Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

inequality constrained minimization

logarithmic barrier function and central path

barrier method

feasibility and phase | methods

complexity analysis via self-concordance

generalized inequalities

Inequality constrained minimization

minimize  fo(z)
subject to  fi(z) <0, i=1,....,m (1)
Az =10

fi convex, twice continuously differentiable

A € RP”*™ with rank A = p

e we assume p* is finite and attained

e we assume problem is strictly feasible: there exists £ with
7 € dom fj, fi() <0, i=1,...,m, Az =1

hence, strong duality holds and dual optimum is attained
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Examples

e LP, QP, QCQP, GP
e entropy maximization with linear inequality constraints

minimize Z;’;l x;logx;
subjectto Fr <g
Arx =1b

with dom fo = R} |

e differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or £..-norm approximation via LP

e SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize  fo(z) + 2111 I_(fi(x))

subject to Ax =10

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(z) — (1/t) >_1", log(—fi(x))

subject to Ax =10

e an equality constrained problem

e fort >0, —(1/t)log(—u) is a
smooth approximation of I_

e approximation improves as t — oo
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logarithmic barrier function

¢(z) = — Zlog(—fi(w)), dom ¢ = {z | fi(z) <O0,..., fm(z) <0}

e convex (follows from composition rules)

e twice continuously differentiable, with derivatives

m

1
Vo) = S ——Vf,
o) ;—fi(ﬂﬂ) i)
Vo) = 3+ (Z)Qwi(x)wi(x)%z_ fj(x)w filx)

Central path

e for t > 0, define *(¢) as the solution of

minimize  tfo(x) + ¢(x)
subject to Az =1b

(for now, assume x*(t) exists and is unique for each ¢ > 0)

e central path is {z*(¢) | t > 0}

example: central path for an LP

minimize c¢lx

subject to alz <b;, i=1,...,6

hyperplane ¢cT'z = ¢Tx*(t) is tangent to
level curve of ¢ through z*(t)
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Dual points on central path
x = x*(t) if there exists a w such that

1
—fi()

tV folx) + ) Viiz)+ATw=0, Az=0b
=1

e therefore, x*(t) minimizes the Lagrangian

m

L{x, *(),v*(1)) = folx) + > Ai(t) filz) + v*(8)" (Az — b)

i=1
where we define A5 (t) = 1/(—tfi(z*(t)) and v*(t) = w/t

e this confirms the intuitive idea that fo(z*(¢)) — p* if t — oo:

= g(\V(t),vr(t)
= L), 1 (), 7))

= Jo(z*(t)) —m/t

Interior-point methods

Interpretation via KKT conditions

x=x*(t), A= X*(t), v = v*(¢) satisfy

1. primal constraints: f;(x) <0,i=1,...,m, Ax =b

dual constraints: A > 0

> W

gradient of Lagrangian with respect to x vanishes:

Vo) + > NiVfi(z)+ ATy =0

=1

difference with KKT is that condition 3 replaces \;f;(x) =0

Interior-point methods

approximate complementary slackness: —\; f;(x) =1/t,i=1,...

,m



Force field interpretation

centering problem (for problem with no equality constraints)

minimize tfo(z) — > " log(—fi(x))

force field interpretation

o tfo(x) is potential of force field Fy(x) = —tV fo(x)
e —log(—fi(x)) is potential of force field F;(x) = (1/fi(x))V fi(x)

the forces balance at z*(¢):

Fo(a (6) + D Fi(a* (1) = 0
i=1
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example
minimize ¢’z
subject to alz <b;, i=1,...,m
e objective force field is constant: Fy(x) = —tc

e constraint force field decays as inverse distance to constraint hyperplane:

a; 1

Fi(z) = :7%’ [ Ei(z)]l2 = m

)

where H; = {z | alx = b;}
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Barrier method

given strictly feasible x, t := t© > 0, i > 1, tolerance € > 0.

repeat

1. Centering step. Compute x*(t) by minimizing ¢ fy + ¢, subject to Az = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if m/t < e.

4. Increaset. t := ut.

e terminates with fo(z) — p* < € (stopping criterion follows from
fo(z*(t)) —p* < m/t)
e centering usually done using Newton's method, starting at current x

e choice of u involves a trade-off: large © means fewer outer iterations,
more inner (Newton) iterations; typical values: p = 10-20

e several heuristics for choice of #(9)
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Convergence analysis

number of outer (centering) iterations: exactly

Fog(ﬁ/g (5(0)))1

plus the initial centering step (to compute x*(¢(?)))

centering problem
minimize tfo(x) 4+ ¢(z)

see convergence analysis of Newton's method
e tfy+ ¢ must have closed sublevel sets for t > ¢(?)
e classical analysis requires strong convexity, Lipschitz condition

e analysis via self-concordance requires self-concordance of tfy + ¢
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)
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Newton iterations

e starts with = on central path (+(°) = 1, duality gap 100)
e terminates when ¢ = 10% (gap 1079)
e centering uses Newton's method with backtracking

e total number of Newton iterations not very sensitive for > 10
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geometric program (m = 100 inequalities and n = 50 variables)
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102
100 L
o
[
a0
Z 1077
s
=
1074
1076} n=2
0O 20 40 60 80 100 120
Newton iterations
12-14

Interior-point methods



family of standard LPs (4 € R™*?™)

minimize Lz

subjectto Azx=0b, >0

m = 10,...,1000; for each m, solve 100 randomly generated instances

35

Newton iterations

155 : :
10! 102 10°
m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase | methods

feasibility problem: find x such that
filx) <0, i=1,...,m, Ax =b (2)

phase |: computes strictly feasible starting point for barrier method

basic phase | method

minimize (over z, s) s
subject to file) <s, i=1,....m (3)
Ar =b
e if x, s feasible, with s < 0, then x is strictly feasible for (2)
e if optimal value p* of (3) is positive, then problem (2) is infeasible

e if p* = 0 and attained, then problem (2) is feasible (but not strictly);
if p* = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase | method
minimize 17s
subjectto s>=0, fi(z)<s;, i=1,....m
Az =b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)
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left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 solutions
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example: family of linear inequalities Ax < b+ vyAb
e data chosen to be strictly feasible for v > 0, infeasible for v < 0

e use basic phase |, terminate when s < 0 or dual objective is positive
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number of iterations roughly proportional to log(1/|v|)
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Complexity analysis via self-concordance

same assumptions as on page 12-2, plus:

e sublevel sets (of fjy, on the feasible set) are bounded

e tfy+ ¢ is self-concordant with closed sublevel sets

second condition

e holds for LP, QP, QCQP

e may require reformulating the problem, e.g.,

- . n - . . n
minimize ) ., x;logx;  —  minimize ) ., xz;logx;
subjectto Fx <g subjectto Fr=<g, x>0

e needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

ptfo(x) + ¢(x) — ptfo(z ™) — ¢p(z™)
Y

+c

#Newton iterations <

e bound on effort of computing 2™ = x*(ut) starting at © = z*(¢)
e 7, c are constants (depend only on Newton algorithm parameters)

e from duality (with A = \*(¢), v = v*(¢)):

ptfo(x) + ¢(x) — ptfo(z™) — Pp(a™)

= ptfo(x) — ptfolz Zlog —ptXi fi(z™)) — mlog
=1
< ptfolx) — ptfola™) — pt Z Xifi(2™) —m —mlogp

< ptfo(x) — ptg(A,v) —m — mlogu
= m(p—1-—logpu)
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total number of Newton iterations (excluding first centering step)

#Newton iterations < N = [

log(m/(t@)e))] (m(u —1—logy) +C)

log p gl
510%
410% . .
figure shows N for typical values of 7, ¢,
310%
z m = 100 107
2107 ’ t(0)¢
1104
O 1.1 1.2

o

e confirms trade-off in choice of

e in practice, #iterations is in the tens; not very sensitive for u > 10
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polynomial-time complexity of barrier method

o for p=1+1/y/m:

oo (24)

€

e number of Newton iterations for fixed gap reduction is O(y/m)

e multiply with cost of one Newton iteration (a polynomial function of
problem dimensions), to get bound on number of flops

this choice of 1 optimizes worst-case complexity; in practice we choose i
fixed (u = 10,...,20)
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Generalized inequalities

minimize  fo(x)
subject to  fi(z) =k, 0, i=1,....,m
Ax =10

e fyconvex, f; : R" — RN, = 1,...,m, convex with respect to proper
cones K; € RFi

fi twice continuously differentiable

A € RP*™ with rank A = p

e we assume p* is finite and attained

e we assume problem is strictly feasible; hence strong duality holds and
dual optimum is attained

examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

1 : R? — R is generalized logarithm for proper cone K C RY if:

e dom = int K and V%¢(y) <0 fory =x 0
o Y(sy) =1Y(y)+ Ologs for y =5 0, s > 0 (6 is the degree of 1))

examples
e nonnegative orthant K = R"}: ¢(y) = D", logy;, with degree § = n

e positive semidefinite cone K = S’':

YY) =logdetY (0 =n)

e second-order cone K = {y ¢ R"™ | (17 + -+ y)/2 <y 1 1:

(y) =log(yp iy —vi — —va)  (0=2)
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properties (without proof): for y >k 0,

Vi(y) =k 0,  y'Vi(y) =0

e nonnegative orthant R%: ¢ (y) = Y7 ; logy;
Vi(y) = (L/yr-- 1/ym), ¥ Vib(y) =n
e positive semidefinite cone S': ¢ (Y') = logdet Y’
Vy(Y)=Y tr(YVy(Y)) =n

e second-order cone K = {y € R"™ | (3 + - -+ 92)V/2 < g1 }:

—hn
2 :
d(y) = ;Y VYY) =2
Vni1 Vi~ = Yn | Yn
Yn+1
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Logarithmic barrier and central path

logarithmic barrier for f1(z) <k, 0, . . ., fm(x) 2K, O:

¢(z) = —Zwi(—fi(w)), dom¢ = {z | fi(z) <k, 0, i =1,...,m}

e 1); is generalized logarithm for K;, with degree 6;

e ¢ is convex, twice continuously differentiable

central path: {z*(¢) | t > 0} where z*(¢) solves

minimize  tfo(x) + ¢(x)
subjectto Ax =10
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Dual points on central path

x = x*(t) if there exists w € R,
tV folz) + ZDf,L VIV (—fi(z)) + ATw =0

(Df;(xz) € R¥*™ is derivative matrix of f;)

e therefore, x*(t) minimizes Lagrangian L(x, A\*(t),v*(t)), where

* 1 * * w
AL(t) = TVei(=fila™(1)), vt =~
e from properties of ;: A’ () =k 0, with duality gap
Fol@* () — g\ (), v*(1)) = (1/8) Y _ 6,
i=1
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example: semidefinite programming (with F; € S?)

minimize ¢l

subject to  F(z) =Y 1" 2, F;+ G <0

logarithmic barrier: ¢(x) = logdet(—F(z)™1)

central path: z*(¢) minimizes tcTz — log det(—F(x)); hence

te; —te(FiF(2*(t)" ) =0, i=1,...,n

dual point on central path: Z*(t) = —(1/t)F(z*(t))~! is feasible for

maximize tr(GZ)
subject to tr(F;Z)+c¢; =0, i=1,....n
Z >0

duality gap on central path: cTa*(t) — tr(GZ*(t)) = p/t

Interior-point methods 12-28



Barrier method

given strictly feasible x, t := 0 > 0, i > 1, tolerance € > 0.

repeat

1. Centering step. Compute x*(t) by minimizing tfo + ¢, subject to Az = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if (3. 6;)/t < e.

4. Increase t. t := ut.

e only difference is duality gap m/t on central path is replaced by > . 0;/t

e number of outer iterations:

log((32, 6:)/(t'?))
log p

e complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R®)
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semidefinite program (100 variables, LMI constraint in S'°°)
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family of SDPs (A € S", x € R")

minimize 172
subject to A + diag(z) = 0

n = 10,...,1000, for each n solve 100 randomly generated instances
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

e update primal and dual variables at each iteration; no distinction
between inner and outer iterations

e often exhibit superlinear asymptotic convergence

e search directions can be interpreted as Newton directions for modified
KKT conditions

e can start at infeasible points

e cost per iteration same as barrier method
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