Convex Optimization — Boyd & Vandenberghe

4. Convex optimization problems

e optimization problem in standard form
e convex optimization problems

e quasiconvex optimization

e linear optimization

e quadratic optimization

e geometric programming

e generalized inequality constraints

e semidefinite programming

e vector optimization

Optimization problem in standard form

minimize  fo(x)
subject to  fi(z) <

e = € R" is the optimization variable

fo : R™ — R is the objective or cost function

h; : R" — R are the equality constraint functions

optimal value:

p* =inf{fo(z) | fi(x) <0, i=1,...,m, hi(z) =0, i=1,...

e p* = oo if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below

Convex optimization problems

fi :R" — R, i=1,...,m, are the inequality constraint functions
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Optimal and locally optimal points

x is feasible if x € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for
minimize (over z) fo(z)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i=1,...,p
|z —zl2 < R

examples (with n =1, m = p = 0)

e fo(r)=1/x, dom fy = Ry;: p* =0, no optimal point

e fo(z) = —logz, dom fy = Ry ;: p* = —o0

o fo(x) = logx dom fy =R, : p* = —1/e, x = 1/e is optimal

e fo(zr) =12’ — 3z, p* = —o0, local optimum at x =1
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Implicit constraints

the standard form optimization problem has an implicit constraint
m p
r€eD= ﬂdomfi N ﬂdomhi,
i=0 i=1

e we call D the domain of the problem
e the constraints f;(z) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(z) = — Zle log(b; — alx)

is an unconstrained problem with implicit constraints al'z < b;
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Feasibility problem

find x
subject to  fi(z) <0, i=1,...,m
h-(:c)zO i=1,...,p

can be considered a special case of the general problem with fo(z) = 0:

minimize 0
subject to  fi(x) <
hi(z) =

1=1,....m

0,
0, 2=1,...,p

e p* = (0 if constraints are feasible; any feasible x is optimal

e p* = oo if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

minimize  fo(x)
subject to fl(x) i=1,...,m
ax—bz, 1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine
e problem is quasiconvex if fy is quasiconvex (and f1, ..., fm convex)
often written as

minimize  fo(x

subject to  f;

)
) <0, i=1,....,m
Ar =0b

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(r) = 27 + 23
subject to  fi(z) =21/(1+23) <0
h1($) == (331 + $2)2 =0

e fo is convex; feasible set {(x1,x2) | 1 = —xo < 0} is convex

e not a convex problem (according to our definition): f; is not convex, h;
is not affine

e equivalent (but not identical) to the convex problem

minimize % + x3
subject to x1 <0
I + To = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose z is locally optimal and y is optimal with fy(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, [z —z|s <R = fo(2) > fo(x)

consider z = 0y + (1 — 0)x with 6 = R/(2|ly — z||2)

o ly—zfa> R, s00<6<1/2
e z is a convex combination of two feasible points, hence also feasible

e ||z— |2 =R/2 and

fo(2) < O0fo(x) + (1= 0)foly) < folx)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and

Vfo(z)T(y —2) >0 for all feasible y

if nonzero, V fy(x) defines a supporting hyperplane to feasible set X at x
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e unconstrained problem: x is optimal if and only if

x € dom fy, Vfo(x) =0

e equality constrained problem
minimize fo(z) subjectto Az =1b
x is optimal if and only if there exists a v such that

r € dom fo, Az = b, Vio(z)+ATv =0

e minimization over nonnegative orthant
minimize fo(z) subjectto x>0
x is optimal if and only if

S
xEdOme, z = 0, { Vfo(aj)Z:O z; >0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily

obtained from the solution of the other, and vice-versa
some common transformations that preserve convexity:

¢ eliminating equality constraints
minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
Az =b

is equivalent to

minimize (over z) fo(Fz + o)

subject to filFz4+x9) <0, i=1,...

where F' and xq are such that

Ar=b <= x=Fz+ xy for some z

Convex optimization problems

¢ introducing equality constraints

minimize  fo(Aoz + bo)
subject to  fi(Ajxz+0b;,) <0, i=1,...,m

is equivalent to

minimize (over z, y;) fo(yo)
subject to fily;)) <0, i=1,....m

e introducing slack variables for linear inequalities

minimize  fo(x)
subject to alx <b;, i=1,...,m

is equivalent to

minimize (over x, s) fo(x)

subject to alw+s;=b;, i=1,...

SZ'ZO, z:l,m

Convex optimization problems
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e epigraph form: standard form convex problem is equivalent to

minimize (over z, t) t
subject to fo(x) —

e minimizing over some variables

minimize  fo(z1, 72)
subject to  fi(z1) <0, i=1,...,m

is equivalent to

minimize  fo(z1)
subject to  fi(z1) <0, i=1,...,m

where fo(z1) = infa, fo(z1,22)

Convex optimization problems

Quasiconvex optimization

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m
Ax =b

with fy: R"™ — R quasiconvex, f1, ..., f, convex

can have locally optimal points that are not (globally) optimal

(z, fo()

Convex optimization problems
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convex representation of sublevel sets of fj

if fo is quasiconvex, there exists a family of functions ¢; such that:

o ¢ (x) is convex in x for fixed ¢

e t-sublevel set of fj is O-sublevel set of ¢, i.e.,

folz) <t <= ¢y(x) <0

example

with p convex, q concave, and p(z) > 0, ¢(z) > 0 on dom fj

can take ¢.(z) = p(z) — tq(z):
e fort >0, ¢; convex in x

e p(x)/q(x) <t if and only if ¢(x) <0

Convex optimization problems

quasiconvex optimization via convex feasibility problems
pi(z) <0, filx) <0, i=1,...,m, Ar =b

e for fixed t, a convex feasibility problem in x

e if feasible, we can conclude that ¢ > p*; if infeasible, t < p*

(1)

Bisection method for quasiconvex optimization

given [ < p*, u > p*, tolerance € > 0.
repeat

L.t:={U4+u)/2

2. Solve the convex feasibility problem (1).

3.if (1) is feasible, u :=t; elsel :=t.
until u — [ < e.

requires exactly [log,((u — 1)/€)] iterations (where w, [ are initial values)

Convex optimization problems
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Linear program (LP)

minimize cfxz+d
subject to Gx < h
Az =b
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron

Convex optimization problems

Examples

diet problem: choose quantities z1, . .., x, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient ¢ in quantity at least b;

to find cheapest healthy diet,

minimize ¢z

subjectto Ax >b, x>0

piecewise-linear minimization
minimize max;—1 __n(alz + b;)
equivalent to an LP

minimize ¢
subject to alx+b; <t, i=1,...,m

Convex optimization problems
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Chebyshev center of a polyhedron

Chebyshev center of A\

P={x|alz<b;, i=1,...,m}
is center of largest inscribed ball
B={zc+ullullz <r}
e al'z <, for all x € B if and only if
T <r}=al 2 < b
sup{a; (zc +u) | |lulla <7} = aj zc + rlail2 < b

e hence, z., r can be determined by solving the LP

maximize r
subject to alx.+r|ail2 <b;, i=1,...,m
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(Generalized) linear-fractional program

minimize  fo(x)
subject to Gz < h

Ar =10
linear-fractional program
cle+d T
fo(a:) = m, domfo(x) = {LU | e x+ f > 0}

e a quasiconvex optimization problem; can be solved by bisection

e also equivalent to the LP (variables y, 2)

minimize ¢’y +dz
subject to Gy < hz
Ay = bz
ely+ fz=1
z>0
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generalized linear-fractional program

e +d; T )
fo(z) = Z.:HllaXTeZTT_i_fa dom fo(z) ={z |ejz+f; >0,i=1,...,r}

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy
maximize (over x, 1) min;—y, 2 /2,

subject to x>0, Bzt <Az

e z,27 € R™: activity levels of n sectors, in current and next period
e (Ax);, (Bx™);: produced, resp. consumed, amounts of good i
e 1 /x;: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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Quadratic program (QP)

minimize  (1/2)2T Pz +q¢Ta +r
subject to Gz <X h
Ax =b
e P cS", so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems 4-22



Examples

least-squares
minimize ||Az — b||3

e analytical solution z* = ATh (AT is pseudo-inverse)

e can add linear constraints, e.g., [ < x < u

linear program with random cost

minimize ¢z +yxTYr = Eclz + yvar(clx)
subject to Gx <h, Ax=0b>

e c is random vector with mean ¢ and covariance X

T T

e hence, ¢z is random variable with mean X2 and variance z7 Xz

e ~ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)

Convex optimization problems

Quadratically constrained quadratic program (QCQP)

minimize  (1/2)z” Pyx + ¢tz + ro
subject to  (1/2)aT Pz +q¢lx+r; <0, i=1,....,m
Axz =0

e P, € S"; objective and constraints are convex quadratic

o if P,..., P, €S, feasible region is intersection of m ellipsoids and

an affine set

Convex optimization problems
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Second-order cone programming

minimize flx
subject to  ||Asz + bl <clz+d;, i=1,....m
Fx=g

(A; e R"" " F € RP*™)
e inequalities are called second-order cone (SOC) constraints:

(A;z + by, ciTa: + d;) € second-order cone in Rt

e for n; = 0, reduces to an LP; if ¢; = 0, reduces to a QCQP

e more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP
minimize ¢’z
subject to a?:v <b;,, i1=1,...,m,

there can be uncertainty in ¢, a;, b;
two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize cfz

subject to alx <b;foralla; €&, i=1,...,m,

e stochastic model: a; is random variable; constraints must hold with
probability n
minimize clx
subject to prob(alz <b;)>n, i=1,...,m
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deterministic approach via SOCP

e choose an ellipsoid as &;:
E={a; + Pu | ||ul|2 <1} (a; € R", P, e R™")
center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize clx

subject to alx <b; Va; €&, i=1,....,m

is equivalent to the SOCP

minimize cTx

subject to @’z + [|[Plz|2<b;, i=1,...,m

(follows from supy,,,<1(@; + Piu)"z = a « + || P z|2)

Convex optimization problems 4-27

stochastic approach via SOCP

e assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N (a;, %))

T

i

bi — C_LT.Q?
prob(alz < b)) = & | ——+—
I 22

T

e a; x is Gaussian r.v. with mean a; x, variance T, z: hence

where ®(z) = (1/v2m) [*_ e~t"/2dt is CDF of N(0,1)

e robust LP
minimize ¢z
subject to prob(alz <b)>mn, i=1,...,m,

with n > 1/2, is equivalent to the SOCP
minimize clx
subject to diTx+<I>_1(n)||E,}/2$||2 <b, i1=1,....m

Convex optimization problems 4-28



Geometric programming
monomial function

f(x) = ca{lag? - ain

on dom f = R}
with ¢ > 0; exponent a; can be any real number

posynomial function: sum of monomials

K
flz) = Z cpryFaoh . gk, dom f = R
k=1

geometric program (GP)

minimize  fo(x)
subject to  f;(x)

N
with f; posynomial, h; monomial

Convex optimization problems

Geometric program in convex form
change variables to y;

log z;, and take logarithm of cost, constraints
e monomial f(x) = cx{'---x% transforms to

log f(e¥',....e"") =aTy +b (b=logc)
e posynomial f(z) = Zk 1Cl<:11761l1k T9*" -

2% transforms to

K T

log f(e¥, ..., eY") = log (Z ek y+b’“> (bx = log cx)
k=1

e geometric program transforms to convex problem

minimize  log Zszl exp(ad,y + bOk))
subject to log Eszl exp(aly + bzk)) <0, i=1,.
Gy+d=20

)

Convex optimization problems
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Design of cantilever beam

_ segment 4 segment 3 segment 2 segment 1

e N segments with unit lengths, rectangular cross-sections of size w; X h;

e given vertical force F' applied at the right end

design problem

minimize  total weight

subject to upper & lower bounds on w;, h;
upper bound & lower bounds on aspect ratios h;/w;
upper bound on stress in each segment
upper bound on vertical deflection at the end of the beam

variables: w;, h; fori =1,..., N
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objective and constraint functions

e total weight wihy + --- +wyhy is posynomial

e aspect ratio h;/w; and inverse aspect ratio w;/h; are monomials
e maximum stress in segment i is given by 6iF/(w;h?), a monomial

e the vertical deflection y; and slope v; of central axis at the right end of
segment ¢ are defined recursively as

_ F
Vi = 12(?,— 1/2)m+1}1+1

R 1
Yi 6(1 /B)Ewih?

+ Vir1 + Vit

fori=N,N—1,...,1, with ovyy1 = ynt+1 =0 (E is Young's modulus)

v; and y; are posynomial functions of w, h
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formulation as a GP

minimize  wihy 4+ -4+ wyhy

subject to wlw; <1, wppw; ' <1, i=1,...,N
holhi <1, hmwh; ' <1, i=1,...,N
Solawth; <1, Spmwih;'<1, i=1,...,N
6iFo tw'th;2<1, i=1,...,N
Y1 < 1

note

e we write Wmin S wW; S Wmax and hmin S hz S hmax

wmin/wi S 17 wi/wmax S 17 hmin/hi S 17 hi/hmax S 1

o we write Spin < hi/w; < Shax as
Sminwi/hi S 17 hi/(wismax) S 1

Convex optimization problems 4-33

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue )\ ¢(A)

R?’LXTL

exists for (elementwise) positive A €

a real, positive eigenvalue of A, equal to spectral radius max; |A;(A)]

determines asymptotic growth (decay) rate of A*: AF ~ AF;as k — oo

alternative characterization: Ap¢(A) = inf{\ | Av < Av for some v > 0}

minimizing spectral radius of matrix of posynomials

e minimize \p¢(A(z)), where the elements A(z);; are posynomials of z

e equivalent geometric program:

minimize A
subject to Z?:l A(x)”v]/(/\vl) <1, 1=1,...,n

variables \, v, =
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize  fo(x)
subject to  fi(z) <k, 0, i=1,....m
b

e fo:R" — R convex; f; : R" — R¥ K,-convex w.r.t. proper cone K;
e same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)
conic form problem: special case with affine objective and constraints
minimize ¢’z
subjectto Fzx+ g <k 0
Ax =b

extends linear programming (K = R’") to nonpolyhedral cones
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Semidefinite program (SDP)

minimize clx

subject to 33‘1F1 + .CCQFQ + -+ :L'nFn + G = 0
Ax =b

with F;, G € SF

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

A ~

o F 4B+ G =<0, zFi 4+ ta,F,+G =<0

(5 2]
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is equivalent to single LMI

F, 0 F 0 E,
x{ L ]*[ , ]+...+xn[ ’

o
on

0 Fl 0 FZ



LP and SOCP as SDP

LP and equivalent SDP

LP: minimize clx SDP: minimize c¢fx

subject to Ax <b subject to diag(Ax —b) <0

(note different interpretation of generalized inequality <)

SOCP and equivalent SDP

SOCP: minimize fTx
subject to || Az +billo < cfx+d;, i=1,...,m

SDP: minimize  flx

T ) , .
(cjz+d)l - Awbi |0y

subject to (Aiz + 07 Tzvdi | =
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Eigenvalue minimization

minimize  Apmax(A(z))
where A(z) = Ag + 21A1 + -+ + x, A, (with given A; € Sk)
equivalent SDP

minimize t
subject to A(x) <tI

e variables x € R", t € R

e follows from
)\max(A) S t e A j tl
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Matrix norm minimization

minimize [|A(z)]2 = (Amax(A(z)TA(z))) "/

where A(x) = Ag + 2141 + -+ + 2, A, (with given A; € SP*9)
equivalent SDP
minimize ¢
subject to t
J| A(
e variables x ¢ R", t € R
e constraint follows from
|Allo <t <= ATA<I, t>0

tI A
[AT tI]to
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Vector optimization

general vector optimization problem

minimize (w.r.t. K) fo(z)
subject to filx) <

0, i=1,..
hi(z) <0, i=1,...,p

vector objective fp : R™ — RY, minimized w.r.t. proper cone K € RY

convex vector optimization problem

minimize (w.r.t. K) fo(z)

subject to filx) <0, i=1,...,m
Axr =b
with fo K-convex, f1, ..., fm convex
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Optimal and Pareto optimal points

set of achievable objective values
O = {fo(x) | x feasible}

e feasible x is optimal if fo(z) is a minimum value of O

e feasible x is Pareto optimal if fy(z) is a minimal value of O

fo(zP?)

fo(x™)

x* is optimal xP° is Pareto optimal
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Multicriterion optimization
vector optimization problem with K = Ri
fo(z) = (F1(2), ..., Fo(x))

e ¢ different objectives Fj; roughly speaking we want all F;'s to be small

e feasible x* is optimal if
y feasible —  fo(z*) X fo(y)

if there exists an optimal point, the objectives are noncompeting

e feasible zP° is Pareto optimal if

y feasible,  fo(y) =X fo(zP°) = fo(zP°) = fo(y)

if there are multiple Pareto optimal values, there is a trade-off between
the objectives
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Regularized least-squares

multicriterion problem with two objectives

Fi(z) = |[Az = bll3,  Fa(z) = [l]3

15
e example with 4 € R190x10 .

8 10t
e shaded region is O I
. 0

e heavy line is formed by Pareto — 5
optimal points ~

0

0 5 10 9 15
Fi(z) = ||Az — bl[5
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Risk return trade-off in portfolio optimization

minimize (w.r.t. RY) (—p’z, 27 %)
subject to 1Tz =1, >0

e z € R" is investment portfolio; x; is fraction invested in asset %

e p € R" is vector of relative asset price changes; modeled as a random
variable with mean p, covariance X

e 9z = Er is expected return; 7Yz = varr is return variance

example
15% T T T 1,
x(4)x(3) / =(2)
c 8
% 10%/ .S
o B 05
c 3 z(1)
s Re)
E 5%' TU
0,
0% 0% 10% 20% 0% 10% 20%
standard deviation of return standard deviation of return
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Scalarization

to find Pareto optimal points: choose A > g+ 0 and solve scalar problem

minimize AT fo(x)
subject to  fi(z) <0, i=1,...,m
hi(x)=0, i=1,...,p

if x is optimal for scalar problem,
then it is Pareto-optimal for vector
optimization problem

for convex vector optimization problems, can find (almost) all Pareto
optimal points by varying A >+ 0
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examples

e for multicriterion problem, find Pareto optimal points by minimizing
positive weighted sum

A fo(x) = MFi () + - - + A Fy()
e regularized least-squares of page 4-43 (with A = (1,7))
minimize ||Az — b||3 + v||z||3
for fixed v > 0, a least-squares problem

e risk-return trade-off of page 4-44 (with A = (1,7))

minimize —plx + vzl Yx
subject to 1Tz =1, >0

for fixed v > 0, a QP
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