Convex Optimization — Boyd & Vandenberghe

11. Equality constrained minimization

e equality constrained minimization

e climinating equality constraints

e Newton's method with equality constraints
e infeasible start Newton method

e implementation

Equality constrained minimization

minimize  f(x)
subjectto Ax =10

e f convex, twice continuously differentiable
o Ac RP*" withrank A = p

e we assume p* is finite and attained

optimality conditions: x* is optimal iff there exists a v* such that

Vf(z*) 4+ ATv* =0, Ax* =D
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equality constrained quadratic minimization (with P € S’')

minimize  (1/2)2TPx +¢Tx +r
subject to Ax =0

optimality condition:

v L=

e coefficient matrix is called KKT matrix

e KKT matrix is nonsingular if and only if

Ar =0, x#0 — zTPx >0
e equivalent condition for nonsingularity: P+ ATA = 0

Equality constrained minimization

Eliminating equality constraints
represent solution of {x | Ax = b} as
{r|Ax=b} ={Fz+&|z€R"?}

e 1 is (any) particular solution

e range of F € R™*("~P) is nullspace of A (rank F = n—p and AF = 0)

reduced or eliminated problem
minimize f(Fz+ )

e an unconstrained problem with variable z € R"™?

e from solution z*, obtain z* and v* as

r*=Fz"+ 1z, v = —(AAT) LAV f(2*)
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example: optimal allocation with resource constraint

minimize  f1(z1) + fo(@2) + - + folzn)
subjectto z1+a9+---+x,=0b

eliminate x,, =b— 21 —--- — x,,—1, t1.€., choose
. I _
x = be,, F = l 1T ] = Rnx(n 1)
reduced problem:
minimize fl(xl) +ot fn—l(wn—l) + fn(b — &1 = xn—l)
(variables zy, ..., xp—1)
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Newton step

Newton step of f at feasible = is given by (1st block) of solution of

7 )

interpretations

e Az, solves second order approximation (with variable v)

minimize  f(z +v) = f(z) + Vf(2)Tv + (1/2)0TV2f (z)v
subject to A(x+v) =b

e equations follow from linearizing optimality conditions

Vf(x+ Axy) + ATw =0, Az + Azy) =0
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Newton decrement

/2

Nz) = (Azp V2 f(z)Azy) '~ = (—Vf(a:)TAaznt)l/Q

properties

e gives an estimate of f(z) — p* using quadratic approximation ]?

Flx)— inf Fly) = SA(@)

Ay=b
e directional derivative in Newton direction:

d
—f(x + tAxy) = —\(z)?
dt =0

e in general, \(z) # (vf(ﬂf)TVQf(fL‘)_1Vf(a:))l/2

Equality constrained minimization

Newton’s method with equality constraints

given starting point x € dom f with Az = b, tolerance € > 0.
repeat
1. Compute the Newton step and decrement Az, A(x).
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAxy.

e a feasible descent method: z(*) feasible and f(z(**1) < f(z(®)

e affine invariant
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Newton’s method and elimination

Newton’s method for reduced problem
minimize f(z) = f(Fz + &)

e variables z € R"™?
e 1 satisfies Az =b;, rank FF=n —pand AF =0

e Newton's method for f started at z(9), generates iterates 2(K)

Newton’s method with equality constraints

when started at (0 = F2(0) 4+ % iterates are

z* D) = (R 4 7

hence, don't need separate convergence analysis
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Newton step at infeasible points

2nd interpretation of page 11-6 extends to infeasible x (i.e., Ax # b)

linearizing optimality conditions at infeasible z (with = € dom f) gives

SRR PV

primal-dual interpretation

e write optimality condition as 7(y) = 0, where
y=(z,v),  r(y)=(Vf(z) +A"v, Az —b)
e linearizing r(y) = 0 gives r(y + Ay) = r(y) + Dr(y)Ay = 0:

0 4] ] [

same as (1) with w = v + Avy
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Infeasible start Newton method

given starting point x € dom f, v, tolerance € > 0, « € (0,1/2), B € (0, 1).
repeat
1. Compute primal and dual Newton steps Az, Avyg.
2. Backtracking line search on ||r||2.
t:= 1.
while ||r(z + tAxp, v + tAvy)||2 > (1 — at)||r(z, v)|l2, t:= Bt.
3. Update. ©x := = + tAxy, V := v + tAvy.
until Ax = b and ||r(z, v)|l2 < e

e not a descent method: f(z(+1)) > f(2(®) is possible

e directional derivative of ||r(y)[|3 in direction Ay = (Azy, Avyg) is

d
S lIr+ Ayl =—lr)l:
t=0
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Solving KKT systems

solution methods

e LDLT factorization

e climination (if H nonsingular)

AH 'ATw =h— AH g, Hv=—(g+ ATw)

e elimination with singular H: write as

H+ ATQA AT vo| g+ ATQh
A 0 w | h

with Q = 0 for which H + ATQA = 0, and apply elimination
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Equality constrained analytic centering
primal problem: minimize — """ , logz; subject to Az =b

dual problem: maximize —bTv + 3"  log(ATv); +n

three methods for an example with A € R100%500 " different starting points

1. Newton method with equality constraints (requires z(®) = 0, Az(®) = p)

10°
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2. Newton method applied to dual problem (requires ATp0) 0)

10°

107° ¢
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3. infeasible start Newton method (requires z(9) = 0)
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complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

diag(r)2 AT ] [ Ax ]

( [ A [ diag(z)~'1 }

0
reduces to solving A diag(x)?2ATw =b
2. solve Newton system Adiag(ATv)2ATAv = —b+ Adiag(ATv)~ 11

3. use block elimination to solve KKT system

o ][]

reduces to solving A diag(z)?ATw = 2Ax — b

conclusion: in each case, solve ADATw = h with D positive diagonal
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Network flow optimization

minimize > | ¢i(x;)
subject to Ax =10
e directed graph with n arcs, p + 1 nodes
e z;: flow through arc i; ¢;: cost flow function for arc i (with ¢/ (z) > 0)

e node-incidence matrix A € R?TV*" defined as

1 arc j leaves node i
A;j =4 —1 arcj enters node i
0 otherwise

e reduced node-incidence matrix A € RP*™ is A with last row removed
e b c R? is (reduced) source vector

e rank A = p if graph is connected
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KKT system

G =1
A 0 w | h
e H = diag(¢Y(x1),...,¢!(x,)), positive diagonal
e solve via elimination:
AH *ATw =h — AH 'y, Hv=—(g+ ATw)
sparsity pattern of coefficient matrix is given by graph connectivity

(AHTAT);j #0 = (AAT); #0

<= nodes ¢ and j are connected by an arc
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Analytic center of linear matrix inequality
minimize  —logdet X
subject to tr(A;X)=05;, i=1,...,p
variable X € S"
optimality conditions
p
X*FO, —(X*)_I-FZV;AZ‘:O, tI'(AiX*):bi, izl,...,p
j=1

Newton equation at feasible X:

p
XTAXX T+ widy =X tr(AAX) =0, i=1,...,p
j=1

e follows from linear approximation (X + AX) !~ X~ - X" 1AX X!

e n(n+1)/2+ p variables AX, w
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solution by block elimination

e eliminate AX from first equation: AX = X — Z§:1 w; X A; X

e substitute AX in second equation
P
Ztr(AZXAJX)wJ :bi, 1= 1,...,p (2)
j=1
a dense positive definite set of linear equations with variable w € R?

flop count (dominant terms) using Cholesky factorization X = LL™:

e form p products LY A;L: (3/2)pn®
e form p(p + 1)/2 inner products tr((LTA;L)(LTA;L)): (1/2)p*n?

e solve (2) via Cholesky factorization: (1/3)p?
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