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1. Introduction

• mathematical optimization

• least-squares and linear programming

• convex optimization

• example

• course goals and topics

• nonlinear optimization

• brief history of convex optimization

(Thanks to Professor Stephen Boyd, Stanford University for permission
to use and modify his slides)
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Mathematical optimization

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . , m

• x = (x1, . . . , xn): optimization variables

• f0 : Rn → R: objective function

• fi : Rn → R, i = 1, . . . , m: constraint functions

optimal solution x⋆ has smallest value of f0 among all vectors that
satisfy the constraints
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Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max./min. investment per asset, minimum return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device widths and lengths

• constraints: manufacturing limits, timing requirements, maximum area

• objective: power consumption

data fitting

• variables: model parameters

• constraints: prior information, parameter limits

• objective: measure of misfit or prediction error
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Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems
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Least-squares

minimize ‖Ax − b‖2

2

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . , m

• objective and constraint functions are convex:

fi(αx + βy) ≤ αfi(x) + βfi(y)

if α + β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases
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solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization
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Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj

θkj

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =

m∑

j=1

akjpj, akj = r−2

kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

minimize maxk=1,...,n | log Ik − log Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
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how to solve?

1. use uniform power: pj = p, vary p

2. use least-squares:

minimize
∑n

k=1
(Ik − Ides)

2

round pj if pj > pmax or pj < 0

3. use weighted least-squares:

minimize
∑n

k=1
(Ik − Ides)

2 +
∑m

j=1
wj(pj − pmax/2)2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4. use linear programming:

minimize maxk=1,...,n |Ik − Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

which can be solved via linear programming

of course these are approximate (suboptimal) ‘solutions’
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5. use convex optimization: problem is equivalent to

minimize f0(p) = maxk=1,...,n h(Ik/Ides)
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}
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f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort
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additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (pj > 0)

answer: with (1), still easy to solve; with (2), extremely difficult

Another Example: Robust LP

minimize cTx
subject to prob(aT

i x ≤ bi) ≥ η, i = 1, . . . ,m,

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• Is this problem hard or easy?

• answer: for η > 1

2
it is easy!, for η ≤ 1

2
VERY hard!!

• moral: (untrained) intuition doesn’t always work; without the proper
background very easy problems can appear quite similar to very difficult
problems
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ABSTRACT

We show that the deterministic past history of the Universe can be uniquely recon-
structed from the knowledge of the present mass density field, the latter being inferred
from the 3D distribution of luminous matter, assumed to be tracing the distribution
of dark matter up to a known bias. Reconstruction ceases to be unique below those
scales – a few Mpc – where multi-streaming becomes significant. Above 6 h−1 Mpc we
propose and implement an effective Monge–Ampère–Kantorovich method of unique
reconstruction. At such scales the Zel’dovich approximation is well satisfied and re-
construction becomes an instance of optimal mass transportation, a problem which
goes back to Monge (1781). After discretization into N point masses one obtains an
assignment problem that can be handled by effective algorithms with not more than
O(N3) time complexity and reasonable CPU time requirements. Testing against N -
body cosmological simulations gives over 60% of exactly reconstructed points.

We apply several interrelated tools from optimization theory that were not used
in cosmological reconstruction before, such as the Monge–Ampère equation, its re-
lation to the mass transportation problem, the Kantorovich duality and the auction
algorithm for optimal assignment. Self-contained discussion of relevant notions and
techniques is provided.

Key words: cosmology: theory – large-scale structure of the Universe – hydrody-
namics

1 INTRODUCTION

Can one follow back in time to initial locations the highly
structured present distribution of mass in the Universe, as
mapped by redshift catalogues of galaxies? At first this
seems an ill-posed problem since little is known about the
peculiar velocities of galaxies, so that equations governing
the dynamics cannot just be integrated back in time. In fact,
it is precisely one of the goals of reconstruction to determine
the peculiar velocities. Since the pioneering work of Peebles
(1989), a number of reconstruction techniques have been
proposed, which frequently provided non-unique answers.1

Cosmological reconstruction should however take ad-

? E-mail: uriel@obs-nice.fr
1 The reader will find a detailed discussion of several important
existing techniques in Section 7.

vantage of our knowledge that the initial mass distribu-
tion was quasi-uniform at baryon-photon decoupling, about
14 billion years ago (see, e.g., Susperregi & Binney 1994).
In a recent Letter to Nature (Frisch et al. 2002), four of us
have shown that, with suitable assumptions, this a priori

knowledge of the initial density field makes reconstruction
a well-posed instance of what is called the optimal mass
transportation problem.

A well-known fact is that, in an expanding universe with
self-gravitating matter, the initial velocity field is ‘slaved’ to
the initial gravitational field, which is potential; both fields
thus depend on a single scalar function. Hence the number
of unknowns matches the number of constraints, namely the
single density function characterising the present distribu-
tion of mass.

This observation alone, of course, does not ensure
uniqueness of the reconstruction. For this, two restrictions



Course goals and topics

goals

1. recognize/formulate problems (such as the illumination problem) as
convex optimization problems

2. develop code for problems of moderate size (1000 lamps, 5000 patches)

3. characterize optimal solution (optimal power distribution), give limits of
performance, etc.

topics

1. convex sets, functions, optimization problems

2. examples and applications

3. algorithms
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Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

• find a point that minimizes f0 among feasible points near it

• fast, can handle large problems

• require initial guess

• provide no information about distance to (global) optimum

global optimization methods

• find the (global) solution

• worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )

• 1970s: ellipsoid method and other subgradient methods

– Kantorovich wins Nobel Prize in Economics in 1975 (Dantzig
doesn’t!)

– Shor develops the ellipsoid algorithm
– A 25 year old Georgian Mathematician named Leonid Khachian

proves that ellipsoid algorithm solves LPs with polynomial time
complexity. Appears on the cover of NY Times

• 1980s: polynomial-time interior-point methods for linear programming

– interior-point polynomial time algorithm for LP (Karmarkar 1984).
Works Better than Simplex!
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– Nemirovsky and Yudin prove that information complexity of convex
programs is far better than general nonlinear programs.

• late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

– Nesterov and Nemirovsky extend Karmarkar’s approach to genral
convex problems.

Applications

• before 1990: mostly in operations research; few in engineering

• since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization,
geometric programing, sum of squares programing)
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