Predictive Control of spatially distributed systems.
This problem has been analyzed in detail in [6] and [7].

This paper is organized as follows. We introduce the
notation and the basic concepts used throughout the paper
in Section II. The optimal control problem for spatially
distributed linear systems is presented in Section III. The
concept of spatially decaying operators and their properties
are introduced in Section IV. The structural properties of
quadratically optimal controllers are addressed in Section V.
Simulation results are included in Section VI. Finally, our
concluding remarks are presented in Section VIIL.

II. PRELIMINARIES

R denotes the set of real numbers, R the set of non-
negative real numbers, and C the set of complex numbers.
Consider an undirected connected graph with a nonempty
set G of nodes. We refer to G as the spatial domain. | .| and
|- || denote the Euclidean vector norm and its corresponding
induced matrix norm, respectively. The Banach space ¢,(G)
for 1 < p < oo is defined to be the set of all sequences



r = (2;);ce in which z; € R™ satisfying ), ¢ 2P <

oo endowed with the norm ||z, = ( X ,cql@l? )7 -
The Banach space ¢, (G) denotes the set of all bounded
sequences endowed with the norm ||z||s := sup;eg |zl

Throughout the paper, we will use the shorthand notation
¢, for £,(G). The space ¢ is a Hilbert space with inner
product (z,y) := >, (x:,y:) forall 2, € f5. An operator
Q: 4, — L, for 1 < p,q < oo is bounded if it has a finite
induced norm, i.e., the following quantity

1Cllp.q = sup Q]

llzll,=1

is bounded. The identity operator is denoted by Z. The set
of all bounded linear operators of ¢, into itself is denoted
by %(¢p). An operator Q € H({,) has an algebraic inverse
if it has an inverse 9~ ' in %(¢,) [8]. The adjoint operator
of @ € HB(ls) is the operator Q* in H({3) such that
(Qz,y) = (x,Q*y) for all x,y € l5. An operator Q is
self-adjoint if Q@ = Q*. An operator Q € HB({5) is positive
definite, shown as Q > 0, if there exists a number o« > 0
such that (z,Qz) > « ||z||3 for all nonzero x € 5.

The set of all functions from A C R into R is a vector
space .% over R. For f; , fo € %, the notation f; < fo
will be used to mean the pointwise inequality f1(s) < fa(s)
for all s € A. A family of seminorms on % is defined as
{Il-ll7 | T € RT} in which ||f|7 := sup <1 |f(s)| for all
f € &. The topology generated by all open | .| r-balls is
called the topology generated by the family of seminorms
and is denoted by || . ||-topology. Continuity of a function
in this topology is equivalent to continuity in every seminorm
in the family. Although the results of section III is set up in
a general framework, in this paper we are interested in linear
operators which have matrix representations.

III. OPTIMAL CONTROL OF SPATIALLY DISTRIBUTED
SYSTEMS

We begin by considering a continuous-time linear model
for spatially distributed systems over a discrete spatial do-
main G described by

Lo = A0 + B W
W) = €W+ D

with the initial condition ¢(0) = ). All signals are assumed
to be in Lo([0,00);f2) space: at each time instant ¢ €
[0,00), signals 9(t), u(t), y(t) are assumed to be in (5.
The state-space operators A, B, C, D are assumed to be
constant functions of time from ¢ to itself. The semigroup
generated by A is strongly continuous on {5. This assumption
guarantees existence and uniqueness of classical solutions of
the system given by (1)-(2) (cf. Chapter 3 of [9]).

Example 1: Consider the general one-dimensional heat
equation for a bi-infinite bar [10]
0 0 0
5700 = - (el o)) + baputet)
where z is the spatial independent variable, ¢ is the temporal
independent variable, ) (z,t) is the temperature of the bar,
and u(zx,t) is a distributed heat source. The thermal con-
ductivity c is only a function of = and is differentiable with
respect to x. The boundary conditions are assumed to be

P(00,t) = 9(—o0,t) = 0. By inserting finite difference ap-
proximation for the spatial partial derivatives, the following
continuous-time, discrete-space model can be obtained:

%w(xk,t) = C/(xk) (w(xklvt)é_ Q/J(xk7t)) n
c(xg) <¢(:Uk1,t) - 27/)(;;@, t) + (g1, t))+ bz (o,

where ¢/(z) = <L ¢(z). The discretization is performed with

equal spacing 0 = x — xp_1 of the points xj such that
there is an integer number of points in space. Hence, after
discretization the spatial domain is G = Z. This model can
be represented as linear system (1) in which the infinite-
tuples ¥(t) = ((zk,t))rec and u(t) = (u(zk,t))rec
are the state and control input variables of the infinite-
dimensional system and the block elements of the state-space
operators A and B are defined as follows

C/(wk)g;‘rc(ﬂfk) . i= E_1

o (wr)d+2c(zr) C_

Alwi =19 R , 1=k
S , i=k+1
0 , otherwise
and bax) _
o Tk , 1=
[Blki = { 0 , otherwise

for all k,7% € G. One can show that A is an unbounded
operator on /5. However, the semigroup generated by A is
strongly continuous on /5.

A. Exponential Stability

Consider the following autonomous system over G

d
Sl = (A0) (1 G

with initial condition t/(0) = 1)o. Suppose that A generates a
strongly continuous Cp-semingroup on /s, denoted by 7 (¢).
The system (3) is exponentially stable if

I7(®)]l22 < Me™

for some M, a > 0.

for t>0

Theorem 1 [9]: Let A be the infinitesimal generator of the
Co-semigroup 7 (t) on ¢5 and Q a positive definite operator.
Then 7 (¢) is exponentially stable if and only if the Lyapunov
equation

(Ad, Po) + (Po, A) + (¢, Q¢) =0 “4)
for all ¢ € Z(.A), has a positive definite solution P € H({3).

B. LQR control of infinite dimensional systems

While the main results of this paper are proven for LQ
optimal controllers, similar results can be proven for H.,
and H-> problems. In general, the solutions to these problems
can be formulated in terms of two operator AREs. Such
problems have been addressed in the literature for general
classes of distributed parameter systems [9], [11]. An elegant
analysis for the spatially invariant case can be found in
[1]. Similar to the finite-dimensional case, optimal solutions
to infinite-dimensional LQR can be formulated in terms of



an operator Riccati equation. Consider the quadratic cost
functional given by

= /0 oo<w(t), QY (1)) + (u(t), Ru(t)) dt. (5)

The system (1)-(2) with cost (5) is said to be optimizable if
for every initial condition ¢(0) = 1y € {3, there exists an
input function u € L2([0,00); £2) such that the value of (5)
is finite [9]. Note that if (A, B) is exponentially stabilizable,
then the system (1)-(2) is optimizable.

Theorem 2 [9]: Let operators Q = 0 and R > 0 be
in #(ly). If the system (1)-(2) with cost functional (5)
is optimizable and (A, Q'/?) is exponentially detectable,
then there exists a unique nonnegative, self-adjoint operator
P € PB(Ls) satisfying the ARE

(@, PA®) + (PAp, ¢y + (¢, Qo)
— (B*Po,R7'B*Pg) =0 (6)

for all ¢, » € Z(A) such that A — BR™'B*P generates an
exponentially stable Cp-semigroup. Moreover, the optimal
control @ € Lo ([0, 00); £2) is given by the feedback law

a(t) = —R7IB*P (t)

(%]

where 1/3 is the solution of
d ~ ~
V) = (A= BR™B"P) v(t) ™

with initial condition /.

Solving equations (4) and (6) can be a tedious task in
general. However, the complexity of the problem will reduce
significantly if the underlying system is spatially invariant
with respect to G (cf. Section III.LB of [1]). The main
objective of this paper is to analyze the spatial structure of
the solutions of operator equations (4) and (6) rather than
solving them explicitly.

IV. SPATIALLY DECAYING OPERATORS

The key difficulty in extending the results of [1] is that
the notion of spatial invariance was critical in being able to
use Fourier methods which greatly simplified the analysis.
Simply put, if we replace “space” with “time”, we get a more
familiar analogue of this problem: Fourier methods can not
be used directly for analysis of linear time-varying systems.
In the following, we will generalize the notion of regions of
analyticity of transforms to a larger class of linear operators.
Without loss of generality, in the following definitions it is
assumed that all operators are self-adjoint.

Definition 1: A distance function on a discrete topology
with a set of nodes G is defined as a single-valued, nonnega-
tive, real function dis(k,¢) defined for all k,,j € G which
has the following properties:

(i) dis(k,i) =0 iff k=1i.

()  dis(k,) = dis(¢, k).

(i)  dis(k,i) < dis(k, j) + dis(j, ).

Definition 2: A nondecreasing continuous function x :
RT — [1,00) is called a coupling characteristic function
if x(0) =1 and x(s +1t) < x(s) x(¢) for all s,t € R*.
The constant coupling characteristic function with unit value
everywhere is denoted by 1.

In order to be able to characterize rates of decay we define
a one-parameter family of coupling characteristic functions
as follows.

Definition 3: A one-parameter family of coupling charac-
teristic functions % is defined to be the set of all character-
istic functions X, xg for a, 3 € R* such that

i xo=1

(i)  XaXB = Xa+8-

(iii) For av < f3, relation x, < xg holds .

(iv)  Xa is a continuous function of « in || . || r-topology.

Using this definition, we can now formally define a
spatially decaying (SD) operator.

Definition 4: Suppose that a distance function dis(., .) and
a one-parameter family of parameterized coupling character-
istic functions % are given. A linear operator Q is SD with
respect to_ % if there exists 7 > 0 such that the auxiliary
operator Q, defined block-wise as

is bounded on ¢, for all 0 < o < 7. The number 7 is referred
to as the decay margin.

In general, determining the boundedness of the auxiliary
operator depends on the choice of p. The result of lemma
1 gives us a simple sufficient condition for an operator to
be SD in terms of all £,-norms. Under the assumptions of
definition 4, we also assume that the following condition

holds )
sup Xeo(dis(k,?))”" < o0
Sup %(:; (dis(k, 7))

foral 0 < a < 7.

Lemma 1: A linear operator Q is SD with respect to the
one-parameter family of coupling characteristic functions %
on all /, if there exists 7 > 0 such that the following holds

sup Y [[Qkill Xa(dis(k, ) < oo ()
k€G icG
forall 0 < a < 7.
Proof: See [12] for a proof. [ |

Examples of SD operators appear naturally in many applica-
tions. Intuitively, we may interpret the norm of each block
element [Q]x; as the coupling strength between subsystems
k and i. Given the one-parameter family of coupling char-
acteristic functions ¥, fix a value for & € [0,7). For an
infinite graph, if we fix a node k£ and move on the graph
away from node k, the coupling strength decays proportional
to the inverse of the coupling characteristic function y4 with
a < & < 7 so that relation (8) holds. The notion of an SD
operator will be key in proving spatial locality of optimal
controllers. Throughout the rest of the paper, we say an
operator is SD if it satisfies condition (8).

A. Examples of Spatially Decaying Operators

The following class of operators which are used exten-
sively in cooperative and distributed control are interesting
special classes of SD operators.

1) Spatially Truncated Operators: These are operators
with finite range couplings. Examples of such operators arise
in motion coordination of autonomous agents such as the



Laplacian operator. Given the coupling range 7' > 0, the
following class of linear operators are SD with respect to
every coupling characteristic functions

(Ol :{ Qéci if dis(k,i) <T

if dis(k,i) > T ©)
where Q; € R™*"™. For such operators and every given node
k € G, we have that

D Qkill xa(dis(k, i) <D [I[Q

i€G i~k

Jkill Xa(T) < oo. (10)

The relation ~ is the neighborhood relation defined as ¢ ~ k
if and only if dis(k, ) < T. Inequality (10) shows that Q is
SD with respect to every € and the decay margin is 7 = oo.

2) Exponentially Decaying Operators: Consider the one-
parameter family of coupling characteristic functions €g
defined by

x¢(s) = (1+¢)° Y

where ¢ € R*. Operator Q is said to be exponentially
SD if condition (8) holds with respect to ¥ defined by
(11) for all ¢ € [0,7) where 7 > 0 is the decay margin.
An important example of exponentially SD operators is
the class of translation invariant operators with G = Z.
It can be shown that, under some mild assumptions, a
translation invariant operator in %(¢3) is exponentially SD
with dis(k,¢) = |k — ¢| as a natural notion of distance [12].
The decay margin of Q is equal to r, the distance of the
nearest pole of the Fourier transform of Q to the unit circle
in C.

3) Algebraically Decaying Operators: Consider the para-
meterized family of characteristic functions 4’4 defined as

Xv(8) = (1 + As)” (12)

in which A > 0 and v € R™. Operator Q is said to be
algebraically SD if condition (8) holds with respect to €4
defined by (12) for all v € [0,7) where 7 > 0 is the
decay margin. Such functions are often used as pair-wise
potentials among agents in flocking and cooperative control
problems [13]. Another example of such coupling functions
arises in wireless networks. The coupling between nodes,
which is considered as the power of the communication
signal between agents, decays with the inverse fourth power
laW, i.e., m
B. Properties of SD Operators
We define the operator norm

IQy = sup sup > [|[Q

a€l0,7) keG icG

il Xa(dis(k, 7))

and the normed vector space
5.(€)=1{Q : [|QJ} < oo}.

It can be shown that the operator norm satisfies the following
properties [12], for all Q,P € S, (%) and ¢ € C,

i) |Qllz >0 and [Q]z = 0iff Q =0,
) e Sllz =Id| Q-

i) [Q+Pllz < [1Q]lf + [Pz

@) 12P: < 12l 1P

Property (iv) is called the submultiplicative property.

Theorem 3: Given a one-parameter family of coupling
characteristic functions ¢ and 7 > 0, the operator space
S-(€) forms a Banach Algebra with respect to the operator
norm ||.||* under the operator composition operation.

Proof: See [12] for a proof. |

The above theorem is a key ingredient in proving that op-
timal controllers of SD systems are SD. We have shown that
operator space S; (%) is closed under addition, multiplica-
tion, and limit properties (cf. [12], Theorem 5). Furthermore,
if an SD operator has an algebraic inverse on %({s), the
inverse operator Q! is also SD [14]. It is straightforward
to check that the serial, parallel, and well-posed feedback
interconnection of two SD systems are also SD. In the next
section, using the closure properties of SD operators, it is
shown that the solution of differential Lyapunov and Riccati
equations converge to an SD operator.

V. STRUCTURE OF QUADRATICALLY OPTIMAL
CONTROLLERS

As discussed in section III, our aim is not to solve
the Lyapunov equation (4) and ARE (6) explicitly but to
study the spatial structure of the solution of these algebraic
equations by means of tools developed in the previous
sections. In the following, it is shown that the solution of
equations (4) and (6) have an inherent spatial locality and
the characteristics of the coupling function will determine
the degree of localization.

Theorem 5: Assume that operators A, Q € S, (%) and
Q is positive definite. If A is the infinitesimal generator
of an exponentially stable Cy-semigroup 7 (t) on ¢, then
the unique positive definite solution of operator Lyapunov
equation (4) satisfies P € S.(%).

Proof: See [12] for a proof. [ |

In the next theorem without loss of generality, we will
assume that R = Z. Otherwise, by only assuming that R
has an algebraic inverse on %({3), it can be shown that R !
is SD [14]. According to the closure under multiplication
property of SD operators, if P and 5 are SD, then the optimal
feedback operator L = —R~1B*P will be SD.

Theorem 6: Let A, B, Q € S§.(%) and Q > 0. Moreover,
assume that conditions of Theorem 2 hold. Then the unique

positive definite solution of operator ARE (6) satisfies P €
S-(%).

Proof: Consider the Differential Riccati Equation

(0, Pt)¢) = (@, P(t)A9) + (P(t)Ap, ¢) + (¢, Q¢)
— (B"P(t)e, B*P(t)¢)

with P(0) = 0. We denote the unique solution of this differ-
ential Riccati equation in the class of strongly continuous,
self-adjoint operators in % (¢3) by the one-parameter family
of operator-valued function P(¢) for ¢ > 0. The nonnegative
operator P, the unique solution of ARE, is the strong limit of
P(t) on £y as t — oo (see theorem 6.2.4 of [9]). Therefore,
we have that

4
dt

tlgglo [P(t) —Pll22=0 (13)



From the differential Riccati equation, it follows that
d
%[P(mki =[A*Pt) + P(t)A—Pt)BB*P(t) + Qlx:

for all k,i € G. For a differentiable matrix X (t) € C**"
for t > 0, we have the following inequality

d _ [ X(t+ 5)|| — I X®)]l
21X @) = 1m
< [ XEL£O =X ”‘5 H H tH (14)
6—0

Using inequality (14), we have

d *
ZIPOIz < SHPZ || t)]kill Xa(dis(k, 7))

< ||A* ( ) +P(H)A=P)BB"P(t) + Q|7
For simplicity in notations, denote 7(t) = ||P(t)||%. Using

the triangle inequality and the fact that norm ||.||% is sub-
multiplicative, we have the following differential inequality

() < 2 AL 7@+ (BID* =) +[Qlr (15

with initial condition 7(0) = 0 and constraint 7(¢) > 0 for
all ¢ > 0. All coefficients ||Al|x, || Bz, ||Qll5 in the right
hand side of the inequality (15) are finite numbers. If 7(t)
for ¢ > 0 is a solution of the differential inequality (15), then
it is also a solution of the following differential inequality

w(t) < A (n(t) + 1) (16)

with 7(0) = 0 and A = max(|A||%, (1B]2)*,]|Q[%). In
other words, the set of feasible solutions of (15) is a subset
of solutions of (16). From (16), we have

Z(<;H)<A

which has the set of solutions

1 e~ M
> .
m(t)+1 =~ w(0)+1

m(t) > 0 for all ¢ > 0 and

Using the fact that
follows that

m(0) = 0, it

m(t) < eM—1.

The above inequality is feasible, i.e., there exists at least one
sequence of solutions satisfying m(¢) > 0 for all ¢ > 0. The
above inequality also proves that m(t) < oo for all ¢ > 0.
Thus, we have that P(t) € S-(€) for all ¢ > 0. According
to Theorem 5 in [12], we can use this result and (13) to
conclude that P € S;(%). This completes the proof. [ |

VI. SIMULATION

We consider a large network of N linear subsystems
coupled on an arbitrary graph which can be described by

d
VO = (AY) (1) + (Bu)(®).

The coupling characteristic function is x and the system
operators are given by [Aly; = m and B = 7.
The distance function is Euclidean. We will study the LQR
problem discussed in Section III with weighting operators

R = 7 and Q being the corresponding unweighted graph

30
"Fs0 *36 2
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.
8 *39 a3 9 34
&
251 o %
*31 = 13
*21 *40
* 252 *6
201 * * *;
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*30 16 14
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k24 o
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25
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4
*
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0

Fig. 1. N=50 nodes are randomly and uniformly distributed in a region of
area 30 x 30 (units)?. Each node is a linear subsystem which is coupled
to other subsystems through their dynamic and a central cost function by a
given coupling characteristic function.

Laplacian. The corresponding ARE is given by
A*P+PA-P?>+Q=0. (17)

Then the LQR optimal feedback is given by X = —P. In
the following simulations, it is assumed that N = 50 nodes
are randomly and uniformly distributed in a region of area
30 x 30 (units)2. Each node is assumed to be a linear system
which is coupled through its dynamic and the LQR cost
functional to other subsystems. In the sequel, three differ-
ent scenarios are considered for the coupling characteristic
function: algebraical decay, exponential decay, and nearest
neighbor coupling. The results are shown, respectively, in
Figures 2, 3, and 4 where the norm of the LQR feedback
gains [K]; corresponding to agents k = 1,4,12,15 (their
locations are marked by bold stars in Figure 1) is depicted
versus the distance of other subsystems to subsystem k. As
seen from these simulations, for every subsystem £ the norm
of the optimal feedback kernel [K]g; is enveloped by the
inverse of the coupling characteristic function. Therefore,
the spatial decay rate of the optimal controller can be
determined priory only using the information of the coupling
characteristic function.

A. Spatial Truncation
Let /Cr be the spatially truncated operator defined by

Kk it dis(kd) <T
[’CTW—{ 0 if dis(k,i) > T.

By applying the small-gain stability argument, one can ob-
tain a truncation length T for which Cr is stabilizing for all

T > T (cf. Section V.B in [1]). Figure 5 illustrates the per-

formance loss percentage defined as Trace(gglg(gf ceP) | %

100 versus different values of 7" > T} for different coupling
characteristic functions where Pr satisfies

(A4 BKr)*Pr +Pr(A+BKr) + Q+ KrRKr = 0.

As seen from Figure 5, the larger values of truncation length
T ensue better closed-loop performance.

In the above simulations, the extension of this surprising
locality result to finite-dimensional systems is due to the fact
that the matrices in system’s state-space representation are
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I (which is exponentially decaying) when ¢ = e — 1 (dashed)
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for subsystems k = 1,4, 12, 15, respectively, from top to bottom.

defined such that the norm of blocks in the matrix decay as
a function of distance between subsystems.

VII. CONCLUSIONS

In this paper we studied the spatial structure of infinite
horizon optimal controllers for spatially distributed systems.
By introducing the notion of SD operators we extended
the notion of analytic continuity to operators that are not
spatially invariant. Furthermore, we proved that SD operators
form a Banach algebra. We used this to prove that solutions
of Lyapunov and Riccati equations for SD systems are
themselves SD. This result was utilized to show that the
kernel of optimal LQ feedback is also SD. Although these
results were proven for LQ problems, they can be easily
extended to general Hso, and H, optimal control problems
as the key enabling property is the spatial decay of solution of
the corresponding Riccati equations. One major implication
of these results is that the optimal control problem for
spatially decaying systems lends itself to distributed solutions
without too much loss in performance as even the centralized
solutions are inherently localized.
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