Convex Optimization — Boyd & Vandenberghe

3. Convex functions

basic properties and examples

operations that preserve convexity

the conjugate function
e quasiconvex functions

e log-concave and log-convex functions

convexity with respect to generalized inequalities
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Definition
f:R™ — R is convex if dom f is a convex set and
f(0x+ (1 —0)y) <Of(x)+(1-0)f(y)

forall z,y edom f, 0<60 <1

(v, f(y))
(z, f(z))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

fOx+ (1 =0)y) <0f(x)+(1-0)f(y)

forz,yedomf, z#y 0<0<1
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Examples on R

convex:

e affine: ax + b on R, for any a,b € R

exponential: €%, for any a € R

e powers: 2% on Ry, fora>1ora <0

powers of absolute value: |z|P on R, for p > 1

negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: z¥on Ry, for0 <a <1

e logarithm: logx on R, ¢
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Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(x) = a’z + b

e norms: [zl = (1, a4f?) /7 for p > 1; 2]l = max |y

examples on R™™" (m x n matrices)

e affine function

FX) =tr(ATX) +b=> ") AyX;;+b

i=1 j=1

e spectral (maximum singular value) norm

F(X) = || X2 = omax(X) = (AmaX(XTX))1/2
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Restriction of a convex function to a line

f : R"™ — R is convex if and only if the function g : R — R,
g(t) = f(z + tv), domg = {t|x+tv € dom f}

is convex (in t) for any z € dom f, v € R"
can check convexity of f by checking convexity of functions of one variable
example. f:S" — R with f(X) =logdet X, dom X =S" |
g(t) =logdet(X +tV) = logdet X + logdet(I +tX 12V X~1/2)
= logdet X + Z log(1 +t\;)
i=1
where )\; are the eigenvalues of X /27 X ~1/2

g is concave in t (for any choice of X > 0, V'); hence f is concave
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Extended-value extension

extended-value extension f of f is

f(z)=f(z), zecdomf,  f(z)=o00, = ¢domf

often simplifies notation; for example, the condition
0<0<1 = f(bx+(1—-0)y) <0f(x)+(1-06)f(y)
(as an inequality in RU {oo}), means the same as the two conditions

e dom f is convex

e for z,y € dom f,

0<8<1 = flz+(1-0)y) <O0f(x)+(1—-0)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

V50 = (G g e )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > flz)+ Vf(a;)T(y —x) forall z,y € dom f

f(y)
f(@) + Vf(@) (y — )
(z, f(z))
first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian VZf(z) € S”,

_ *f(=)
N 8:171'81']"

,7=1,...,n,

V2 f (@)
exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(x) =0 forall 2 € dom f

o if V2f(xz) = 0 for all x € dom f, then f is strictly convex

Convex functions 3-8



Examples
quadratic function: f(z) = (1/2)2T Pz + Tz +r (with P € S")
Vf(x) = Pzx+q, V2f(zx) =P

convex if P > 0

least-squares objective: f(z) = ||Ax — b3
Vf(x) =24T(Az — D), V2f(zx) =24TA

convex (for any A)

quadratic-over-linear: f(z,y) = 22/y
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log-sum-exp: f(z) =log > ;_, expxy is convex

1 1

V() = 2 diag(z) -

to show V2f(x) = 0, we must verify that vTV2f(x)v > 0 for all v:

UTV2f(£L’)U — >k Zkvl%)(z(:f::lll); >k vgzg)? > ()

since (3, vkzk)? < (24 2k07) (O, 2k) (from Cauchy-Schwarz inequality)

geometric mean: f(x) = ([[,_, zx)'/™ on R}, is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

a-sublevel set of f : R" — R:
Co={z €domf | f(z) < o}

sublevel sets of convex functions are convex (converse is false)

epigraph of / : R" — R:
epif = {(z,t) e R"*' |z c dom f, f(x) <t}

epi f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 60 <1,

fllz+ (1 —-0)y) <Of(x)+(1-06)f(y)

extension: if f is convex, then

f(Ez) <E f(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z =x) =0, prob(z=y)=1-40
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show V2f(z) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: o f is convex if f is convex, a >0
sum: f; + fo convex if f1, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Az +b) is convex if f is convex

examples

e log barrier for linear inequalities

f(x) = —ZIOg(bi —al'r), dom f = {z|alz <bs,i=1,...,m}
i=1
e (any) norm of affine function: f(x) = || Az + b||
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Pointwise maximum
if f1, ..., fm are convex, then f(x) = max{fi(x),..., fi(x)} is convex

examples

e piecewise-linear function: f(x) = max;—1 . m(alx + b;) is convex

e sum of r largest components of x € R":
f(@) = zp)+xpg + - 4 2p

is convex () is ith largest component of x)
proof:

f(z) =max{z; + x4+ 42, | 1 <0 <dp < -+ <ip <n}

Convex functions 3-15

Pointwise supremum

if f(x,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

is convex

examples
e support function of a set C': Sc(r) = sup,cc yTx is convex

e distance to farthest point in a set C"

f(x) =sup ||z —y|
yel

e maximum eigenvalue of symmetric matrix: for X € S",

Amax(X): sup yTXy
lyll2=1
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Composition with scalar functions

composition of g : R — Rand h: R — R:

: g convex, h convex, h nondecreasing
f is convex if
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)
f'(x) = 1"(g(z))g'(x)* + W' (g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : R® — R* and h: R* = R:

f(x) = h(g(x)) = h(g1(z), g2(x), ..., gu(x))

f is convex if g; convex, h convex, h nondecreasing in each argument
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f'(x) = g'(2)" V2h(g(2))g'(z) + Vh(g(z))" g"(z)

examples
e > ._,logg(x) is concave if g; are concave and positive

e logd " expg;(x) is convex if g; are convex
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Minimization
if f(x,y) is convex in (x,y) and C' is a convex set, then

g(x) = ;ggf(w, Y)

IS convex

examples

o f(z,y) = 2T Ax + 227 By + yT Cy with

[AB

BT C}zo, C >0

minimizing over y gives g(x) = inf, f(z,y) = 27(A — BC~1BT)z
g is convex, hence Schur complement A — BC~'BT =0

e distance to a set: dist(z,S) = inf,eg ||z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R" — R is the function g : R” x R — R,
g(x,t) =tf(z/t),  domg={(z,t)[z/t €domf, ¢ >0}

g is convex if f is convex

examples
o f(x) = 2T is convex; hence g(z,t) = xTx/t is convex for t > 0

e negative logarithm f(xz) = — log x is convex; hence relative entropy
g(z,t) =tlogt — tlogx is convex on Ri+

e if f is convex, then
g(x) = (cTsc +d)f ((Ax + b)/(ch + d))

is convex on {x | Tz +d >0, (Az +b)/(cTz + d) € dom f}
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(x))

r€dom f

f(x)

\/ 0, =7 ()
e f*is convex (even if f is not)

e will be useful in chapter 5
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examples
e negative logarithm f(x) = —logx
f(y) = sup(zy+logx)
x>0
_ —1—log(-y) y <0
o 00 otherwise

e strictly convex quadratic f(z) = (1/2)z7Qx with Q € S},
ffy) = sup(y'z—(1/2)2" Qu)

.t TA-1
—QyQy
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Quasiconvex functions

f : R"™ — R is quasiconvex if dom f is convex and the sublevel sets

So ={z e domf| f(z) < a}

are convex for all «

e f is quasiconcave if —f is quasiconvex

e f is quasilinear if it is quasiconvex and quasiconcave

Convex functions

\/|z| is quasiconvex on R

Examples

e ceil(z) =inf{z € Z | z > x} is quasilinear

e logz is quasilinear on R,

e f(x1,x9) = w122 is quasiconcave on Ri+

e linear-fractional function

alx +b
o) =5
is quasilinear
e distance ratio
|z — al|2
f(z) = 77,
|z — b2

IS quasiconvex

Convex functions

dom f={z|clz+d>0}

dom f = {z [ ||z — all2 < ||z — bl]2}
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internal rate of return

e cash flow = = (zg,...,x,); x; is payment in period i (to us if x; > 0)

e weassume g <Oandzg+2x21+---+x, >0

e present value of cash flow x, for interest rate r:

PV(z,r) = Z(l + )"l

1=0

e internal rate of return is smallest interest rate for which PV (z,r) = 0:

IRR(z) = inf{r > 0 | PV(x,r) = 0}
IRR is quasiconcave: superlevel set is intersection of halfspaces

IRR(z) > R <= Y (1+r)'z;>0for0<r<R
1=0

Convex functions

Properties
modified Jensen inequality: for quasiconvex f

0<0<1 = [f(0x+(1-0)y) <max{f(z), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fy) < fl@) = Vf@)'(y—=z)<0

Vi(z)

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions
a positive function f is log-concave if log f is concave:
fx+(1—=0)y) > f(2)’fy)'" for0<h<1

f is log-convex if log f is convex

e powers: % on R, is log-convex for a < 0, log-concave for a > 0

e many common probability densities are log-concave, e.g., normal:

Fz) = 1 o b5 (a—7)
(27)™ det X2

e cumulative Gaussian distribution function ® is log-concave

1 T
O(x) = E/ e~ 2 dy

Convex functions

Properties of log-concave functions

e twice differentiable f with convex domain is log-concave if and only if

f@)V2f(z) 2 Vf(@)Vfz)"
for all x € dom f
e product of log-concave functions is log-concave
e sum of log-concave functions is not always log-concave

e integration: if f: R" x R™ — R is log-concave, then

g(x) = /f(xay) dy

is log-concave (not easy to show)
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consequences of integration property

e convolution f * g of log-concave functions f, g is log-concave
(F9)(@) = [ o~ o)y

e if C C R" convex and y is a random variable with log-concave pdf then
f(x) =prob(z +y € C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

flz) = /g(x+y)p(y) dy,  g(u) = { (1) Z;g
p is pdf of y
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example: yield function
Y (z) = prob(z +w € S)
e = € R™: nominal parameter values for product
e w € R™: random variations of parameters in manufactured product

e S: set of acceptable values

if S is convex and w has a log-concave pdf, then

e Y is log-concave

e yield regions {z | Y(x) > «} are convex
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Convexity with respect to generalized inequalities

f:R"™ — R™ is K-convex if dom f is convex and
flOz+ (1= 0)y) 2k 0f(z) + (1—0)f(y)
forz,yedomf,0<6<1
example f:S™ — §™, f(X) = X?is S'"-convex
proof: for fixed z € R™, 2T X%z = || Xz||3 is convex in X, i.e.,
ZOX+(1-0)Y) 2 207X+ (1-0)2TY%
for X, Y €eS™ 0<60<1

therefore (0X + (1 —0)Y)?2 < 0X2+ (1 —-0)Y?
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