Linear Algebra and Matrices

CT.A

This chapter deals with the study of linear algebra and matrices as they are used in this course.

1 Review of Matrix Algebra

We start this chapter by introducing matrices and their algebra. Notationally, matrices are a
rectangular array of elements denoted by capital letters A, M,T". Those elements are referred to
as scalars and denoted by lowercase letters, a, b, o, etc.. Note that the scalars are not necessarily
constants: they maybe real or complex numbers, polynomials, or general functions.

Example 1 Consider the matrix

—0.02567 —36.617 —18.897 —32.09 3.2509 —0.76257
0.257 x 107> —1.8997 0.98312 —7.256 x 10~* —0.1708 —4.965 x 103
A= 0.012338 11.72  —2.6316 8.758 x 10~* —31.604 22.396
0 0 1 0 0 0
0 0 0 0 0 —-30

This is a 5x6 matrix with real entries. On the other hand,

P(s) = s+1 s+3
T s2+3s+2 s2+5s+4

is a 2 X 2 matrix of polynomials in the variable s.

A

A matrix which has m rows and n columns, is said to be m X n. A matrix may be denoted by
A =[a;;) where i =1,---mand j=1,---n.

Example 2 The matrix A in Example 1 has 5 rows and 6 columns. the element a;; = —0.02567
while a43 = 1.
A

A scalar is a 1 x 1 matrix. If m = n the matrix is said to be square. If n = 1 the matrix is a row
matrix (or vector). If n = 1 the matrix is an m column matrix (or vector). If A is square then we
define the T'race of A by the sum of its diagonal elements, i.e.

Trace(A) = iaii (1)
1=1



Example 3 Consider P(s) of Example 1, then Trace(P(s)) = s? + 6s + 5.

1.1 Matrix Algebra

Two matrices A and B are equal, written A = B, if and only if A has the same number of rows
and columns as B and if a;; = b;; for all 4, j. Two matrices A and B that have the same numbers
of rows and columns may be added or subtracted element by element, i.e.

C:[Cij]:AiB@Cij:aijﬂ:bij Vi, j (2)

the multiplication of 2 matrices A and B to obtain C = A.B may be performed if and only if A
has the same number of columns as B has rows. In fact,

n
C=AB < Cij = Z aikbk]’ (3)
k=1

the matrix C is m x ¢ if A is m x n and B is n x ¢q. Note that BA may not even be defined and it
certainly is not equal to AB even when both products are defined. The matrix of all zeros is the
Null matrix, and the square matrix A with a;; = 1 and a;; = 0 for 7 # j is the identity matrix. The
identity matrix is denoted by I. Note that AT = IA = A assuming A isn x n as is .

1.2 Properties of the Laws of Matrix Algebra

The following properties of matrix Algebra are easily verified

1. A+tB=B+4+A

2. A+ (B+C)=(A+B)+C
a(A+ B) = aA + aB for all scalar a.
ad = Ao

A(BC) = (AB)C

A(B +C) = AB + AC
(B+C)A=BA+CA

N ool W

1.3 Transpose, Conjugate, and Associate Matrices

Let A = [a;j] be an m x n matrix. The transpose of A is denoted by AT = [a;;] and is the nzm
matrix obtained by interchanging columns and rows. The matrix A is symmetric if A = AT, skew-

symmetric if A = —AT. Also, it can be seen that (AB)T = BT AT. In the case where A contains
complex elements, we let A be the conjugate of A whose elements are the conjugates of those of A.
Matrices satisfying A = AT are Hermitian and those satisfying A = —A” are skew-Hermitian.



1.4 Determinants, Minors, and Cofactors

In this section we will consider square matrices only. The determinant of a square matrix A denoted
by det(A) or | A | is a scalar-valued function of A and is given as follows for n = 1,2, 3.

1. n=1, then | A |= a1y
2. n =2, then | A |= a11a22 — a12a9
3. n =3, then | A |= a11(aza3s — azsaszr) + ai2(azsazr — aziasz) + aiz(aziase — axas:)

Standard methods apply for calculating determinants. The determinant of a square matrix is 0,
that of an identity matrix is 1, and that of a triangular or diagonal matrix is the product of all
diagonal elements. Each element a;; in an n X n square matrix A has associated with it a minor
M;; obtained as the determinant of the (n — 1) x (n — 1) matrix resulting form deleting the ith row
and the jth column. From these minors, we can obtain the cofactors given by C;; = (=1)i+4 M;;.

Example 4 Given

A=

N W N
S O
W N =

Then, M9 =5, C1g = —5, M3y =1 = —Cso.

Some useful properties of determinants are listed below:
1. Let A and B be n X n matrices, then | AB |=| A|.| B |.
2. | A|=| AT |
3. If A contains a row or a column of zeros, then | A |= 0.
4. If any row (or column) of A is a linear combination of other rows (or columns), then | A |= 0.

5. If we interchange any 2 rows (or columns) of a matrix A, the determinant of the resulting
matrix is — | A |.

6. If we multiply a row (or a column) of a matrix A by a scalar «, the determinant of the
resulting matrix is a | A4 |.

7. Any multiple of a row (or a column) may be added to any other row (or column) of a matrix
A without changing the value of the determinant.



1.5 Rank, Trace, and Inverse

The rank of an m X n matrix A denoted by r4 = rank(A) is the size of the largest nonzero
determinant that can be formed from A. Note that r4 < min{m,n}. If A is square and if r4 = n,
then A is nonsingular. If r4 is the rank of A and rp is the rank of B, and if C = AB, then
0 <rc < min{ra,rs}. The trace of a square matrix A was defined earlier as T'r(A) = > 7" ai;.

Example 5 xx
A

If A and B are conformable square matrices, Tr(A+B) = Tr(A)+Tr(B), and Tr(AB) = Tr(BA).
Also, Tr(A) = Tr(AT).

Example 6 Show that Tr(ABC) = Tr(BTATCT). First, write Tr(ABC) = Tr(CAB), then
Tr([CAB]Y) = Tr(CAB), thus proven.

A
Note that rank(A + B) # rank(A) + rank(B) and that Tr(AB) # Tr(A)Tr(B).
Example 7 xx

A

Next, we define the inverse of a square, nonsingular matrix A as the square matrix B of the same
dimensions such that

AB=BA=1
the inverse is denoted by A~! and may be found by

CT

A==
[A|

where C' is the matrix of cofactors Cj;; of A. Note that for the inverse to exist, | A | must be
nonzero, which is equivalent to saying that A is nonsingular. We also write CT = Adjoint(A).
Example 8 Show the following property
(AB)"'=B7'A7!
A

assuming of course that A and B are compatible and both invertible. There are other important
relations involving inverses of matrices, one of which is the Matriz Inversion Lemma

(A1 — Ag A7 As)™ = AT  + A Ag(Ag — AsAT Ay) "L A5 AT (4)

Example 9 Prove MIL



1.6 Elementary Operations and Matrices

The basic operations called elementary operations are as follows
1. Interchange any 2 rows (or columns)
2. Multiply any row (or column) by a scalar «

3. Multiply any row (or column) by a scalar @ and add the resulting row (or column) to any
other row (or column)

Note that each of these elementary operations may be represented by a postmultiplication for
column operations (or premultiplication for row operations) by elementary matrices which are
nonsingular.

Example 10 Let
2 1

A=10 2 1
11

Then, let use the following row operations:
1. Exchange rows 1 and 3
2. Multiply row 1 by -2 and add it to row 3
3. Multiply row 2 by 1/2 and add it to row 3
4. Multiply row 2 by 1/2
5. Multiply row 3 by 2/5
6. Multiply column 1 by -1 and add it to column 2
7. Multiply column 1 by 1 and add it to column 3
8. Multiply column 2 by -1/2 and add it to column 3

The end result is

&

Il
S O =
O = O
_ o O



Example 11 Given the following polynomial matrix

s? 0
P(s)=| 0 &2
1 s4+1

then the corresponding row operations are performed:

1. interchange rows 3 and 1.
2. multiply row 1 by —s? and add it to row 3

3. multiply row 2 by s + 1 and add it to row 3.

This corresponds to the following multiplications by the matrices given:

1.
1 s+1 001
P(s)y={ 0 s |= {01 0][P(s)
2 0 100
2.
1 s+1 1 00
Py(s)=10 52 = 0 1 0|P(s)
0 —s%(s+1) —s2 0 0
3.
1 s+1 1 0 0
Pi(s)=10 s |=1]10 1 0]P(s)
0 0 0 s+1 0

A

In general, for any matrix of rank r we can reduce it via column and row operations to one of
the following normal forms

Iy, [T, 0], 11, | 07 o [ A ] (5)

Next, we discuss vector spaces.



2 Vectors and vector Spaces

In most of our applications, we need to deal with linear real and complex vector spaces which are
defined subsequently.

Definition 1 A real linear vector space (resp. complex linear vector space is a set V, equipped
with 2 binary operations: the addition (+) and the scalar multiplication (.) such that

lL.x+y=y+zx, Vo,yeV
z+(y+z)=(x+y)+z Ve,y,z€V
There is an element Oy in V such that t +0y =0y +x =2z, Vz €V

For each © € V, there exists an element —x € V' such that z + (—z) = (—z) +z = Oy

A R R

For all scalars r1,r9 € R (resp. c1,c9 € C), and each © € V, we have ri.(ro.x) = (r1712).2
(resp. c1-(c2.z) = (c1c0).@

6. For each r € R (resp. ¢ € C), and each x1,29 € V, r.(r1 + x2) = r.x1 + r.ze (resp.
c.(z1 + z2) = c.x1 + c.x2)

7. For all scalars 1,79 € R (resp. c1,¢2 € C), and each x € V', we have (r1+12).x = r1.x+7r2.2
(resp. (¢1 + c2).x = c1.z + ¢c2.x)

8. For each x € V, we have 1.x = x where 1 is the unity in R (resp. in C.

Example 12 The following are linear vector spaces with the associated scalar fields: R™ with R,
C™ with C.

A

Definition 2 A subset M of a vector space V is a subspace if it is a linear vector space in its own
right. One necessary condition for M to be a subspace is that it contains the zero vector.

Example 13 xxx

2.1 Linear Independence

Consider a finite number of vectors {z;} = {z1,z2, -+, zn} belonging to a vector space X. The
set {z;} is said to be linearly independent if a1z; + aszs + - - - + apz, = 0 implies that all a; = 0.
Otherwise, {z;} is said to be linearly dependent.

Example 14 The set {e;} ¢ = 1,---,n is linearly independent in R™. On the other hand, the 2
vectors, 7 = [1l —2]; 2 = [2 — 4] are linearly dependent in RZ.



A

Note that any set of vectors containing the zero vector is linearly dependent. Also, if {z;} i =
1,-++,n is linearly dependent, adding a new vector z,41 will not make the new set linearly inde-
pendent. Finally, if the set {z;} is linearly dependent, then, at least one of the vectors in the set
may be written as a linear combination of the others.

How do we test for linear dependence/independence? Given a set of n vectors {z;} each having
m components. Form the m x n matrix A which has the vectors z; as its columns. Note that if
n > m then the set of vectors has to be linearly independent. Therefore, let us consider the case
where n < m. Form the n x n matrix G = AT A and check if it is nonsingular, i.e. if | G |# 0, then
{z;} is linearly independent, otherwise {z;} is linearly dependent.

Geometrically, linear independence may be explained in R”. Consider the plane R? and suppose
we have 2 vectors z1 and zo. If the 2 vectors are linearly dependent, then xo = az1 or both vectors
lie along the same direction. If they were linearly independent, then they form the 2 sides of a
parallelogram. Therefore, in the case of linear dependency, the parallelogram degenerate to a single
line. We can equip a vector space with many functions. One of which is the inner product which
takes two vectors in V' to a scalar either in R or in C, the other one is the norm of a vector which
takes a vector in V' to a positive value in R.

2.2 Basis Vectors

Given a vector space X, we say that {u;,7 = 1,---m} span X if every vector z € X may be written
as a linear combination of u;, i.e.

m
x = Z a;u; (6)
i
for some scalars a;. The scalars a; are the components of = in the u; directions. Note that nothing
is said about u; beyond the fact that there is enough of them to manufacture every vector in X.
Example 15 3 vectors in R?

A

A set of vectors {v;,i = 1,---n} in X is said to be a basis of X if it spans X and it is linearly
independent. This is basically the minimum number of vectors needed to span X. The dimension
of X is the number of vectors in any basis of X. Thus R" has dimension 7.

Example 16 Let X be the vector space of all vectors z = [z1 --- z,]7 such that all components
are equal. Then X is spanned by the vector of all 1’s. Therefore dim (X) = 1. On the other hand,
if X is the vector space of all polynomials of degree n — 1 or less, a basis is {1,¢,#2,---,#" "'} which
makes dim (X) = n.

A

The following section discusses the inner products of vectors which is then followed by a section on
norms.



2.3 Inner Products

An inner product is an operation between two vectors of a vector space which will allow us to define
geometric concepts such as orthogonality and Fourier series, etc. The following defines an inner
product.

Definition 3 An inner product defined over a vector space V is a function < .,. > defined from
V to F where F is either R or C such that Vx,y,z, € V

1. <z,y >= <y,z > where the < .,. > denotes the complex conjugate.
<z, yt+z>=<z,y>+<x,2>

<z,ay>=a<z,y> YaeF

™ e

< x,x >> 0 where the 0 occurs only for x = Oy

Example 17 The usual dot product in R" is an inner product.

2.4 Norms

A norm is a generalization of the ideas of distance and length. As stability theory is usually
concerned with the size of some vectors and matrices, we give here a brief description of some
norms that will be used in this book. We will consider first the norms of vectors defined on a vector
space X with the associated scalar field of real numbers R.

2.4.1 Vector Norms

We start our discussion of norms by reviewing the most familiar normed spaces, that is the spaces
of vectors with constant entries. In the following, | a | denotes the absolute value of a for a real a
or the magnitude of a if a is complex.

Definition 4 A norm || . || of a vector x is a real-valued function defined on the vector space X
such that

1. ||z ||> 0 for all z € X with || z ||= 0 if and only if x = 0.
2. laz || =|al|l|lz| for all z € X and any scalar a.
S llz+yll<lzl+Ilyl foralzyeX.

Example 18 The following are Common norms in X = R™ where R" is the set of nx1 vectors
with real components.

1. I-norm: ||z |1= Y5 | =i |.



2. 2-norm: || z |la= /> | 22 |, also known as the Euclidean norm

1
3. pnorm: ||z [l,= (XL, | 27 [)7.
4. co-norm: || z ||eo= max |x;| Vi=1,---,n.
A
Example 19 Consider the vector
1
r=| —2
2
Then, ||z |[1=5, | z ||]2= 2 and ||  ||co= 2.
A

We now present an important property of norms of vectors in R™ which will be useful in the
sequel.

Lemma 1 Let || z ||o and || z ||p be any two norms of a vector z € R™. Then there exists finite
positive constants k1 and ko such that

killzlla <llzlle <kzllzlla Yz €R"

The two norms in the lemma are said to be equivalent and this particular property will hold
for any two norms on R".

Example 20 Note the following

1. It can be shown that for z € R"

llzlle < Vnllell2
lzlleo < ll2ll1 < nllzfloo

lzllz < vnllz]loo

2. Consider again the vector of Example 1.4.2. Then we can check that

e[l < V3|l

lzlloo < ll2[l1 < 3[|2[|

lzllz < V3|lzlle

10



A

Note that a norm may be defined independently from an inner product. Also, we can define the
generalized angle between 2 vectors in R" using

z.y =<,y >=[ x| .|yl coso (7)

where 6 is the angle between z and y. Using the inner product, we can define the orthogonality of
2 vectors by

.y =<z,y>=0 (8)

which of course means that 0 = (27 4+ 1)7/2.

3 Linear Equations

In many control problems, we have to deal with a set of simultaneous linear algebraic equations

a1121 t a12x2 + - + a1y, = Y1
a21x1 + a22To + -+ amxTy, = Yo
Am1T1 + ameT2 + -+ GmnTn = Ym (9)
or in matrix notation
Ar =y (10)

for an m x n matrix A, an n x 1 vector £ and an m vector . The problem is to find the solution
vector z, given A and y. Three cases might take place:

1. No solution exist
2. A unique solution exists
3. An infinite number of solutions exist

In order to understand what is going on, we should look into the range space and the null space of
the matrix A, which are defined as follows: The range of A written as R(A) = {y:y = > i, zia;}
or the set of vectors y € R™ made up of all possible linear combinations of the columns of A. On
the other hand, the null space of A denoted N'(A) = {z : Az = 0} or the set of vectors z € R"
such that Az = 0,,.

Example 21 Show that R(A) is a subspace of R™ and N (A) is a subspace of R™.

11



Now, looking back at the linear equation Az = y, it is obvious that y should be in R(A) for a
solution z to exist, in other words, if we form

W =[A]y] (11)

then rank(W) = rank(A) is a necessary condition for the existence of at least one solution. Now,
if z € N(A), and if z is any solution to Az = y, then z + z is also a solution. Therefore, for a
unique solution to exist, we need that N'(A) = 0. That will require that the columns of A form a
basis of R(A), i.e. that there will be n of them and that they will be linearly independent, and of
dimension n. Then, the A matrix is invertible and z = A~ 'y is the unique solution.

4 Eigenvalues and Eigenvectors

Let A be an n x m matrix, and denote the corresponding identity matrix by I. Then, let z; be a
nonzero vector in R™ and \; be scalar such that

A.’L‘Z' = )\.’L‘Z‘ (12)

Then, A; is an eigenvalue of A and z; is the corresponding eigenvector. There will be n eigenvalues
of A (some of which redundant). In order to find the eigenvalues of A we rewrite the previous
equation

(A= XDz =0 (13)

Noting that x; can not be the zero vector, and recalling the conditions on the existence of solutions
of linear equations, we see that we have to require

det(A — NI) =| (A— NI) |=0 (14)

We thus obtain an nth degree polynomial, which when set to zero, gives the characteristic equation

[(A=AD)| = A(X) =0
= (_)\)n + Cn—1>\n71 4+t A+ Co
= (D"A =)™ A= A)™ - (A= Ap)™ (15)

Therefore, A; is an eigenvalue of A of algebraic multiplicity m;. One can then shows,
n
TrA) = 3 = (-1)" e
|A| = H)\Z':C() (16)

Also, if \; is an eigenvalue, then so is \;.
How do we determine eigenvectors? We distinguish 2 cases:

12



1. All eigenvalues are distinct: In this case, we first find Adj(A — AI) with )\ as a parameter.
Then, successively substituting each eigenvalue \; and selecting any nonzero column gives all
eigenvectors.

Example 22 Let

0 1 0
A= 0 0 1
—-18 27 —-10

then, solve for
|A— X |= X3 =10\ —27A — 18 =0

which has 3 solutions, Ay = —1, Ay = —3, A3 = —6. Now, let us solve for the eigenvectors
using the suggested method

A2 4100427 A+10 1

Adj(A—)I) = —18 AZH100 A
—18\ —27\ — 18 )2
so that for Ay = —1 we can see that column 1 is

z; =[18 —18 18]

Similarly, zo = [7 — 21 63]7 and z3 = [I — 6 36]7. There is another method of obtaining the
eigenvectors from the definition by actually solving Ax; = \jx;

A

Note that once all eigenvectors are obtained, we can arrange them in an n x n modal matrix
M = [z1 x9---z,]. Note that the eigenvectors are not unique since if z; is an eigenvector,
then so is any ax; for any scalar a.

2. Some eigenvalues are repeated: In this case, a full set of independent eigenvectors may or may
not exist. Suppose \; is an eigenvalue with an algebraic multiplicity ;. Then, the dimension
of the Null space of A — A\;I which is also the number of linearly independent eigenvectors
associated with ); is the geometric multiplicity ¢; of the eigenvalue ;. We can distinguish 3
cases

(a) Fully degenerate case g; = m;: In this case there will be ¢; independent solutions to
(A — X\iI)z; rather than just one.

Example 23 Given the matrix

10/3 1 -1 —1/3
0 4 0 0
A=1 931 3 —1/3
—2/3 1 -1 11/3

13



Then, its characteristic equation is
AN = X' — 1403 + 7202 — 160X + 128 =0

There are 4 roots, Ay = 2, Aa = A3 = Ay = 4. We can find the eigenvector associated
with A\; as 1 = [-1 0 —1 —1]7. Then, we find

2/3 -1 1 1/3

0 0 0 0
W=Az=| o3 11 173 |*

2/3 -1 1 1/3

There are an infinite number of solutions, 3 of which are x5 = [1 00 — 2]7; z3 =
01107 24=[0103]

A

Note that now if z1, --- =, are eigenvectors for eigenvalue A;, then so is any y =
Die1 QT

Simple degenerate case g; = 1: Here we can find the first eigenvector in the usual means,
then we have m; — 1 generalized eigenvectors. These are obtained as

Azy = Nz
(A—)\i).’lfz = I

(A= A)Tm, = Tt (17)

Note that all z; found this way are linearly independent.

Example 24
0 1 0 0
0 0 1 0
A= 0 0 0 1
8§ —20 -18 -7

its characteristic polynomial is
AN =X+ 703 1802 +200 +8=10

then, \; = —1, Ag = A3 = Ay = —2. The eigenvector of A; is easily found to be
z1 = [-11 —1 1]7. On the other hand, one eigenvector 0f —2 is found to be z3 =
[0.125 —0.25 0.5 — 1]7, then x5 = (A + 2I)z3 leading to z3 = [0.1875 — 0.25 0.25 0]
also, r3 = (A + 2I)z4 so that x4 = [0.1875 — 0.1875 0.125 0]

A

14



(c) General case 1 < ¢; < m;: Here, a general top-down method should be used. Here we
solve the problem by writing

(A=XI)zy = 0
(A— XDz = z1= (A— D%z =(A—\Dz1 =0
(A=XDz3 = zo= (A-XND*z3=(A—-XNDzo =21 #0
(A= NI)3z3=(A— NIz =0 (18)

~— ~—

This approach continues until we reach the index k; of ;. This index is found as the
smallest integer such that

rank(A — \I)F =n—m; (19)

the index indicates the length of the longest chain of eigenvectors and generalized eigen-
vectors associated with \;.

Example 25
0 010
4=15 000
0 00O
its characteristic polynomial is
AN =x1=0

so A1 = 0 with my = 4. Next, form A— ;I = A, and determine that rank(A— X\ 1) = 2.
There are then 2 eigenvectors and 2 generalized eigenvectors. The question is whether
we have one eigenvector-generalized eigenvector chain of length 3, or 2 chains of length
2. To check that, note that n —m = 0, and that rank(A — X\1I)? = 0, therefore, the
index is k1 = 2. this then guarantees that one chain has length 2, making the length
of the other chain 2. First, consider (A — A\;I)2z = 0 Any vector satisfies this equation
but only 4 vectors are linearly independent. Let us choose z; = [1 0 0 0]7. Is this an
eigenvector or a generalized eigenvector? It is an eigenvector since (A — A1I)z; = 0.
Similarly, zo = [0 1 0 0]7 is an eigenvector. On the other hand, z3 = [0 0 1 0] is
a generalized eigenvector since (A — \;I)z3 = x1 # 0. Similarly, z, = [0 0 0 1]7 is a
generalized eigenvector associated with zo.

A

In summary each n X n matrix has n eigenvalues and n linearly independent vectors, either
eigenvectors or generalized eigenvectors.

15



4.1 Jordan Forms

Based on the analysis above, we can produce the Jordan form of any n x n matrix. In fact, if
we have n different eigenvalues, we can find all eigenvectors x;, such that Az; = A\;z;, then let

M=z zo -

Tp], and A = diag()\;). This leads to AM = MA. We know that M ~! exists since

all eigenvectors are independent and therefore A = M~'AM. The Jordan form of A is then A.
If the eigenvectors are orthonormal, M~! = M”. In the case that ¢; = m;, we proceed the same
way to obtain J = A. On the other hand, if ¢; = 1, then using the eigenvectors and generalized

eigenvectors as columns of M will lead to J = diag[J1 Jo ---

the following form

Jp] where each J; is m; x m; and has

X100 0
0 N 1 0
0 0 N 0
0o 0 -~ XN 1
0o 0 0 - N

Finally, the general case will have Jordan blocks each of size k; as shown in the examples below.

Example 26 Let

0 1 0
A= 0 0 1
—-18 =27 -10
the eigenvalues are Ay = —1, Ay = —3, A3 = —6. The eigenvectors are
r=[1 —-117

Similarly, 72 = [1 —3 9] and z3 = [1 — 6 36]7. Then,

then

M=

then A = M~ 1AM.

1 1 1
M=|-1 -3 —6
1 9 36
1.8 0.9 0.1
~1 —1.167 —0.167
0.2 0.2667 0.067

16



Example 27 Given the matrix

10/3 1 —1 —1/3
0 4 0 0
A=\ 931 3 —1/3
—2/3 1 -1 11/3

Then, its characteristic equation is
A(N) = M — 1403 + 7207 — 160X 4 128 = 0

There are 4 roots, Ay = 2, Aa = A3 = Ay = 4. We can find the eigenvector associated with A; as
r1=[-10 —1 —1]7. Then, we find zo =[1 00 —2]7; z3[0 1 1 0]7; x5 = [0 1 0 3] Therefore,

-1 1 00
0 0 11
M= -1 0 10
-1 -2 0 3
then
-1/3 1/2 —1/2 —-1/6
el | 16 12 12 —1/6
~1/3 1/2 1/2 -1/6
1/3 1/2 —1/2 1/6
then
2 000
0 400
7= 0040
0 00 4
A
Example 28 Now consider
0 1 0 0
0 0 1 0
A= 0 0 0 1
8§ —20 —-18 -7

its characteristic polynomial is

AN =2+ 73 411832 4200 +8=0

17



then, Ay = —1, A9 = A3 = A4 = —2. Find eigenvectors as before and form

~1 1/8 0.1875 0.1875
1 —1/4 —1/4 —0.1875

M= _ /2 1/4 1/8
1 -1 0 0
Then,
-1 0 0
0 -2 1 0
=10 0 —2 1
0 0 0 =2
Example 29
0 010
0 0 01
A= 0 00O
0 00O
its characteristic polynomial is
AN =X=0
so A1 = 0 with m; = 4. Then,
1000
0 010
M= 0100
0 001
therefore making
0100
0 000
7= 0 001
0 000
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5 The Cayley-Hamilton Theorem

Note that A* = A--- A i times. Then, we have the Cayley-Hamilton theorem

Theorem 1 Let A be an n X n matrix with a characteristic equation

[ (A=) AN
= (_)\)n + Cn—lAn_l +--+ciA+ ¢
=0 (20)
Then,
A(A) = (—1D)"A" 4 ¢ (A b At ol
=0 (21)
|

Example 30 Use the Cayley-Hamilton theorem to find the inverse of a matrix A
0= (—1)"A" + ¢ 1 A" 4o+ 1A+ ol
then,

0=(—1)"A" 141 A" 24 LT+ At

1
A7l = —[(-1)ma” + 1 AV )
0

6 More on Matrices

The expression < y, Az >= y’ Az is a bilinear form. When y = z we have a quadratic form z” Az.
Every matrix A can be written as the sum of a symmetric and skew symmetric matrices if it is real,
and of a Hermitian and skew-Hermitian if it is complex. Then note that < z, Ax >=< z, A;z > if
Aisreal, and < z, Az >=< z, Agz > if A is complex.

6.1 Positive-Definite Matrices
Given an n X n matrix (), then
1. @ is positive-definite, if and only if < z,Qx > > 0 for all  # 0.

2. @ is positive semidefinite if < z,Qx >> 0 for all z.
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3. @ is indefinite if < z, Qx > > 0 for some z and < z,Qz >< 0 for other z.

@ is negative definite (or semidefinite) if —() is positive definite (or semidefinite). If @ is symmetric
then all its eigenvalues are real.

Example 31 xxx

7 MATLAB Software

8 Notes and References

9 Problems

Problem 1 Prove the Matrix Inversion lemma:
(A1 — AQAZIA:;)_I = Al_1 + A_IAQ(A4 — A3A1_1A2)_1A3A1_1

Problem 2 Show that a set of vectors is linearly dependent if and only if one of the vectors is a
linear combination of the other vectors in the set.

Problem 3 Show that any linear combination of vectors from L is also in L.
Problem 4 Are the vectors in the basis for a particular subspace unique?

Problem 5 Given a basis for a subspace £, can every vector in £ be uniquely represented as a
linear combination of these basis vectors?

Problem 6 Show that if A is a symmetric matrix (i.e., A = AT, where the superscript T’ denotes

transpose), then
e Ay = yT Az

for all vectors z and y of the appropriate dimension.

Given )
flz) = §:cTA:1: +blz+a

where A is an n X n symmetric matrix, b is an n-dimensional vector, and « a scalar. Show that
Vof(z) = Az +b
and

H=Vif(z)=A
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Problem 7 Consider the following matrix

1
A=10
0

O NN
W W

1. Is this matrix invertible? Justify your answer!

2. Find all eigenvalues and the corresponding eigenvectors of this matrix. Are the eigenvectors
linearly independent or linearly dependent? Justify your answer!

3. Use the Cayley-Hamilton theorem to find the inverse of A (if A is invertible).

Problem 8 Consider the same matrix

1
A=10
0

O NN
W w

1. Is this matrix positive-definite? negative-definite? indefinite? Justify your answer!

2. Can 2 different matrices have the same eigenvalues? Justify your answer!

Problem 9 Let A be an n X n constant matrix. Then, we can define the matrix exponential
erp(At) as an n X n matrix, solution to the matrix differential equation

dF (1)

S = AF(1)

where F(0) = I = n x n identity matrix. In other words, exp(At) satisfies the above matrix
differential equation and also ezp(A0) = I.

1. Use the facts given so far and the property of the Laplace transforms
L{F(1)} = sL{F(t)} - F(0)
to show that

eAt = L sT— A !

2. Even if you don’t prove the previous relation, use it to find e if

)

Problem 10 Let A be a matrix from R™ to R™ i.e. A has m rows and n columns, so that if
z € R", then y = Az € R™.
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1. Show that the Null space of A, N'(A) is a subspace of R" and that the range of A, R(A) is a
subspace of R™.

Hence, N'(A) and R(A) have well-defined dimensions. In fact, the dimension of R(A) is the rank
of A denoted by rank(A) which is the number of linearly independent columns in A. Denote the
dimension of N'(A) by nl(A). Then consider any basis {wz}zi(lA ) of N (A), and complete this basis
into a basis of R" by adding n — nl(A) linearly independent vectors {:ci}?:nl( A)+1- Therefore, any
z € R™ may be written as a linear combination of z; so that

n
r = E Q5
i=1

n
i=nl(

1. By forming Az show that the vectors {y;
linearly independent. Therefore, show that

A1 = {Axi}?:nl(A)—kl span R(A) and are

rank(A) +nl(A) =n
Problem 11 Suppose z is a vector in N'(A). Show that z is orthogonal to every vector in R(A7T).

Problem 12 Given a set of vectors {z1,:--,znx}. Show how to find a set of orthonormal vec-
tors {y1,---,ym; M < N} spanning the same space that was spanned by {z;}. Recall that an
orthonormal set of vectors is a set of linearly independent vectors each having norm of 1.

Verify that complex numbers can be represented by matrices via

. a —b
z—a-l-szlb a]

with the usual rules of complex numbers and of matrix manipulations, i.e. check addition, and
multiplication.

Problem 13 Given a top-companion matrix

—a1 —a2 —Qnp-—1 an
1 0 0 0
A= )
0 0 1 0
Show that if X is an eigenvalue of A then p = [A»* ... X 1]7 is the corresponding eigenvector.
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