Convex Optimization — Boyd & Vandenberghe

7. Statistical estimation

e maximum likelihood estimation
e optimal detector design

e experiment design
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Parametric distribution estimation

e distribution estimation problem: estimate probability density p(y) of a
random variable from observed values

e parametric distribution estimation: choose from a family of densities
p2(y), indexed by a parameter x

maximum likelihood estimation

maximize (over x) logp.(y)

1y is observed value

[(x) = log p.(y) is called log-likelihood function

can add constraints = € C explicitly, or define p,(y) =0 for z ¢ C

e a convex optimization problem if log p..(y) is concave in x for fixed y
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Linear measurements with 11D noise

linear measurement model
T .
Yyi=a; x+v, 1=1,....,m

e © € R" is vector of unknown parameters

e v; is |ID measurement noise, with density p(z)

e y; is measurement: y € R™ has density p,(y) = [[\~, p(y; — a

maximum likelihood estimate: any solution = of
maximize [(z) = >_7" logp(y; — al )

(y is observed value)

Statistical estimation

examples
e Gaussian noise NV(0,02): p(z) = (2r02)~1/2e=="/(207),

1 m
I(x) = —%log(?wa 2—2 alx —y;)?

ML estimate is LS solution
e Laplacian noise: p(z) = (1/(2a))e~I*/e,

1 m
l(x) = —mlog(2a) — — Z lalz — y;l
a

i=1
ML estimate is £;-norm solution

e uniform noise on [—a, al:

_ T )< -
l(x) — { _mlog(Qa) ’az x yl| >~a, 1 1,...

00 otherwise

ML estimate is any x with a2 — y;| < a
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Logistic regression
random variable y € {0, 1} with distribution

exp(au + b)
1+ exp(aTu + b)

p=prob(y=1)=

e a, b are parameters; u € R™ are (observable) explanatory variables

e estimation problem: estimate a, b from m observations (u;, y;)

log-likelihood function (fory; = =y =1, ys41 ="+ = Y = 0):

m

k
) = o (TS0t ]

S 1+exp(au; +b Pl exp(aTu; + b)

k m
= D (a"ui+b) =) log(1+exp(a’u; +0))

concave in a, b
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example (n = 1, m = 50 measurements)
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e circles show 50 points (u;,y;)

e solid curve is ML estimate of p = exp(au + b) /(1 + exp(au + b))
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(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable X € {1,...,n}, choose between:

e hypothesis 1: X was generated by distribution p = (p1,...,pn)

e hypothesis 2: X was generated by distribution ¢ = (q1,...,qn)

randomized detector

e a nonnegative matrix 7' € R**", with 177 =1

e if we observe X = k, we choose hypothesis 1 with probability ¢,
hypothesis 2 with probability t5

e if all elements of T are 0 or 1, it is called a deterministic detector

Statistical estimation

detection probability matrix:

1 — Py P,

D:[Tp Tq:|: pr 1_an

e P4, is probability of selecting hypothesis 2 if X is generated by
distribution 1 (false positive)

e Py, is probability of selecting hypothesis 1 if X is generated by
distribution 2 (false negative)

multicriterion formulation of detector design

minimize (w.r.t. R%) (P, Pi) = ((Tp)2, (Tq)1)
subject to tik+ta=1, k=1,....n
ty >0, i=12 k=1,...,n

variable T € R?X"
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scalarization (with weight A > 0)

minimize  (Tp)2 + A\(Tq)1
subject to t1p +top =1, t;x>0, =12, k=1,....,n

an LP with a simple analytical solution

e a deterministic detector, given by a likelihood ratio test

o if prp = Aqy for some k, any value 0 <ty <1, t1 = 1 — to is optimal
(i.e., Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize  max{ P, Pt} = max{(Tp)2, (T'q)1}
SUbjeCt to tig + ok = 17 ik 207 1= 1727 k= 17"'7n

an LP; solution is usually not deterministic
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example
0.70 0.10
0.20 0.10
P= 0.05 0.70
0.05 0.10

an

0 0.2 0.4 0.6 0.8 1
P,

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment design
m linear measurements y; = aZT:c +w;, ¢ =1,...,m of unknown x € R"

e measurement errors w; are [ID NV(0,1)

e ML (least-squares) estimate is

m —1 m
- T
Tr = g a;a; E Yia;

e error e = I — x has zero mean and covariance

m ~1
E=FEee = ZaiaiT
i=1
confidence ellipsoids are given by {z | (x — 2)TE~!(z — 2) < 8}

experiment design: choose a; € {v1,...,v,} (a set of possible test
vectors) to make E ‘small’
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vector optimization formulation
o B D ™ —1
minimize (w.r.t. S}) E = (}5_, mpvpv})
subject to mp >0, mi+---+mpy=m

my € Z

e variables are my (# vectors a; equal to vg)

e difficult in general, due to integer constraint

relaxed experiment design

assume m > p, use A\, = my/m as (continuous) real variable

minimize (w.r.t. §7) E = (1/m) (X2_, AsorvT) ™
subject to A=0, 1T =1

e common scalarizations: minimize logdet E, tr F, A\yax(E), . . .

e can add other convex constraints, e.g., bound experiment cost ¢/’ X\ < B
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D-optimal design

minimize  logdet (3> _%_, )\kvkv,{)_l
subject to A > 0, 1T =1

interpretation: minimizes volume of confidence ellipsoids

dual problem

maximize logdet W 4+ nlogn
subject to v,{va <1, k=1,....p

interpretation: {z | zTWaz < 1} is minimum volume ellipsoid centered at
origin, that includes all test vectors vy,

complementary slackness: for A, W primal and dual optimal
M(1—vf W) =0, k=1,...,p
optimal experiment uses vectors v; on boundary of ellipsoid defined by W
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example (p = 20)

design uses two vectors, on boundary of ellipse defined by optimal W
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derivation of dual of page 7-13

first reformulate primal problem with new variable X:
minimize  logdet X !
subject to X =Y 2_ Apvpvf, A =0, 1TA=1

p
LIX,\Z,z,v)=logdet X 1 +tr | Z [ X =) Mool | | —2T A 4+v(1TX—1
k
k=1

e minimize over X by setting gradient to zero: — X!+ 27 =0

e minimum over A\ is —oo unless —v,{Zuk —z+v=0

dual problem

maximize n + logdet Z — v
subject to v,{ka <v, k=1,...,p

change variable W = Z /v, and optimize over v to get dual of page 7-13
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