
ESE504 (Fall 2010)

Lecture 1
Introduction and overview

• linear programming

• example

• course topics

• software

• integer linear programming

1–1

Linear program (LP)

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . . , m

n∑
j=1

cijxj = di, i = 1, . . . , p

variables: xj

problem data: the coefficients cj, aij, bi, cij, di

• can be solved very efficiently (several 10,000 variables, constraints)

• widely available general-purpose software

• extensive, useful theory (optimality conditions, sensitivity analysis, . . .)

Introduction and overview 1–2

Example. Open-loop control problem

single-input/single-output system (with input u, output y)

y(t) = h0u(t) + h1u(t − 1) + h2u(t − 2) + h3u(t − 3) + · · ·

output tracking problem: minimize deviation from desired output ydes(t)

max
t=0,...,N

|y(t) − ydes(t)|

subject to input amplitude and slew rate constraints:

|u(t)| ≤ U, |u(t + 1) − u(t)| ≤ S

variables: u(0), . . . , u(M) (with u(t) = 0 for t < 0, t > M)

solution: can be formulated as an LP, hence easily solved (more later)

Introduction and overview 1–3

example

step response (s(t) = ht + · · · + h0) and desired output:

step response

0 100 200

0

1

ydes(t)

0 100 200

−1

0

1

amplitude and slew rate constraint on u:

|u(t)| ≤ 1.1, |u(t) − u(t − 1)| ≤ 0.25

Introduction and overview 1–4

optimal solution

output and desired output

0 100 200

−1

0

1

input u(t)

0 100 200
−1.1

0.0

1.1

u(t) − u(t − 1)

0 100 200
−0.25

0.00

0.25

Introduction and overview 1–5

Brief history

• 1930s (Kantorovich): economic applications

• 1940s (Dantzig): military logistics problems during WW2;
1947: simplex algorithm

• 1950s–60s discovery of applications in many other fields (structural
optimization, control theory, filter design, . . .)

• 1979 (Khachiyan) ellipsoid algorithm: more efficient (polynomial-time)
than simplex in worst case, but slower in practice

• 1984 (Karmarkar): projective (interior-point) algorithm:
polynomial-time worst-case complexity, and efficient in practice

• 1984–today. many variations of interior-point methods (improved
complexity or efficiency in practice), software for large-scale problems

Introduction and overview 1–6

Course outline

the linear programming problem
linear inequalities, geometry of linear programming

engineering applications
signal processing, control, structural optimization . . .

duality

algorithms
the simplex algorithm, interior-point algorithms

large-scale linear programming and network optimization
techniques for LPs with special structure, network flow problems

integer linear programming
introduction, some basic techniques

Introduction and overview 1–7

Software

solvers: solve LPs described in some standard form

modeling tools: accept a problem in a simpler, more intuitive, notation
and convert it to the standard form required by solvers

software for this course (see class website)

• platforms: Matlab, Octave, Python

• solvers: linprog (Matlab Optimization Toolbox),

• modeling tools: CVX (Matlab), YALMIP (Matlab),

• Thanks to Lieven Vandenberghe at UCLA for his slides

Introduction and overview 1–8

Integer linear program

integer linear program

minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m∑n
j=1 cijxj = di, i = 1, . . . , p

xj ∈ Z

Boolean linear program

minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m∑n
j=1 cijxj = di, i = 1, . . . , p

xj ∈ {0, 1}

• very general problems; can be extremely hard to solve

• can be solved as a sequence of linear programs

Introduction and overview 1–9

Example. Scheduling problem

scheduling graph V :

i

j

n

• nodes represent operations (e.g., jobs in a manufacturing process,
arithmetic operations in an algorithm)

• (i, j) ∈ V means operation j must wait for operation i to be finished

• M identical machines/processors; each operation takes unit time

problem: determine fastest schedule

Introduction and overview 1–10

Boolean linear program formulation

variables: xis, i = 1, . . . , n, s = 0, . . . , T :

xis = 1 if job i starts at time s , xis = 0 otherwise

constraints:

1. xis ∈ {0, 1}

2. job i starts exactly once:
T∑

s=0

xis = 1

3. if there is an arc (i, j) in V , then

T∑
s=0

sxjs −
T∑

s=0

sxis ≥ 1

Introduction and overview 1–11

4. limit on capacity (M machines) at time s:

n∑
i=1

xis ≤ M

cost function (start time of job n):

T∑
s=0

sxns

Boolean linear program

minimize
∑T

s=0 sxns

subject to
∑T

s=0 xis = 1, i = 1, . . . , n∑T
s=0 sxjs −

∑T
s=0 sxis ≥ 1, (i, j) ∈ V∑n

i=1 xis ≤ M, s = 0, . . . , T

xis ∈ {0, 1}, i = 1, . . . , n, s = 0, . . . , T

Introduction and overview 1–12

ESE504 (Fall 2010)

Lecture 2
Linear inequalities

• vectors

• inner products and norms

• linear equalities and hyperplanes

• linear inequalities and halfspaces

• polyhedra

2–1

Vectors

(column) vector x ∈ Rn:

x =

⎡⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎦
• xi ∈ R: ith component or element of x

• also written as x = (x1, x2, . . . , xn)

some special vectors:

• x = 0 (zero vector): xi = 0, i = 1, . . . , n

• x = 1: xi = 1, i = 1, . . . , n

• x = ei (ith basis vector or ith unit vector): xi = 1, xk = 0 for k �= i

(n follows from context)

Linear inequalities 2–2

Vector operations

multiplying a vector x ∈ Rn with a scalar α ∈ R:

αx =

⎡⎣ αx1
...

αxn

⎤⎦
adding and subtracting two vectors x, y ∈ Rn:

x + y =

⎡⎣ x1 + y1
...

xn + yn

⎤⎦ , x − y =

⎡⎣ x1 − y1
...

xn − yn

⎤⎦

x
0.75x

y

1.5y 0.75x + 1.5y

Linear inequalities 2–3

Inner product

x, y ∈ Rn

〈x, y〉 := x1y1 + x2y2 + · · · + xnyn = xTy

important properties

• 〈αx, y〉 = α〈x, y〉
• 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
• 〈x, y〉 = 〈y, x〉
• 〈x, x〉 ≥ 0

• 〈x, x〉 = 0 ⇐⇒ x = 0

linear function: f : Rn → R is linear, i.e.

f(αx + βy) = αf(x) + βf(y),

if and only if f(x) = 〈a, x〉 for some a

Linear inequalities 2–4

Euclidean norm

for x ∈ Rn we define the (Euclidean) norm as

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n =

√
xTx

‖x‖ measures length of vector (from origin)

important properties:

• ‖αx‖ = |α|‖x‖ (homogeneity)

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

• ‖x‖ ≥ 0 (nonnegativity)

• ‖x‖ = 0 ⇐⇒ x = 0 (definiteness)

distance between vectors: dist(x, y) = ‖x − y‖

Linear inequalities 2–5

Inner products and angles

angle between vectors in Rn:

θ = � (x, y) = cos−1 xTy

‖x‖‖y‖

i.e., xTy = ‖x‖‖y‖ cos θ

• x and y aligned : θ = 0; xTy = ‖x‖‖y‖
• x and y opposed : θ = π; xTy = −‖x‖‖y‖
• x and y orthogonal : θ = π/2 or −π/2; xTy = 0 (denoted x ⊥ y)

• xTy > 0 means � (x, y) is acute; xTy < 0 means � (x, y) is obtuse

x x

y y
xTy < 0xTy > 0

Linear inequalities 2–6

Cauchy-Schwarz inequality:

|xTy| ≤ ‖x‖‖y‖

projection of x on y

x

y

θ (
xT y

‖y‖2
)

y

projection is given by (
xTy

‖y‖2

)
y

Linear inequalities 2–7

Hyperplanes

hyperplane in Rn:
{x | aTx = b} (a �= 0)

• solution set of one linear equation a1x1 + · · · + anxn = b with at least
one ai �= 0

• set of vectors that make a constant inner product with vector
a = (a1, . . . , an) (the normal vector)

a

x0

(
aT x0
‖a‖2)a

x (aTx = aTx0)
0

in R2: a line, in R3: a plane, . . .

Linear inequalities 2–8

Halfspaces

(closed) halfspace in Rn:

{x | aTx ≤ b} (a �= 0)

• solution set of one linear inequality a1x1 + · · · + anxn ≤ b with at least
one ai �= 0

• a = (a1, . . . , an) is the (outward) normal
a

x0

{x | aTx ≤ aTx0}

{x | aTx ≥ aTx0}
0

• {x | aTx < b} is called an open halfspace

Linear inequalities 2–9

Affine sets

solution set of a set of linear equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b1

...

am1x1 + am2x2 + · · · + amnxn = bm

intersection of m hyperplanes with normal vectors ai = (ai1, ai2, . . . , ain)
(w.l.o.g., all ai �= 0)

in matrix notation:
Ax = b

with

A =

⎡⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
b1

b2
...

bm

⎤⎥⎥⎦
Linear inequalities 2–10

Polyhedra

solution set of system of linear inequalities

a11x1 + a12x2 + · · · + a1nxn ≤ b1

...

am1x1 + am2x2 + · · · + amnxn ≤ bm

intersection of m halfspaces, with normal vectors ai = (ai1, ai2, . . . , ain)
(w.l.o.g., all ai �= 0)

a1 a2

a3

a4

a5

Linear inequalities 2–11

matrix notation
Ax ≤ b

with

A =

⎡⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
b1

b2
...

bm

⎤⎥⎥⎦
Ax ≤ b stands for componentwise inequality, i.e., for y, z ∈ Rn,

y ≤ z ⇐⇒ y1 ≤ z1, . . . , yn ≤ zn

Linear inequalities 2–12

Examples of polyhedra

• a hyperplane {x | aTx = b}:

aTx ≤ b, aTx ≥ b

• solution set of system of linear equations/inequalities

aT
i x ≤ bi, i = 1, . . . , m, cT

i x = di, i = 1, . . . , p

• a slab {x | b1 ≤ aTx ≤ b2}

• the probability simplex {x ∈ Rn | 1Tx = 1, xi ≥ 0, i = 1, . . . , n}

• (hyper)rectangle {x ∈ Rn | l ≤ x ≤ u} where l < u

Linear inequalities 2–13

Linear inequalities 2–14

ESE504 (Fall 2010)

Lecture 3
Geometry of linear programming

• subspaces and affine sets, independent vectors

• matrices, range and nullspace, rank, inverse

• polyhedron in inequality form

• extreme points

• degeneracy

• the optimal set of a linear program

3–1

Subspaces

S ⊆ Rn (S �= ∅) is called a subspace if

x, y ∈ S, α, β ∈ R =⇒ αx + βy ∈ S

αx + βy is called a linear combination of x and y

examples (in Rn)

• S = Rn, S = {0}
• S = {αv |α ∈ R} where v ∈ Rn (i.e., a line through the origin)

• S = span(v1, v2, . . . , vk) = {α1v1 + · · ·+αkvk | αi ∈ R}, where vi ∈ Rn

• set of vectors orthogonal to given vectors v1, . . . , vk:

S = {x ∈ Rn | vT
1 x = 0, . . . , vT

k x = 0}

Geometry of linear programming 3–2

Independent vectors

vectors v1, v2, . . . , vk are independent if and only if

α1v1 + α2v2 + · · · + αkvk = 0 =⇒ α1 = α2 = · · · = 0

some equivalent conditions:

• coefficients of α1v1 + α2v2 + · · · + αkvk are uniquely determined, i.e.,

α1v1 + α2v2 + · · · + αkvk = β1v1 + β2v2 + · · · + βkvk

implies α1 = β1, α2 = β2, . . . , αk = βk

• no vector vi can be expressed as a linear combination of the other
vectors v1, . . . , vi−1, vi+1, . . . , vk

Geometry of linear programming 3–3

Basis and dimension

{v1, v2, . . . , vk} is a basis for a subspace S if

• v1, v2, . . . , vk span S, i.e., S = span(v1, v2, . . . , vk)

• v1, v2, . . . , vk are independent

equivalently: every v ∈ S can be uniquely expressed as

v = α1v1 + · · · + αkvk

fact: for a given subspace S, the number of vectors in any basis is the
same, and is called the dimension of S, denoted dimS

Geometry of linear programming 3–4

Affine sets

V ⊆ Rn (V �= ∅) is called an affine set if

x, y ∈ V , α + β = 1 =⇒ αx + βy ∈ V

αx + βy is called an affine combination of x and y

examples (in Rn)

• subspaces

• V = b + S = {x + b | x ∈ S} where S is a subspace

• V = {α1v1 + · · · + αkvk | αi ∈ R,
∑

i αi = 1}
• V = {x | vT

1 x = b1, . . . , v
T
k x = bk} (if V �= ∅)

every affine set V can be written as V = x0 + S where x0 ∈ Rn, S a
subspace (e.g., can take any x0 ∈ V , S = V − x0)

dim(V − x0) is called the dimension of V

Geometry of linear programming 3–5

Matrices

A =

⎡⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎤⎥⎥⎦ ∈ Rm×n

some special matrices:

• A = 0 (zero matrix): aij = 0

• A = I (identity matrix): m = n and Aii = 1 for i = 1, . . . , n, Aij = 0
for i �= j

• A = diag(x) where x ∈ Rn (diagonal matrix): m = n and

A =

⎡⎢⎢⎣
x1 0 · · · 0
0 x2 · · · 0
...
0 0 · · · xn

⎤⎥⎥⎦

Geometry of linear programming 3–6

Matrix operations

• addition, subtraction, scalar multiplication

• transpose:

AT =

⎡⎢⎢⎣
a11 a21 · · · am1

a12 a22 · · · am2
...

a1n a2n · · · amn

⎤⎥⎥⎦ ∈ Rn×m

• multiplication: A ∈ Rm×n, B ∈ Rn×q, AB ∈ Rm×q:

AB =

⎡⎢⎢⎣
∑n

i=1 a1ibi1

∑n
i=1 a1ibi2 · · · ∑n

i=1 a1ibiq∑n
i=1 a2ibi1

∑n
i=1 a2ibi2 · · · ∑n

i=1 a2ibiq
...∑n

i=1 amibi1

∑n
i=1 amibi2 · · · ∑n

i=1 amibiq

⎤⎥⎥⎦

Geometry of linear programming 3–7

Rows and columns

rows of A ∈ Rm×n:

A =

⎡⎢⎢⎣
aT
1

aT
2
...

aT
m

⎤⎥⎥⎦
with ai = (ai1, ai2, . . . , ain) ∈ Rn

columns of B ∈ Rn×q:

B =
[

b1 b2 · · · bq

]
with bi = (b1i, b2i, . . . , bni) ∈ Rn

for example, can write AB as

AB =

⎡⎢⎢⎣
aT
1 b1 aT

1 b2 · · · aT
1 bq

aT
2 b1 aT

2 b2 · · · aT
2 bq

...
aT

mb1 aT
mb2 · · · aT

mbq

⎤⎥⎥⎦
Geometry of linear programming 3–8

Range of a matrix

the range of A ∈ Rm×n is defined as

R(A) = {Ax | x ∈ Rn} ⊆ Rm

• a subspace

• set of vectors that can be ‘hit’ by mapping y = Ax

• the span of the columns of A = [a1 · · · an]

R(A) = {a1x1 + · · · + anxn | x ∈ Rn}

• the set of vectors y s.t. Ax = y has a solution

R(A) = Rm ⇐⇒
• Ax = y can be solved in x for any y

• the columns of A span Rm

• dimR(A) = m

Geometry of linear programming 3–9

Interpretations

v ∈ R(A), w �∈ R(A)

• y = Ax represents output resulting from input x

– v is a possible result or output
– w cannot be a result or output

R(A) characterizes the achievable outputs

• y = Ax represents measurement of x

– y = v is a possible or consistent sensor signal
– y = w is impossible or inconsistent; sensors have failed or model is

wrong

R(A) characterizes the possible results

Geometry of linear programming 3–10

Nullspace of a matrix

the nullspace of A ∈ Rm×n is defined as

N (A) = { x ∈ Rn | Ax = 0 }

• a subspace

• the set of vectors mapped to zero by y = Ax

• the set of vectors orthogonal to all rows of A:

N (A) =
{

x ∈ Rn | aT
1 x = · · · = aT

mx = 0
}

where A = [a1 · · · am]T

zero nullspace: N (A) = {0} ⇐⇒
• x can always be uniquely determined from y = Ax

(i.e., the linear transformation y = Ax doesn’t ‘lose’ information)

• columns of A are independent

Geometry of linear programming 3–11

Interpretations

suppose z ∈ N (A)

• y = Ax represents output resulting from input x

– z is input with no result
– x and x + z have same result

N (A) characterizes freedom of input choice for given result

• y = Ax represents measurement of x

– z is undetectable — get zero sensor readings
– x and x + z are indistinguishable: Ax = A(x + z)

N (A) characterizes ambiguity in x from y = Ax

Geometry of linear programming 3–12

Inverse

A ∈ Rn×n is invertible or nonsingular if detA �= 0

equivalent conditions:

• columns of A are a basis for Rn

• rows of A are a basis for Rn

• N (A) = {0}
• R(A) = Rn

• y = Ax has a unique solution x for every y ∈ Rn

• A has an inverse A−1 ∈ Rn×n, with AA−1 = A−1A = I

Geometry of linear programming 3–13

Rank of a matrix

we define the rank of A ∈ Rm×n as

rank(A) = dimR(A)

(nontrivial) facts:

• rank(A) = rank(AT)

• rank(A) is maximum number of independent columns (or rows) of A,
hence

rank(A) ≤ min{m, n}

• rank(A) + dimN (A) = n

Geometry of linear programming 3–14

Full rank matrices

for A ∈ Rm×n we have rank(A) ≤ min{m,n}

we say A is full rank if rank(A) = min{m, n}

• for square matrices, full rank means nonsingular

• for skinny matrices (m > n), full rank means columns are independent

• for fat matrices (m < n), full rank means rows are independent

Geometry of linear programming 3–15

Sets of linear equations

Ax = y

given A ∈ Rm×n, y ∈ Rm

• solvable if and only if y ∈ R(A)
• unique solution if y ∈ R(A) and rank(A) = n

• general solution set:
{x0 + v | v ∈ N (A)}

where Ax0 = y

A square and invertible: unique solution for every y:

x = A−1y

Geometry of linear programming 3–16

Polyhedron (inequality form)

A = [a1 · · · am]T ∈ Rm×n, b ∈ Rm

P = {x | Ax ≤ b} = {x | aT
i x ≤ bi, i = 1, . . . ,m}

a1 a2

a3

a4

a5

a6

P is convex:

x, y ∈ P, 0 ≤ λ ≤ 1 =⇒ λx + (1 − λ)y ∈ P

i.e., the line segment between any two points in P lies in P

Geometry of linear programming 3–17

Extreme points and vertices

x ∈ P is an extreme point if it cannot be written as

x = λy + (1 − λ)z

with 0 ≤ λ ≤ 1, y, z ∈ P, y �= x, z �= x

c

P

cTx constant

x ∈ P is a vertex if there is a c such that cTx < cTy for all y ∈ P, y �= x

fact: x is an extreme point ⇐⇒ x is a vertex (proof later)

Geometry of linear programming 3–18

Basic feasible solution

define I as the set of indices of the active or binding constraints (at x�):

aT
i x� = bi, i ∈ I, aT

i x� < bi, i �∈ I

define Ā as

Ā =

⎡⎢⎢⎢⎢⎣
aT

i1

aT
i2
...

aT
ik

⎤⎥⎥⎥⎥⎦ , I = {i1, . . . , ik}

x� is called a basic feasible solution if

rankA = n

fact: x� is a vertex (extreme point) ⇐⇒ x� is a basic feasible solution
(proof later)

Geometry of linear programming 3–19

Example

⎡⎢⎢⎣
−1 0

2 1
0 −1
1 2

⎤⎥⎥⎦x ≤

⎡⎢⎢⎣
0
3
0
3

⎤⎥⎥⎦

• (1,1) is an extreme point

• (1,1) is a vertex: unique minimum of cTx with c = (−1,−1)

• (1,1) is a basic feasible solution: I = {2, 4} and rankA = 2, where

A =
[

2 1
1 2

]

Geometry of linear programming 3–20

Equivalence of the three definitions

vertex =⇒ extreme point

let x� be a vertex of P, i.e., there is a c �= 0 such that

cTx� < cTx for all x ∈ P, x �= x�

let y, z ∈ P, y �= x�, z �= x�:

cTx� < cTy, cTx� < cTz

so, if 0 ≤ λ ≤ 1, then

cTx� < cT (λy + (1 − λ)z)

hence x� �= λy + (1 − λ)z

Geometry of linear programming 3–21

extreme point =⇒ basic feasible solution

suppose x� ∈ P is an extreme point with

aT
i x� = bi, i ∈ I, aT

i x� < bi, i �∈ I

suppose x� is not a basic feasible solution; then there exists a d �= 0 with

aT
i d = 0, i ∈ I

and for small enough ε > 0,

y = x� + εd ∈ P, z = x� − εd ∈ P

we have
x� = 0.5y + 0.5z,

which contradicts the assumption that x� is an extreme point

Geometry of linear programming 3–22

basic feasible solution =⇒ vertex

suppose x� ∈ P is a basic feasible solution and

aT
i x� = bi i ∈ I, aT

i x� < bi i �∈ I

define c = −∑i∈I ai; then

cTx� = −
∑
i∈I

bi

and for all x ∈ P,
cTx ≥ −

∑
i∈I

bi

with equality only if aT
i x = bi, i ∈ I

however the only solution to aT
i x = bi, i ∈ I, is x�; hence cTx� < cTx for

all x ∈ P

Geometry of linear programming 3–23

Degeneracy

set of linear inequalities aT
i x ≤ bi, i = 1, . . . ,m

a basic feasible solution x� with

aT
i x� = bi, i ∈ I, aT

i x� < bi, i �∈ I

is degenerate if #indices in I is greater than n

• a property of the description of the polyhedron, not its geometry

• affects the performance of some algorithms

• disappears with small perturbations of b

Geometry of linear programming 3–24

Unbounded directions

P contains a half-line if there exists d �= 0, x0 such that

x0 + td ∈ P for all t ≥ 0

equivalent condition for P = {x | Ax ≤ b}:

Ax0 ≤ b, Ad ≤ 0

fact: P unbounded ⇐⇒ P contains a half-line

P contains a line if there exists d �= 0, x0 such that

x0 + td ∈ P for all t

equivalent condition for P = {x | Ax ≤ b}:

Ax0 ≤ b, Ad = 0

fact: P has no extreme points ⇐⇒ P contains a line

Geometry of linear programming 3–25

Optimal set of an LP

minimize cTx
subject to Ax ≤ b

• optimal value: p� = min{cTx | Ax ≤ b} (p� = ±∞ is possible)

• optimal point: x� with Ax� ≤ b and cTx� = p�

• optimal set: Xopt = {x | Ax ≤ b, cTx = p�}

example
minimize c1x1 + c2x2

subject to −2x1 + x2 ≤ 1
x1 ≥ 0, x2 ≥ 0

• c = (1, 1): Xopt = {(0, 0)}, p� = 0

• c = (1, 0): Xopt = {(0, x2) | 0 ≤ x2 ≤ 1}, p� = 0

• c = (−1,−1): Xopt = ∅, p� = −∞

Geometry of linear programming 3–26

Existence of optimal points

• p� = −∞ if and only if there exists a feasible half-line

{x0 + td | t ≥ 0}

with cTd < 0

d

x0

c

• p� = +∞ if and only if P = ∅
• p� is finite if and only if Xopt �= ∅

Geometry of linear programming 3–27

property: if P has at least one extreme point and p� is finite, then there
exists an extreme point that is optimal

Xopt

c

Geometry of linear programming 3–28

ESE504 (Fall 2010)

Lecture 4
The linear programming problem: variants and

examples

• variants of the linear programming problem

• LP feasibility problem

• examples and some general applications

• linear-fractional programming

4–1

Variants of the linear programming problem

general form

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m
gT

i x = hi, i = 1, . . . , p

in matrix notation:
minimize cTx
subject to Ax ≤ b

Gx = h

where

A =

⎡⎢⎢⎣
aT
1

aT
2
...

aT
m

⎤⎥⎥⎦ ∈ Rm×n, G =

⎡⎢⎢⎣
gT
1

gT
2
...

gT
p

⎤⎥⎥⎦ ∈ Rp×n

The linear programming problem: variants and examples 4–2

inequality form LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

in matrix notation:
minimize cTx
subject to Ax ≤ b

standard form LP

minimize cTx
subject to gT

i x = hi, i = 1, . . . ,m
x ≥ 0

in matrix notation:
minimize cTx
subject to Gx = h

x ≥ 0

The linear programming problem: variants and examples 4–3

Reduction of general LP to inequality/standard form

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m
gT

i x = hi, i = 1, . . . , p

reduction to inequality form:

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m
gT

i x ≥ hi, i = 1, . . . , p
gT

i x ≤ hi, i = 1, . . . , p

in matrix notation (where A has rows aT
i , G has rows gT

i)

minimize cTx

subject to

⎡⎣ A
−G

G

⎤⎦x ≤
⎡⎣ b

−h
h

⎤⎦

The linear programming problem: variants and examples 4–4

reduction to standard form:

minimize cTx+ − cTx−

subject to aT
i x+ − aT

i x− + si = bi, i = 1, . . . ,m
gT

i x+ − gT
i x− = hi, i = 1, . . . , p

x+, x−, s ≥ 0

• variables x+, x−, s

• recover x as x = x+ − x−

• s ∈ Rm is called a slack variable

in matrix notation:
minimize c̃T x̃

subject to G̃x̃ = h̃
x̃ ≥ 0

where

x̃ =

⎡⎣ x+

x−

s

⎤⎦ , c̃ =

⎡⎣ c
−c

0

⎤⎦ , G̃ =
[

A −A I
G −G 0

]
, h̃ =

[
b
h

]

The linear programming problem: variants and examples 4–5

LP feasibility problem

feasibility problem: find x that satisfies aT
i x ≤ bi, i = 1, . . . , m

solution via LP (with variables t, x)

minimize t
subject to aT

i x ≤ bi + t, i = 1, . . . ,m

• variables t, x

• if minimizer x�, t� satisfies t� ≤ 0, then x� satisfies the inequalities

LP in matrix notation:

minimize c̃T x̃

subject to Ãx̃ ≤ b̃

x̃ =
[

x
t

]
, c̃ =

[
0
1

]
, Ã =

[
A −1

]
, b̃ = b

The linear programming problem: variants and examples 4–6

Piecewise-linear minimization

piecewise-linear minimization: minimize maxi=1,...,m(cT
i x + di)

x

cT
i x + di

maxi (cT
i x + di)

equivalent LP (with variables x ∈ Rn, t ∈ R):

minimize t
subject to cT

i x + di ≤ t, i = 1, . . . , m

in matrix notation:
minimize c̃T x̃

subject to Ãx̃ ≤ b̃

x̃ =
[

x
t

]
, c̃ =

[
0
1

]
, Ã =

[
C −1

]
, b̃ =

[−d
]

The linear programming problem: variants and examples 4–7

Convex functions

f : Rn → R is convex if for 0 ≤ λ ≤ 1

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

x yλx + (1 − λ)y

λf(x) + (1 − λ)f(y)

The linear programming problem: variants and examples 4–8

Piecewise-linear approximation

assume f : Rn → R differentiable and convex

• 1st-order approximation at x1 is a global lower bound on f :

f(x) ≥ f(x1) + ∇f(x1)T (x − x1)

xx1

f(x)

• evaluating f , ∇f at several xi yields a piecewise-linear lower bound:

f(x) ≥ max
i=1,...,K

(
f(xi) + ∇f(xi)T (x − xi)

)

The linear programming problem: variants and examples 4–9

Convex optimization problem

minimize f0(x)

(fi convex and differentiable)

LP approximation (choose points xj, j = 1, . . . ,K):

minimize t
subject to f0(xj) + ∇f0(xj)T (x − xj) ≤ t, j = 1, . . . , K

(variables x, t)

• yields lower bound on optimal value

• can be extended to nondifferentiable convex functions

• more sophisticated variation: cutting-plane algorithm (solves convex
optimization problem via sequence of LP approximations)

The linear programming problem: variants and examples 4–10

Norms

norms on Rn:

• Euclidean norm ‖x‖ (or ‖x‖2) =
√

x2
1 + · · · + x2

n

• �1-norm: ‖x‖1 = |x1| + · · · + |xn|

• �∞- (or Chebyshev-) norm: ‖x‖∞ = maxi |xi|

x1

x2

1

1

‖x‖∞ = 1
‖x‖ = 1
‖x‖1 = 1

The linear programming problem: variants and examples 4–11

Norm approximation problems

minimize ‖Ax − b‖p

• x ∈ Rn is variable; A ∈ Rm×n and b ∈ Rm are problem data

• p = 1, 2,∞
• r = Ax − b is called residual

• ri = aT
i x − bi is ith residual (aT

i is ith row of A)

• usually overdetermined, i.e., b �∈ R(A) (e.g., m > n, A full rank)

interpretations:

• approximate or fit b with linear combination of columns of A

• b is corrupted measurement of Ax; find ‘least inconsistent’ value of x
for given measurements

The linear programming problem: variants and examples 4–12

examples:

• ‖r‖ =
√

rTr: least-squares or �2-approximation (a.k.a. regression)

• ‖r‖ = maxi |ri|: Chebyshev, �∞, or minimax approximation

• ‖r‖ =
∑

i |ri|: absolute-sum or �1-approximation

solution:

• �2: closed form expression

xopt = (ATA)−1AT b

(assume rank(A) = n)

• �1, �∞: no closed form expression, but readily solved via LP

The linear programming problem: variants and examples 4–13

�1-approximation via LP

�1-approximation problem

minimize ‖Ax − b‖1

write as
minimize

∑m
i=1 yi

subject to −y ≤ Ax − b ≤ y

an LP with variables y, x:

minimize c̃T x̃

subject to Ãx̃ ≤ b̃

with

x̃ =
[

x
y

]
, c̃ =

[
0
1

]
, Ã =

[
A −I

−A −I

]
, b̃ =

[
b

−b

]

The linear programming problem: variants and examples 4–14

�∞-approximation via LP

�∞-approximation problem

minimize ‖Ax − b‖∞

write as
minimize t
subject to −t1 ≤ Ax − b ≤ t1

an LP with variables t, x:

minimize c̃T x̃

subject to Ãx̃ ≤ b̃

with

x̃ =
[

x
t

]
, c̃ =

[
0
1

]
, Ã =

[
A −1

−A −1

]
, b̃ =

[
b

−b

]

The linear programming problem: variants and examples 4–15

Example

minimize ‖Ax − b‖p for p = 1, 2, ∞ (A ∈ R100×30)

resulting residuals:

10 20 30 40 50 60 70 80 90 100
−2

0

2

10 20 30 40 50 60 70 80 90 100
−2

0

2

10 20 30 40 50 60 70 80 90 100
−2

0

2

i

i

i

r
i

(p
=

1
)

r
i

(p
=

2
)

r
i

(p
=

∞
)

The linear programming problem: variants and examples 4–16

histogram of residuals:

−3 −2 −1 0 1 2 3
0

20

40

−3 −2 −1 0 1 2 3
0

20

40

−3 −2 −1 0 1 2 3
0

20

40

n
u
m

b
er

of
r
i

n
u
m

b
er

of
r
i

n
u
m

b
er

of
r
i

r (p = 1)

r (p = 2)

r (p = ∞)

• p = ∞ gives ‘thinnest’ distribution; p = 1 gives widest distribution

• p = 1 most very small (or even zero) ri

The linear programming problem: variants and examples 4–17

Interpretation: maximum likelihood estimation

m linear measurements y1, . . . , ym of x ∈ Rn:

yi = aT
i x + vi, i = 1, . . . , m

• vi: measurement noise, IID with density p

• y is a random variable with density px(y) =
∏m

i=1 p(yi − aT
i x)

log-likelihood function is defined as

log px(y) =
m∑

i=1

log p(yi − aT
i x)

maximum likelihood (ML) estimate of x is

x̂ = argmax
x

m∑
i=1

log p(yi − aT
i x)

The linear programming problem: variants and examples 4–18

examples

• vi Gaussian: p(z) = 1/(
√

2πσ)e−z2/2σ2

ML estimate is �2-estimate x̂ = argminx ‖Ax − y‖2

• vi double-sided exponential: p(z) = (1/2a)e−|z|/a

ML estimate is �1-estimate x̂ = argminx ‖Ax − y‖1

• vi is one-sided exponential: p(z) =
{

(1/a)e−z/a z ≥ 0
0 z < 0

ML estimate is found by solving LP

minimize 1T (y − Ax)
subject to y − Ax ≥ 0

• vi are uniform on [−a, a]: p(z) =
{

1/(2a) −a ≤ z ≤ a
0 otherwise

ML estimate is any x satisfying ‖Ax − y‖∞ ≤ a

The linear programming problem: variants and examples 4–19

Linear-fractional programming

minimize
cTx + d

fTx + g
subject to Ax ≤ b

fTx + g ≥ 0
(asume a/0 = +∞ if a > 0, a/0 = −∞ if a ≤ 0)

• nonlinear objective function

• like LP, can be solved very efficiently

equivalent form with linear objective (vars. x, γ):

minimize γ
subject to cTx + d ≤ γ(fTx + g)

fTx + g ≥ 0
Ax ≤ b

The linear programming problem: variants and examples 4–20

Bisection algorithm for linear-fractional programming

given: interval [l, u] that contains optimal γ
repeat: solve feasibility problem for γ = (u + l)/2

cTx + d ≤ γ(fTx + g)
fTx + g ≥ 0
Ax ≤ b

if feasible u := γ; if infeasible l := γ
until u − l ≤ ε

• each iteration is an LP feasibility problem

• accuracy doubles at each iteration

• number of iterations to reach accuracy ε starting with initial interval of
width u − l = ε0:

k = �log2(ε0/ε)�

The linear programming problem: variants and examples 4–21

Generalized linear-fractional programming

minimize max
i=1,...,K

cT
i x + di

fT
i x + gi

subject to Ax ≤ b
fT

i x + gi ≥ 0, i = 1, . . . ,K

equivalent formulation:

minimize γ
subject to Ax ≤ b

cT
i x + di ≤ γ(fT

i x + gi), i = 1, . . . , K
fT

i x + gi ≥ 0, i = 1, . . . ,K

• efficiently solved via bisection on γ

• each iteration is an LP feasibility problem

The linear programming problem: variants and examples 4–22

Von Neumann economic growth problem

simple model of an economy: m goods, n economic sectors

• xi(t): ‘activity’ of sector i in current period t

• aT
i x(t): amount of good i consumed in period t

• bT
i x(t): amount of good i produced in period t

choose x(t) to maximize growth rate mini xi(t + 1)/xi(t):

maximize γ
subject to Ax(t + 1) ≤ Bx(t), x(t + 1) ≥ γx(t), x(t) ≥ 1

or equivalently (since aij ≥ 0):

maximize γ
subject to γAx(t) ≤ Bx(t), x(t) ≥ 1

(linear-fractional problem with variables x(0), γ)

The linear programming problem: variants and examples 4–23

Optimal transmitter power allocation

• m transmitters, mn receivers all at same frequency

• transmitter i wants to transmit to n receivers labeled (i, j), j = 1, . . . , n

transmitter i

transmitter k

receiver (i, j)

• Aijk is path gain from transmitter k to receiver (i, j)

• Nij is (self) noise power of receiver (i, j)

• variables: transmitter powers pk, k = 1, . . . ,m

The linear programming problem: variants and examples 4–24

at receiver (i, j):

• signal power: Sij = Aijipi

• noise plus interference power: Iij =
∑

k �=i Aijkpk + Nij

• signal to interference/noise ratio (SINR): Sij/Iij

problem: choose pi to maximize smallest SINR:

maximize min
i,j

Aijipi∑
k �=i Aijkpk + Nij

subject to 0 ≤ pi ≤ pmax

• a (generalized) linear-fractional program

• special case with analytical solution: m = 1, no upper bound on pi (see
exercises)

The linear programming problem: variants and examples 4–25

The linear programming problem: variants and examples 4–26

ESE504 (Fall 2010)

Lecture 5
Structural optimization

• minimum weight truss design

• truss topology design

• limit analysis

• design with minimum number of bars

5–1

Truss

• m bars with lengths li and cross-sectional areas xi

• N nodes; nodes 1, . . . , n are free, nodes n + 1, . . . , N are anchored

• external load: forces fi ∈ R2 at nodes i = 1, . . . , n

design problems:

• given the topology (i.e., location of bars and nodes), find the lightest
truss that can carry a given load (vars: bar sizes xk, cost: total weight)

• same problem, where cost ∝ #bars used

• find best topology

• find lightest truss that can carry several given loads

analysis problem: for a given truss, what is the largest load it can carry?

Structural optimization 5–2

Material characteristics

• ui ∈ R is force in bar i (ui > 0: tension, ui < 0: compression)

• si ∈ R is deformation of bar i (si > 0: lengthening, si < 0: shortening)

we assume the material is rigid/perfectly plastic :

si

ui/xi

α

−α

si = 0 if − α < ui/xi < α
ui/xi = α if si > 0
ui/xi = −α if si < 0

(α is a material constant)

Structural optimization 5–3

Minimum weight truss for given load

force equilibrium for (free) node i:
∑m

j=1 uj

[
nij,x

nij,y

]
+
[

fi,x

fi,y

]
= 0

node i

bar j

fi,x

fi,y

nij

θij

nij depends on topology:

• nij = 0 if bar j is not connected to node i

• nij = (cos θij, sin θij) otherwise

minimum weight truss design via LP:

minimize
∑m

i=1 lixi

subject to
∑m

j=1 ujnij + fi = 0, i = 1, . . . , n

−αxj ≤ uj ≤ αxj, j = 1, . . . ,m

(variables xj, uj)

Structural optimization 5–4

example

bar 1

bar 2

bar 3
node 1

f

45◦

45◦

mimimize l1x1 + l2x2 + l3x3

subject to −u1/
√

2 − u2/
√

2 − u3 + fx = 0

u1/
√

2 − u2/
√

2 + fy = 0

−αx1 ≤ u1 ≤ αx1

−αx2 ≤ u2 ≤ αx2

−αx3 ≤ u3 ≤ αx3

Structural optimization 5–5

Truss topology design

• grid of nodes; bars between any pair of nodes

• design minimum weight truss: ui = 0 for most bars

• optimal topology: only use bars with ui �= 0

example:

• 20 × 11 grid, i.e., 220 (potential) nodes, 24,090 (potential) bars

• nodes a, b, c are fixed; unit vertical force at node d

• optimal topology has 289 bars

a
b
c

d

Structural optimization 5–6

Multiple loading scenarios

minimum weight truss that can carry M possible loads f1
i , . . . , fM

i :

minimize
∑m

i=1 lixi

subject to
∑m

j=1 uk
jnij + fk

i = 0, i = 1, . . . , n, k = 1, . . . , M

−αxj ≤ uk
j ≤ αxj, j = 1, . . . ,m, k = 1, . . . , M

(variables xj, u1
j , . . . , uM

j)

adds robustness: truss can carry any load

fi = λ1f
1
i + · · · + λMfM

i

with λk ≥ 0,
∑

k λk ≤ 1

Structural optimization 5–7

Limit analysis

• truss with given geometry (including given cross-sectional areas xi)

• load fi is given up to a constant multiple: fi = γgi, with given gi ∈ R2

and γ > 0

find largest load that the truss can carry:

maximize γ

subject to
∑m

j=1 ujnij + γgi = 0, i = 1, . . . , n

−αxj ≤ uj ≤ αxj, j = 1, . . . , m

an LP in γ, uj

maximum allowable γ is called the safety factor

Structural optimization 5–8

Design with smallest number of bars

integer LP formulation (assume wlog xi ≤ 1):

minimize
∑m

j=1 zj

subject to
∑m

j=1 ujnij + fi = 0, i = 1, . . . , n

−αxj ≤ uj ≤ αxj, j = 1, . . . ,m

xj ≤ zj, j = 1, . . . ,m

zj ∈ {0, 1}, j = 1, . . . , m

• variables zj, xj, uj

• extremely hard to solve; we may have to enumerate all 2m possible
values of z

heuristic: replace zj ∈ {0, 1} by 0 ≤ zj ≤ 1

• yields an LP; at the optimum many (but not all) zj’s will be 0 or 1

• called LP relaxation of the integer LP

Structural optimization 5–9

Structural optimization 5–10

ESE504 (Fall 2010)

Lecture 6
FIR filter design

• FIR filters

• linear phase filter design

• magnitude filter design

• equalizer design

6–1

FIR filters

finite impulse response (FIR) filter:

y(t) =
n−1∑
τ=0

hτu(t − τ), t ∈ Z

• u : Z → R is input signal ; y : Z → R is output signal

• hi ∈ R are called filter coefficients; n is filter order or length

filter frequency response: H : R → C

H(ω) = h0 + h1e
−jω + · · · + hn−1e

−j(n−1)ω

=
n−1∑
t=0

ht cos tω − j
n−1∑
t=0

ht sin tω (j =
√−1)

periodic, conjugate symmetric, so only need to know/specify for 0 ≤ ω ≤ π

FIR filter design problem: choose h so H and h satisfy/optimize specs

FIR filter design 6–2

example: (lowpass) FIR filter, order n = 21

impulse response h:

0 2 4 6 8 10 12 14 16 18 20

−0.2

−0.1

0

0.1

0.2

t

h
(t

)

frequency response magnitude |H(ω)| and phase � H(ω):

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

ω

|H
(ω

)|

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

ω

�
H

(ω
)

FIR filter design 6–3

Linear phase filters

suppose n = 2N + 1 is odd and impulse response is symmetric about
midpoint:

ht = hn−1−t, t = 0, . . . , n − 1
then

H(ω) = h0 + h1e
−jω + · · · + hn−1e

−j(n−1)ω

= e−jNω (2h0 cosNω + 2h1 cos(N−1)ω + · · · + hN)

= e−jNωH̃(ω)

• term e−jNω represents N -sample delay

• H̃(ω) is real

• |H(ω)| = |H̃(ω)|

called linear phase filter (� H(ω) is linear except for jumps of ±π)

FIR filter design 6–4

Lowpass filter specifications

ω

δ1

1/δ1

δ2

ωp ωs π

specifications:

• maximum passband ripple (±20 log10 δ1 in dB):

1/δ1 ≤ |H(ω)| ≤ δ1, 0 ≤ ω ≤ ωp

• minimum stopband attenuation (−20 log10 δ2 in dB):

|H(ω)| ≤ δ2, ωs ≤ ω ≤ π

FIR filter design 6–5

Linear phase lowpass filter design

• sample frequency (ωk = kπ/K, k = 1, . . . ,K)

• can assume wlog H̃(0) > 0, so ripple spec is

1/δ1 ≤ H̃(ωk) ≤ δ1

design for maximum stopband attenuation:

minimize δ2

subject to 1/δ1 ≤ H̃(ωk) ≤ δ1, 0 ≤ ωk ≤ ωp

−δ2 ≤ H̃(ωk) ≤ δ2, ωs ≤ ωk ≤ π

• passband ripple δ1 is given

• an LP in variables h, δ2

• known (and used) since 1960’s

• can add other constraints, e.g., |hi| ≤ α

FIR filter design 6–6

example

• linear phase filter, n = 31

• passband [0, 0.12π]; stopband [0.24π, π]

• max ripple δ1 = 1.059 (±0.5dB)

• design for maximum stopband attenuation

impulse response h and frequency response magnitude |H(ω)|

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

t

h
(t

)

0 0.5 1 1.5 2 2.5 3
10

−4

10
−3

10
−2

10
−1

10
0

10
1

ω

|H
(ω

)|

FIR filter design 6–7

Some variations

H̃(ω) = 2h0 cos Nω + 2h1 cos(N−1)ω + · · · + hN

minimize passband ripple (given δ2, ωs, ωp, N)

minimize δ1

subject to 1/δ1 ≤ H̃(ωk) ≤ δ1, 0 ≤ ωk ≤ ωp

−δ2 ≤ H̃(ωk) ≤ δ2, ωs ≤ ωk ≤ π

minimize transition bandwidth (given δ1, δ2, ωp, N)

minimize ωs

subject to 1/δ1 ≤ H̃(ωk) ≤ δ1, 0 ≤ ωk ≤ ωp

−δ2 ≤ H̃(ωk) ≤ δ2, ωs ≤ ωk ≤ π

FIR filter design 6–8

minimize filter order (given δ1, δ2, ωs, ωp)

minimize N

subject to 1/δ1 ≤ H̃(ωk) ≤ δ1, 0 ≤ ωk ≤ ωp

−δ2 ≤ H̃(ωk) ≤ δ2, ωs ≤ ωk ≤ π

• can be solved using bisection

• each iteration is an LP feasibility problem

FIR filter design 6–9

Filter magnitude specifications

transfer function magnitude spec has form

L(ω) ≤ |H(ω)| ≤ U(ω), ω ∈ [0, π]

where L, U : R → R+ are given and

H(ω) =
n−1∑
t=0

ht cos tω − j
n−1∑
t=0

ht sin tω

• arises in many applications, e.g., audio, spectrum shaping

• not equivalent to a set of linear inequalities in h (lower bound is not
even convex)

• can change variables and convert to set of linear inequalities

FIR filter design 6–10

Autocorrelation coefficients

autocorrelation coefficients associated with impulse response
h = (h0, . . . , hn−1) ∈ Rn are

rt =
n−1−t∑

τ=0

hτhτ+t (with hk = 0 for k < 0 or k ≥ n)

rt = r−t and rt = 0 for |t| ≥ n; hence suffices to specify r = (r0, . . . , rn−1)

Fourier transform of autocorrelation coefficients is

R(ω) =
∑

τ

e−jωτrτ = r0 +
n−1∑
t=1

2rt cos ωt = |H(ω)|2

can express magnitude specification as

L(ω)2 ≤ R(ω) ≤ U(ω)2, ω ∈ [0, π]

. . . linear inequalities in r

FIR filter design 6–11

Spectral factorization

question: when is r ∈ Rn the autocorrelation coefficients of some h ∈ Rn?

answer (spectral factorization theorem): if and only if R(ω) ≥ 0 for all ω

• spectral factorization condition is convex in r (a linear inequality for
each ω)

• many algorithms for spectral factorization, i.e., finding an h such that
R(ω) = |H(ω)|2

magnitude design via autocorrelation coefficients:

• use r as variable (instead of h)

• add spectral factorization condition R(ω) ≥ 0 for all ω

• optimize over r

• use spectral factorization to recover h

FIR filter design 6–12

Magnitude lowpass filter design

maximum stopband attenuation design with variables r becomes

minimize δ̃2

subject to 1/δ̃1 ≤ R(ω) ≤ δ̃1, ω ∈ [0, ωp]
R(ω) ≤ δ̃2, ω ∈ [ωs, π]
R(ω) ≥ 0, ω ∈ [0, π]

(δ̃i corresponds to δ2
i in original problem)

now discretize frequency:

minimize δ̃2

subject to 1/δ̃1 ≤ R(ωk) ≤ δ̃1, 0 ≤ ωk ≤ ωp

R(ωk) ≤ δ̃2, ωs ≤ ωk ≤ π
R(ωk) ≥ 0, 0 ≤ ωk ≤ π

. . . an LP in r, δ̃2

FIR filter design 6–13

Equalizer design

h(t)g(t)

(time-domain) equalization: given

• g (unequalized impulse response)

• gdes (desired impulse response)

design (FIR equalizer) h so that g̃ = h ∗ g ≈ gdes

common choice: pure delay D: gdes(t) =
{

1 t = D
0 t �= D

as an LP:
minimize maxt�=D |g̃(t)|
subject to g̃(D) = 1

FIR filter design 6–14

example

unequalized system G is 10th order FIR:

0 1 2 3 4 5 6 7 8 9
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

g
(t

)

0 0.5 1 1.5 2 2.5 3
10

−1

10
0

10
1

ω

|G
(ω

)|

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

ω

�
G

(ω
)

FIR filter design 6–15

design 30th order FIR equalizer with G̃(ω) ≈ e−j10ω

minimize maxt�=10 |g̃(t)|

equalized system impulse response g̃

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

0.6

0.8

1

t

g̃
(t

)

equalized frequency response magnitude |G̃| and phase � G̃

0 0.5 1 1.5 2 2.5 3
10

−1

10
0

10
1

ω

|G̃
(ω

)|

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

ω

�
G̃

(ω
)

FIR filter design 6–16

Magnitude equalizer design

H(ω) G(ω)

• given system frequency response G : [0, π] → C

• design FIR equalizer H so that |G(ω)H(ω)| ≈ 1:

minimize maxω∈[0,π]

∣∣ |G(ω)H(ω)|2 − 1
∣∣

use autocorrelation coefficients as variables:

minimize α
subject to

∣∣ |G(ω)|2R(ω) − 1
∣∣ ≤ α, ω ∈ [0, π]

R(ω) ≥ 0, ω ∈ [0, π]

when discretized, an LP in r, α, . . .

FIR filter design 6–17

Multi-system magnitude equalization

• given M frequency responses Gk : [0, π] → C

• design FIR equalizer H so that |Gk(ω)H(ω)| ≈ constant:

minimize maxk=1,...,M maxω∈[0,π]

∣∣ |Gk(ω)H(ω)|2 − γk

∣∣
subject to γk ≥ 1, k = 1, . . . ,M

use autocorrelation coefficients as variables:

minimize α
subject to

∣∣ |Gk(ω)|2R(ω) − γk

∣∣ ≤ α, ω ∈ [0, π], k = 1, . . . , M

R(ω) ≥ 0, ω ∈ [0, π]
γk ≥ 1, k = 1, . . . , M

. . . when discretized, an LP in γk, r, α

FIR filter design 6–18

example. M = 2, n = 25, γk ≥ 1

unequalized and equalized frequency responses

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

G
k
(ω

)|2

ω
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

G
k
(ω

)H
(ω

)|2

ω

FIR filter design 6–19

FIR filter design 6–20

ESE504 (Fall 2010)

Lecture 7
Applications in control

• optimal input design

• robust optimal input design

• pole placement (with low-authority control)

7–1

Linear dynamical system

y(t) = h0u(t) + h1u(t − 1) + h2u(t − 2) + · · ·

• single input/single output: input u(t) ∈ R, output y(t) ∈ R

• hi are called impulse response coefficients

• finite impulse response (FIR) system of order k: hi = 0 for i > k

if u(t) = 0 for t < 0,

⎡⎢⎢⎢⎢⎢⎣
y(0)

y(1)

y(2)
...

y(N)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
h0 0 0 · · · 0

h1 h0 0 · · · 0

h2 h1 h0 · · · 0
...

hN hN−1 hN−2 · · · h0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
u(0)

u(1)

u(2)
...

u(N)

⎤⎥⎥⎥⎥⎥⎦
a linear mapping from input to output sequence

Applications in control 7–2

Output tracking problem

choose inputs u(t), t = 0, . . . ,M (M < N) that

• minimize peak deviation between y(t) and a desired output ydes(t),
t = 0, . . . , N ,

max
t=0,...,N

|y(t) − ydes(t)|
• satisfy amplitude and slew rate constraints:

|u(t)| ≤ U, |u(t + 1) − u(t)| ≤ S

as a linear program (variables: w, u(0), . . . , u(N)):

minimize. w

subject to −w ≤∑t
i=0 hiu(t − i) − ydes(t) ≤ w, t = 0, . . . , N

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . , M
−S ≤ u(t + 1) − u(t) ≤ S, t = 0, . . . , M + 1

Applications in control 7–3

example. single input/output, N = 200

step response

0 100 200

0

1

ydes

0 100 200

−1

0

1

constraints on u:

• input horizon M = 150

• amplitude constraint |u(t)| ≤ 1.1

• slew rate constraint |u(t) − u(t − 1)| ≤ 0.25

Applications in control 7–4

output and desired output:

y(t), ydes(t)

0 100 200

−1

0

1

optimal input sequence u:

u(t)

0 100 200
−1.1

0.0

1.1
u(t) − u(t − 1)

0 100 200
−0.25

0.00

0.25

Applications in control 7–5

Robust output tracking (1)

• impulse response is not exactly known; it can take two values:

(h(1)
0 , h

(1)
1 , . . . , h

(1)
k), (h(2)

0 , h
(2)
1 , . . . , h

(2)
k)

• design an input sequence that minimizes the worst-case peak tracking
error

minimize w

subject to −w ≤∑t
i=0 h

(1)
i u(t − i) − ydes(t) ≤ w, t = 0, . . . , N

−w ≤∑t
i=0 h

(2)
i u(t − i) − ydes(t) ≤ w, t = 0, . . . , N

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . ,M
−S ≤ u(t + 1) − u(t) ≤ S, t = 0, . . . , M + 1

an LP in the variables w, u(0), . . . , u(N)

Applications in control 7–6

example

step responses

0 100 200

0

1

outputs and desired output

0 100 200

−1

0

1

u(t)

0 100 200
−1.1

0.0

1.1
u(t) − u(t − 1)

0 100 200
−0.25

0.00

0.25

Applications in control 7–7

Robust output tracking (2)

⎡⎢⎢⎣
h0(s)
h1(s)

...
hk(s)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
h̄0

h̄1
...

h̄k

⎤⎥⎥⎦+ s1

⎡⎢⎢⎢⎣
v
(1)
0

v
(1)
1
...

v
(1)
k

⎤⎥⎥⎥⎦+ · · · + sK

⎡⎢⎢⎢⎣
v
(K)
0

v
(K)
1
...

v
(K)
k

⎤⎥⎥⎥⎦
h̄i and v

(j)
i are given; si ∈ [−1,+1] is unknown

robust output tracking problem (variables w, u(t)):

min. w

s.t. −w ≤∑t
i=0 hi(s)u(t − i) − ydes(t) ≤ w, t = 0, . . . , N, ∀s ∈ [−1, 1]K

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . ,M
−S ≤ u(t + 1) − u(t) ≤ S, t = 0, . . . , M + 1

straightforward (and very inefficient) solution: enumerate all 2K extreme
values of s

Applications in control 7–8

simplification: we can express the 2K+1 linear inequalities

−w ≤
t∑

i=0

hi(s)u(t − i) − ydes(t) ≤ w for all s ∈ {−1, 1}K

as two nonlinear inequalities

t∑
i=0

h̄iu(t − i) +
K∑

j=1

∣∣∣∣∣
t∑

i=0

v
(j)
i u(t − i)

∣∣∣∣∣ ≤ ydes(t) + w

t∑
i=0

h̄iu(t − i) −
K∑

j=1

∣∣∣∣∣
t∑

i=0

v
(j)
i u(t − i)

∣∣∣∣∣ ≥ ydes(t) − w

Applications in control 7–9

proof:

max
s∈{−1,1}K

t∑
i=0

hi(s)u(t − i)

=
t∑

i=0

h̄iu(t − i) +
K∑

j=1

max
sj∈{−1,+1}

sj

t∑
i=0

v
(j)
i u(t − i)

=
t∑

i=0

h̄iu(t − i) +
K∑

j=1

∣∣∣∣∣
t∑

i=0

v
(j)
i u(t − i)

∣∣∣∣∣
and similarly for the lower bound

Applications in control 7–10

robust output tracking problem reduces to:

min. w

s.t.
∑t

i=0 h̄iu(t − i) +
∑K

j=1

∣∣∣∑t
i=0 v

(j)
i u(t − i)

∣∣∣ ≤ ydes(t) + w, t = 0, . . . , N∑t
i=0 h̄iu(t − i) −∑K

j=1

∣∣∣∑t
i=0 v

(j)
i u(t − i)

∣∣∣ ≥ ydes(t) − w, t = 0, . . . , N

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . ,M
−S ≤ u(t + 1) − u(t) ≤ S, t = 0, . . . , M + 1

(variables u(t), w)

to express as an LP:

• for t = 0, . . . , N , j = 1, . . . , K, introduce new variables p(j)(t) and
constraints

−p(j)(t) ≤
t∑

i=0

v
(j)
i u(t − i) ≤ p(j)(t)

• replace |∑i v
(j)
i u(t − i)| by p(j)(t)

Applications in control 7–11

example (K = 6)

0 20 40 60

0

1

nominal and perturbed step responses

design for nominal system

output for nominal system

0 50 100

−1

0

1

output for worst-case system

0 50 100

−1

0

1

Applications in control 7–12

robust design

output for nominal system

0 50 100

−1

0

1

output for worst-case system

0 50 100

−1

0

1

Applications in control 7–13

State space description

input-output description:

y(t) = H0u(t) + H1u(t − 1) + H2u(t − 2) + · · ·

if u(t) = 0, t < 0:⎡⎢⎢⎢⎢⎢⎣
y(0)

y(1)

y(2)
...

y(N)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
H0 0 0 · · · 0

H1 H0 0 · · · 0

H2 H1 H0 · · · 0
...

HN HN−1 HN−2 · · · H0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
u(0)

u(1)

u(2)
...

u(N)

⎤⎥⎥⎥⎥⎥⎦
block Toeplitz structure (constant along diagonals)

state space model:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with H0 = D, Hi = CAi−1B (i > 0)

x(t) ∈ Rn is state sequence

Applications in control 7–14

alternative description:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

y(0)

y(1)
...

y(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A −I 0 · · · 0 B 0 · · · 0

0 A −I · · · 0 0 B · · · 0
...

0 0 0 · · · −I 0 0 · · · B

C 0 0 · · · 0 D 0 · · · 0

0 C 0 · · · 0 0 D · · · 0
...

0 0 0 · · · C 0 0 · · · D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)

x(1)

x(2)
...

x(N)

u(0)

u(1)
...

u(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• we don’t eliminate the intermediate variables x(t)

• matrix is larger, but very sparse (interesting when using general-purpose
LP solvers)

Applications in control 7–15

Pole placement

linear system
ż(t) = A(x)z(t), z(0) = z0

where A(x) = A0 + x1A1 + · · · + xpAp ∈ Rn×n

• solutions have the form

zi(t) =
∑

k

βike
σkt cos(ωkt − φik)

where λk = σk ± jωk are the eigenvalues of A(x)

• x ∈ Rp is the design parameter

• goal: place eigenvalues of A(x) in a desired region by choosing x

Applications in control 7–16

Low-authority control

eigenvalues of A(x) are very complicated (nonlinear, nondifferentiable)
functions of x

first-order perturbation: if λi(A0) is simple, then

λi(A(x)) = λi(A0) +
p∑

k=1

w∗
i Akvi

w∗
i vi

xk + o(‖x‖)

where wi, vi are the left and right eigenvectors:

w∗
i A0 = λi(A0)w∗

i , A0vi = λi(A0)vi

‘low-authority’ control:

• use linear first-order approximations for λi

• can place λi in a polyhedral region by imposing linear inequalities on x

• we expect this to work only for small shifts in eigenvalues

Applications in control 7–17

Example

truss with 30 nodes, 83 bars

Md̈(t) + Dḋ(t) + Kd(t) = 0

• d(t): vector of horizontal and vertical node displacements

• M = MT > 0 (mass matrix): masses at the nodes

• D = DT > 0 (damping matrix); K = KT > 0 (stiffness matrix)

to increase damping, we attach dampers to the bars:

D(x) = D0 + x1D1 + · · · + xpDp

xi > 0: amount of external damping at bar i

Applications in control 7–18

eigenvalue placement problem

minimize
∑p

i=1 xi

subject to λi(M, D(x),K) ∈ C, i = 1, . . . , n
x ≥ 0

an LP if C is polyhedral and we use the 1st order approximation for λi

eigenvalues

−0.01 −0.009 −0.008 −0.007 −0.006 −0.005 −0.004 −0.003 −0.002 −0.001 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
before

−0.01 −0.009 −0.008 −0.007 −0.006 −0.005 −0.004 −0.003 −0.002 −0.001 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
after

Applications in control 7–19

location of dampers

Applications in control 7–20

ESE504 (Fall 2010)

Lecture 8
Duality (part 1)

• the dual of an LP in inequality form

• weak duality

• examples

• optimality conditions and complementary slackness

• Farkas’ lemma and theorems of alternatives

• proof of strong duality

8–1

The dual of an LP in inequality form

LP in inequality form:

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

• n variables, m inequality constraints, optimal value p�

• called primal problem (in context of duality)

the dual LP (with A = [a1 a2 . . . am]T):

maximize −bTz
subject to ATz + c = 0

z ≥ 0

• an LP in standard form with m variables, n equality constraints

• optimal value denoted d�

main property: p� = d� (if primal or dual is feasible)

Duality (part 1) 8–2

Weak duality

lower bound property:

if x is primal feasible and z is dual feasible, then

cTx ≥ −bTz

proof: cTx ≥ cTx +
∑m

i=1 zi(aT
i x − bi) = −bTz

cTx + bTz is called the duality gap associated with x and z

weak duality: minimize over x, maximize over z:

p� ≥ d�

always true (even when p� = +∞ and/or d� = −∞)

Duality (part 1) 8–3

example

primal problem

minimize −4x1 − 5x2

subject to

⎡⎢⎢⎣
−1 0

2 1
0 −1
1 2

⎤⎥⎥⎦[x1

x2

]
≤

⎡⎢⎢⎣
0
3
0
3

⎤⎥⎥⎦
optimal point: x� = (1, 1), optimal value p� = −9

dual problem

maximize −3z2 − 3z4

subject to

[−1 2 0 1
0 1 −1 2

]⎡⎢⎢⎣
z1

z2

z3

z4

⎤⎥⎥⎦+
[−4

−5

]
= 0

z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, z4 ≥ 0

z = (0, 1, 0, 2) is dual feasible with objective value −9

Duality (part 1) 8–4

conclusion (by weak duality):

• z is a certificate that x� is (primal) optimal

• x� is a certificate that z is (dual) optimal

Duality (part 1) 8–5

Piecewise-linear minimization

minimize maxi=1,...,m(aT
i x − bi)

lower bounds for optimal value p�?

LP formulation (variables x, t)

minimize t

subject to
[

A −1
] [x

t

]
≤ b

dual LP
maximize −bTz

subject to

[
AT

−1T

]
z +
[

0
1

]
= 0

z ≥ 0
(same optimal value)

Duality (part 1) 8–6

Interpretation

lemma: if z ≥ 0,
∑

i zi = 1, then for all y,

max
i

yi ≥
∑

i

ziyi

hence, maxi(aT
i x − bi) ≥ zT (Ax − b)

this yields a lower bound on p�:

p� = min
x

max
i

(aT
i x − bi) ≥ min

x
zT (Ax − b) =

{ −bTz if ATz = 0
−∞ otherwise

to get best lower bound:

maximize −bTz
subject to ATz = 0

1Tz = 1
z ≥ 0

Duality (part 1) 8–7

�∞-approximation

minimize ‖Ax − b‖∞
LP formulation

minimize t

subject to

[
A −1

−A −1

] [
x
t

]
≤
[

b
−b

]

LP dual
maximize −bTw + bTv
subject to ATw − ATv = 0

1Tw + 1Tv = 1
w, v ≥ 0

(1)

can be expressed as
maximize bTz
subject to ATz = 0

‖z‖1 ≤ 1
(2)

Duality (part 1) 8–8

proof of equivalence of (1) and (2)

• assume w, v feasible in (1), i.e., w ≥ 0, v ≥ 0, 1T (w + v) = 1

– z = v − w is feasible in (2):

‖z‖1 =
∑

i

|vi − wi| ≤ 1Tv + 1Tw = 1

– same objective value: bTz = bTv − bTw

• assume z is feasible in (2), i.e., ATz = 0, ‖z‖1 ≤ 1

– wi = max{zi, 0} + α, vi = max{−zi, 0} + α, with
α = (1 − ‖z‖1)/(2m), are feasible in (1):

v, w ≥ 0, 1Tw + 1Tv = 1

– same objective value: bTv − bTw = bTz

Duality (part 1) 8–9

Interpretation

lemma: uTv ≤ ‖u‖1‖v‖∞
hence, for every z with ‖z‖1 ≤ 1, we have a lower bound on ‖Ax − b‖∞:

‖Ax − b‖∞ ≥ zT (Ax − b)

p� = min
x

‖Ax − b‖∞ ≥ min
x

zT (Ax − b) =
{ −bTz if ATz = 0

−∞ otherwise

to get best lower bound

maximize −bTz
subject to ATz = 0

‖z‖1 ≤ 1

Duality (part 1) 8–10

Optimality conditions

primal feasible x is optimal if and only if there is a dual feasible z with

cTx = −bTz

i.e., associated duality gap is zero

complementary slackness: for x, z optimal,

cTx + bTz =
m∑

i=1

zi(bi − aT
i x) = 0

hence for each i, aT
i x = bi or zi = 0:

• zi > 0 =⇒ aT
i x = bi (ith inequality is active at x)

• aT
i x < bi =⇒ zi = 0

Duality (part 1) 8–11

Geometric interpretation

example in R2:

a1

a1

a2

a2

−c

• two active constraints at optimum (aT
1 x� = b1, aT

2 x� = b2)

• optimal dual solution satisfies

−c = ATz, z ≥ 0, zi = 0 for i �= 1, 2,

i.e., −c = a1z1 + a2z2

• geometrically, −c lies in the cone generated by a1 and a2

Duality (part 1) 8–12

Separating hyperplane theorem

if S ⊆ Rn is a nonempty, closed, convex set, and x� �∈ S, then there exists
c �= 0 such that

cTx� < cTx for all x ∈ S,

i.e., for some value of d, the hyperplane cTx = d separates x� from S

x�

S

c

pS(x�)

idea of proof: use c = pS(x�)− x�, where pS(x�) is the projection of x� on
S, i.e.,

pS(x�) = argmin
x∈S

‖x� − x‖

Duality (part 1) 8–13

Farkas’ lemma

given A, b, exactly one of the following two statements is true:

1. there is an x ≥ 0 such that Ax = b

2. there is a y such that ATy ≥ 0, bTy < 0

very useful in practice: any y in 2 is a certificate or proof that Ax = b,
x ≥ 0 is infeasible, and vice-versa

proof (easy part): we have a contradiction if 1 and 2 are both true:

0 = yT (Ax − b) ≥ −bTy > 0

Duality (part 1) 8–14

proof (difficult part): ¬1 =⇒ 2

• ¬1 means b �∈ S = {Ax | x ≥ 0}

• S is nonempty, closed, and convex (the image of the nonnegative
orthant under a linear mapping)

• hence there exists a y s.t.

yT b < yTAx for all x ≥ 0

implies:

– yT b < 0 (choose x = 0)
– ATy ≥ 0 (if (ATy)k < 0 for some k, we can choose xi = 0 for i �= k,

and xk → +∞; then yTAx → −∞)

i.e., 2 is true

Duality (part 1) 8–15

Theorems of alternatives

many variations on Farkas’ lemma: e.g., for given A ∈ Rm×n b ∈ Rm,
exactly one of the following statements is true:

1. there is an x with Ax ≤ b

2. there is a y ≥ 0 with ATy = 0, bTy < 0

proof
(easy half): 1 and 2 together imply 0 ≤ (b − Ax)Ty = bTy < 0

(difficult half): if 1 does not hold, then

b �∈ S = {Ax + s | x ∈ Rn, s ∈ Rm, s ≥ 0}

hence, there is a separating hyperplane, i.e., y �= 0 subject to

yT b < yT (Ax + s) for all x and all s ≥ 0

equivalent to bTy < 0, ATy = 0, y ≥ 0 (i.e., 2 is true)

Duality (part 1) 8–16

Proof of strong duality

strong duality: p� = d� (except possibly when p� = +∞, d� = −∞)

suppose p� is finite, and x� is optimal with

aT
i x� = bi, i ∈ I, aT

i x� < bi, i �∈ I

we’ll show there is a dual feasible z with −bTz = cTx�

• x� optimal implies that the set of inequalities

aT
i d ≤ 0, i ∈ I, cTd < 0 (1)

is infeasible; otherwise we would have for small t > 0

aT
i (x� + td) ≤ bi, i = 1, . . . , m, cT (x� + td) < cTx�

Duality (part 1) 8–17

• from Farkas’ lemma: (1) is infeasible if and only if there exists λi, i ∈ I,

λi ≥ 0,
∑
i∈I

λiai = −c

this yields a dual feasible z:

zi = λi, i ∈ I, zi = 0, i �∈ I

• z is dual optimal:

−bTz = −
∑
i∈I

bizi = −
∑
i∈I

(aT
i x�)zi = −zTAx� = cTx�

this proves: p� finite =⇒ d� = p�

exercise: p� = +∞ =⇒ d� = +∞ or d� = −∞

Duality (part 1) 8–18

Summary

possible cases:

• p� = d� and finite: primal and dual optima are attained

• p� = d� = +∞: primal is infeasible; dual is feasible and unbounded

• p� = d� = −∞: primal is feasible and unbounded; dual is infeasible

• p� = +∞, d� = −∞: primal and dual are infeasible

uses of duality:

• dual optimal z provides a proof of optimality for primal feasible x

• dual feasible z provides a lower bound on p� (useful for stopping criteria)

• sometimes it is easier to solve the dual

• modern interior-point methods solve primal and dual simultaneously

Duality (part 1) 8–19

Duality (part 1) 8–20

ESE504 (Fall 2010)

Lecture 9
Duality (part 2)

• duality in algorithms

• sensitivity analysis via duality

• duality for general LPs

• examples

• mechanics interpretation

• circuits interpretation

• two-person zero-sum games

9–1

Duality in algorithms

many algorithms produce at iteration k

• a primal feasible x(k)

• and a dual feasible z(k)

with cTx(k) + bTz(k) → 0 as k → ∞

hence at iteration k we know p� ∈ [−bTz(k), cTx(k)
]

• useful for stopping criteria

• algorithms that use dual solution are often more efficient

Duality (part 2) 9–2

Nonheuristic stopping criteria

• (absolute error) cTx(k) − p� is less than ε if

cTx(k)) + bTz(k) < ε

• (relative error) (cTx(k) − p�)/|p�| is less than ε if

−bTz(k) > 0 &
cTx(k) + bTz(k)

−bTz(k)
≤ ε

or

cTx(k) < 0 &
cTx(k)) + bTz(k)

−cTx(k)
≤ ε

Duality (part 2) 9–3

• target value � is achievable (p� ≤ �) if

cTx(k)) ≤ �

• target value � is unachievable (p� > �) if

−bTz(k) > �

Duality (part 2) 9–4

Sensitivity analysis via duality

perturbed problem:

minimize cTx
subject to Ax ≤ b + εd

A ∈ Rm×n; d ∈ Rm given; optimal value p�(ε)

global sensitivity result: if z� is (any) dual optimal solution for the
unperturbed problem, then for all ε

p�(ε) ≥ p� − εdTz�

proof. z� is dual feasible for all ε; by weak duality,

p�(ε) ≥ −(b + εd)Tz� = p� − εdTz�

Duality (part 2) 9–5

interpretation

ε

p�(ε)

p�

p� − εdTz�

• dTz� > 0: ε < 0 increases p�

• dTz� > 0 and large: ε < 0 greatly increases p�

• dTz� > 0 and small: ε > 0 does not decrease p� too much

• dTz� < 0: ε > 0 increases p�

• dTz� < 0 and large: ε > 0 greatly increases p�

• dTz� < 0 and small: ε > 0 does not decrease p� too much

Duality (part 2) 9–6

Local sensitivity analysis

assumption: there is a nondegenerate optimal vertex x�, i.e.,
• x� is an optimal vertex : rank Ā = n, where

Ā =
[

ai1 ai2 · · · aiK

]T
and I = {i1, . . . , iK} is the set of active constraints at x�

• x� is nondegenerate: Ā ∈ Rn×n

w.l.o.g. we assume I = {1, 2, . . . , n}
consequence: dual optimal z� is unique

proof: by complementary slackness, z�
i = 0 for i > n

by dual feasibility,

∑
i=1,...,n

aiz
�
i = ĀT

⎡⎣ z�
1
...

z�
n

⎤⎦ = −c =⇒ z� =
[−Ā−T c

0

]

Duality (part 2) 9–7

optimal solution of the perturbed problem (for small ε):

x�(ε) = x� + εĀ−1d̄ (with d̄ = (d1, . . . , dn))

• x�(ε) is feasible for small ε:

aT
i x�(ε) = bi+εdi, i = 1, . . . , n, aT

i x�(ε) < bi+εdi, i = n+1, . . . ,m

• z� is dual feasible and satisfies complementary slackness:

(b + εd − Ax�(ε))Tz� = 0

optimal value of perturbed problem (for small ε):

p�(ε) = cTx�(ε) = p� + εcT Ā−1d̄ = p� − εdTz�

• z�
i is sensitivity of cost w.r.t. righthand side of ith constraint

• z�
i is called marginal cost or shadow price associated with ith constraint

Duality (part 2) 9–8

Dual of a general LP

method 1: express as LP in inequality form and take its dual

example: standard form LP

minimize cTx

subject to

⎡⎣ −I
A

−A

⎤⎦x ≤
⎡⎣ 0

b
−b

⎤⎦
dual:

maximize −bT (v − w)
subject to −u + AT (v − w) + c = 0

u ≥ 0, v ≥ 0, w ≥ 0

method 2: apply Lagrange duality (this lecture)

Duality (part 2) 9–9

Lagrangian

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

Lagrangian L : Rn+m → R

L(x, λ) = cTx +
m∑

i=1

λi(aT
i x − bi)

• λi are called Lagrange multipliers

• objective is augmented with weighted sum of constraint functions

lower bound property: if Ax ≤ b and λ ≥ 0, then

cTx ≥ L(x, λ) ≥ min
x̃

L(x̃, λ)

hence, p� ≥ minx̃ L(x̃, λ) for λ ≥ 0

Duality (part 2) 9–10

Lagrange dual problem

Lagrange dual function g : Rm → R ∪ {−∞}

g(λ) = min
x

L(x, λ) = min
x

(−bTλ + (ATλ + c)Tx
)

=
{ −bTλ if ATλ + c = 0

−∞ otherwise

(Lagrange) dual problem

maximize g(λ)
subject to λ ≥ 0

yields the dual LP:

maximize −bTλ
subject to ATλ + c = 0, λ ≥ 0

finds best lower bound g(λ)

Duality (part 2) 9–11

Lagrangian of a general LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m
gT

i x = hi, i = 1, . . . , p

define Lagrangian L : Rn+m+p → R as

L(x, λ, ν) = cTx +
m∑

i=1

λi(aT
i x − bi) +

p∑
i=1

νi(gT
i x − hi)

lower bound property: if x is feasible and λ ≥ 0,

cTx ≥ L(x, λ, ν) ≥ min
x̃

L(x̃, λ, ν)

hence, p� ≥ minx L(x, λ, ν) if λ ≥ 0

multipliers associated with equality constraints can have either sign

Duality (part 2) 9–12

Lagrange dual function:

g(λ, ν) = min
x

L(x, λ, ν) = min
x

(
cTx + λT (Ax − b) + νT (Gx − h)

)
= min

x

(−bTλ − hTν + xT (c + ATλ + GTν)
)

=
{ −bTλ − hTν if ATλ + GTν + c = 0

−∞ otherwise

Lagrange dual problem:

maximize −bTλ − hTν
subject to ATλ + GTν + c = 0

λ ≥ 0

variables λ, ν; optimal value d�

• an LP (in general form)

• weak duality p� ≥ d�

• strong duality holds: p� = d� (except when both problems are infeasible)

Duality (part 2) 9–13

Example: standard form LP

minimize cTx
subject to Ax = b, x ≥ 0

Lagrangian: L(x, ν, λ) = cTx + νT (Ax − b) − λTx

dual function

g(λ, ν) = min
x

L(x, ν, λ) =
{ −bTν if ATν − λ + c = 0

−∞ otherwise

dual problem

maximize −bTν
subject to ATν − λ + c = 0, λ ≥ 0

equivalent to dual on page 9–9

maximize bTz
subject to ATz ≤ c

Duality (part 2) 9–14

Price or tax interpretation

• x: describes how an enterprise operates; cTx: cost of operating at x

• aT
i x ≤ bi: limits on resources, regulatory limits

optimal operating point is solution of

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

optimal cost: p�

scenario 2: constraint violations can be bought or sold at unit cost λi ≥ 0

minimize cTx +
∑m

i=1 λi(aT
i x − bi)

optimal cost: g(λ)

interpretation of strong duality: there exist prices λ�
i s.t. g(λ�) = p�,

i.e., there is no advantage in selling/buying constraint violations

Duality (part 2) 9–15

Mechanics interpretation

c

a1
a2

a3
a4

• mass subject to gravity, can move freely between walls described by
aT

i x = bi

• equilibrium position minimizes potential energy, i.e., solves

minimize cTx
subject aT

i x ≤ bi, i = 1, . . . , m

Duality (part 2) 9–16

optimality conditions:

1. aT
i x� ≤ bi, i = 1. . . . , m

2.
∑m

i=1 z�
i ai + c = 0, z� ≥ 0

3. z�
i (bi − aT

i x�) = 0, i = 1, . . . ,m

interpretation: −ziai is contact force with wall i; nonzero only if the ball
touches the ith wall

Duality (part 2) 9–17

Circuits interpretation

circuit components:

ideal voltage source E

i

v v = E

ideal current source I

i

v i = I

ideal diode

i

v
v ≥ 0, i ≤ 0

vi = 0

ideal transformer ṽ v̂

ı̃

ı̃

ı̂

ı̂

α
v̂ = αṽ
ı̃ = −αı̂

Duality (part 2) 9–18

ideal multiterminal transformer (A ∈ Rm×n)

ṽ1

ṽn

v̂1

v̂m

ı̃1

ı̃1

ı̃n

ı̃n

ı̂1

ı̂1

ı̂m

ı̂m

A
v̂ = Aṽ
ı̃ = −AT ı̂

Duality (part 2) 9–19

example

b1

bm

v1

vn

v̂1

v̂m

A

i1

im

ı̃1

ı̃n

c1

cn

circuit equations:

v̂ = Av ≤ b, i ≥ 0, ı̃ + c = AT i + c = 0

ik(bk − aT
k v) = 0, k = 1, . . . , m

i.e., optimality conditions for LP

minimize cTv
subject to Av ≤ b

maximize −bT i
subject to AT i + c = 0

i ≥ 0

Duality (part 2) 9–20

interpretation: two ‘potential functions’

• content (a function of the voltages)

• co-content (a function of the currents)

contribution of each component (notation of page 9–18)

• content of current source is Iv
co-content is 0 if i = I, −∞ otherwise

• content of voltage source is 0 if v = E, ∞ otherwise
co-content is −Ei

• content of diode is 0 if v ≥ 0, +∞ otherwise
co-content is 0 if i ≤ 0 and −∞ otherwise

• content of transformer is 0 if v̂ = Aṽ, ∞ otherwise
co-content is 0 if ĩ = −AT ı̂, −∞ otherwise

primal problem: voltages minimize total content

dual problem: currents maximize total co-content

Duality (part 2) 9–21

example

primal problem
minimize cTv
subject to Av ≤ b

v ≥ 0

circuit equivalent:

b1

bm

v1

vn

v̂1

v̂m

A

i1

im

c1

cn

dual problem:
maximize −bT i
subject to AT i + c ≥ 0

i ≥ 0

Duality (part 2) 9–22

Two-person zero-sum games (matrix games)

described by a payoff matrix

A ∈ Rm×n

• player 1 chooses a number in {1, . . . , m} (corresponding to m possible
actions or strategies)

• player 2 chooses a number in {1, . . . , n}

• players make their choice simultaneously and independently

• if P1’s choice is i and P2’s choice is j, then P1 pays aij to P2 (negative
aij means P2 pays −aij to P1)

Duality (part 2) 9–23

Mixed (randomized) strategies

players make random choices according to some probability distribution

• player 1 chooses randomly according to distribution x ∈ Rm:

1Tx = 1, x ≥ 0

(xi is probability of choosing i)

• player 2 chooses randomly (and independently from 1) according to
distribution y ∈ Rn:

1Ty = 1, y ≥ 0
(yj is probability of choosing j)

expected payoff from player 1 to 2, if they use mixed stragies x and y:

m∑
i=1

n∑
j=1

xiyjaij = xTAy

Duality (part 2) 9–24

Optimal mixed strategies

optimal strategy for player 1:

minimizex max1T y=1, y≥0 xTAy
subject to 1Tx = 1, x ≥ 0

note:
max

1T y=1, y≥0
xTAy = max

j=1,...,n
(ATx)j

optimal strategy x� can be computed by solving an LP

minimize t
subject to ATx ≤ t1

1Tx = 1, x ≥ 0
(1)

(variables x, t)

Duality (part 2) 9–25

optimal strategy for player 2:

maximizey min1T x=1, x≥0 xTAy
subject to 1Ty = 1, y ≥ 0

note:
min

1T x=1, x≥0
xTAy = min

i=1,...,m
(Ay)i

optimal strategy y� can be computed by solving an LP

maximize w
subject to Ay ≥ w1

1Ty = 1, y ≥ 0
(2)

(variables y, w)

Duality (part 2) 9–26

The minimax theorem

for all mixed strategies x, y,

x�TAy ≤ x�TAy� ≤ xTAy�

proof: the LPs (1) and (2) are duals, so they have the same optimal value

example

A =

⎡⎣ 4 2 0 −3
−2 −4 −3 3
−2 −3 4 1

⎤⎦
optimal strategies

x� = (0.37, 0.33, 0.3), y� = (0.4, 0, 0.13, 0.47)

expected payoff: x�TAy� = 0.2

Duality (part 2) 9–27

Duality (part 2) 9–28

ESE504 (Fall 2010)

Lecture 10
The simplex method

• extreme points

• adjacent extreme points

• one iteration of the simplex method

• degeneracy

• initialization

• numerical implementation

10–1

Idea of the simplex method

move from one extreme point to an adjacent extreme point with lower cost
until an optimal extreme point is reached

• invented in 1947 (George Dantzig)

• usually developed and implemented for LPs in standard form

questions

1. how do we characterize extreme points? (answered in lecture 3)

2. how do we move from an extreme point to an adjacent one?

3. how do we select an adjacent extreme point with a lower cost?

4. how do we find an initial extreme point?

The simplex method 10–2

Extreme points

to check whether x is an extreme point of a polyhedron defined by

aT
i x ≤ bi, i = 1, . . . ,m

• check that Ax ≤ b

• define

AI =

⎡⎢⎢⎣
aT

i1
aT

i2...
aT

iK

⎤⎥⎥⎦ , I = {i1, . . . , iK}

where I is the set of active constraints at x:

aT
k x = bk, k ∈ I, aT

k x < bk, k �∈ I

• x is an extreme point if and only if rank(AI) = n

The simplex method 10–3

Degeneracy

an extreme point is nondegenerate if exactly n constraints are active at x

• AI is square and nonsingular (K = n)

• x = A−1
I bI, where bI = (bi1, bi2, . . . , bin)

an extreme point is degenerate if more than n constraints are active at x

• extremality is a geometric property (depends on P)

• degeneracy/nondegeneracy depend on the representation of P (i.e., A
and b)

The simplex method 10–4

Assumptions

we will develop the simplex algorithm for an LP in inequality form

minimize cTx
subject to Ax ≤ b

with A ∈ Rm×n

we assume throughout the lecture that rank(A) = n

• if rank(A) < n, we can reduce the number of varables

• implies that the polyhedron has at least one extreme point (page 3–25)

• implies that if the LP is solvable, it has an optimal extreme point
(page 3–28)

until page 10–20 we assume that all the extreme points are nondegenerate

The simplex method 10–5

Adjacent extreme points

extreme points are adjacent if they have n − 1 common active constraints

moving to an adjacent extreme point

given extreme point x with active index set I and an index k ∈ I, find an
extreme point x̂ that has the active constraints I \ {k} in common with x

1. solve the n equations

aT
i Δx = 0, i ∈ I \ {k}, aT

k Δx = −1

2. if AΔx ≤ 0, then {x̂ + αΔx | α ≥ 0} is a feasible half-line:

A(x + αΔx) ≤ b ∀α ≥ 0

3. otherwise, x̂ = x + αΔx, where

α = min
i:aT

i Δx>0

bi − aT
i x

aT
i Δx

The simplex method 10–6

comments

• step 1: equations are solvable because AI is nonsingular

• step 3: α > 0 because aT
i Δx > 0 means i �∈ I, hence aT

i x < bi (for
nondegenerate x)

• new active set is Î = I \ {k} ∪ {j} where

j = argmin
i:aT

i Δx>0

bi − aT
i x

aT
i Δx

• AÎ is nonsingular because

aT
i Δx = 0, i ∈ I \ {k}, aT

j Δx > 0

implies that aj is linearly independent of the vectors ai, i ∈ I \ {k}

The simplex method 10–7

Example

⎡⎢⎢⎣
0 −1

−1 −1
−1 0
−1 1

⎤⎥⎥⎦[x1

x2

]
≤

⎡⎢⎢⎣
0

−1
0
2

⎤⎥⎥⎦
(1, 0)

(0, 1)

(0, 2)

extreme points

x b − Ax I
(1, 0) (0, 0, 1, 3) {1, 2}
(0, 1) (1, 0, 0, 1) {2, 3}
(0, 2) (2, 1, 0, 0) {3, 4}

The simplex method 10–8

compute extreme points adjacent to x = (1, 0)

1. try to remove k = 1 from active set I = {1, 2}
• compute Δx[

0 −1
−1 −1

] [
Δx1

Δx2

]
=
[−1

0

]
=⇒ Δx = (−1, 1)

• minimum ratio test: AΔx = (−1, 0, 1, 2)

α = min{b3 − aT
3 x

aT
3 Δx

,
b4 − aT

4 x

aT
4 Δx

} = min{1/1, 3/2} = 1

new extreme point: x̂ = (0, 1) with active set Î = {2, 3}

The simplex method 10–9

2. try to remove k = 2 from active set I = {1, 2}
• compute Δx[

0 −1
−1 −1

] [
Δx1

Δx2

]
=
[

0
−1

]
=⇒ Δx = (1, 0)

• AΔx = (0,−1,−1,−1):

{(1, 0) + α(1, 0) | α ≥ 0}

is an unbounded edge of the feasible set

The simplex method 10–10

Finding an adjacent extreme point with lower cost

given extreme point x with active index set I

1. define z ∈ Rm with

AT
I zI + c = 0, zj = 0, j �∈ I

2. if z ≥ 0, then x, z are primal and dual optimal

3. otherwise select k with zk < 0 and determine Δx as on page 10–6:

cT (x + αΔx) = cTx − αzT
I AIΔx

= cTx + αzk

cost decreases in the direction Δx

The simplex method 10–11

One iteration of the simplex method

given an extreme point x with active set I

1. compute z ∈ Rm with

AT
I zI + c = 0, zj = 0, j �∈ I

if z ≥ 0, terminate (x is optimal)

2. choose k such that zk < 0, compute Δx ∈ Rn with

aT
i Δx = 0, i ∈ I \ {k}, aT

k Δx = −1

if AΔx ≤ 0, terminate (p� = −∞)

3. set I := I \ {k} ∪ {j}, x := x + αΔx where

j = argmin
i:aT

i Δx>0

bi − aT
i x

aT
i Δx

, α =
bj − aT

j x

aT
j Δx

The simplex method 10–12

Pivot selection and convergence

step 2: which k do we choose if zk has several negative components?

many variants, e.g.,

• choose most negative zk

• choose maximum decrease in cost αzk

• choose smallest k

all three variants work (if all extreme points are nondegenerate)

step 3: j is unique and α > 0 (if all extreme points are nondegenerate)

convergence follows from:

• number of extreme points is finite

• cost strictly decreases at each step

The simplex method 10–13

Example

min. x1 + x2 − x3 s.t.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ x1

x2

x3

⎤⎦ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
2
2
2
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(2, 0, 0)

(2, 0, 2)

(0, 0, 2) (0, 2, 2)

(0, 2, 0)

(2, 2, 0)

(0, 0, 0) (2, 2, 1)

(2, 1, 2)

(1, 2, 2)

• optimal point is x = (0, 0, 2)

• start simplex method at x = (2, 2, 0)

The simplex method 10–14

iteration 1: x = (2, 2, 0), b − Ax = (2, 2, 0, 0, 0, 2, 1), I = {3, 4, 5}

1. compute z:⎡⎣ 0 1 0
0 0 1

−1 0 0

⎤⎦⎡⎣ z3

z4

z5

⎤⎦ = −
⎡⎣ 1

1
−1

⎤⎦ =⇒ z = (0, 0,−1,−1,−1, 0, 0)

not optimal; remove k = 3 from active set

2. compute Δx⎡⎣ 0 0 −1
1 0 0
0 1 0

⎤⎦⎡⎣ Δx1

Δx2

Δx3

⎤⎦ =

⎡⎣ −1
0
0

⎤⎦ =⇒ Δx = (0, 0, 1)

3. minimum ratio test: AΔx = (0, 0,−1, 0, 0, 1, 1)

α = argmin{2/1, 1/1} = 1, j = 7

The simplex method 10–15

iteration 2: x = (2, 2, 1), b − Ax = (2, 2, 1, 0, 0, 1, 0), I = {4, 5, 7}

1. compute z:⎡⎣ 1 0 1
0 1 1
0 0 1

⎤⎦⎡⎣ z4

z5

z7

⎤⎦ = −
⎡⎣ 1

1
−1

⎤⎦ =⇒ z = (0, 0, 0,−2,−2, 0, 1)

not optimal; remove k = 5 from active set

2. compute Δx⎡⎣ 1 0 0
0 1 0
1 1 1

⎤⎦⎡⎣ Δx1

Δx2

Δx3

⎤⎦ =

⎡⎣ 0
−1

0

⎤⎦ =⇒ Δx = (0,−1, 1)

3. minimum ratio test: AΔx = (0, 1,−1, 0,−1, 1, 0)

α = argmin{2/1, 1/1} = 1, j = 6

The simplex method 10–16

iteration 3: x = (2, 1, 2), b − Ax = (2, 1, 2, 0, 1, 0, 0), I = {4, 6, 7}

1. compute z:⎡⎣ 1 0 1
0 0 1
0 1 1

⎤⎦⎡⎣ z4

z6

z7

⎤⎦ = −
⎡⎣ 1

1
−1

⎤⎦ =⇒ z = (0, 0, 0, 0, 0, 2,−1)

not optimal; remove k = 7 from active set

2. compute Δx⎡⎣ 1 0 0
0 0 1
1 1 1

⎤⎦⎡⎣ Δx1

Δx2

Δx3

⎤⎦ =

⎡⎣ 0
0

−1

⎤⎦ =⇒ Δx = (0,−1, 0)

3. minimum ratio test: AΔx = (0, 1, 0, 0,−1, 0,−1)

α = argmin{1/1} = 1, j = 2

The simplex method 10–17

iteration 4: x = (2, 0, 2), b − Ax = (2, 0, 2, 0, 2, 0, 1), I = {2, 4, 6}

1. compute z:⎡⎣ 0 1 0
−1 0 0

0 0 1

⎤⎦⎡⎣ z2

z4

z6

⎤⎦ = −
⎡⎣ 1

1
−1

⎤⎦ =⇒ z = (0, 1, 0,−1, 0, 1, 0)

not optimal; remove k = 4 from active set

2. compute Δx⎡⎣ 0 −1 0
1 0 0
0 0 1

⎤⎦⎡⎣ Δx1

Δx2

Δx3

⎤⎦ =

⎡⎣ 0
−1

0

⎤⎦ =⇒ Δx = (−1, 0, 0)

3. minimum ratio test: AΔx = (1, 0, 0,−1, 0, 0,−1)

α = argmin{2/1} = 2, j = 1

The simplex method 10–18

iteration 5: x = (0, 0, 2), b − Ax = (0, 0, 2, 2, 2, 0, 3), I = {1, 2, 6}

1. compute z:⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦⎡⎣ z1

z2

z6

⎤⎦ = −
⎡⎣ 1

1
−1

⎤⎦ =⇒ z = (1, 1, 0, 0, 0, 1, 0)

optimal

The simplex method 10–19

Degeneracy

• if x is degenerate, AI has rank n but is not square

• if next point is degenerate, we have a tie in the argmin of step 3

solution

• define I to be a subset of n linearly independent active constraints

• AI is square; steps 1 and 2 work as in the nondegenerate case

• in step 3, break ties arbitrarily

does it work?

• in step 3 we can have α = 0 (i.e., x does not change)

• maybe this does not hurt, as long as I keeps changing

The simplex method 10–20

Example

minimize −3x1 + 5x2 − x3 + 2x4

subject to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −2 3
2 −3 −1 1
0 0 1 0

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎦ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
• x = (0, 0, 0, 0) is a degenerate extreme point with

b − Ax = (0, 0, 1, 0, 0, 0, 0)

• start simplex with I = {4, 5, 6, 7}

The simplex method 10–21

iteration 1: I = {4, 5, 6, 7}
1. z = (0, 0, 0,−3, 5,−1, 2): remove 4 from active set

2. Δx = (1, 0, 0, 0)

3. AΔx = (1, 2, 0,−1, 0, 0, 0): α = 0, add 1 to active set

iteration 2: I = {1, 5, 6, 7}
1. z = (3, 0, 0, 0,−1,−7, 11): remove 5 from active set

2. Δx = (2, 1, 0, 0)

3. AΔx = (0, 1, 0,−2,−1, 0, 0): α = 0, add 2 to active set

iteration 3: I = {1, 2, 6, 7}
1. z = (1, 1, 0, 0, 0,−4, 6): remove 6 from active set

2. Δx = (−4,−3, 1, 0)

3. AΔx = (0, 0, 1, 4, 3,−1, 0): α = 0, add 4 to active set

The simplex method 10–22

iteration 4: I = {1, 2, 4, 7}
1. z = (−2, 3, 0, 1, 0, 0,−1): remove 7 from active set

2. Δx = (0,−1/4, 7/4, 1)

3. AΔx = (0, 0, 7/4, 0, 1/4,−7/4,−1): α = 0, add 5 to active set

iteration 5: I = {1, 2, 4, 5}
1. z = (−1, 1, 0,−2, 4, 0, 0): remove 1 from active set

2. Δx = (0, 0,−1,−1)

3. AΔx = (−1, 0,−1, 0, 0, 1, 1): α = 0, add 6 to active set

iteration 6: I = {2, 4, 5, 6}
1. z = (0,−2, 0,−7, 11, 1, 0): remove 2 from active set

2. Δx = (0, 0, 0,−1)

3. AΔx = (−3,−1, 0, 0, 0, 0, 1): α = 0, add 7 to active set

iteration 7: I = {4, 5, 6, 7}, the initial active set

The simplex method 10–23

Bland’s pivoting rule

no cycling will occur if we follow the following rule

• in step 2, always choose the smallest k for which zk < 0

• if there is a tie in step 3, always choose the smallest j

proof (by contradiction) suppose there is a cycle i.e., for some q > p

x(p) = x(p+1) = · · · = x(q), I(p) �= I(p+1) �= · · · �= I(q) = I(p)

where x(s) (I(s), z(s), Δx(s)) is the value of x (I, z, Δx) at iteration s

we also define

• ks: index removed from I in iteration s; js: index added in iteration s

• k̄ = maxp≤s≤q−1 ks

• r: the iteration (p ≤ r ≤ q − 1) in which k̄ is removed (k̄ = kr)

• t: the iteration (r < t ≤ q) in which k̄ is added back again (k̄ = jt)

The simplex method 10–24

at iteration r we remove index k̄ from I(r); therefore

• z
(r)

k̄
< 0

• z
(r)
i ≥ 0 for i ∈ I(r), i < k̄ (otherwise we should have removed i)

• z
(r)
i = 0 for i �∈ I(r) (by definition of z(r))

at iteration t we add index k̄ to I(t); therefore

• aT
k̄
Δx(t) > 0

• aT
i Δx(t) ≤ 0 for i ∈ I(r), i < k̄

(otherwise we should have added i, since bi − aT
i x = 0 for all i ∈ I(r))

• aT
i Δx(t) = 0, for i ∈ I(r), i > k̄

(if i > k̄ and i ∈ I(r) then it is never removed, so i ∈ I(t) \ {kt})

conclusion: z(r)TAΔx(t) < 0

a contradiction, because −z(r)TAΔx(t) = cTΔx(t) ≤ 0

The simplex method 10–25

Example

LP of page 10–21, same starting point but applying Bland’s rule

iteration 1: I = {4, 5, 6, 7}
1. z = (0, 0, 0,−3, 5,−1, 2): remove 4 from active set

2. Δx = (1, 0, 0, 0)

3. AΔx = (1, 2, 0,−1, 0, 0, 0): α = 0, add 1 to active set

iteration 2: I = {1, 5, 6, 7}
1. z = (3, 0, 0, 0,−1,−7, 11): remove 5 from active set

2. Δx = (2, 1, 0, 0)

3. AΔx = (0, 1, 0,−2,−1, 0, 0): α = 0, add 2 to active set

The simplex method 10–26

iteration 3: I = {1, 2, 6, 7}
1. z = (1, 1, 0, 0, 0,−4, 6): remove 6 from active set

2. Δx = (−4,−3, 1, 0)

3. AΔx = (0, 0, 1, 4, 3,−1, 0): α = 0, add 4 to active set

iteration 4: I = {1, 2, 4, 7}
1. z = (−2, 3, 0, 1, 0, 0,−1): remove 1 from active set

2. Δx = (0,−1/4, 3/4, 1)

3. AΔx = (−1, 0, 3/4, 0, 1/4,−3/4, 0): α = 0, add 5 to active set

iteration 5: I = {2, 4, 5, 7}
1. z = (0,−1, 0,−5, 8, 0, 1): remove 2 from active set

2. Δx = (0, 0, 1, 0)

3. AΔx = (−2,−1, 1, 0, 0,−1, 0): α = 1, add 3 to active set

The simplex method 10–27

new x = (0, 0, 1, 0), b − Ax = (2, 1, 0, 0, 0, 1, 0)

iteration 6: I = {3, 4, 5, 7}
1. z = (0, 0, 1,−3, 5, 0, 2): remove 4 from active set

2. Δx = (1, 0, 0, 0)

3. AΔx = (1, 2, 0,−1, 0, 0, 0): α = 1/2, add 2 to active set

new x = (1/2, 0, 1, 0), b − Ax = (3/2, 0, 0, 1/2, 0, 1, 0)

iteration 7: I = {1, 3, 5, 7}
1. z = (3, 0, 7, 0,−1, 0, 11): remove 5 from active set

2. Δx = (2, 1, 0, 0)

3. AΔx = (0, 1, 0,−2,−1, 0, 0): α = 0, add 2 to active set

iteration 8: I = {1, 2, 3, 7}
1. z = (1, 1, 4, 0, 0, 0, 6): optimal

The simplex method 10–28

Initialization via phase I

linear program with variable bounds

minimize cTx
subject to Ax ≤ b, x ≥ 0

general; can split free xk as xk = x+
k − x−

k , xk ≥ 0, x−
k ≥ 0

phase I problem

minimize t
subject to Ax ≤ (1 − t)b, x ≥ 0, 0 ≤ t ≤ 1

• x = 0, t = 1 is an extreme point of phase I LP

• can compute an optimal extreme point x�, t� of phase I LP via simplex

• if t� > 0, original problem is infeasible

• if t� = 0, then x� is an extreme point of original problem

The simplex method 10–29

Numerical implementation

• most expensive step: solution of two sets of linear equations

AT
I zI = −c, AIΔx = (ek)I

where ek is kth unit vector

• one row of AI changes at each iteration

efficient implementation: propagate LU factorization of AI

• given the factorization, can solve the equations in O(n2) operations

• updating LU factorization after changing a row costs O(n2) operations

total cost is O(n2) per iteration (� O(n2) if A is sparse)

The simplex method 10–30

Complexity of the simplex method

in practice: very efficient (#iterations grows linearly with m, n)

worst-case:

• for most pivoting rules, there exist examples where the number of
iterations grows exponentially with n and m

• it is an open question whether there exists a pivoting rule for which the
number of iterations is bounded by a polynomial of n and m

The simplex method 10–31

ESE504 (Fall 2010)

Lecture 11
The barrier method

• brief history of interior-point methods

• Newton’s method for smooth unconstrained minimization

• logarithmic barrier function

• central points, the central path

• the barrier method

11–1

The ellipsoid method

• 1972: ellipsoid method for (nonlinear) convex nondifferentiable
optimization (Nemirovsky, Yudin, Shor)

• 1979: Khachiyan proves that the ellipsoid method applied to LP has
polynomial worst-case complexity

• much slower in practice than simplex

• very different approach from simplex method; extends gracefully to
nonlinear convex problems

• solved important open theoretical problem (polynomial-time algorithm
for LP)

The barrier method 11–2

Interior-point methods

early methods (1950s–1960s)

• methods for solving convex optimization problems via sequence of
smooth unconstrained problems

• logarithmic barrier method (Frisch), sequential unconstrained
minimization (Fiacco & McCormick), affine scaling method (Dikin),
method of centers (Huard & Lieu)

• no worst-case complexity theory; (often) worked well in practice

• fell out of favor in 1970s

new methods (1984–)

• 1984 Karmarkar: new polynomial-time method for LP (projective
algorithm)

• later recognized as closely related to earlier interior-point methods

• many variations since 1984; widely believed to be faster than simplex for
very large problems (over 10,000 variables/constraints)

The barrier method 11–3

Gradient and Hessian

differentiable function f : Rn → R

gradient and Hessian (evaluated at x):

∇f(x) =

⎡⎢⎢⎢⎣
∂f(x)
∂x1

∂f(x)
∂x2...

∂f(x)
∂xn

⎤⎥⎥⎥⎦ , ∇2f(x) =

⎡⎢⎢⎢⎢⎢⎣
∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2

· · · ∂2f(x)
∂x2∂xn

...
∂2f(x)
∂xn∂x1

∂2f(x)
∂xnx2

· · · ∂2f(x)
∂x2

n

⎤⎥⎥⎥⎥⎥⎦

2nd order Taylor series expansion around x:

f(y) � f(x) + ∇f(x)T (y − x) +
1
2
(y − x)T∇2f(x)(y − x)

The barrier method 11–4

Positive semidefinite matrices

a quadratic form is a function f : Rn → R with

f(x) = xTAx =
n∑

i,j=1

Aijxixj

may as well assume A = AT since xTAx = xT ((A + AT)/2)x

A = AT is positive semidefinite if

xTAx ≥ 0 for all x

A = AT is positive definite if

xTAx > 0 for all x �= 0

The barrier method 11–5

Convex differentiable functions

f : Rn → R is convex if for all x and y

0 ≤ λ ≤ 1 =⇒ f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

f : Rn → R is strictly convex if for all x and y

0 < λ < 1 =⇒ f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y)

• for differentiable f :

∇2f(x) positive semidefinite ⇐⇒ f convex

∇2f(x) positive definite =⇒ f strictly convex

• for convex differentiable f :

∇f(x) = 0 ⇐⇒ x = argmin f

f strictly convex ⇒ argmin f is unique (if it exists)

The barrier method 11–6

Pure Newton method

algorithm for minimizing convex differentiable f :

x+ = x −∇2f(x)−1∇f(x)

• x+ minimizes 2nd order expansion of f(y) at x:

f(x) + ∇f(x)T (y − x) +
1
2
(y − x)T∇2f(x)(y − x)

x+x

�
���

f

�
���

2nd-order approx. of f

The barrier method 11–7

• x+ solves linearized optimality condition:

0 = ∇f(x) + ∇2f(x)(y − x)

x+x

�
���

f ′

�
���

1st-order approx. of f ′

0

intepretations suggest method works very well near optimum

The barrier method 11–8

Global behavior

pure Newton method can diverge

example: f(x) = log(ex + e−x), start at x(0) = 1.1

−3 −2 −1 0 1 2 3
0.5

1

1.5

2

2.5

3

3.5

x

f(x)

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f ′(x)

k x(k) f(x(k)) − f�

1 −1.129 · 100 5.120 · 10−1

2 1.234 · 100 5.349 · 10−1

3 −1.695 · 100 6.223 · 10−1

4 5.715 · 100 1.035 · 100

5 −2.302 · 104 2.302 · 104

The barrier method 11–9

Newton method with exact line search

given starting point x

repeat

1. Compute Newton direction
v = −∇2f(x)−1∇f(x)

2. Line search. Choose a step size t
t = argmint>0 f(x + tv)

3. Update. x := x + tv

until stopping criterion is satisfied

• globally convergent

• very fast local convergence

(more later)

The barrier method 11–10

Logarithmic barrier function

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

assume strictly feasible: {x | Ax < b} �= ∅

define logarithmic barrier φ(x) =

⎧⎪⎨⎪⎩
m∑

i=1

− log(bi − aT
i x) Ax < b

+∞ otherwise

φ → ∞ as x approaches boundary of {x | Ax < b}

The barrier method 11–11

Derivatives of barrier function

∇φ(x) =
m∑

i=0

1
bi − aT

i x
ai = ATd

∇2φ(x) =
m∑

i=1

1
(bi − aT

i x)2
aia

T
i = AT diag(d)2A

where d = (1/(b1 − aT
1 x), . . . , 1/(bm − aT

mx))

• φ is smooth on C = {x | Ax < b}
• φ is convex on C: for all y ∈ Rn,

yT∇2φ(x)y = yTAdiag(d)2Ay = ‖diag(d)Ay‖2 ≥ 0

• strictly convex if rankA = n

The barrier method 11–12

The analytic center

argmin φ (if it exists) is called analytic center of inequalities

optimality conditions:

∇φ(x) =
m∑

i=1

1
bi − aT

i x
ai = 0

• exists if and only if C = {x | Ax < b} is bounded

• unique if A has rank n

• different descriptions of the same polyhedron may have different analytic
centers (e.g., adding redundant inequalities moves analytic center)

• efficiently computed via Newton’s method (given strictly feasible
starting point)

The barrier method 11–13

Force field interpretation

• associate with constraint aT
i x ≤ bi, at point x, the force

Fi =
−ai

bi − aT
i x

– Fi points away from constraint plane
– ‖Fi‖ = 1/dist(x, constraint plane)

• φ is potential of 1/r force field associated with each constraint plane

Fi

forces balance at analytic center

The barrier method 11–14

Central path

x∗(t) = argmin
x

(tcTx + φ(x)) for t > 0

(we assume minimizer exists and is unique)

• curve x∗(t) for t ≥ 0 called central path

• can compute x∗(t) by solving smooth unconstrained minimization
problem (given a strictly feasible starting point)

• t gives relative weight of objective and barrier

• barrier ‘traps’ x∗(t) in strictly feasible set

• intuition suggests x∗(t) converges to optimal as t → ∞

x∗(t) characterized by

tc +
m∑

i=1

1
bi − aT

i x∗(t)
ai = 0

The barrier method 11–15

example

�
xac

�
�

��

t = 1

�
�

�
���

t = 10

�
�

��

t = 100

−c

The barrier method 11–16

Force field interpretation

imagine a particle in C, subject to forces

ith constraint generates constraint force field

Fi(x) = − 1
bi − aT

i x
ai

• φ is potential associated with constraint forces

• constraint forces push particle away from boundary of feasible set

superimpose objective force field F0(x) = −tc

• pulls particle toward small cTx

• t scales objective force

at x∗(t), constraint forces balance objective force; as t increases, particle is
pulled towards optimal point, trapped in C by barrier potential

The barrier method 11–17

Central points and duality

recall x∗ = x∗(t) satisfies

c +
m∑

i=1

ziai = 0, zi =
1

t(bi − aT
i x∗)

> 0

i.e., z is dual feasible and

p� ≥ −bTz = cTx∗ +
∑

i

zi(aT
i x∗ − bi) = cTx∗ − m/t

summary: a point on central path yields dual feasible point and lower
bound:

cTx∗(t) ≥ p� ≥ cTx∗(t) − m/t

(which proves x∗(t) becomes optimal as t → ∞)

The barrier method 11–18

Central path and complementary slackness

optimality conditions: x optimal ⇐⇒ Ax ≤ b and ∃z s.t.

z ≥ 0, ATz + c = 0, zi(bi − aT
i x) = 0

centrality conditions: x is on central path ⇐⇒ Ax < b and ∃z, t > 0 s.t.

z ≥ 0, ATz + c = 0, zi(bi − aT
i x) = 1/t

• for t large, x∗(t) ‘almost’ satisfies complementary slackness

• central path is continuous deformation of complementary slackness
condition

The barrier method 11–19

Unconstrained minimization method

given strictly feasible x, desired accuracy ε > 0
1. t := m/ε
2. compute x∗(t) starting from x
3. x := x∗(t)

• computes ε-suboptimal point on central path
(and dual feasible z)

• solve constrained problem via Newton’s method

• works, but can be slow

The barrier method 11–20

Barrier method

given strictly feasible x, t > 0, tolerance ε > 0
repeat

1. compute x∗(t) starting from x, using Newton’s method
2. x := x∗(t)
3. if m/t ≤ ε, return(x)
4. increase t

• also known as SUMT (Sequential Unconstrained Minimization
Technique)

• generates sequence of points on central path

• simple updating rule for t: t+ = μt (typical values μ ≈ 10 ∼ 100)

steps 1–4 above called outer iteration; step 1 involves inner iterations
(e.g., Newton steps)

tradeoff: small μ =⇒ few inner iters to compute x(k+1) from x(k), but
more outer iters

The barrier method 11–21

Example

minimize cTx
subject to Ax ≤ b

A ∈ R100×50, Newton with exact line search

0 10 20 30 40 50 60 70
0.0001

0.001

0.01

0.1

1

10

100

1000

μ = 3μ = 50
μ = 180

total # Newton iters

d
u
al

it
y

ga
p

• width of ‘steps’ shows #Nt. iters
per outer iter; height of ‘steps’
shows reduction in dual. gap (1/μ)

• gap reduced by 105 in few tens of
Newton iters

• gap decreases geometrically

• can see trade-off in choice of μ

The barrier method 11–22

example continued . . .

trade-off in choice of μ: #Newton iters required to reduce duality gap by
106

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

to
ta

l
#

N
ew

to
n

it
er

s

μ

works very well for wide range of μ

The barrier method 11–23

Phase I

to compute strictly feasible point (or determine none exists) set up
auxiliary problem:

minimize w
subject to Ax ≤ b + w1

• easy to find strictly feasible point (hence barrier method can be used)

• can use stopping criterion with target value 0

if we include constraint on cTx,

minimize w
subject to Ax ≤ b + w1

cTx ≤ M

phase I method yields point on central path of original problem

many other methods for finding initial primal (& dual) strictly feasible
points

The barrier method 11–24

ESE504 (Fall 2010)

Lecture 12
Convergence analysis of the barrier method

• complexity analysis of the barrier method

– convergence analysis of Newton’s method
– choice of update parameter μ
– bound on the total number of Newton iterations

• initialization

12–1

Complexity analysis

we’ll analyze the method of page 11–21 with

• update t+ = μt

• starting point x∗(t(0)) on the central path

main result: #Newton iters is bounded by

O(
√

m log(ε(0)/ε)) (where ε(0) = m/t(0))

caveats:

• methods with good worst-case complexity don’t necessarily work better
in practice

• we’re not interested in the numerical values for the bound—only in the
exponent of m and n

• doesn’t include initialization

• insights obtained from analysis are more valuable than the bound itself

Convergence analysis of the barrier method 12–2

Outline

1. convergence analysis of Newton’s method for

ϕ(x) = tcTx −
m∑

i=1

log(bi − aT
i x)

(will give us a bound on the number of Newton steps per outer
iteration)

2. effect of μ on total number of Newton iterations to compute x∗(μt)
from x∗(t)

3. combine 1 and 2 to obtain the total number of Newton steps, starting
at x∗(t(0))

Convergence analysis of the barrier method 12–3

The Newton decrement

Newton step at x:

v = −∇2ϕ(x)−1∇ϕ(x)

= −(AT diag(d)2A)−1(tc + ATd)

where d = (1/(b1 − aT
1 x), . . . , 1/(bm − aT

mx))

Newton decrement at x:

λ(x) =
√
∇ϕ(x)T∇2ϕ(x)−1∇ϕ(x)

=
√

vT∇2ϕ(x)v

=

(
m∑

i=1

(
aT

i v

bi − aT
i x

)2
)1/2

= ‖diag(d)Av‖

Convergence analysis of the barrier method 12–4

theorem. if λ = λ(x) < 1, then ϕ is bounded below and

ϕ(x) ≤ ϕ(x∗(t)) − λ − log(1 − λ)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

• if λ ≤ 0.81, then ϕ(x) ≤ ϕ(x∗(t)) + λ

• useful as stopping criterion for Newton’s method

Convergence analysis of the barrier method 12–5

proof: w.l.o.g. assume b − Ax = 1; let x∗ = x∗(t), z = 1 + Av

λ = ‖Av‖ < 1 =⇒ z = 1 + Av ≥ 0

∇2ϕ(x)v = ATAv = −∇ϕ(x) = −tc − AT1 =⇒ ATz = −tc

tcTx∗ −
m∑

i=1

log(bi − aT
i x∗) = −zTAx∗ −

m∑
i=1

log(bi − aT
i x∗)

≥ −zTAx∗ +
m∑

i=1

log zi − zT (b − Ax∗) + m

= −(1 + Ax)Tz +
m∑

i=1

log zi + m

= tcTx +
∑

i

(−aT
i v + log(1 + aT

i v))

≥ tcTx + λ + log(1 − λ)

Convergence analysis of the barrier method 12–6

inequalities follow from:

1. log y ≤ − log z + zy − 1 for y, z > 0

2.
∑m

i=1(yi − log(1 + yi)) ≤ −‖y‖ − log(1 − ‖y‖) if ‖y‖ < 1

Convergence analysis of the barrier method 12–7

Local convergence analysis

x+ = x −∇2ϕ(x)−1∇ϕ(x)

theorem: if λ < 1, then Ax+ < b and λ+ ≤ λ2

(λ is Newton decrement at x; λ+ is Newton decrement at x+)

• gives bound on number of iterations: suppose we start at x(0) with
λ(0) ≤ 0.5, then ϕ(x) − ϕ(x∗(t)) < δ after fewer than

log2 log2(1/δ) iterations

• called region of quadratic convergence

• practical rule of thumb: 5–6 iterations

Convergence analysis of the barrier method 12–8

proof.

1. λ2 =
∑m

i=1(a
T
i v)2/(bi − aT

i x)2 < 1 implies aT
i (x + v) < bi

2. assume b − Ax+ = 1; let w = 1 − d − diag(d)2Av

(λ+)2 = ‖Av+‖2 = ‖Av+‖2 − 2(Av+)T (w + Av+) (1)

≤ ‖w + Av+ − Av+‖2

=
m∑

i=1

(1 − di)4 (2)

=
m∑

i=1

(dia
T
i v)4

≤ ‖diag(d)Av‖4 = λ4

(1) uses ATw = tc + AT1, ATAv+ = −tc − AT1
(2) uses Av = Ax+ − b − Ax + b = −1 + diag(d)−11,

therefore dia
T
i v = 1 − di and wi = (1 − di)

2

Convergence analysis of the barrier method 12–9

Global analysis of Newton’s method

damped Newton algorithm: x+ = x + sv, v = −∇2ϕ(x)−1∇ϕ(x)

step size to the boundary: s = α−1 where

α = max
{

aT
i v

bi − aT
i x

∣∣∣∣ aT
i v > 0

}
(α = 0 if Av ≤ 0)

theorem. for s = 1/(1 + α),

ϕ(x + sv) ≤ ϕ(x) − (λ − log(1 + λ))

• very simple expression for step size

• same bound if s is determined by an exact line search

if λ ≥ 0.5,
ϕ(x + (1 + α)−1v) ≤ ϕ(x) − 0.09

(hence, convergence)

Convergence analysis of the barrier method 12–10

proof. define f(s) = ϕ(x + sv) for 0 ≤ s < 1/α

f ′(s) = vT∇ϕ(x + sv), f ′′(s) = vT∇2ϕ(x + sv)Tv

for Newton direction v: f ′(0) = −f ′′(0) = −λ2

by integrating the upper bound

f ′′(s) =
m∑

i=1

(
aT

i v

bi − aT
i x − saT

i v

)2

≤ f ′′(0)
(1 − sα)2

twice, we obtain

f(s) ≤ f(0) + sf ′(0) − f ′′(0)
α2

(sα + log(1 − sα))

upper bound is minimized by s = −f ′(0)/(f ′′(0) − αf ′(0)) = 1/(1 + α)

f(s) ≤ f(0) − f ′′(0)
α2

(α − log(1 + α))

≤ f(0) − (λ − log(1 + λ)) (since α ≤ λ))

Convergence analysis of the barrier method 12–11

Summary

given x with Ax < b, tolerance δ ∈ (0, 0.5)

repeat

1. Compute Newton step at x: v = −∇2ϕ(x)−1∇ϕ(x)

2. Compute Newton decrement: λ = (vT∇2ϕ(x)v)1/2

3. If λ ≤ δ, return(x)

4. Update x: If λ ≥ 0.5,

x := x + (1 + α)−1v where α = max{0, maxi aT
i v/(bi − aT

i x)}
else, x := x + v

upper bound on #iterations, starting at x:

log2 log2(1/δ) + 11 (ϕ(x) − ϕ(x∗(t)))

usually very pessimistic; good measure in practice:

β0 + β1 (ϕ(x) − ϕ(x∗(t)))

with empirically determined βi (β0 ≤ 5, β1 � 11)

Convergence analysis of the barrier method 12–12

#Newton steps per outer iteration

#Newton steps to minimize ϕ(x) = t+cTx −∑m
i=1 log(bi − aT

i x)

theorem. if z > 0, ATz + c = 0, then

ϕ(x∗(t+)) ≥ −t+bTz +
m∑

i=1

log zi + m(1 + log t+)

in particular, for t+ = μt, zi = 1/t(bi − aT
i x∗(t)):

ϕ(x∗(t+)) ≥ ϕ(x∗(t)) − m(μ − 1 − log μ)

yields estimates for #Newton steps to minimize ϕ starting at x∗(t):

β0 + β1m(μ − 1 − log μ)

• is an upper bound for β0 = log2 log2(1/δ), β1 = 11
• is a good measure in practice for empirically determined β0, β1

Convergence analysis of the barrier method 12–13

proof. if z > 0, ATz + c = 0, then

ϕ(x) = t+cTx −
m∑

i=1

log(bi − aT
i x)

≥ t+cTx +
m∑

i=1

log zi − t+zT (b − Ax) + m(1 + log t+)

= −t+bTz +
m∑

i=1

log zi + m(1 + log t+)

for zi = 1/(t(bi − aT
i x∗(t)), t+ = μt, this yields

ϕ(x�(t+)) ≥ ϕ(x�(t)) − m(μ − 1 − log μ)

Convergence analysis of the barrier method 12–14

Bound on total #Newton iters

suppose we start on central path with t = t(0)

number of outer iterations:

#outer iters =
⌈
log(ε(0)/ε)

log μ

⌉
• ε(0) = m/t(0): initial duality gap

• ε(0)/ε: reduction in duality gap

upper bound on total #Newton steps:⌈
log(ε(0)/ε)

log μ

⌉
(β0 + β1m(μ − 1 − log μ))

• β0 = log2 log2(1/δ), β1 = 11

• can use empirical values for βi to estimate average-case behavior

Convergence analysis of the barrier method 12–15

Strategies for choosing μ

• μ independent of m:

#Newton steps per outer iter ≤ O(m)

total #Newton steps ≤ O(m log(ε(0)/ε)))

• μ = 1 + γ/
√

m with γ independent of m

#Newton steps per outer iter ≤ O(1)

total #Newton steps ≤ O(
√

m log(ε(0)/ε)))

follows from:
– m(μ − 1 − log μ) ≤ γ2/2, because x − x2/2 ≤ log(1 + x) for x > 0

– log(1 + γ/
√

m) ≥ log(1 + γ)/
√

m for m ≥ 1

Convergence analysis of the barrier method 12–16

Choice of initial t

rule of thumb: given estimate p̂ of p�, choose

m/t ≈ cTx − p̂

(since m/t is duality gap)

via complexity theory (c.f. page 12–12) given dual feasible z, #Newton
steps in first iteration is bounded by an affine function of

t(cTx + bTz) + φ(x) −
m∑

i=1

log zi − m(1 + logt)

= t(cTx + bTz) − m log t + const.

choose t to minimize bound; yields m/t = cTx + bTz

there are many other ways to choose t

Convergence analysis of the barrier method 12–17

ESE504 (Fall 2010)

Lecture 13
Primal-dual interior-point methods

• Mehrotra’s predictor-corrector method

• computing the search directions

13–1

Central path and complementary slackness

s + Ax − b = 0

ATz + c = 0

zisi = 1/t, i = 1, . . . , m

z ≥ 0, s ≥ 0

• continuous deformation of optimality conditions

• defines central path: solution is x = x∗(t), s = b − Ax∗(t), zi = 1/tsi

• m + n linear and m nonlinear equations in the variables s ∈ Rm,
x ∈ Rn, z ∈ Rm

Primal-dual interior-point methods 13–2

Interpretation of barrier method

apply Newton’s method to

s + Ax − b = 0, ATz + c = 0, zi − 1/(tsi) = 0, i = 1, . . . , m

i.e., linearize around current x, z, s:⎡⎣ 0 A I
AT 0 0
X 0 X−1/t

⎤⎦⎡⎣ Δz
Δx
Δs

⎤⎦ =

⎡⎣ −(Ax + s − b)
−(ATz + c)
1/t − Xz

⎤⎦
where X = diag(s)

solution (for s + Ax − b = 0, ATz + c = 0):

• determine Δx from ATX−2AΔx = −tc − ATX−11 i.e., Δx is the
Newton direction used in barrier method

• substitute to obtain Δs, Δz

Primal-dual interior-point methods 13–3

Primal-dual path-following methods

• modifications to the barrier method:

– different linearization of central path
– update both x and z after each Newton step
– allow infeasible iterates
– very aggressive step size selection (99% or 99.9% of step to the

boundary)
– update t after each Newton step (hence distinction between outer &

inner iteration disappears)
– linear or polynomial approximation to the central path

• limited theory, fewer convergence results

• work better in practice (faster and more reliable)

Primal-dual interior-point methods 13–4

Primal-dual linearization

apply Newton’s method to

s + Ax − b = 0

ATz + c = 0

zisi − 1/t = 0, i = 1, . . . ,m

i.e., linearize around s, x, z:⎡⎣ 0 A I
AT 0 0
X 0 Z

⎤⎦⎡⎣ Δz
Δx
Δs

⎤⎦ =

⎡⎣ −(Ax + s − b)
−(ATz + c)
1/t − Xz

⎤⎦
where X = diag(s), Z = diag(z)

• iterates can be infeasible: b − Ax �= s, ATz + c �= 0

• we assume s > 0, z > 0

Primal-dual interior-point methods 13–5

computing Δx, Δz, Δs

1. compute Δx from

ATX−1ZAΔx = ATz − ATX−11/t − rz − ATX−1Zrx

where rx = Ax + s − b, rz = ATz + c

2. Δs = −rx − AΔx

3. Δz = X−11/t − z − X−1ZΔs

the most expensive step is step 1

Primal-dual interior-point methods 13–6

Affine scaling direction

⎡⎣ 0 A I
AT 0 0
X 0 Z

⎤⎦⎡⎣ Δzaff

Δxaff

Δsaff

⎤⎦ =

⎡⎣ −(Ax + s − b)
−(ATz + c)

−Xz

⎤⎦
where X = diag(s), Z = diag(z)

• limit of Newton direction for t → ∞
• Newton step for

s + Ax − b = 0

ATz + c = 0

zisi = 0, i = 1, . . . ,m

i.e., the primal-dual optimality conditions

Primal-dual interior-point methods 13–7

Centering direction

⎡⎣ 0 A I
AT 0 0
X 0 Z

⎤⎦⎡⎣ Δzcent

Δxcent

Δscent

⎤⎦ =

⎡⎣ 0
0
1

⎤⎦
where X = diag(s), Z = diag(z)

• limit of Newton direction for t → 0

• search direction is weighted sum of centering direction and affine scaling
direction

Δx = (1/t)Δxcent + Δxaff

Δz = (1/t)Δzcent + Δzaff

Δs = (1/t)Δscent + Δsaff

• in practice:

– compute affine scaling direction first
– choose t
– compute centering direction and add to affine scaling direction

Primal-dual interior-point methods 13–8

Heuristic for selecting t

• compute affine scaling direction

• compute primal and dual step lengths to the boundary along the affine
scaling direction

αx = max{α ∈ [0, 1] | s + αΔsaff ≥ 0}
αz = max{α ∈ [0, 1] | z + αΔzaff ≥ 0}

• compute

σ =
(

(s + αxΔsaff)T (z + αzΔzaff)
sTz

)3

small σ means affine scaling directions are good search directions
(significant reduction in sTz)

• use t = m/(σsTz) i.e., search direction will be the Newton direction
towards the central point with duality gap σsTz

a heuristic, based on extensive experiments

Primal-dual interior-point methods 13–9

Mehrotra’s corrector step

⎡⎣ 0 A I
AT 0 0
X 0 Z

⎤⎦⎡⎣ Δzcor

Δxcor

Δscor

⎤⎦ =

⎡⎣ 0
0

−ΔXaffΔzaff

⎤⎦
• higher-order correction to the affine scaling direction:

(si + Δsaff
i + Δscor

i)(zi + Δzaff
i + Δzcor

i) ≈ 0

• computation can be combined with centering step, i.e., use

Δx = Δxcc + Δxaff , Δz = Δzcc + Δzaff, Δs = Δscc + Δsaff

where ⎡⎣ 0 A I
AT 0 0
X 0 Z

⎤⎦⎡⎣ Δzcc

Δxcc

Δscc

⎤⎦ =

⎡⎣ 0
0

1/t − ΔXaffΔzaff

⎤⎦

Primal-dual interior-point methods 13–10

Step size selection

• determine step to the boundary

αx = max{α ≥ 0 | s + αΔs ≥ 0}
αz = max{α ≥ 0 | z + αΔz ≥ 0}

• update x, s, z
x := x + min{1, 0.99αx}Δx

s := s + min{1, 0.99αx}Δs

z := z + min{1, 0.99αz}Δz

Primal-dual interior-point methods 13–11

Mehrotra’s predictor-corrector method

choose starting points x, z, s with s > 0, z > 0

1. evaluate stopping criteria

• primal feasibility: ‖Ax + s − b‖ ≤ ε1(1 + ‖b‖)
• dual feasibility: ‖ATz + c‖ ≤ ε2(1 + ‖c‖)
• maximum absolute error: cTx + bTz ≤ ε3

• maximum relative error:

cTx + bTz ≤ ε4|bTz| if − bTz > 0
cTx + bTz ≤ ε4|cTx| if cTx < 0

2. compute affine scaling direction (X = diag(s), Z = diag(z))⎡⎣ 0 A I
AT 0 0
X 0 Z

⎤⎦⎡⎣ Δzaff

Δxaff

Δsaff

⎤⎦ =

⎡⎣ −(Ax + s − b)
−(ATz + c)

−Xz

⎤⎦

Primal-dual interior-point methods 13–12

3. compute steps to the boundary

αx = max{α ∈ [0, 1] | s + αΔsaff ≥ 0}
αz = max{α ∈ [0, 1] | z + αΔzaff ≥ 0}

4. compute centering-corrector steps

⎡⎣ 0 A I
AT 0 0
X 0 Z

⎤⎦⎡⎣ Δzcc

Δxcc

Δscc

⎤⎦ =

⎡⎢⎢⎣
0
0

σ
sTz

m
1 − ΔXaffΔzaff

⎤⎥⎥⎦
where ΔXaff = diag(Δsaff), and

σ =
(

(s + αxΔsaff)T (z + αzΔzaff)
sTz

)3

Primal-dual interior-point methods 13–13

5. compute search directions

Δx = Δxaff + Δxcc, Δs = Δsaff + Δscc, Δz = Δzaff + Δzcc

6. determine step sizes and update

αx = max{α ≥ 0 | s + αΔs ≥ 0}
αz = max{α ≥ 0 | z + αΔz ≥ 0}

x := x + min{1, 0.99αx}Δx

s := s + min{1, 0.99αx}Δs

z := z + min{1, 0.99αz}Δz

go to step 1

Primal-dual interior-point methods 13–14

Computing the search direction

most expensive part of one iteration: solve two sets of equations

ATX−1ZAΔxaff = r1, ATX−1ZAΔxcc = r2

for some r1, r2

two methods

• sparse Cholesky factorization: used in all general-purpose solvers

• conjugate gradients: used for extremely large LPs, or LPs with special
structure

Primal-dual interior-point methods 13–15

Cholesky factorization

if B = BT ∈ Rn×n is positive definite, then it can be written as

B = LLT

L lower triangular with lii > 0

• L is called the Cholesky factor of B

• costs O(n3) if B is dense

application: solve Bx = d with B = LLT

• solve Ly = d (forward substitution)

• solve LTx = y (backward substitution)

Primal-dual interior-point methods 13–16

Sparse Cholesky factorization

solve Bx = d with B positive definite and sparse

1. reordering of rows and columns of B to increase sparsity of L

2. symbolic factorization: based on sparsity pattern of B, determine
sparsity pattern of L

3. numerical factorization: determine L

4. forward and backward substitution: compute x

only steps 3,4 depend on the numerical values of B; only step 4 depends
on the right hand side; most expensive steps: 2,3

in Mehrotra’s method with sparse LP: B = ATX−1ZA

• do steps 1,2 once, at the beginning of the algorithm (ATX−1ZA has
same sparsity pattern as ATA)

• do step 3 once per iteration, step 4 twice

Primal-dual interior-point methods 13–17

Conjugate gradients

solve Bx = d with B = BT ∈ Rn×n positive definite

• iterative method

• requires n evaluations of Bx (in theory)

• faster if evaluation of Bx is cheap (e.g., B is sparse, Toeplitz, . . .)

• much cheaper in memory than Cholesky factorization

• less accurate and robust (requires preconditioning)

in Mehrotra’s method:
B = ATX−1ZA

evaluations Bx are cheap if evaluations Ax and ATy are cheap (e.g., A is
sparse)

Primal-dual interior-point methods 13–18

ESE504 (Fall 2010)

Lecture 14
Self-dual formulations

• initialization and infeasibility detection

• skew-symmetric LPs

• homogeneous self-dual formulation

• self-dual formulation

14–1

Complete solution of an LP

given a pair of primal and dual LPs

minimize cTx
subject to Ax + s = b

s ≥ 0

maximize −bTz
subject to ATz + c = 0

z ≥ 0,

classify problem as solvable, primal infeasible, or dual infeasible

• if solvable, find optimal x, s, z

Ax+s = b, ATz +c = 0, cTx+bTz = 0, s ≥ 0, z ≥ 0

• if primal infeasible, find certificate z: ATz = 0, z ≥ 0, bTz < 0

• if dual infeasible, find certificate x: Ax ≤ 0, cTx < 0

Self-dual formulations 14–2

Methods for initialization and infeasibility detection

• phase I – phase II

minimize t
subject to Ax ≤ b + t1, t ≥ 0

disadvantage: phase I is as expensive as phase II

• ‘big M ’ method

minimize cTx + Mt
subject to Ax ≤ b + t1, t ≥ 0

for some large M
disadvantage: large M causes numerical problems

• infeasible-start methods (lecture 13)
disadvantage: do not return certificate of (primal or dual) infeasibility

• self-dual embeddings: this lecture

Self-dual formulations 14–3

Self-dual LP

primal LP (variables u, v)

minimize fTu + gTv
subject to Cu + Dv ≤ f

−DTu + Ev = g
u ≥ 0

with C = −CT , E = −ET

dual LP (variables ũ, ṽ)

maximize −fT ũ − gT ṽ
subject to Cũ + Dṽ ≤ f

−DT ũ + Eṽ = g
ũ ≥ 0

• primal LP = dual LP

• we assume the problem is feasible: hence p� = d� = −p� = 0

Self-dual formulations 14–4

Optimality conditions for self-dual LP

primal & dual feasibility, complementary slackness:[
C D

−DT E

] [
u
v

]
+
[

w
0

]
=
[

f
g

]
[

C D
−DT E

] [
ũ
ṽ

]
+
[

w̃
0

]
=
[

f
g

]
u ≥ 0, w ≥ 0, ũ ≥ 0, w̃ ≥ 0, wT ũ + uT w̃ = 0

• observation 1: if u, v, w are primal optimal, then ũ = u, ṽ = v,
w̃ = w are dual optimal; hence optimal u, v, w must satisfy[

C D
−DT E

] [
u
v

]
+
[

w
0

]
=
[

f
g

]
u ≥ 0, w ≥ 0, uTw = 0

Self-dual formulations 14–5

• observation 2: there exists a strictly complementary optimal pair
(u, v, w), (ũ, ṽ, w̃) (true for any LP with finite optimal value; see hw);
can show that u, w are strictly complementary:

wi = 0 =⇒ ũi > 0 (by strict complementarity of w and ũ)

=⇒ w̃i = 0 (because w̃T ũ = 0)

=⇒ ui > 0 (by strict complementarity of u and w̃)

wi > 0 =⇒ ui = 0 (because uTw = 0)

conclusion: a feasible self-dual LP has optimal u, v, w for which[
C D

−DT E

] [
u
v

]
+
[

w
0

]
=
[

f
g

]
u ≥ 0, w ≥ 0, uTw = 0

u + w > 0

Self-dual formulations 14–6

Homogeneous self-dual embedding of LP

minimize cTx
subject to Ax + s = b

s ≥ 0

maximize −bTz
subject to ATz + c = 0

z ≥ 0,

homogeneous self-dual (HSD) formulation:

minimize 0

subject to

⎡⎣ 0 bT cT

−b 0 A
−c −AT 0

⎤⎦⎡⎣ τ
z
x

⎤⎦+

⎡⎣ λ
s
0

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦
τ ≥ 0, z ≥ 0, λ ≥ 0, s ≥ 0

• homogeneous (rhs zero) and self-dual

• all feasible points are optimal

• feasible, but not strictly feasible

Self-dual formulations 14–7

LP solution from HSD formulation

let τ�, z�, x�, λ�, s� be optimal for HSD and strictly complementary:

τ�λ� = z�Ts� = 0, τ� + λ� > 0, z� + s� > 0

two cases:

1. τ� > 0, λ� = 0: primal and dual LP are solvable, with optimal solution

x = x�/τ�, s = s�/τ�, z = z�/τ�

follows from HSD constraints, divided by τ�:

Ax+s = b, ATz +c = 0, cTx+bTz = 0, s ≥ 0, z ≥ 0

Self-dual formulations 14–8

2. τ� = 0, λ� > 0:
cTx� + bTz� < 0

• if cTx� < 0, dual problem is infeasible

Ax� ≤ 0, cTx� < 0

x� is a certificate of dual infeasibility

• if bTz� < 0, primal problem is infeasible

ATz� = 0, bTz� < 0

z� is a certificate of primal infeasibility

Self-dual formulations 14–9

Extended self-dual embedding of LP

choose x0, z0 > 0, s0 > 0, and define

rpri = b − Ax0 − s0, rdu = ATz0 + c, r = −(cTx0 + bTz0 + 1)

self-dual (SD) formulation

min. (zT
0 s0 + 1)θ

s.t.

⎡⎢⎢⎣
0 bT cT r
−b 0 A rpri

−c −AT 0 rdu

−r −rT
pri −rT

du 0

⎤⎥⎥⎦
⎡⎢⎢⎣

τ
z
x
θ

⎤⎥⎥⎦+

⎡⎢⎢⎣
λ
s
0
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0

zT
0 s0 + 1

⎤⎥⎥⎦
τ ≥ 0, z ≥ 0, λ ≥ 0, s ≥ 0

• self-dual, not homogeneous

• strictly feasible: take x = x0, z = z0, s = s0, τ = θ = λ = 1

Self-dual formulations 14–10

• at optimum:

0 =
[

τ
z

]T [
λ
s

]
= −

[
τ
z

]T ([0 bT

−b 0

] [
τ
z

]
+
[

cT r
A rpri

] [
x
θ

])
= 0 −

[
x
θ

]T [
c AT

r rT
pri

] [
τ
z

]
= θ(1 + zT

0 s0) −
[

x
θ

]T [0 rdu

−rT
du 0

] [
x
θ

]
= θ(1 + zT

0 s0)

hence θ = 0

Self-dual formulations 14–11

LP solution from SD formulation

let τ�, z�, x�, θ� = 0, λ�, s� be optimal for SD form and strictly
complementary:

τ�λ� = z�Ts� = 0, τ� + λ� > 0, z� + s� > 0

two cases:

1. τ� > 0, λ� = 0: primal and dual LP are solvable, with optimal solution

x = x�/τ�, s = s�/τ�, z = z�/τ�

2. τ� = 0, λ� > 0:

• cTx� < 0: dual problem is infeasible
• bTz� < 0: primal problem is infeasible

Self-dual formulations 14–12

Conclusion

• status of the LP can be determined unambiguously from strictly
complementary solution of HSD or SD formulation

• can apply any algorithm (barrier, primal-dual, feasible, infeasible) to
solve SD form

• can apply any infeasible-start algorithm to solve HSD form

• HSD and SD formulations are twice the size of the original LP; however
by exploiting (skew-)symmetry in the equations, one can compute the
search directions at roughly the same cost as for the original LP

Self-dual formulations 14–13

Self-dual formulations 14–14

ESE504 (Fall 2010)

Lecture 15
Network optimization

• network flows

• extreme flows

• minimum cost network flow problem

• applications

15–1

Networks

network (directed graph): m nodes connected by n directed arcs

• arcs are ordered pairs (i, j)

• we assume there is at most one arc from node i to node j

• we assume there are no self-loops (arcs (i, i))

arc-node incidence matrix A ∈ Rm×n:

Aij =

⎧⎨⎩
1 arc j starts at node i

−1 arc j ends at node i
0 otherwise

column sums of A are zero: 1TA = 0

reduced arc-node incidence matrix Ã ∈ R(m−1)×n: the matrix formed
by the first m − 1 rows of A

Network optimization 15–2

example (m = 6, n = 8)

1

2

3

4 5

61

2

3

4

5

6

7

8

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0 0 −1

−1 0 1 0 0 0 0 1
0 −1 −1 −1 1 1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 0 −1 1 0
0 0 0 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Network optimization 15–3

Network flow

flow vector x ∈ Rn

• xj: flow (of material, traffic, charge, information, . . .) through arc j

• positive if in direction of arc; negative otherwise

total flow leaving node i:

n∑
j=1

Aijxj = (Ax)i

i

xj

Aij = −1
xk

Aik = 1

Network optimization 15–4

External supply

supply vector b ∈ Rm

• bi: external supply at node i

• negative bi represents external demand from the network

• must satisfy 1T b = 0 (total supply = total demand)

i

xj

Aij = −1
xk

Aik = 1

bi

balance equations: Ax = b

reduced balance equations: Ãx = (b1, . . . , bm−1)

Network optimization 15–5

Minimum cost network flow problem

minimize cTx
subject to Ax = b

l ≤ x ≤ u

• ci is unit cost of flow through arc i

• lj and uj are limits on flow through arc j (typically, lj ≤ 0, uj ≥ 0)

• we assume lj < uj, but allow lj = −∞ and uj = ∞

includes many network problems as special cases

Network optimization 15–6

Max-flow problem

maximize flow between node 1 (source) and node m (sink)

1 mt t

maximize t
subject to Ax = te

l ≤ x ≤ u

where e = (1, 0, . . . , 0,−1)

Network optimization 15–7

interpretation as minimum cost flow problem

1 m

artificial arc n + 1

minimize −t

subject to
[

A −e
] [x

t

]
= 0

l ≤ x ≤ u

Network optimization 15–8

Project scheduling

1 m

• arcs represent n tasks to be completed in a period of length T

• tk is duration of task k; must satisfy αk ≤ tk ≤ βk

• cost of completing task k in time tk is ck(βk − tk)

• nodes represent precedence relations: if arc k ends at node i and arc j
starts at node i, then task k must be completed before task j can start

Network optimization 15–9

LP formulation

minimize cT (β − t)
subject to tk + yi ≤ yj for all arcs k = (i, j)

ym − y1 ≤ T
α ≤ t ≤ β

• variables t1, . . . , tn, y1, . . . , ym

• yi− y1 is an upper bound on the total duration of tasks preceding node i

in matrix form

minimize cT (β − t)
subject to t + ATy ≤ 0

ym − y1 ≤ T
α ≤ t ≤ β

Network optimization 15–10

dual problem (after a simplification)

maximize −Tλ + αTx + (β − α)Ts
subject to Ax = λe

x ≥ 0, s ≤ x, s ≤ c, λ ≥ 0

variables λ, x, s; e = (1, 0, . . . , 0,−1)

interpretation: minimum cost network flow problem with nonlinear cost

maximize −Tλ +
∑

k fk(xk)
subject to Ax = λe

x ≥ 0, λ ≥ 0

fk(xk)

xk
ck

slope βk

slope αk

Network optimization 15–11

Paths and cycles

• path from node s to node t: sequence of arcs P1, . . . , PN

Pk = (ik−1, ik) or Pk = (ik, ik−1), i0 = s, iN = t

example (page 15–3): arcs 1, 3, 4, 7 form a path from node 1 to node 5

• directed path sequence of arcs P1, . . . , PN

Pk = (ik−1, ik) i0 = s, iN = t

example: arcs 1, 3, 6 form a directed path from node 1 to node 5

• (directed) cycle: (directed) path from a node to itself

example: arcs 1, 2, 3 form a cycle; arcs 4, 6, 7 form a directed cycle

Network optimization 15–12

Acyclic networks and trees

connected network: there exists a path between every pair of nodes

acyclic network: does not contain cycles

tree: connected acyclic network

connected, not acyclic
acyclic, not connected

tree

Network optimization 15–13

Topology and rank of incidence matrix

• network is connected if and only if

rankA = rank Ã = m − 1

Ax = b is solvable for all b with 1T b = 0

• network is acyclic if and only if

rankA = rank Ã = n

if Ax = b is solvable, its solution is unique

• network is a tree if and only if

rank(A) = rank Ã = n = m − 1

Ax = b has a unique solution for all b with 1T b = 0

Network optimization 15–14

Solving balance equations for tree networks

1

2

3

4

5

1

23

4

⎡⎢⎢⎢⎢⎣
−1 0 0 0

0 1 0 0
1 −1 −1 0
0 0 0 1
0 0 1 −1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b1

b2

b3

b4

b5

⎤⎥⎥⎥⎥⎦
x1 = −b1, x2 = b2, x3 = −b1 − b2 − b3, x4 = b4

in general, choose node m as ‘root’ node and take

xj = ±
∑

nodes i downstream of arc j

bi

important consequence: x ∈ Zn if b ∈ Zm

Network optimization 15–15

Solving balance equations for acyclic networks

1

2

3

4

5

6

7

8

9

10 1

2

3

4

5

6

7

8

x1 = −b1

x2 = b2

x3 = b3

x4 = −b4

x5 = −b5

x6 = −b1 − b2 − b6

x7 = b7

x8 = −b3 − b4 − b5 − b8

• can solve using only additions/subtractions

• x ∈ Zn if b ∈ Zm

Network optimization 15–16

Integrality of extreme flows

P is polyhedron of feasible flows

Ax = b, l ≤ x ≤ u

we will show that the extreme points of P are integer vectors if

• the external supplies bi are integer

• the flow limits li, ui are integer (or ±∞)

Network optimization 15–17

proof. suppose x is an extreme flow with

lj < xj < uj, j = 1, . . . ,K, xj =
{

lj j = K + 1, . . . , L
uj j = L + 1, . . . , n

we prove that x1,. . . , xK are integers

1. apply rank test of page 3–19 to the inequalities

l ≤ x ≤ u, Ax ≤ b, −Ax ≤ −b

rank test:

rank

⎛⎜⎜⎝
⎡⎢⎢⎣

0 −I 0
0 0 I

B0 B− B+

−B0 −B− −B+

⎤⎥⎥⎦
⎞⎟⎟⎠ = n

where A =
[

B0 B− B+

]
, B0 ∈ Rm×K, etc.

conclusion: rankB0 = K (subnetwork with arcs 1, . . . , K is acyclic)

Network optimization 15–18

2. y = (x1, . . . , xK) satisfies

B0y = b − [B− B+

] ⎡⎣ xK+1
...

xn

⎤⎦ (1)

interpretation: balance equations of an acyclic subnetwork with
incidence matrix B0, flow vector y, and integer external supplies

b − [B− B+

] ⎡⎣ xK+1
...

xn

⎤⎦
conclusion (from page 15–16): y is an integer vector

Network optimization 15–19

example (li = 0, ui = ∞ for all arcs)

1

2

3

4 5

6

b1 = 2

b2 = 1

b3 = −3

b4 = −2 b5 = 2

b6 = 0

1

2

3

4

5

6

7

8

x = (0, 2, 1, 0, 0, 0, 2, 0) is an extreme flow:

• it is feasible

• subgraph with arcs 2, 3, 7 is acyclic

Network optimization 15–20

Shortest path problem

minimize 1Tx
subject to Ax = (−1, 0, . . . , 0, 1)

0 ≤ x ≤ 1

• extreme optimal solutions satisfy xi ∈ {0, 1}

• arcs with xi = 1 form a shortest (forward) path between nodes 1 and m

• extends to arcs with non-unit lengths

• can be solved very efficiently via specialized algorithms

Network optimization 15–21

Assignment problem

• match N people to N tasks

• each person assigned to one task; each task assigned to one person

• cost of matching person i to task j is aij

minimum cost flow formulation

min.
∑N

i,j=1 aijxij

s.t.
∑N

i=1 xij = 1, j = 1, . . . , N∑N
j=1 xij = 1, i = 1, . . . , N

0 ≤ xij ≤ 1, i, j = 1, . . . , N

example (N = 3)

1

2

3

1

2

3

1

1

1

1

1

1

integrality: extreme optimal solution satisfies xij ∈ {0, 1}

Network optimization 15–22

ESE504 (Fall 2010)

Lecture 16
Integer linear programming

• integer linear programming, 0-1 linear programming

• a few basic facts

• branch-and-bound

16–1

Definition

integer linear program (ILP)

minimize cTx
subject to Ax ≤ b, Gx = d

x ∈ Zn

c

mixed integer linear program: only some of the variables are integer

0-1 (Boolean) linear program variables take values 0 or 1

Integer linear programming 16–2

Example: facility location problem

• n potential facility locations, m clients

• ci, i = 1, . . . , n: cost of opening a facility at location i

• dij, i = 1 . . . , m, j = 1, . . . , n: cost of serving client i from location j

determine optimal location:

minimize
∑n

j=1 cjyj +
∑m

i=1

∑n
j=1 dijxij

subject to
∑n

j=1 xij = 1, i = 1, . . . ,m

xij ≤ yj, i = 1, . . . , m, j = 1, . . . , n

xij, yj ∈ {0, 1}

• yj = 1 if location j is selected

• xij = 1 if location j serves client i

a 0-1 LP

Integer linear programming 16–3

Linear programming relaxation

the LP obtained by deleting the constraints x ∈ Zn (or x ∈ {0, 1}n) is
called the LP relaxation

• provides a lower bound on the optimal value of the integer LP

• if the solution of the relaxation has integer components, then it also
solves the integer LP

equivalent ILP formulations of the same problem can have different
relaxations

c c

Integer linear programming 16–4

Strong formulations

the convex hull of the feasible set S of an ILP is:

conv S =

{
K∑

i=1

λix
i

∣∣∣∣∣ xi ∈ S, λi ≥ 0,
∑

i

λi = 1

}

(the smallest polyhedron containing S)

c

for any c, the solution of the ILP also solves the relaxation

minimize cTx
subject to x ∈ conv S

Integer linear programming 16–5

Branch-and-bound algorithm

minimize cTx
subject to x ∈ P

where P is a finite set

general idea:

• decompose in smaller problems

minimize cTx
subject to x ∈ Pi

where Pi ⊂ P, i = 1, . . . ,K

• to solve subproblem: decompose recursively in smaller problems

• use lower bounds from LP relaxation to identify subproblems that don’t
lead to a solution

Integer linear programming 16–6

example
minimize cTx
subject to x ∈ P

where c = (−2,−3), and

P =
{

x ∈ Z2
+

∣∣∣∣ 2
9
x1 +

1
4
x2 ≤ 1,

1
7
x1 +

1
3
x2 ≤ 1

}

x1

x2 −c

optimal point: (2, 2)

Integer linear programming 16–7

tree of subproblems and results of LP relaxations:

P0

P1 P2

P3 P4 P5 P6

P7 P8

P9 P10

P11 P12

x1 ≤ 2

x2 ≤ 2 x2 ≤ 1

x1 = 3

x2 = 0

x1 = 4

x1 ≥ 3

x2 ≥ 3 x2 ≥ 2

x1 ≥ 4

x2 = 1

x1 ≥ 5

x� p�

P0 (2.17, 2.07) −10.56
P1 (2.00, 2.14) −10.43
P2 (3.00, 1.33) −10.00
P3 (2.00, 2.00) −10.00
P4 (0.00, 3.00) −9.00
P5 (3.38, 1.00) −9.75
P6 +∞
P7 (3.00, 1.00) −9.00
P8 (4.00, 0.44) −9.33
P9 (4.50, 0.00) −9.00

P10 +∞
P11 (4.00, 0.00) −8.00
P12 +∞

Integer linear programming 16–8

conclusions from subproblems:

• P2: the optimal value of

minimize cTx
subject to x ∈ P, x1 ≥ 3

is greater than or equal to −10.00

• P3: the solution of

minimize cTx
subject to x ∈ P, x1 ≤ 2, x2 ≤ 2

is (2, 2)

Integer linear programming 16–9

• P6: the problem

minimize cTx
subject to x ∈ P, x1 ≤ 3, x2 ≥ 2

is infeasible

suppose we enumerate the subproblems in the order

P0, P1, P2, P3, . . .

then after solving subproblem P4 we can conclude that (2, 2) is optimal

Integer linear programming 16–10

branch-and-bound for 0-1 linear program

minimize cTx
subject to Ax ≤ b, x ∈ {0, 1}n

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

can solve by enumerating all 2n possible x; every node represents a problem

minimize cTx
subject to Ax ≤ b

xi = 0, i ∈ I1, xi = 1, i ∈ I2

xi ∈ {0, 1}, i ∈ I3

where I1, I2, I3 partition {1, . . . , n}

Integer linear programming 16–11

branch-and-bound method

set U = +∞, mark all nodes in the tree as active

1. select an active node k, and solve the corresponding LP relaxation

minimize cTx
subject to Ax ≤ b

xi = 0, i ∈ Ik
1

xi = 1, i ∈ Ik
2

0 ≤ xi ≤ 1, i ∈ Ik
3

let x̂ be the solution of the relaxation

2. if cT x̂ ≥ U , mark all nodes in the subtree with root k as inactive

3. if all components of x̂ are 0 or 1, mark all nodes in the subtree with
root k as inactive; if moreover cT x̂ < U , then set U := cT x̂ and save x̂
as the best feasible point found so far

4. otherwise, mark node k as inactive

5. go to step 1

Integer linear programming 16–12

ESE504 (Fall 2010)

Lecture 17
Conclusions

• topics we didn’t cover

• choosing an algorithm

• EE236B

17–1

Topics we didn’t cover

network flow problems

• LPs defined in terms of graphs, e.g., assignment, shortest path,
transportation problems

• huge problems solvable via specialized methods

see 232E

integer linear programming

• examples and applications

• other methods (cutting plane, dynamic programming, . . .)

Conclusions 17–2

Choice of method

interior-point methods vs. simplex

• both work very well

• interior-point methods believed to be (usually) faster than simplex for
problems with more than 10,000 variables/constraints

general-purpose vs. custom software

• several widely available and efficient general-purpose packages

• unsophisticated custom software that exploits specific structure can be
faster than general-purpose solvers; some examples:

– column generation via simplex method
– �1-minimization via interior-point methods
– interior-point method using conjugate gradients

Conclusions 17–3

some interesting URLs

• http://plato.la.asu.edu/guide.html
(decision tree for optimization software)

• http://www.mcs.anl.gov/home/otc/Guide
(NEOS guide of optimization software)

• http://gams.cam.nist.gov
(guide to available mathematical software)

Conclusions 17–4

EE236B (winter quarter)

benefits of expressing a problem as an LP:

• algorithms will find the global optimum

• very large instances are readily solved

both advantages extend to nonlinear convex problems

• duality theory, interior-point algorithms extend gracefully from LP to
nonlinear convex problems

• nonlinear convex optimization covers a much wider range of applications

• recognizing convex problems is more difficult than recognizing LPs

Conclusions 17–5

Conclusions 17–6

