Convex Optimization — Boyd & Vandenberghe

8. Geometric problems

extremal volume ellipsoids

centering

classification

placement and facility location
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Minimum volume ellipsoid around a set

Lowner-John ellipsoid of a set C: minimum volume ellipsoid £ s.t. C C &£
e parametrize £ as £ = {v | ||[Av + b||2 < 1}; w.l.o.g. assume A € S |

e vol & is proportional to det A~!; to compute minimum volume ellipsoid,

minimize (over A, b) logdet A™!
subject to SUP,cc ||Av +blj2 < 1

convex, but evaluating the constraint can be hard (for general (')
finite set C' = {z1,..., 2, }:

minimize (over A, b) logdet A1
subject to |Az; +b]2 <1, i=1,....,m

also gives Lowner-John ellipsoid for polyhedron conv{zy,...,x,}
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Maximum volume inscribed ellipsoid

maximum volume ellipsoid £ inside a convex set C' C R"

e parametrize £ as £ = {Bu+d | ||ul|2 < 1}; w.l.o.g. assume B € S |
e vol £ is proportional to det B; can compute £ by solving

maximize logdet B
subject to  supy,,<1 lc(Bu+d) <0

(where Io(x) =0 for x € C and Ig(x) = oo for x & C)

convex, but evaluating the constraint can be hard (for general (')
polyhedron {x | alz <b;, i =1,...,m}:

maximize logdet B
subject to || Baylls +afd <b;, i=1,...,m

(constraint follows from sup,,<; @] (Bu+ d) = || Ba|l2 + a] d)
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Efficiency of ellipsoidal approximations

C C R" convex, bounded, with nonempty interior

e Lowner-John ellipsoid, shrunk by a factor n, lies inside C'

e maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in R?)

/
AN

factor n can be improved to \/n if C is symmetric
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Centering

some possible definitions of ‘center’ of a convex set C"

e center of largest inscribed ball ('Chebyshev center’)
for polyhedron, can be computed via linear programming (page 4-19)

e center of maximum volume inscribed ellipsoid (page 8-3)

MVE center is invariant under affine coordinate transformations
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Analytic center of a set inequalities
the analytic center of set of convex inequalities and linear equations
filx) <0, i=1,...,m, Fr=yg
is defined as the optimal point of
minimize  — > log(— fi(x))
subjectto Fx =g
e more easily computed than MVE or Chebyshev center (see later)
e not just a property of the feasible set: two sets of inequalities can
describe the same set, but have different analytic centers
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analytic center of linear inequalities o/ 2 < b;, i =1,...,m

Tac 1S Minimizer of

inner and outer ellipsoids from analytic center:

ginner C {ZC | a,IZ-Tx < bi; 1= 17 v 7m} C 5outer

where
ginner - {37 ’ (:U - xaC)Tv2¢(xac)('x — Tac < 1}
Eouter = {x | (33 - leaC)TVQQb(%LC)(5[7 - xaC) < m(m - 1)}
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Linear discrimination
separate two sets of points {x1,...,zn}, {y1,...,yn} by a hyperplane:

alz;+b; >0, i=1,...,N, aly;+b;<0, i=1,....M

homogeneous in a, b, hence equivalent to
T _ T -
a'r;+b;>1, +1=1,...,N, a'y+b6;<-1, +1=1,....M
a set of linear inequalities in a, b

Geometric problems 8-8



Robust linear discrimination

(Euclidean) distance between hyperplanes

Hy = {z|a'z+b=1}
Ho = {z]a’2+b=—-1}

is dist(H1, Ha) = 2/||a||2

to separate two sets of points by maximum margin,
minimize  (1/2)||al|2
subject to alz;+b>1, i=1,...,N (1)
aly; +b< -1, i=1,...,.M

(after squaring objective) a QP in a, b
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Lagrange dual of maximum margin separation problem (1)

maximize 17X +17p
subject to 2 szjil N — sz\il wiyill <1 (2)
2
1"Xx=1Tpy, AX>=0, pu>=0

from duality, optimal value is inverse of maximum margin of separation
interpretation
e change variables to 8; = \; /17X, v; = p; /1T, t = 1/(1TX + 1T )
e invert objective to minimize 1/(17X +17y) = ¢
minimize
<t

t
subject to HZZ]\; Oix; — Z@J\L YiYi
2
0>=0, 170=1, ~>=0, 17yv=1

optimal value is distance between convex hulls
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Approximate linear separation of non-separable sets

minimize 17w+ 17w
subject to a’z; +b>1—w;, i=1,...,N
aty, +b< —-1+wv;, i=1,....M
u>=0, v>=0
e anlLPina, b, u, v
e at optimum, u; = max{0,1 — a’z; — b}, v; = max{0,1 + aTy; + b}

e can be interpreted as a heuristic for minimizing #misclassified points
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Support vector classifier

minimize  [lal2 +v(1Tu + 17v)

subjectto alz;+b>1—w;, i=1,...,N
aly; +b< —1+wv;, i=1,....M
u>=0, v>0

produces point on trade-off curve between inverse of margin 2/||a||2 and
classification error, measured by total slack 17u 4+ 17w

same example as previous page,
with v = 0.1:
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Nonlinear discrimination

separate two sets of points by a nonlinear function:

f(%i)>0, 1=1,..., N, f(y2)<0, 1=1,...

e choose a linearly parametrized family of functions
f(z) =0"F(z)
F = (Fy,...,Fy) : R" — R are basis functions

e solve a set of linear inequalities in 6:

0TF(x;)>1, i=1,...,N, OTF(y;) < -1, i=1,...,.M

Geometric problems

quadratic discrimination: f(z) = 2TPz+q¢Tz+r

zj Pri+q zi+r>1, yi Pyi+ ¢y +r < -1

can add additional constraints (e.g., P < —1I to separate by an ellipsoid)

polynomial discrimination: F'(z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial

Geometric problems
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Placement and facility location

e N points with coordinates x; € R* (or R?)

e some positions x; are given; the other x;'s are variables

e for each pair of points, a cost function f;;(x;,x;)

placement problem

variables are positions of free points

interpretations

minimize Zi;éjfij(xiaxj)

e points represent plants or warehouses; f;; is transportation cost between

facilities ¢ and j

e points represent cells on an IC; f;; represents wirelength
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example: minimize -, ;4 h([|z; — zj||2), with 6 free points, 27 links

optimal placement for h(z) = z, h(z) = 22, h(z) = z*
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