Convex Optimization — Boyd & Vandenberghe

10. Unconstrained minimization

e terminology and assumptions
e gradient descent method

e steepest descent method

e Newton's method

e self-concordant functions

e implementation

Unconstrained minimization

minimize  f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(z) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z(¥) € dom f, k =0, 1, ... with
fa®)) — p*

e can be interpreted as iterative methods for solving optimality condition

Viz*)=0
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Initial point and sublevel set

algorithms in this chapter require a starting point z(9) such that
e (9 c dom f
e sublevel set S = {z | f(z) < f(z(®)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

e equivalent to condition that epi f is closed
e true if dom f = R"

e true if f(z) — 00 as © — bddom f

examples of differentiable functions with closed sublevel sets:

f(x) =log(Y_exp(afz+b)),  flz)=— Z log(b; — a; @)

=1
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Strong convexity and implications
f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml forallz € S

implications

o forz,y €S,

) = f(@) + V@) (y = 2) + Sl =yl

hence, S is bounded

e p* > —o0, and for z € S,

f@) —p* < V)R

useful as stopping criterion (if you know m)
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Descent methods

2D — ) AL with FatHDY < f(20)

e other notations: z+ =z + tAx, x := x + tAx
e Ax is the step, or search direction; t is the step size, or step length

e from convexity, f(zT) < f(z) implies Vf(z)TAx <0
(i.e., Ax is a descent direction)

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. x := = + tAx.

until stopping criterion is satisfied.

Unconstrained minimization

Line search types

exact line search: ¢t = argmin, f(z + tAx)

backtracking line search (with parameters o € (0,1/2), g € (0,1))

e starting at t = 1, repeat t := (3t until

flx+tAz) < f(z) + atV f(z)T Az

e graphical interpretation: backtrack until ¢t < ¢

f(x + tAx)

fz) + tVf@)T\AR:?\“ f(@) + atVf(e) Az
t=0 to !
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point z € dom f.

repeat
1. Az := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := = + tAx.

until stopping criterion is satisfied.

e stopping criterion usually of the form ||V f(x)|l2 <€

e convergence result: for strongly convex f,

fa®) —pr < (f(=V) —p*)

c € (0,1) depends on m, (9, line search type

e very simple, but often very slow; rarely used in practice
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quadratic problem in R?

(@) = (1/2)(a1 + ya3) (v >0)

with exact line search, starting at 2(9) = (v, 1):

k k
MO MONN St
! y+1) 2 v+1

e very slow if y > 1orv <1

e example for v = 10:

4,
g of |
4}
—10 0 10
T
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nonquadratic example

f(SCl, :UQ) = ea:1+3m2—0.1 + ew1—3w2—0,1 + e—ml—O-l

backtracking line search exact line search
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a problem in R'®°
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‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):
Az = argmin{V f(z)"v | ||v|| = 1}

interpretation: for small v, f(z +v) = f(z) + V.f(x)Tv;
direction Ax,sq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Azsa = |V f(2)||+Aznsa

satisfies Vf(2)T Ay = —||Vf(2)|?
steepest descent method

e general descent method with Az = Axyqg

e convergence properties similar to gradient descent
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examples

e Euclidean norm: Az = -V f(x)

e quadratic norm ||z| p = (2T Px)Y/2 (P € S".): Azgq = —P~'Vf(z)
o (1-norm: Axgq = —(0f (x)/0x;)e;, where |0f(x)/0zi = ||V f(2)]|

unit balls and normalized steepest descent directions for a quadratic norm
and the /{-norm:

—Vi(z)
—Vf(z)

AT
nsd ACcnsd
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choice of norm for steepest descent

e steepest descent with backtracking line search for two quadratic norms
e ellipses show {z | ||z — ™| p =1}
e equivalent interpretation of steepest descent with quadratic norm || - || p:

gradient descent after change of variables z = P/2¢

shows choice of P has strong effect on speed of convergence
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Newton step

Azy = =V f(z)'V f(z)
interpretations

e = + Az, minimizes second order approximation

~

Fla +v) = f(2) + V()"0 + 50"V ()

e = + Az, solves linearized optimality condition

Vi(z+v) ~ Vi+v) = Vf(z)+ Vf()v =0

£/
J

(;U + A{Ent, f/(x —+ Amnt))
(z, f'(x))

o

(z, f(z))

(33 + Awnm f(w + Axnt57>k>/ f
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e Aux,; is steepest descent direction at x in local Hessian norm

1/2
[ullv2p @y = (u' V2 f(2)u)

dashed lines are contour lines of f; ellipse is {z +v | v V2f(x)v = 1}

arrow shows —V f(x)
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Newton decrement

1/2

Nz) = (Vf(2)"V2f(2)" 'V f(x))
a measure of the proximity of z to x*
properties

*

e gives an estimate of f(z) — p*, using quadratic approximation f

() = inf fly) = @)

e equal to the norm of the Newton step in the quadratic Hessian norm

1/2

AMz) = (Arn V2 f (1) Ay

e directional derivative in the Newton direction: V f(z)T Az, = —\(7)?

e affine invariant (unlike ||V f(z)||2)
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Newton’s method

given a starting point z € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Axy = —V2f(2)'Vf(z); N :=Vf(x)TV3f(x) V().
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAxy.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(Ty) with starting point () = 7129 are
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Classical convergence analysis

assumptions
e f strongly convex on S with constant m

e V2f is Lipschitz continuous on S, with constant L > 0:

IV2f(x) = V2 f(W)ll2 < Lllz — yl2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants n € (0,m?/L), v > 0 such that

o if [Vf(z)ll2>n, then f(z1)) — f(z®)) < —
o if |V f(x)|2 <mn, then

L (k+1) L (k) i
2—m2||vf(93 Mz < 2—mQ||Vf(37 )2

Unconstrained minimization 10-18



damped Newton phase (||V f(z)||2 > n)
e most iterations require backtracking steps
e function value decreases by at least «

e if p* > —o0, this phase ends after at most (f(x(?)) — p*)/~ iterations

quadratically convergent phase (|Vf(x)|2 < n)
e all iterations use step size t =1

e |[Vf(x)|2 converges to zero quadratically: if |V f(z)|2 < n, then

L l L \ 2l—k 1 2l—k
Q—mQHVf(ﬂU)HQS 2—m2|vf(33 )P < 3 : >k
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conclusion: number of iterations until f(z) — p* < € is bounded above by

(0)y _ *

X

T2 tog, tog e/
e 7, €o are constants that depend on m, L, z(?)

e second term is small (of the order of 6) and almost constant for
practical purposes

e in practice, constants m, L (hence =, €() are usually unknown

e provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R? (page 10-9)

e backtracking parameters . = 0.1, § = 0.7

e converges in only 5 steps

e quadratic local convergence
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example in R (page 10-10)
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e backtracking parameters a = 0.01, 3 = 0.5

e backtracking line search almost as fast as exact |.s. (and much simpler)

e clearly shows two phases in algorithm
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leOOOO (

example in with sparse a;)

10000 100000

fle)= =3 log(1-af)~ 3 loglb;—al')

10°

0 5 10 15 20
k

e backtracking parameters oo = 0.01, 3 = 0.5.

e performance similar as for small examples
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Self-concordance

shortcomings of classical convergence analysis

e depends on unknown constants (m, L, .. .)

e bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions (‘self-concordant’ functions)

e developed to analyze polynomial-time interior-point methods for convex
optimization
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Self-concordant functions

definition
e f:R — Ris self-concordant if | f"/(z)| < 2f"(x)3/? for all z € dom f

e f:R" — Ris self-concordant if g(t) = f(x + tv) is self-concordant for
all z e dom f, v € R"

examples on R

e linear and quadratic functions
e negative logarithm f(x) = —logxz

e negative entropy plus negative logarithm: f(x) = xlogx — logz
affine invariance: if f : R — Ris s.c., then f(y) = f(ay +b) is s.c.:

f"(y) =ad>f"(ay +b),  f'(y) = a’f"(ay + )
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Self-concordant calculus

properties
e preserved under positive scaling o > 1, and sum
e preserved under composition with affine function

e if g is convex with dom g = Ry and |¢"(z)| < 3¢"(x)/x then

f(z) = log(—g(x)) — log

is self-concordant

examples: properties can be used to show that the following are s.c.
o f(z)=->" log(b; —alz)on {z|alz <b;, i=1,...,m}
o f(X)=—logdet X on S’

o f(z) = —log(y® — 2" x) on {(x,y) | lz]l2 < v}
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Convergence analysis for self-concordant functions

summary: there exist constants 7 € (0,1/4], v > 0 such that

o if A(xz) > n, then
fla®) — fa®) < —

o if A(z) <, then
2
oAz D) < (2)\(x(k)))

(n and ~y only depend on backtracking parameters «, (3)

complexity bound: number of Newton iterations bounded by

M + log, log,(1/€)

for « = 0.1, 3= 0.8, e = 107'°, bound evaluates to 375(f(z(®) —p*) + 6
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numerical example: 150 randomly generated instances of

minimize f(z) = — ZZL log(b; — a] )
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e number of iterations much smaller than 375(f(x(®)) — p*) + 6

e bound of the form ¢(f(z(?)) — p*) 4 6 with smaller ¢ (empirically) valid
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system
HAx =g

where H = V2f(x), g = -V f(2)

via Cholesky factorization
H=LL", Az,=L"T"L7"g,  Aa)=|L"gl}

e cost (1/3)n3 flops for unstructured system

e cost < (1/3)n3 if H sparse, banded
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example of dense Newton system with structure

i—1
e assume A € RP*", dense, with p < n
e D diagonal with diagonal elements v/ (z;); Ho = V?o(Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n?)

method 2 (page 9-15): factor Hy = LoL{’; write Newton system as
DAz + AT Loyw = —g, LEAAT —w =0
eliminate Az from first equation; compute w and Ax from
(I+LYAD'ATLo)w = —~LYAD 'g, DAz = —g— AT Low
cost: 2p?n (dominated by computation of LYAD 1 ALg)
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