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Linear program (LP)

n

minimize E Cj T

g=1

n
subject to Zaijxj < bi, 1= 1, oo,

g=1
n

Zcijxj:dia 221,,]9

j=1
variables: z;
problem data: the coefficients c;, a;;, bi, cij, d;

e can be solved very efficiently (several 10,000 variables, constraints)
e widely available general-purpose software

e extensive, useful theory (optimality conditions, sensitivity analysis, . . . )
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Example. Open-loop control problem

single-input /single-output system (with input u, output ¥)

y(t) = hou(t) + hiu(t — 1) + hou(t — 2) + hau(t —3) + - - -

output tracking problem: minimize deviation from desired output yqes(t)

t) — Ydes(?
,max y(t) = Yaes(t)]

subject to input amplitude and slew rate constraints:

lu(t)| < U, u(t+1) —u(t)] < S

variables: u(0), ..., u(M) (with u(t) =0 for t <0, t > M)

solution: can be formulated as an LP, hence easily solved (more later)
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example

step response (s(t) = hy + - -+ + ho) and desired output:

step response Ydes(t)
1,
0
0 100 200 0 100 200

amplitude and slew rate constraint on u:

lu(t)| < 1.1, lu(t) —u(t —1)] <0.25
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optimal solution

output and desired output

0 | 100 | 200

u(t) —u(t—1)
0.25[ - W ,,,,,,,,,,,,,,,,,,,,,,,,,,

0.00
ﬁ

—0.25}------ A R e
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Brief history

e 1930s (Kantorovich): economic applications

e 1940s (Dantzig): military logistics problems during WW?2;
1947: simplex algorithm

e 1950s—60s discovery of applications in many other fields (structural
optimization, control theory, filter design, . . .)

e 1979 (Khachiyan) ellipsoid algorithm: more efficient (polynomial-time)
than simplex in worst case, but slower in practice

e 1984 (Karmarkar): projective (interior-point) algorithm:
polynomial-time worst-case complexity, and efficient in practice

e 1984-today. many variations of interior-point methods (improved
complexity or efficiency in practice), software for large-scale problems
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Course outline

the linear programming problem
linear inequalities, geometry of linear programming

engineering applications
signal processing, control, structural optimization . . .

duality

algorithms
the simplex algorithm, interior-point algorithms

large-scale linear programming and network optimization
techniques for LPs with special structure, network flow problems

integer linear programming
introduction, some basic techniques
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Software

solvers: solve LPs described in some standard form

modeling tools: accept a problem in a simpler, more intuitive, notation
and convert it to the standard form required by solvers

software for this course (see class website)

e platforms: Matlab, Octave, Python

e solvers: linprog (Matlab Optimization Toolbox),

e modeling tools: CVX (Matlab), YALMIP (Matlab),

e Thanks to Lieven Vandenberghe at UCLA for his slides

Introduction and overview
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Integer linear program

integer linear program

minimize )77, ¢z,

subject to Z?:1 Q5T j < bi, 1= 1, R’
n .
ijlcijazj:di, t=1,...,D
Z j clZ

Boolean linear program

minimize > ., ¢;T;

g=1
subject to Z?:1 Q5T j < bi, 1= 1, R’
n .
ijlcijazj:di, ’L:l,...,p
Tj & {0, 1}

e very general problems; can be extremely hard to solve

e can be solved as a sequence of linear programs

Introduction and overview



Example. Scheduling problem

AV
/

scheduling graph V:

OGO ()

NS S

\@/
e nodes represent operations (e.g., jobs in a manufacturing process,
arithmetic operations in an algorithm)

e (7,7) € V means operation j must wait for operation ¢ to be finished

e )M identical machines/processors; each operation takes unit time

problem: determine fastest schedule

Introduction and overview 1-10



Boolean linear program formulation

variables: z,;, 2 =1,...,n,s=0,...,T":

x;s = 1 if job 7 starts at time s , ;s = 0 otherwise
constraints:
1. z;5 € {O, 1}

2. job 7 starts exactly once:

T
E Tis = 1
s=0

3. if there is an arc (i,7) in V, then

T

s=0 s=0

STis > 1

)=
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4. limit on capacity (M machines) at time s:
n
Z Tis < M
i=1
cost function (start time of job n):

E STns

s=0

Boolean linear program

minimize ZST:o ST

subject to ZST:() ris=1, i=1,...,n
Zsto STjs — ZZ:O stis > 1, (4,7) €V
S ris <M, s=0,...,T
r;s €{0,1}, i=1,...,n, s=0,...,T
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Lecture 2
Linear inequalities

vectors

inner products and norms

linear equalities and hyperplanes
linear inequalities and halfspaces

polyhedra
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(column) vector x € R™:

e 1z, € R: 1th component or element of x

e also written as x = (x1, x2,...,Ty)

some special vectors:
e v =0 (zero vector): x; =0,i=1,...,n
er=1.z;,=1,1=1,....n

e © = ¢; (ith basis vector or ith unit vector): x; =1, x;, =0 for k # i

(n follows from context)

Linear inequalities



Vector operations

multiplying a vector x € R™ with a scalar a € R:

adding and subtracting two vectors x, y € R™:

Linear inequalities

Tr+y =

X —

T+ Y1

Tn + Yn

a1

Ty,

r—y =

I 1 — Y1
B Ln — Yn
_0.75x + 1.5y




x, y € R"

Inner product

<337 y> = xlyl + x2y2 + .o + xnyn — xTy

important properties

o (ax,y) = afz,y)

° (z+vy,2)=(r,2)+ (y,2)
o (7,y) = < , )

° (x,z) >

o (zz:,zz:>=0<:>a:—0

linear function: f : R" — R is linear, i.e.

if and only if f(x) =

Linear inequalities

<a7

flax+ By) = af(x) + Bf(y),

x) for some a
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Euclidean norm

for z € R™ we define the (Euclidean) norm as

el = /a2 + a3+ +a2
||| measures length of vector (from origin)

important properties:
e |ax| = |all|x| (homogeneity)

o ||lx+y| <|z| + ||yl (triangle inequality)
e ||x|| > 0 (nonnegativity)

o ||z|| =0 <= 2 = 0 (definiteness)

distance between vectors: dist(z,y) = ||z — y/|

Linear inequalities

Ty
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Inner products and angles

angle between vectors in R™:

1 zy
][y

0= /(x,y) =cos”

i.e., o'y = |||yl cos 6

x and y aligned: 6 = 0; 1y = ||z||||y||
x and y opposed: 0 = m; xly = —||z||||y||
x and y orthogonal: 0 = /2 or —7/2; vy = 0 (denoted z L y)

'y > 0 means /(z,y) is acute; 21y < 0 means /(x,y) is obtuse
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Cauchy-Schwarz inequality:

projection of x on y

projection is given by

Linear inequalities

2y < [z ]l]lyl

y
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Hyperplanes

hyperplane in R":
{z]a'z=0b} (a#0)

e solution set of one linear equation a;x1 + - - - + a,x,, = b with at least
one a; #* 0

e set of vectors that make a constant inner product with vector
a = (ai,...,ay) (the normal vector)

Te = alxo)

in R?: 2 line, Iin R’: 2 plane, . ..
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Halfspaces
(closed) halfspace in R™:
{z]a"z <b} (a#0)

e solution set of one linear inequality a1x1 + - - - + a,x, < b with at least
one a; #* 0

e a = (ay,...,ay) is the (outward) normal

TCUO}

{z|a'z < a'zo}

e {z|alx < b} is called an open halfspace

Linear inequalities 2-9



Affine sets

solution set of a set of linear equations

a11T1 + 122 + - -+ + A1pTy

211 + A22T2 + - -+ + A2p,Ty

Am1T1 + Am2T2 + -+ AmnIn

intersection of m hyperplanes with normal vectors

(w.l.o.g., all a; # 0)

In matrix notation:

with
aii

a1
A= _

Linear inequalities

ai2
a2

a;

. 7ain)
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Polyhedra

solution set of system of linear inequalities

a1121 + a12Tr2 + -+ a1y, < by

A1 T1 + Qoo + -+ GnTn, < by

intersection of m halfspaces, with normal vectors a; = (a;1, a;2, - . .

(w.l.o.g., all a; # 0)

aq az

as
as

Ay

Linear inequalities

’ a”in)
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matrix notation

Axr < b
with ) ) ) )
aii ai2 Ain 51
a1 a22 ao 52
A= . ", b=
i am1 Am?2 tee Amn _ i bm _

Ax < b stands for componentwise inequality, i.e., for y, z € R",

Yys<z < Y1 21,...,Yn < 2p

Linear inequalities 2-12



Examples of polyhedra
e a hyperplane {z | a’z = b}:
alx < b, alx >b

e solution set of system of linear equations/inequalities

T . T, .
a; x < b;,, 1=1,...,m, cr=d;, t1=1,....p

e aslab {z | b; <alz < by}
e the probability simplex {x ¢ R" | 112 =1, z; >0, i=1,...,n}

e (hyper)rectangle {x ¢ R" || < x < u} where l < u

Linear inequalities 2-13
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Geometry of linear programming

subspaces and affine sets, independent vectors
matrices, range and nullspace, rank, inverse
polyhedron in inequality form

extreme points

degeneracy

the optimal set of a linear program
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Subspaces

S CR" (8 # () is called a subspace if
z,yeS, a,ER — axr+pPyes

ax + By is called a linear combination of x and y

examples (in R")

e S=R" S§={0}

e S ={av|a € R} where v € R" (i.e., a line through the origin)

e S =span(vy,vy,...,v5) = {a1v1 +- -+ agvg | @; € R}, where v; € R”

e set of vectors orthogonal to given vectors vy, ..., VU

S={zxcR"|vix=0,...,viz =0}

Geometry of linear programming 3-2



Independent vectors

vectors v, Vs, ...,V are independent if and only if

a1v1+a2v2+...+akvkzo — 041:()(2:"':0

some equivalent conditions:

e coefficients of aqyv1 + vy + - - - + v are uniquely determined, i.e.,
Q101 + Qovg + - + Qg = P11 + Pavs + - -+ Brug
implies a1 — 617042 — 527 vy O — 6/{

e no vector v; can be expressed as a linear combination of the other
vectors v1,...,0;—-1, Vi4+1y.--,Vk
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Basis and dimension

{v1,v9,..., vk} is a basis for a subspace S if
® U1,Va,...,V Span S, i.e., S = span(vy, vV, ..., Uk)
® U1,Vs,...,V, are independent

equivalently: every v € § can be uniquely expressed as

V=1V + -+ QpUk

fact: for a given subspace &, the number of vectors in any basis is the
same, and is called the dimension of §, denoted dim S

Geometry of linear programming



Affine sets

V CR" (V #0) is called an affine set if
rz,yeV,a+p=1 = oax+pycV

ax + Py is called an affine combination of x and y

examples (in R")

e subspaces

e V=b+S={x+b|xzecS} where S is a subspace
o V={ovm+- - F+apvp | ER DY a;=1}

e V={z|viz="0,...,01 0 =0} (if V#0)

every affine set V can be written as V = 29 + S where 2o € R", S a
subspace (e.g., can take any xg € V, S =V — xg)

dim(V — x¢) is called the dimension of V

Geometry of linear programming
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Matrices

aii aji2 Ain
a1 azo - ao
i am1 Am?2 v Amn _

some special matrices:

o A =0 (zero matrix): a;; =0

o A =1 (identity matrix): m=nand A;; =1fori=1,...,n, 4;; =0
for i £ 5

e A = diag(x) where x € R" (diagonal matrix): m = n and

I 0 0
A — 0 51322 0
0 0 Tn |

Geometry of linear programming 3-6



Matrix operations

e addition, subtraction, scalar multiplication

e transpose:

air a1 Am1
ai2 4292 Am?2
Ain aA2n Amn

E RnXm

e multiplication: A € R™*", B e R"*Y, AB € R™*¢;

AB

Geometry of linear programming

B n
> i1 a1ibi1
2 i—1 02ibi
i=1 Y2:Y1

n
| D im1 @mibin

n

D iy @1ibio

2 i1 02ib;
i=1 Y2:V22

mn
D i1 Gmibio

D i G1

biq

n
Zz’:l a2ibiq

Z?:l A

biq |




Rows and columns

rows of 4 € R™*™: i
T
"
A=| "
| ap,
with a; = (ail, a;2, . . . ,am) c R"
columns of B € R"*¢;
B=[b b

with b; = (blia bai, ..., bnz) c R"
for example, can write AB as

i af{bl a?bg
AB — aiby albs

T T
CLmbl ambg

Geometry of linear programming
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T
a..b
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Range of a matrix
the range of A € R™*" is defined as

R(A) = {Az | z € R"} CR™

e a subspace
e set of vectors that can be ‘hit’ by mapping y = Ax

e the span of the columns of A =[a; -+ ay,)
R(A) = {a1z1 +---+apz, |z € R"}
e the set of vectors y s.t. Az = y has a solution

R(A) =R" «—
e Ax = y can be solved in x for any y

e the columns of A span R™
e dimR(A) =m

Geometry of linear programming

3-9



Interpretations

veERA), wgR(A)

e y = Ax represents output resulting from input x

— v is a possible result or output
— w cannot be a result or output

R(A) characterizes the achievable outputs

e y = Az represents measurement of x

— y = v Is a possible or consistent sensor signal
— y = w is impossible or inconsistent; sensors have failed or model is
wrong

R(A) characterizes the possible results

Geometry of linear programming 3-10



Nullspace of a matrix

the nullspace of A € R™*" is defined as

NA)={zeR"| Az =0}

e a subspace
e the set of vectors mapped to zero by y = Ax

e the set of vectors orthogonal to all rows of A:

NA ={zeR"|ajz="-=a,z=0}
where A = [a1 -+ a,]t
zero nullspace: N (A) = {0} <

e x can always be uniquely determined from y = Ax
(i.e., the linear transformation y = Ax doesn't ‘lose’ information)

e columns of A are independent

Geometry of linear programming
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Interpretations

suppose z € N (A)

e y = Ax represents output resulting from input x

— z is input with no result
— x and z + z have same result

N (A) characterizes freedom of input choice for given result

e y = Ax represents measurement of x

— 2 Is undetectable — get zero sensor readings
— x and x + z are indistinguishable: Az = A(x + 2)

N (A) characterizes ambiguity in x from y = Ax

Geometry of linear programming 3-12



Inverse

A € R"™ " is invertible or nonsingular if det A # 0

equivalent conditions:

e columns of A are a basis for R"

e rows of A are a basis for R"

e NV(A) = {0}

e R(A)=R"

e y = Ax has a unique solution x for every y € R"”

e A has an inverse A= € R™™"™ with AA~ 1l =A"14A=1

Geometry of linear programming 3-13



Rank of a matrix

we define the rank of A € R™*"™ as

rank(A) = dim R(A)

(nontrivial) facts:
e rank(A) = rank(A7T)

e rank(A) is maximum number of independent columns (or rows) of A,
hence
rank(A) < min{m, n}

e rank(A) + dimAN(A) =n

Geometry of linear programming 3-14



Full rank matrices

for A € R™*™ we have rank(A) < min{m,n}

we say A is full rank if rank(A) = min{m,n}

e for square matrices, full rank means nonsingular
e for skinny matrices (m > n), full rank means columns are independent

e for fat matrices (m < n), full rank means rows are independent
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Sets of linear equations

Ax =y
given A € R™*" y € R™

e solvable if and only if y € R(A)
e unique solution if y € R(A) and rank(A) =n
e general solution set:

{zo+v|veN(A)}

where Axg =y

A square and invertible: unique solution for every y:

r=A"ly

Geometry of linear programming
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Polyhedron (inequality form)
A=lay - an)t € R be R™

P={x| Az <bl={x|a/z<b;, i=1,...,m}

aq a2

Qe

as
as

P is convex:
rz,yeP, 0<A<1l = M+ (1-NyeP
i.e., the line segment between any two points in P lies in P
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Extreme points and vertices
x € P is an extreme point if it cannot be written as
r=Ay+ (1 —X)z

with 0 < A<1,y,2€P,y#x, z#=x

ST CT.CU constant

x € P is a vertex if there is a ¢ such that ¢!z < cl'y forally € P, y # x

fact: x is an extreme point <= x is a vertex (proof later)
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Basic feasible solution
define I as the set of indices of the active or binding constraints (at z*):
a; v* =b;, i€, a; v* <by, &l

define A as

N
I

: I={i1,... 0k}

x* is called a basic feasible solution if

rank A = n

fact: x* is a vertex (extreme point) <= x* is a basic feasible solution
(proof later)
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~1 0 0
2 1 3
0o -1 %= 1|0

12 3

e (1,1) is an extreme point
e (1,1) is a vertex: unique minimum of ¢!z with ¢ = (-1, —1)

e (1,1) is a basic feasible solution: I = {2,4} and rank A = 2, where
. 2 1
=)

Geometry of linear programming 3-20



Equivalence of the three definitions

vertex —> extreme point

let * be a vertex of P, i.e., there is a ¢ # 0 such that

cla*<cle forallz e P, x £ a*

let y,z € P, y # x*, z # x*:
cla* < cly, clar <tz
so, If 0 < A <1, then
cla* <Ay + (1= XN)z2)

hence z* # Ay + (1 — N\)z

Geometry of linear programming
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extreme point — basic feasible solution

suppose * € P is an extreme point with
ala*=b;, i€l a; v* <by, &l
suppose =™ is not a basic feasible solution; then there exists a d # 0 with
ald=0, icl
and for small enough € > 0,
y=x"+edeP, z=a"—edeP
we have

x* = 0.5y + 0.5z,

which contradicts the assumption that 2™ is an extreme point
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basic feasible solution —> vertex

suppose * € P is a basic feasible solution and
a;r* =b; i€l aix* <b; gl

define ¢ = — Ziel a;; then
o = — Zb’i
icl

and for all z € P,

e > _Zbi

icl
with equality only if !z =0;, i € I

however the only solution to aiTx = b, 1€ 1,is x*; hence ¢! x* < ¢''x for
all z € P
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Degeneracy
set of linear inequalities alx < b;, i =1,...,m
a basic feasible solution x* with

ala*=b;, i€l

T
i a

is degenerate if #indices in [ is greater than n

e a property of the description of the polyhedron, not its geometry
e affects the performance of some algorithms

e disappears with small perturbations of b
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Unbounded directions

P contains a half-line if there exists d # 0, x¢ such that

xo+tde P forallt >0
equivalent condition for P = {z | Ax < b}
AQ?() S b, Ad S 0

fact: P unbounded <= P contains a half-line

P contains a line if there exists d # 0, xg such that
xo + td € P for all t
equivalent condition for P = {z | Az < b}:
Axg <b, Ad=0
fact: P has no extreme points <= P contains a line

Geometry of linear programming
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Optimal set of an LP

minimize clx

subject to Ax <b
e optimal value: p* = min{c’z | Az < b} (p* = *oo is possible)
e optimal point: z* with Ax* < b and ¢! z* = p*
e optimal set: Xopy = {z | Az < b, 'z = p*}
example
minimize  c¢1T1 + Coxo

subject to —2z1 +1x2 <1
1 >0, w220

e c=(1,1): Xopt =1{(0,0)}, p*=0
e c=(1,0): Xopt =1{(0,22) |0 <22 <1}, p*=0
o c=(—1,-1) Xopt =0, pr =—0
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Existence of optimal points

e p* = —oo if and only if there exists a feasible half-line

{Qﬁo—Ftd‘tZO}

with ¢f'd < 0

e

;

o p* =+4ocifand only if P =0
e p* is finite if and only if X, # 0

Geometry of linear programming
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property: if P has at least one extreme point and p* is finite, then there
exists an extreme point that is optimal
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variants of the linear programming problem
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examples and some general applications
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Variants of the linear programming problem

general form

minimize ¢z

subject to alx <b;, i=1,...,m
gle=h;, i=1,...,p

In matrix notation:

minimize ¢!z

subject to Ax <b

Gx =h
where R - -
aq g1
vy gT .
A=| 2 | eR™", G=|"72 | eR"
| A, 9 ]

The linear programming problem: variants and examples 4-2



inequality form LP

minimize ¢!z

. T .
subjectto a;z <b;, i=1,...

In matrix notation:

minimize ¢!z

subject to Az <b
standard form LP

minimize ¢!z

subject to glox=h;, i=1,...

x>0

In matrix notation:

minimize ¢l

subject to Gx = h
x>0

The linear programming problem: variants and examples
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Reduction of general LP to inequality/standard form

minimize ¢!z

subject to alx <b;, i=1,...,m
glfe=hy;, i=1,...,p
reduction to inequality form:

minimize clx

subject to alx <b;, i=1,...,m
g;-rzzthi, 1=1,...,p
g?:pghi, 1=1,...,p

T

in matrix notation (where A has rows a!, G has rows g/)

minimize ¢’z

. e
subject to -G |x< | —h

L G - L h -

The linear programming problem: variants and examples 4-4



reduction to standard form:

minimize c¢fzt —ecla™
subject to alxt —alrxT +s,=0;, i=1,...,m
T T — .
gixt—gliae—=h; i=1,...,p
xt,x7,5>0
e variables 7, x7, s
e recoverx asr=x" —x~
e s c R is called a slack variable
In matrix notation: o N
minimize ¢l Z
subject to Gx =h
x>0
where
- - _ _
x c
N B N ~ A —A T
T = ,c:—c,G:G_GO,
S 0

The linear programming problem: variants and examples



LP feasibility problem

feasibility problem: find x that satisfies a2 <b;, i =1,...,m

solution via LP (with variables t, x)

minimize t
subject to alx <b;+t, i=1,...,m

e variables ¢, =

e if minimizer x*, t* satisfies t* < 0, then x* satisfies the inequalities

LP in matrix notation:

minimize ¢l g

subject to A7 <b
~ x -~ 0 ~ ~
xz[t], 02[1], A:[A—l], b=1>

The linear programming problem: variants and examples



Piecewise-linear minimization

piecewise-linear minimization: minimize maxizl,,,,,m(cfaz + d;)
max; (ci « + d;)

X
equivalent LP (with variables x € R", t € R):
minimize ¢
subject to clx+d; <t, i=1,...,m

In matrix notation:

Qi]
=)

minimize
subject to Ax <b

1] (1] we

The linear programming problem: variants and examples



Convex functions

f:R"™ — Ris convex if for 0 < \ <1

fOz4+ 1 =Ny) <Af(x)+ (1 =N f(y)

@)+ =N,

T A+ (1-Ny Y

The linear programming problem: variants and examples



Piecewise-linear approximation

assume f : R™ — R differentiable and convex

e 1st-order approximation at z! is a global lower bound on f:

f(@) = fa) + V(@) (z — )
/(@)

e evaluating f, Vf at several z* yields a piecewise-linear lower bound:

flz)> max (f(a")+ Vf(a") (z—a"))

i=1,... K

The linear programming problem: variants and examples



Convex optimization problem

minimize fy(z)
(f; convex and differentiable)

LP approximation (choose points 27, j =1,..., K):
minimize t
subject to  fo(z?) + Vfo(x) ' (z — /) <t, j=1,...,K

(variables zx, t)

e yields lower bound on optimal value
e can be extended to nondifferentiable convex functions

e more sophisticated variation: cutting-plane algorithm (solves convex
optimization problem via sequence of LP approximations)

The linear programming problem: variants and examples 4-10



Norms

norms on R":

e Euclidean norm ||z|| (or ||z]|2) =

o /1-norm: ||z||1 = |x1| + -+ - + |z4]

e /.- (or Chebyshev-) norm: ||z||~

= max; ||

T

1 [z]loc =1
é ||| =1
Azl =1
1 1

-
N\

Z

The linear programming problem: variants and examples
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Norm approximation problems

minimize ||Az —b||,

e r € R" is variable; A € R™*™ and b € R™ are problem data
e p=1,2,00

o = Ax — b is called residual

e r; =alx — b; is ith residual (a! is ith row of A)

e usually overdetermined, i.e., b &€ R(A) (e.g., m > n, A full rank)

interpretations:

e approximate or fit b with linear combination of columns of A

e b is corrupted measurement of Ax; find ‘least inconsistent’ value of x
for given measurements
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examples:

e ||r|| = VrTr: least-squares or fo-approximation (a.k.a. regression)

e ||| = max;|r;|: Chebyshev, .., or minimax approximation

o ||| =>_.|ri|: absolute-sum or ¢;-approximation

solution:

e /5: closed form expression
Topt = (AT A) "1 AT

(assume rank(A) = n)

e /1, {x: no closed form expression, but readily solved via LP

The linear programming problem: variants and examples
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¢1-approximation via LP

/1-approximation problem
minimize |[Ax — bl

write as o .
minimize ) ._ Y
subjectto —y < Ax—-b<y

an LP with variables y, x:
minimize ¢z
subject to Az <b

The linear programming problem: variants and examples
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! -approximation via LP

{so-approximation problem
minimize ||Az — b/

write as
minimize t
subjectto —t1 < Ax—-b<tl

an LP with variables ¢, x:
minimize ¢z
subject to Az <b
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Example

minimize || Az — b||, forp =1, 2, 0o (A € R100><3o)

resulting residuals:

ri(p=1)

i (p=2)

()
T T T T T T T T T
3 2t :
I
Q, O
g_z' i i ) i i i i i i i i
10 20 30 40 50 60 70 80 90
)

The linear programming problem: variants and examples
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histogram of residuals:

N
o

number of r;
N
o
T
|

|,_||—|l_||_|n—||_“_||_| ,_H_H_Il_l“_ll_ll—l l— — 1
-2 -1 0 1 2 3

r (p = 1)

T B B T B T

IO
w +

N
o
T

RSS2 1 a1 v

number of r;
N
o
T
|

-3 -2 2 3

40 [T B B T B B Al R r (p I,: 2) T R R R T R 1]
.&N
(e
(@]

g 201 -
=

< oL | |_|.-o-.|_||_||—||_||_”_||_|u—||_||_|.—.l_|l_|l_|m|—| | |

-3 -2 -1 0 1 2 3

r (p = 00)

e p = o0 gives thinnest’ distribution; p = 1 gives widest distribution

e p = 1 most very small (or even zero) r;
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Interpretation: maximum likelihood estimation

m linear measurements 1, . .., y,, of z € R™:
T .
Yi=a; x+v;, t=1,....,m

e v;: measurement noise, |[ID with density p

e y is a random variable with density p.(y) = [/~ p(y; — a] x)

log-likelihood function is defined as

log p.(y) = > _logp(y; — a; x)
=1

maximum likelihood (ML) estimate of x is

m
T = argmax » lo i —alx
gmax } _logp(y )

1=1

The linear programming problem: variants and examples
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examples
—2% /202

e v; Gaussian: p(z) =1/(V/2no)e

ML estimate is /o-estimate & = argmin, ||Az — y||2

e v; double-sided exponential: p(z) = (1/2a)e~1#l/¢

ML estimate is /1-estimate & = argmin_, || Az — y||1

(1/a)e?/* 2 >0

e v; is one-sided exponential: p(z) = { 0 2 <0

ML estimate is found by solving LP

minimize 11 (y — Ax)
subjectto y— Ax >0

1/(2a) —a<z<a

e v; are uniform on |—a,al: p(z) = { 0 otherwise

ML estimate is any z satisfying |[Azx — y||oo < a
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Linear-fractional programming

inimize cla+d
inimiz
ffz+g
subject to Az <b
ffz+g>0

(asume a/0 = +o0 if a > 0, a/0 = —oc0 if a < 0)

e nonlinear objective function

e like LP, can be solved very efficiently

equivalent form with linear objective (vars. x, ):

minimize vy

subject to ¢z +d < ~(fTz+ g)
fle+g>0
Az <b

The linear programming problem: variants and examples
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Bisection algorithm for linear-fractional programming

given: interval [/, u] that contains optimal ~
repeat: solve feasibility problem for v = (u +1)/2

c'r+d<y(f'z+g)
ffe+g>0
Ax <b

if feasible u := ~y; if infeasible [ := ~
until u — [ < e

e cach iteration is an LP feasibility problem

e accuracy doubles at each iteration

e number of iterations to reach accuracy e starting with initial interval of
width u — [ = €p:

k = [logy(eo/€)]
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Generalized linear-fractional programming

minimize  max

subject to Az <b
ffe4+g; >0, i=1,...,K

equivalent formulation:
minimize 7y
subject to Az <b

clo+d; <~v(fle+g), i=1,...,K
ffe4+g; >0, i=1,...,K

e cfficiently solved via bisection on ~

e cach iteration is an LP feasibility problem
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Von Neumann economic growth problem

simple model of an economy: m goods, n economic sectors

e x;(t): ‘activity’ of sector i in current period ¢

e al'z(t): amount of good i consumed in period t

e bl'z(t): amount of good i produced in period ¢

choose x(t) to maximize growth rate min; x;(t + 1) /x;(t):

maximize 7y
subject to Ax(t+1) < Bx(t), x(t+1)>~x(t),

or equivalently (since a;; > 0):

maximize -y
subject to ~YAz(t) < Bx(t), x(t)>1

(linear-fractional problem with variables x(0), )

The linear programming problem: variants and examples
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Optimal transmitter power allocation

e m transmitters, mn receivers all at same frequency

e transmitter ¢ wants to transmit to n receivers labeled (i,j), j =1,...

transmitter k

..
receiver .(7
transmitter ¢ .

e A is path gain from transmitter k to receiver (i, j)
o N, is (self) noise power of receiver (i, 7)

e variables: transmitter powers pi., Kk =1,....m

The linear programming problem: variants and examples
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at receiver (i, j):

e signal power: S;; = A;;ipi
e noise plus interference power: I;; = Zk# Aijkpr + Nij

e signal to interference/noise ratio (SINR): S;;/1;;

problem: choose p; to maximize smallest SINR:

maximize min Aijip:
subject to 0 < p; < Prmax

e a (generalized) linear-fractional program

e special case with analytical solution: m = 1, no upper bound on p; (see
exercises)
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ESE504 (Fall 2013)

Lecture 5
Applications in control

e optimal input design
e robust optimal input design

e pole placement (with low-authority control)
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Linear dynamical system

y(t) — hou(t) + hlu(t — 1) 4+ hzu(t — 2) 4.,

e single input/single output: input u(t) € R, output y(t) € R
e h; are called impulse response coefficients

e finite impulse response (FIR) system of order k: h; =0 for ¢ > k

if u(t) =0 for ¢t <0,

- y(0) | ho O o -~ 0 w(0)
y(1) hi  ho o - 0 w(1)
] y(N) i i h:N h]\:[_l h]\:[_g . hi() 1 L ’U,(N) i

a linear mapping from input to output sequence

Applications in control



Output tracking problem

choose inputs u(t), t =0,...,M (M < N) that

e minimize peak deviation between y(t) and a desired output yges(t),

t=0,....N,
max Y(t) — Ydes(t)]

e satisfy amplitude and slew rate constraints:

u(t)| < U, |Ju(t+1)—u(t)] <S

as a linear program (variables: w, u(0), . . ., u(N)):

minimize. w

subject to —wgzzzohzu(t—z) Ydes(t) <w, t=0,
u(t)=0, t=M+1,...,N
U <ult)<U, t=0,...,M
—S<u(t+1)—ult)<S, t=0,....M+1

Applications in control
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example. single input/output, N = 200

step response Ydes

0 | 100 | 200 0 | 100
constraints on u:

e input horizon M = 150
e amplitude constraint |u(t)| < 1.1

e slew rate constraint |u(t) — u(t — 1)| < 0.25

Applications in control

200



output and desired output:

y(t), Ydes (1)

0.25[ ]\W 7777777777777777 ]

0 | 100 | 200
optimal input sequence u:
1.1
0.0/ 0.00
—11 e e —0.25[ - L
0 100 200 0

Applications in control



Robust output tracking (1)

e impulse response is not exactly known; it can take two values:

(SN ) (SN )

e design an input sequence that minimizes the worst-case peak tracking
error

minimize  w

subject to —w < Z’;:O hz(-l)u(t — 1) — Ydes(t) <w, t=0,...,N
—w < Zz:o hEQ)U’(t o Z) o ydes(t) <w, 1 07 SRR N

u(t)=0, t=M+1,...,N

—U<ut)<U, t=0,....,M

—S<u(t+1)—ult)<S, t=0,....M+1
an LP in the variables w, u(0)
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example

_ step responses outputs and desired output
1,
0
0 | 100 | 200 0 | 100 | 200

u(t) —u(t—1)

0250
0.00
_02577H ,,,,,,,,,,,,,,, JJ ,,,,,,,,,,,,,,,,,
0 100 200
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Robust output tracking (2)

el [m] (R
h h
1(8) _ :1 L s vl: 4
— -1
_hk(8>_ _hk_ _Ul(c)_ ]
h; and vgj) are given; s; € [—1,+1] is unknown

robust output tracking problem (variables w, u(t)):

min.

s.t.

w
w0 < S hi(s)ult — i) — paes(t) < w, £ =0,
u(t)=0, t=M+1,...,N
U <ut)<U, t=0,...,M
—S<u(t+1)—ult)<S, t=0,....M+1

...,N, Vse[-1,1]F

straightforward (and very inefficient) solution: enumerate all 25 extreme
values of s

Applications in control
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simplification: we can express the 2%+ linear inequalities

—w < Zh u(t — 1) — Yaes(t) < w for all s € {—1,1}F

as two nonlinear inequalities

Applications in control



proof:

max hi(s)u(t — 1)
se{—1 l}K Z

I
ﬁ.
|
@
_l_
kSIJ
e
LE
_I_
[t
g,_/
@
S
g
@
S/

and similarly for the lower bound
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robust output tracking problem reduces to:

min.

) [ |
ohau(t — 1) — SN IS v u(t — 1) > yaes(t) —
=0, t=M-+1,...,N

(variables u(t), w)

to express as an LP:

e fort=0,...,N,3=1,..., K, introduce new variables p(j)(t) and
constraints

e replace \ZZU(J) (t — )| by pl9)(¢)

Applications in control 5-11
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example (K = 6)

nominal and perturbed step responses

0 20 40 60

design for nominal system

output for nominal system output for worst-case system

0 50 100 0 50 100
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robust design

output for nominal system output for worst-case system

0 50 100 0 50 100
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State space description

input-output description:

y(t) = Hou(t) + Hyu(t — 1) + Hou(t — 2) + - - -

if u(t) =0, t<0:

[ y(0) Hy O 0 - 0 w(0)
i y(N) i i I‘I:N H]\:[_l H]\:/'_Q I_—:IO 1 L u(N) i

block Toeplitz structure (constant along diagonals)

state space model:

x(t+1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)
with Hy = D, H; = CA"'B (i > 0)
z(t) € R" is state sequence

Applications in control 5-14



alternative description:

T 0] A -] O --- 0 B 0O --- 0] ig(l)i
0 0 0 0 I 0 0 B 5
y) | T | ¢ 0o o0 0 D 0 0 CZ((](\)]))
v(1) coe v 0 b i Te)
yN) ] |0 o o --- Cc 0 0 --- D L)

e we don't eliminate the intermediate variables (%)

e matrix is larger, but very sparse (interesting when using general-purpose
LP solvers)
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Pole placement

linear system

2(t) = A(z)=(t), 2(0) = zg
where A(af) = AO -+ glel + ..o+ prp c Ran

e solutions have the form

Zz(t> = Z Bikeakt COS(wkt — szk:)
k

where \, = o, + jwy, are the eigenvalues of A(x)
e =z € R? is the design parameter

e goal: place eigenvalues of A(x) in a desired region by choosing x

Applications in control
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Low-authority control

eigenvalues of A(x) are very complicated (nonlinear, nondifferentiable)
functions of x

first-order perturbation: if \;(Ag) is simple, then

p %
w! Agv;

\i(A(2)) = Xi(Ag) + )
k=1

e+ of )

where w;, v; are the left and right eigenvectors:

’UJ;kA() — )\Z(Ao)w;k, A()Ui — )\Z(A())UZ

‘low-authority’ control:

e use linear first-order approximations for \;
e can place \; in a polyhedral region by imposing linear inequalities on x

e we expect this to work only for small shifts in eigenvalues

Applications in control 5-17



Example

truss with 30 nodes, 83 bars

Md(t) + Dd(t) + Kd(t) =0
e d(t): vector of horizontal and vertical node displacements

e M = M* > 0 (mass matrix): masses at the nodes
e D= D' >0 (damping matrix); K = K1 > 0 (stiffness matrix)

to increase damping, we attach dampers to the bars:
D(x) = Do+ x1Dy + -+ x,D,
x; > 0: amount of external damping at bar ¢

Applications in control
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eigenvalue placement problem

minimize le T
subject to N\ (M,D(z),K)eC, i=1,...,n
x>0

an LP if C is polyhedral and we use the 1st order approximation for )\;

. |
5 : . : 5
4 4
3 3
*
*
2 2 **
*
% %
*
1 1k *
*
0 ol
*
1 1k 5 ¥
¥ *
*
2 oL
* ** *
3 3
—af 4
5 . . . . . . . . . 5 . . . . . . . .
~001 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 o ~001 -0009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 —0.001 0
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location of dampers
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