Convex Optimization — Boyd & Vandenberghe

6. Approximation and fitting

e norm approximation

least-norm problems

regularized approximation

robust approximation
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Norm approximation

minimize ||Ax — b||

(A e R™™ with m >n, || - || is a norm on R™)

| Az — b||:

interpretations of solution x* = argmin,, |

e geometric: Az* is point in R(A) closest to b

e estimation: linear measurement model
y=Axr+v

y are measurements, x is unknown, v is measurement error
given y = b, best guess of = is z*
e optimal design: x are design variables (input), Az is result (output)

™ is design that best approximates desired result b
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examples
e least-squares approximation (|| - ||2): solution satisfies normal equations
AT Az = ATb
(2% = (ATA)~t AT} if rank A = n)
e Chebyshev approximation (|| - ||0): can be solved as an LP
minimize ¢
subject to —t1 X Az —b =<1l
e sum of absolute residuals approximation (|| - |[1): can be solved as an LP
minimize 17y

subjectto —y <Az —b=<y
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Penalty function approximation

minimize  ¢(r1) + -+ + &(rm)
subject to = Ax —b

(A€ R™ " ¢:R — R is a convex penalty function)

examples

e quadratic: ¢(u) = u?

e deadzone-linear with width a: adratic

¢(u)

deadzone-linear

#(u) = max{0, [u] — a}

e log-barrier with limit a: R R

—a?log(l — (u/a)?) |u| <a
00 otherwise

o) = {
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example (m = 100, n = 30): histogram of residuals for penalties

du) =lul, ¢u) =v*, ¢(u) =max{0,|u|—a}, ¢(u)=—log(l-u?)
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shape of penalty function has large effect on distribution of residuals
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Huber penalty function (with parameter M)

WP lu| < M
gbhub(“)—{M(2|u|—M)|u|>M

linear growth for large u makes approximation less sensitive to outliers
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e left: Huber penalty for M =1

e right: affine function f(t) = a + [t fitted to 42 points ¢;, y; (circles)
using quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

minimize  ||z||
subject to Ax =1b

(A e R™ ™ withm <mn, ||-] is a norm on R")

interpretations of solution x* = argmin 4,_, ||z||:

e geometric: z* is point in affine set {z | Az = b} with minimum
distance to 0

e estimation: b = Ax are (perfect) measurements of x; z* is smallest
("'most plausible’) estimate consistent with measurements

e design: x are design variables (inputs); b are required results (outputs)

x* is smallest ('most efficient’) design that satisfies requirements
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examples

e least-squares solution of linear equations (|| - ||2):

can be solved via optimality conditions

21+ ATv =0, Ax =b

e minimum sum of absolute values (|| - ||1): can be solved as an LP

minimize 17y
subjectto —y <z =<y, Axr=5b

tends to produce sparse solution z*
extension: least-penalty problem

minimize  ¢(x1) + -+ + d(xy)
subject to Ax =1b

¢ : R — R is convex penalty function
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Regularized approximation

minimize (w.r.t. RY) (||Az — b|,||=])

A€ R™*", norms on R™ and R” can be different

interpretation: find good approximation Ax ~ b with small z

e estimation: linear measurement model y = Ax + v, with prior
knowledge that ||z|| is small

e optimal design: small x is cheaper or more efficient, or the linear
model y = Az is only valid for small x

e robust approximation: good approximation Ax =~ b with small x is
less sensitive to errors in A than good approximation with large x
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Scalarized problem

minimize ||Ax — b|| + v||z||

e solution for v > 0 traces out optimal trade-off curve

e other common method: minimize || Az — b||* + d]|z||? with § > 0
Tikhonov regularization
minimize ||Az — b||3 + &||=3

can be solved as a least-squares problem

2

wiimize [ 2,2~ 4]

solution z* = (ATA + 61)"tATh

2
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Optimal input design
linear dynamical system with impulse response h:

t

y(t) =Y h(r)u(t—7), t=0,1,...,N

=0
input design problem: multicriterion problem with 3 objectives
1. tracking error with desired output ¥ges: Jirack = Ei\io(y(t) — Ydes(t))?
2. input magnitude: Jyag = Zi\io u(t)?
3. input variation: Jger = 7i\]:?)l(u(t +1) —u(t))?
track desired output using a small and slowly varying input signal
regularized least-squares formulation
minimize  Jirack + 0Jder + NJmag

for fixed 9,7, a least-squares problem in u(0), ..., u(N)
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example: 3 solutions on optimal trade-off curve

(top) 0 = 0, small n; (middle) § = 0, larger n; (bottom) large ¢
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Signal reconstruction

minimize (w.r.t. R%)  (||# — Zcorll2, #(2))

x € R™ is unknown signal

Zecor = & + v is (known) corrupted version of z, with additive noise v

variable & (reconstructed signal) is estimate of x

¢ : R" — R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

n—1 n—1
Gquad(£) = Y (Eiy1 — 2:)%  be(@) = D |Bip1 — &
=1 =1
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quadratic smoothing example
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total variation reconstruction example
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quadratic smoothing smooths out noise and sharp transitions in signal
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total variation smoothing preserves sharp transitions in signal

Approximation and fitting 6-16



Robust approximation
minimize || Az — b|| with uncertain A
two approaches:

e stochastic: assume A is random, minimize E || Az — b|

e worst-case: set A of possible values of A, minimize sup 4 4 ||[Az — b||

tractable only in special cases (certain norms || - ||, distributions, sets .A)

12

example: A(u) = Ag + ud;
® Tnom Minimizes ||Agz — b||3

® Zsiocn Minimizes E || A(u)z — b||3
with w uniform on [—1,1]

® Ty minimizes sup_; o,y |A(u)z — b||3 )

figure shows r(u) = ||[A(u)x — b||2 o . : : )
- - u
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stochastic robust LS with A = A+ U, U random, EU =0, EUTU = P
minimize E|(A+ U)x — b||3
e explicit expression for objective:

E||Az —b|3 = E|Az—-b+Uz|3
= ||Az = b2+ E2TUTUx
= ||Az —b||3 + 2" Px

e hence, robust LS problem is equivalent to LS problem
minimize ||Az — b||3 + || P'/%x||3
e for P = 1, get Tikhonov regularized problem

minimize ||Az — b||3 + §]|z||3
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worst-case robust LS with A = {A +uj A1 + -+ +u,A, | |lullz < 1}

minimize sup ¢ 4 || Az — b||3 = SUP|[y <1 [P (T)u + q(x)|3

where P(z) = [ Ajx Az - Apx |, q(z) = Az —b

e from page 5-14, strong duality holds between the following problems

maximize || Pu + q||3 minimize ¢+ A
subject to  ||ul|2 <1 I P g
subject to PT X 0
v 0 t

e hence, robust LS problem is equivalent to SDP

minimize ¢t + A\

subject to Px)T M
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example: histogram of residuals
r(u) = ||(Ao +urdi +u2Az)x — bl

with w uniformly distributed on unit disk, for three values of z
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e 115 minimizes || Aoz — b||2
e 2 minimizes ||Agz — b||2 + ||z||3 (Tikhonov solution)

® Ty minimizes supy,,<1 Aoz — 0|3 + [|z]|3
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