Convex Optimization — Boyd & Vandenberghe

2. Convex sets

e affine and convex sets

e some important examples

e operations that preserve convexity

e generalized inequalities

e separating and supporting hyperplanes

e dual cones and generalized inequalities
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Affine set

line through x4, zo: all points

r =0z +(1—0)x (0 € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {z | Ax = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set
line segment between x; and xz5: all points
x=0x1+ (1 —0)x
with 0 <6 <1
convex set: contains line segment between any two points in the set
r1,22€C, 0<0<1 = 0Or1+(1—-0)x2€C

examples (one convex, two nonconvex sets)

]
]

Convex sets

Convex combination and convex hull

convex combination of x1,. .., xx: any point x of the form
$:91$1+02$2+"'+0k$k

with 0, +---+0,=1,0,>0

convex hull conv S: set of all convex combinations of points in .S
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Convex cone

conic (nonnegative) combination of x; and x5: any point of the form
Tr = (911'1 + 92]32

with 8; >0, 65 >0

Z1

T2

convex cone: set that contains all conic combinations of points in the set

Convex sets 2-5

Hyperplanes and halfspaces

hyperplane: set of the form {z | a2 = b} (a # 0)

a

alx =b

halfspace: set of the form {z | a2 < b} (a # 0)

a
T

i ax>b

atz < b

e ¢ is the normal vector

e hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids
(Euclidean) ball with center x. and radius r:

B(xe,r) ={z | [[x = wella <7} = {ze +ru| [Julla <1}

ellipsoid: set of the form
{z](@—z.)" P & —z.) <1}

with P € S” | (i.e., P symmetric positive definite)

other representation: {z.+ Au | ||u||2 < 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function || - || that satisfies

e ||z|| > 0; |||| =0 if and only if x =0
o ||tz| = |t| ||z| for t € R

o |lz+yll < [zl + [yl

notation: || - || is general (unspecified) norm; |

+ ||symb is particular norm

norm ball with center x. and radius r: {x | ||x — z.|| < 7}

norm cone: {(z,t) | ||z|| < t}

Euclidean norm cone is called second-
order cone

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities
Azr < b, Cx=d

(A e R™ " C e RP*", < is componentwise inequality)

al as

as
as

ay

polyhedron is intersection of finite number of halfspaces and hyperplanes

Convex sets 2-9

Positive semidefinite cone

notation:

e S" is set of symmetric n X n matrices

o ST ={X €S"| X > 0}: positive semidefinite n x n matrices
XeSy < zz'Xz>O0forallz

S’_Il_ is a convex cone

e ST ={X eS"|X >0} positive definite n x n matrices
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Operations that preserve convexity

practical methods for establishing convexity of a set C'
1. apply definition

331,513‘260, 0<6<1 — (9%‘14-(1-(9)&7260

2. show that C is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

e intersection

e affine functions

e perspective function

e linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

example:
S={xeR™]||pt)] <1forl|t| <n/3}

where p(t) = xj cost + xycos 2t + - - - + x,, cosmt

for m = 2:

p(t)
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Affine function
suppose f : R™ — R™ is affine (f(z) = Az + b with A € R™*", b € R™)
e the image of a convex set under f is convex

SCR"convex = f(S)={f(x)|x €S} convex

e the inverse image f~1(C) of a convex set under f is convex

C CR™convex = [ }C)={recR"| f(x) € C} convex

examples

e scaling, translation, projection

e solution set of linear matrix inequality {z | 141 + -+ - + =, A,y X B}
(Wlth Az,B € Sp)

e hyperbolic cone {z | 27 Pz < (¢"x)?, ¢’z > 0} (with P € S%)
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Perspective and linear-fractional function

perspective function P : R"™! — R™:
P(x,t) = x/t, dom P = {(z,t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : R" — R™:

B Az +b

—m, domf:{$|CT$+d>0}

f(z)

images and inverse images of convex sets under linear-fractional functions
are convex
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example of a linear-fractional function

1
f@) = ———«
r1+x2+1

1 1
g0 §0
-1 > -1

—1 0 1 —1 0 1

Z1 A
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Generalized inequalities

a convex cone K C R" is a proper cone if

e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

examples
e nonnegative orthant K =R} ={z € R" | 2; > 0,i=1,...,n}
e positive semidefinite cone K = S*}

e nonnegative polynomials on [0, 1]:

K={xe€R" |z +aot +x3t> + - +x,t" P >0fortcl01]}
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generalized inequality defined by a proper cone K:
T 3kyYy <= y—zekK, r<gy <= y—zxzeintKk
examples
e componentwise inequality (K = R})
<pn - < ; =
T 2R" Y — z; <y, 1=1,....n

e matrix inequality (K = S%})

X jsi Y <= Y — X positive semidefinite
these two types are so common that we drop the subscript in <g
properties: many properties of <y are similar to < on R, e.g.,

T=KkY, UKV — TH+ugytv
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Minimum and minimal elements

<k is not in general a linear ordering: we can have © Ak y and y Ax =

x € S is the minimum element of S with respect to < if

yGS — T K1Y

x € S is a minimal element of S with respect to < if

yesS, ygxr = y=u=z

example (K = R%)

21 is the minimum element of S; i

ZTo is @ minimal element of S5 1
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Separating hyperplane theorem

if C'and D are disjoint convex sets, then there exists a # 0, b such that

alz <bforzeC, a’z>bforze D

the hyperplane {z | a”x = b} separates C' and D

strict separation requires additional assumptions (e.g., C' is closed, D is a
singleton)
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Supporting hyperplane theorem
supporting hyperplane to set C' at boundary point xq:
{z|a"z =aT20}

where a # 0 and a’z < aTz for all z € C

supporting hyperplane theorem: if C' is convex, then there exists a
supporting hyperplane at every boundary point of C'

Convex sets 2-20



Dual cones and generalized inequalities
dual cone of a cone K:

K*={y|yTz>0forall z € K}

examples

e K =R}: K* =R

o K=S": K*=S"

o K= {(z,t)|[lxfl2 <t} K% ={(z,0) [ |lz]l2 <t}
o K= {(z,t)|[lafl <t} K7 ={(2,0) [ l2]loc <1}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

Y0 <= yT;pZOforallxtKO
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. <g

z is minimum element of S iff for all
A =g+ 0, z is the unique minimizer
of ATz over S

minimal element w.r.t. <y

e if z minimizes ATz over S for some A =+ 0, then z is minimal
A1

1

T2

e if x is a minimal element of a convex set S, then there exists a nonzero
A =+ 0 such that = minimizes ATz over S
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optimal production frontier

e different production methods use different amounts of resources x € R"
e production set P: resource vectors x for all possible production methods

e efficient (Pareto optimal) methods correspond to resource vectors x
that are minimal w.r.t. RY

fuel

example (n = 2)

T1, T2, X3 are efficient; x4, x5 are not P

xo L5 T4

Z3

labor
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