
Additional Exercises for Convex Optimization

Stephen Boyd Lieven Vandenberghe

April 22, 2010

This is a collection of additional exercises, meant to supplement those found in the book Convex

Optimization, by Stephen Boyd and Lieven Vandenberghe. These exercises were used in several
courses on convex optimization, EE364a (Stanford), EE236b (UCLA), or 6.975 (MIT), usually for
homework, but sometimes as exam questions. Some of the exercises were originally written for the
book, but were removed at some point. Many of them include a computational component using
CVX, available at www.stanford.edu/~boyd/cvx/. Matlab files required for these exercises can
be found at the book web site www.stanford.edu/~boyd/cvxbook/. Some of the exercises require
a knowledge of elementary analysis.

You are free to use these exercises any way you like (for example in a course you teach), provided
you acknowledge the source. In turn, we gratefully acknowledge the teaching assistants (and in
some cases, students) who have helped us develop and debug these exercises. Pablo Parillo helped
develop some of the exercises that were originally used in 6.975.

Course instructors can obtain solutions by request to solutions@cambridge.org, or by email
to us. In either case please specify the course you are teaching and give its URL.

We’ll update this document as new exercises become available, so the exercise numbers and
sections will occasionally change. We have categorized the exercises into sections that follow the
book chapters, as well as various additional application areas. Some exercises fit into more than
one section, or don’t fit well into any section, so we have just arbitrarily assigned these.

Stephen Boyd and Lieven Vandeberghe
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1 Convex sets

1.1 Is the set {a ∈ Rk | p(0) = 1, |p(t)| ≤ 1 for α ≤ t ≤ β}, where

p(t) = a1 + a2t+ · · ·+ akt
k−1,

convex?

1.2 Set distributive characterization of convexity. [vT84, p21], [Roc70, Theorem 3.2] Show that C ⊆ Rn

is convex if and only if (α+ β)C = αC + βC for all nonnegative α, β.

1.3 Composition of linear-fractional functions. Suppose φ : Rn → Rm and ψ : Rm → Rp are the
linear-fractional functions

φ(x) =
Ax+ b

cTx+ d
, ψ(y) =

Ey + f

gT y + h
,

with domains domφ = {x | cTx + d > 0}, domψ = {y | gTx+ h > 0}. We associate with φ and
ψ the matrices

[

A b
cT d

]

,

[

E f
gT h

]

,

respectively.

Now consider the composition Γ of ψ and φ, i.e., Γ(x) = ψ(φ(x)), with domain

domΓ = {x ∈ domφ | φ(x) ∈ domψ}.

Show that Γ is linear-fractional, and that the matrix associated with it is the product
[

E f
gT h

] [

A b
cT d

]

.

1.4 Dual of exponential cone. The exponential cone Kexp ⊆ R3 is defined as

Kexp = {(x, y, z) | y > 0, yex/y ≤ z}.

Find the dual cone K∗
exp.

We are not worried here about the fine details of what happens on the boundaries of these cones,
so you really needn’t worry about it. But we make some comments here for those who do care
about such things.

The cone Kexp as defined above is not closed. To obtain its closure, we need to add the points

{(x, y, z) | x ≤ 0, y = 0, z ≥ 0}.

(This makes no difference, since the dual of a cone is equal to the dual of its closure.)

1.5 Dual of intersection of cones. Let C and D be closed convex cones in Rn. In this problem we will
show that

(C ∩D)∗ = C∗ +D∗.

Here, + denotes set addition: C∗ +D∗ is the set {u + v | u ∈ C∗, v ∈ D∗}. In other words, the
dual of the intersection of two closed convex cones is the sum of the dual cones.
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(a) Show that C ∩D and C∗ +D∗ are convex cones. (In fact, C ∩D and C∗ +D∗ are closed, but
we won’t ask you to show this.)

(b) Show that (C ∩D)∗ ⊇ C∗ +D∗.

(c) Now let’s show (C ∩D)∗ ⊆ C∗ +D∗. You can do this by first showing

(C ∩D)∗ ⊆ C∗ +D∗ ⇐⇒ C ∩D ⊇ (C∗ +D∗)∗.

You can use the following result:

If K is a closed convex cone, then K∗∗ = K.

Next, show that C ∩D ⊇ (C∗ +D∗)∗ and conclude (C ∩D)∗ = C∗ +D∗.

(d) Show that the dual of the polyhedral cone V = {x | Ax � 0} can be expressed as

V ∗ = {AT v | v � 0}.

1.6 Polar of a set. The polar of C ⊆ Rn is defined as the set

C◦ = {y ∈ Rn | yTx ≤ 1 for all x ∈ C}.

(a) Show that C◦ is convex (even if C is not).

(b) What is the polar of a cone?

(c) What is the polar of the unit ball for a norm ‖ · ‖?
(d) Show that if C is closed and convex, with 0 ∈ intC, then (C◦)◦ = C.
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2 Convex functions

2.1 Maximum of a convex function over a polyhedron. Show that the maximum of a convex function f
over the polyhedron P = conv{v1, . . . , vk} is achieved at one of its vertices, i.e.,

sup
x∈P

f(x) = max
i=1,...,k

f(vi).

(A stronger statement is: the maximum of a convex function over a closed bound convex set is
achieved at an extreme point, i.e., a point in the set that is not a convex combination of any other
points in the set.) Hint. Assume the statement is false, and use Jensen’s inequality.

2.2 A general vector composition rule. Suppose

f(x) = h(g1(x), g2(x), . . . , gk(x))

where h : Rk → R is convex, and gi : R
n → R. Suppose that for each i, one of the following holds:

• h is nondecreasing in the ith argument, and gi is convex

• h is nonincreasing in the ith argument, and gi is concave

• gi is affine.

Show that f is convex. (This composition rule subsumes all the ones given in the book, and is the
one used in software systems such as CVX.)

2.3 Logarithmic barrier for the second-order cone. The function f(x, t) = − log(t2−xTx), with dom f =
{(x, t) ∈ Rn ×R | t > ‖x‖2} (i.e., the second-order cone), is convex. (The function f is called the
logarithmic barrier function for the second-order cone.) This can be shown many ways, for example
by evaluating the Hessian and demonstrating that it is positive semidefinite. In this exercise you
establish convexity of f using a relatively painless method, leveraging some composition rules and
known convexity of a few other functions.

(a) Explain why t−(1/t)uTu is a concave function on dom f . Hint. Use convexity of the quadratic
over linear function.

(b) From this, show that − log(t− (1/t)uT u) is a convex function on dom f .

(c) From this, show that f is convex.

2.4 A quadratic-over-linear composition theorem. Suppose that f : Rn → R is nonnegative and convex,
and g : Rn → R is positive and concave. Show that the function f2/g, with domain dom f∩dom g,
is convex.

2.5 A perspective composition rule. [Mar05] Let f : Rn → R be a convex function with f(0) ≤ 0.

(a) Show that the perspective tf(x/t), with domain {(x, t) | t > 0, x/t ∈ dom f}, is nonincreasing
as a function of t.

(b) Let g be concave and positive on its domain. Show that the function

h(x) = g(x)f(x/g(x)), domh = {x ∈ dom g | x/g(x) ∈ dom f}

is convex.
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(c) As an example, show that

h(x) =
xTx

(
∏n

k=1 xk)
1/n

, domh = Rn
++

is convex.

2.6 Perspective of log determinant. Show that f(X, t) = nt log t−t log detX, with dom f = Sn
++×R++,

is convex in (X, t). Use this to show that

g(X) = n(trX) log(trX)− (trX)(log detX)

= n

(

n
∑

i=1

λi

)(

log
n
∑

i=1

λi −
n
∑

i=1

log λi

)

,

where λi are the eigenvalues of X, is convex on Sn
++.

2.7 Pre-composition with a linear fractional mapping. Suppose f : Rm → R is convex, and A ∈ Rm×n,
b ∈ Rm, c ∈ Rn, and d ∈ R. Show that g : Rn → R, defined by

g(x) = (cTx+ d)f((Ax+ b)/(cTx+ d)), dom g = {x | cTx+ d > 0},

is convex.

2.8 Scalar valued linear fractional functions. A function f : Rn → R is called linear fractional if it has
the form f(x) = (aTx+ b)/(cTx+ d), with dom f = {x | cTx+ d > 0}. When is a linear fractional
function convex? When is a linear fractional function quasiconvex?

2.9 Show that the function

f(x) =
‖Ax− b‖22
1− xTx

is convex on {x | ‖x‖2 < 1}.

2.10 Weighted geometric mean. The geometric mean f(x) = (
∏

k xk)
1/n with dom f = Rn

++ is concave,
as shown on page 74. Extend the proof to show that

f(x) =
n
∏

k=1

xαk

k , dom f = Rn
++

is concave, where αk are nonnegative numbers with
∑

k αk = 1.

2.11 Continued fraction function. Show that the function

f(x) =
1

x1 −
1

x2 −
1

x3 −
1

x4

defined where every denominator is positive, is convex and decreasing. (There is nothing special
about n = 4 here; the same holds for any number of variables.)
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2.12 Circularly symmetric Huber function. The scalar Huber function is defined as

fhub(x) =

{

(1/2)x2 |x| ≤ 1
|x| − 1/2 |x| > 1.

This convex function comes up in several applications, including robust estimation. This prob-
lem concerns generalizations of the Huber function to Rn. One generalization to Rn is given
by fhub(x1) + · · · + fhub(xn), but this function is not circularly symmetric, i.e., invariant under
transformation of x by an orthogonal matrix. A generalization to Rn that is circularly symmetric
is

fcshub(x) = fhub(‖x‖) =
{

(1/2)‖x‖22 ‖x‖2 ≤ 1
‖x‖2 − 1/2 ‖x‖2 > 1.

(The subscript stands for ‘circularly symmetric Huber function’.) Show that fcshub is convex. Find
the conjugate function f∗cshub.

2.13 Reverse Jensen inequality. Suppose f is convex, λ1 > 0, λi ≤ 0, i = 2, . . . , k, and λ1+ · · ·+λn = 1,
and let x1, . . . , xn ∈ dom f . Show that the inequality

f(λ1x1 + · · · + λnxn) ≥ λ1f(x1) + · · ·+ λnf(xn)

always holds. Hints. Draw a picture for the n = 2 case first. For the general case, express x1 as a
convex combination of λ1x1 + · · ·+ λnxn and x2, . . . , xn, and use Jensen’s inequality.

2.14 Monotone extension of a convex function. Suppose f : Rn → R is convex. Recall that a function
h : Rn → R is monotone nondecreasing if h(x) ≥ h(y) whenever x � y. The monotone extension

of f is defined as
g(x) = inf

z�0
f(x+ z).

(We will assume that g(x) > −∞.) Show that g is convex and monotone nondecreasing, and
satisfies g(x) ≤ f(x) for all x. Show that if h is any other convex function that satisfies these
properties, then h(x) ≤ g(x) for all x. Thus, g is the maximum convex monotone underestimator
of f .

Remark. For simple functions (say, on R) it is easy to work out what g is, given f . On Rn, it
can be very difficult to work out an explicit expression for g. However, systems such as CVX can
immediately handle functions such as g, defined by partial minimization.

2.15 Circularly symmetric convex functions. Suppose f : Rn → R is symmetric with respect to rotations,
i.e., f(x) depends only on ‖x‖2. Show that f must have the form f(x) = φ(‖x‖2), where φ : R → R

is nondecreasing and convex, with dom f = R. (Conversely, any function of this form is symmetric
and convex, so this form characterizes such functions.)

2.16 Infimal convolution. Let f1, . . . , fm be convex functions on Rn. Their infimal convolution, denoted
g = f1 ⋄ · · · ⋄ fm (several other notations are also used), is defined as

g(x) = inf{f1(x1) + · · ·+ fm(xm) | x1 + · · ·+ xm = x},

with the natural domain (i.e., defined by g(x) <∞). In one simple interpretation, fi(xi) is the cost
for the ith firm to produce a mix of products given by xi; g(x) is then the optimal cost obtained
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if the firms can freely exchange products to produce, all together, the mix given by x. (The name
‘convolution’ presumably comes from the observation that if we replace the sum above with the
product, and the infimum above with integration, then we obtain the normal convolution.)

(a) Show that g is convex.

(b) Show that g∗ = f∗1 + · · ·+ f∗m. In other words, the conjugate of the infimal convolution is the
sum of the conjugates.

2.17 Conjugate of composition of convex and linear function. Suppose A ∈ Rm×n with rankA = m,
and g is defined as g(x) = f(Ax), where f : Rm → R is convex. Show that

g∗(y) = f∗((A†)T y), dom(g∗) = AT dom(f∗),

where A† = (AAT )−1A is the pseudo-inverse of A. (This generalizes the formula given on page 95
for the case when A is square and invertible.)

2.18 [RV73, p104] Suppose λ1, . . . , λn are positive. Show that the function f : Rn → R, given by

f(x) =
n
∏

i=1

(1− e−xi)λi ,

is concave on

dom f =

{

x ∈ Rn
++

∣

∣

∣

∣

∣

n
∑

i=1

λie
−xi ≤ 1

}

.

Hint. The Hessian is given by

∇2f(x) = f(x) (−yyT + diag(z))

where yi = λie
−xi/(1 − e−xi) and zi = yi/(1 − e−xi).

2.19 Majorization and symmetric functions of eigenvalue. We use x[k] to denote the kth largest element
of a vector x ∈ Rn: x[1], x[2], . . . , x[n] are the elements of x sorted in decreasing order. We say
that a vector y ∈ Rn majorizes a vector x ∈ Rn if

x[1] ≤ y[1]

x[1] + x[2] ≤ y[1] + y[2]

x[1] + x[2] + x[3] ≤ y[1] + y[2] + y[3]
...

x[1] + x[2] + · · ·+ x[n−1] ≤ y[1] + y[2] + · · ·+ y[n−1]

x[1] + x[2] + · · · + x[n] = y[1] + y[2] + · · ·+ y[n].

(Roughly speaking, the largest entry in y exceeds the largest entry in x, the sum of the two largest
entries in y exceeds the sum of the largest two entries in x, etc.)

(a) It can be shown that y majorizes x if and only if there exists a doubly stochastic matrix P
such that x = Py. A doubly stochastic matrix is a matrix with nonnegative elements and
columns and rows that add up to one:

Pij ≥ 0, i, j = 1, . . . , n, P1 = 1, P T1 = 1.
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Use this characterization to show the following: If f : R → R is a convex function and y
majorizes x, then

n
∑

i=1

f(xi) ≤
n
∑

i=1

f(yi).

(b) We use the notation λk(X) for the kth largest eigenvalue of a matrix X ∈ Sn, so λ1(X), . . . ,
λn(X) are the eigenvalues of X sorted in decreasing order. Let r be an integer in {1, 2, . . . , n}.
Show that

λ1(X) + · · ·+ λr(X) = sup {tr(XZ) | Z ∈ Sn, 0 � Z � I, trZ = r} . (1)

What does this tell us about the convexity properties of the function g(X) = λ1(X) + · · · +
λr(X) (the sum of the largest r eigenvalues of X)?

Hint. Use the eigenvalue decomposition of X to reduce the maximization in (1) to a simple
linear program.

(c) Let X = θU + (1− θ)V be a convex combination of two matrices U , V ∈ Sn. Use the results
of part (b) to show that the vector

θ













λ1(U)
λ2(U)

...
λn(U)













+ (1− θ)













λ1(V )
λ2(V )

...
λn(V )













majorizes the vector (λ1(X), λ2(X), . . . , λn(X)).

(d) Combine the results of parts (a) and (c) to show that if f : R → R is convex, then the function
h : Sn → R defined as

h(X) =
n
∑

i=1

f(λi(X))

is convex.

For example, by taking f(x) = x log x, we can conclude that the function h(X) =
∑n

i=1 λi(X) log(λi(X))
is convex on Sn

++. This function arises in quantum information theory where it is known as
the (negative) Von Neumann entropy. For diagonal X = diag(x), it reduces to the negative
Shannon entropy

∑

i xi log xi.
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3 Convex optimization problems

3.1 Minimizing a function over the probability simplex. Find simple necessary and sufficient conditions
for x ∈ Rn to minimize a differentiable convex function f over the probability simplex, {x | 1Tx =
1, x � 0}.

3.2 ‘Hello World’ in CVX. Use CVX to verify the optimal values you obtained (analytically) for exer-
cise 4.1 in Convex Optimization.

3.3 Reformulating constraints in CVX. Each of the following CVX code fragments describes a convex
constraint on the scalar variables x, y, and z, but violates the CVX rule set, and so is invalid.
Briefly explain why each fragment is invalid. Then, rewrite each one in an equivalent form that
conforms to the CVX rule set. In your reformulations, you can use linear equality and inequality
constraints, and inequalities constructed using CVX functions. You can also introduce additional
variables, or use LMIs. Be sure to explain (briefly) why your reformulation is equivalent to the
original constraint, if it is not obvious.

Check your reformulations by creating a small problem that includes these constraints, and solving
it using CVX. Your test problem doesn’t have to be feasible; it’s enough to verify that CVX
processes your constraints without error.

Remark. This looks like a problem about ‘how to use CVX software’, or ‘tricks for using CVX’.
But it really checks whether you understand the various composition rules, convex analysis, and
constraint reformulation rules.

(a) norm([x + 2*y, x - y]) == 0

(b) square(square(x + y)) <= x - y

(c) 1/x + 1/y <= 1; x >= 0; y >= 0

(d) norm([max(x,1), max(y,2)]) <= 3*x + y

(e) x*y >= 1; x >= 0; y >= 0

(f) (x + y)^2/sqrt(y) <= x - y + 5

(g) x^3 + y^3 <= 1; x >= 0; y >= 0

(h) x + z <= 1 + sqrt(x*y - z^2); x >= 0; y >= 0

3.4 Optimal activity levels. Solve the optimal activity level problem described in exercise 4.17 in Convex

Optimization, for the instance with problem data

A =















1 2 0 1
0 0 3 1
0 3 1 1
2 1 2 5
1 0 3 2















, cmax =















100
100
100
100
100















, p =











3
2
7
6











, pdisc =











2
1
4
2











, q =











4
10
5
10











.

You can do this by forming the LP you found in your solution of exercise 4.17, or more directly, using
CVX. Give the optimal activity levels, the revenue generated by each one, and the total revenue
generated by the optimal solution. Also, give the average price per unit for each activity level, i.e.,
the ratio of the revenue associated with an activity, to the activity level. (These numbers should
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be between the basic and discounted prices for each activity.) Give a very brief story explaining,
or at least commenting on, the solution you find.

3.5 Minimizing the ratio of convex and concave piecewise-linear functions. We consider the problem

minimize
maxi=1,...,m(aTi x+ bi)

mini=1,...,p(c
T
i x+ di)

subject to Fx � g,

with variable x ∈ Rn. We assume that cTi x + di > 0 for all x satisfying Fx � g, and that the
problem is feasible. This problem is quasiconvex, and can be solved using bisection, with each
iteration involving a feasibility LP. Show how this problem can be solved by solving one LP, using
a trick similar to one described in §4.3.2.

3.6 Two problems involving two norms. We consider the problem

minimize
‖Ax− b‖1
1− ‖x‖∞

, (2)

and the very closely related problem

minimize
‖Ax− b‖21
1− ‖x‖∞

. (3)

In both problems, the variable is x ∈ Rn, and the data are A ∈ Rm×n and b ∈ Rm. Note that
the only difference between problem (2) and (3) is the square in the numerator. In both problems,
the constraint ‖x‖∞ < 1 is implicit. You can assume that b /∈ R(A), in which case the constraint
‖x‖∞ < 1 can be replaced with ‖x‖∞ ≤ 1.

Answer the following two questions, for each of the two problems. (So you will answer four questions
all together.)

(a) Is the problem, exactly as stated (and for all problem data), convex? If not, is it quasiconvex?
Justify your answer.

(b) Explain how to solve the problem. Your method can involve an SDP solver, an SOCP solver,
an LP solver, or any combination. You can include a one-parameter bisection, if necessary.
(For example, you can solve the problem by bisection on a parameter, where each iteration
consists of solving an SOCP feasibility problem.)

Give the best method you can. In judging best, we use the following rules:

• Bisection methods are worse than ‘one-shot’ methods. Any method that solves the problem
above by solving one LP, SOCP, or SDP problem is better than any method that uses a
one-parameter bisection. In other words, use a bisection method only if you cannot find
a ‘one-shot’ method.

• Use the simplest solver needed to solve the problem. We consider an LP solver to be
simpler than an SOCP solver, which is considered simpler than an SDP solver. Thus, a
method that uses an LP solver is better than a method that uses an SOCP solver, which
in turn is better than a method that uses an SDP solver.

11



3.7 The illumination problem. In lecture 1 we encountered the function

f(p) = max
i=1,...,n

| log aTi p− log Ides|

where ai ∈ Rm, and Ides > 0 are given, and p ∈ Rm
+ .

(a) Show that exp f is convex on {p | aTi p > 0, i = 1, . . . , n }.
(b) Show that the constraint ‘no more than half of the total power is in any 10 lamps’ is convex

(i.e., the set of vectors p that satisfy the constraint is convex).

(c) Show that the constraint ‘no more than half of the lamps are on’ is (in general) not convex.

3.8 Schur complements and LMI representation. Recognizing Schur complements (see §A5.5) often
helps to represent nonlinear convex constraints as linear matrix inequalities (LMIs). Consider the
function

f(x) = (Ax+ b)T (P0 + x1P1 + · · · + xnPn)
−1(Ax+ b)

where A ∈ Rm×n, b ∈ Rm, and Pi = P T
i ∈ Rm×m, with domain

dom f = {x ∈ Rn | P0 + x1P1 + · · ·+ xnPn ≻ 0}.
This is the composition of the matrix fractional function and an affine mapping, and so is convex.
Give an LMI representation of epi f . That is, find a symmetric matrix F (x, t), affine in (x, t), for
which

x ∈ dom f, f(x) ≤ t ⇐⇒ F (x, t) � 0.

Remark. LMI representations, such as the one you found in this exercise, can be directly used in
software systems such as CVX.

3.9 Complex least-norm problem. We consider the complex least ℓp-norm problem

minimize ‖x‖p
subject to Ax = b,

where A ∈ Cm×n, b ∈ Cm, and the variable is x ∈ Cn. Here ‖ · ‖p denotes the ℓp-norm on Cn,
defined as

‖x‖p =
(

n
∑

i=1

|xi|p
)1/p

for p ≥ 1, and ‖x‖∞ = maxi=1,...,n |xi|. We assume A is full rank, and m < n.

(a) Formulate the complex least ℓ2-norm problem as a least ℓ2-norm problem with real problem
data and variable. Hint. Use z = (ℜx,ℑx) ∈ R2n as the variable.

(b) Formulate the complex least ℓ∞-norm problem as an SOCP.

(c) Solve a random instance of both problems with m = 30 and n = 100. To generate the
matrix A, you can use the Matlab command A = randn(m,n) + i*randn(m,n). Similarly,
use b = randn(m,1) + i*randn(m,1) to generate the vector b. Use the Matlab command
scatter to plot the optimal solutions of the two problems on the complex plane, and comment
(briefly) on what you observe. You can solve the problems using the CVX functions norm(x,2)
and norm(x,inf), which are overloaded to handle complex arguments. To utilize this feature,
you will need to declare variables to be complex in the variable statement. (In particular,
you do not have to manually form or solve the SOCP from part (b).)
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3.10 Linear programming with random cost vector. We consider the linear program

minimize cTx
subject to Ax � b.

Here, however, the cost vector c is random, normally distributed with mean E c = c0 and covariance
E(c− c0)(c− c0)

T = Σ. (A, b, and x are deterministic.) Thus, for a given x ∈ Rn, the cost cTx is
a (scalar) Gaussian variable.

We can attach several different meanings to the goal ‘minimize cTx’; we explore some of these
below.

(a) How would you minimize the expected cost E cTx subject to Ax � b?

(b) In general there is a tradeoff between small expected cost and small cost variance. One way
to take variance into account is to minimize a linear combination

E cTx+ γ var(cTx) (4)

of the expected value E cTx and the variance var(cTx) = E(cTx)2 − (E cTx)2. This is called
the ‘risk-sensitive cost’, and the parameter γ ≥ 0 is called the risk-aversion parameter, since
it sets the relative values of cost variance and expected value. (For γ > 0, we are willing to
tradeoff an increase in expected cost for a decrease in cost variance). How would you minimize
the risk-sensitive cost? Is this problem a convex optimization problem? Be as specific as you
can.

(c) We can also minimize the risk-sensitive cost, but with γ < 0. This is called ‘risk-seeking’. Is
this problem a convex optimization problem?

(d) Another way to deal with the randomness in the cost cTx is to formulate the problem as

minimize β
subject to prob(cTx ≥ β) ≤ α

Ax � b.

Here, α is a fixed parameter, which corresponds roughly to the reliability we require, and
might typically have a value of 0.01. Is this problem a convex optimization problem? Be as
specific as you can. Can you obtain risk-seeking by choice of α? Explain.

3.11 Formulate the following optimization problems as semidefinite programs. The variable is x ∈ Rn;
F (x) is defined as

F (x) = F0 + x1F1 + x2F2 + · · ·+ xnFn

with Fi ∈ Sm. The domain of f in each subproblem is dom f = {x ∈ Rn | F (x) ≻ 0}.

(a) Minimize f(x) = cTF (x)−1c where c ∈ Rm.

(b) Minimize f(x) = maxi=1,...,K cTi F (x)
−1ci where ci ∈ Rm, i = 1, . . . ,K.

(c) Minimize f(x) = sup
‖c‖2≤1

cTF (x)−1c.

(d) Minimize f(x) = E(cTF (x)−1c) where c is a random vector with mean E c = c̄ and covariance
E(c− c̄)(c− c̄)T = S.
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3.12 A matrix fractional function.[And79] Show that X = BTA−1B solves the SDP

minimize trX

subject to

[

A B
BT X

]

� 0,

with variable X ∈ Sn, where A ∈ Sm
++ and B ∈ Rm×n are given.

Conclude that tr(BTA−1B) is a convex function of (A,B), for A positive definite.

3.13 Trace of harmonic mean of matrices. [And79] The matrix H(A,B) = 2(A−1 + B−1)−1 is known
as the harmonic mean of positive definite matrices A and B. Show that X = (1/2)H(A,B) solves
the SDP

maximize trX

subject to

[

X X
X X

]

�
[

A 0
0 B

]

,

with variable X ∈ Sn. The matrices A ∈ Sn
++ and B ∈ Sn

++ are given. Conclude that the function
tr
(

(A−1 +B−1)−1
)

, with domain Sn
++ × Sn

++, is concave.

Hint. Verify that the matrix

R =

[

A−1 I
B−1 −I

]

is nonsingular. Then apply the congruence transformation defined by R to the two sides of matrix
inequality in the SDP, to obtain an equivalent inequality

RT

[

X X
X X

]

R � RT

[

A 0
0 B

]

R.

3.14 Trace of geometric mean of matrices. [And79]

G(A,B) = A1/2
(

A−1/2BA−1/2
)1/2

A1/2

is known as the geometric mean of positive definite matrices A and B. Show that X = G(A,B)
solves the SDP

maximize trX

subject to

[

A X
X B

]

� 0.

The variable is X ∈ Sn. The matrices A ∈ Sn
++ and B ∈ Sn

++ are given.

Conclude that the function trG(A,B) is concave, for A, B positive definite.

Hint. The symmetric matrix square root is monotone: if U and V are positive semidefinite with
U � V then U1/2 � V 1/2.

3.15 Transforming a standard form convex problem to conic form. In this problem we show that any
convex problem can be cast in conic form, provided some technical conditions hold. We start with
a standard form convex problem with linear objective (without loss of generality):

minimize cTx
subject to fi(x) ≤ 0, i = 1, . . . ,m,

Ax = b,

14



where fi : R
n → R are convex, and x ∈ Rn is the variable. For simplicity, we will assume that

dom fi = Rn for each i.

Now introduce a new scalar variable t ∈ R and form the convex problem

minimize cTx
subject to tfi(x/t) ≤ 0, i = 1, . . . ,m,

Ax = b, t = 1.

Define
K = cl{(x, t) ∈ Rn+1 | tfi(x/t) ≤ 0, i = 1, . . . ,m, t > 0}.

Then our original problem can be expressed as

minimize cTx
subject to (x, t) ∈ K,

Ax = b, t = 1.

This is a conic problem when K is proper.

You will relate some properties of the original problem to K.

(a) Show that K is a convex cone. (It is closed by definition, since we take the closure.)

(b) Suppose the original problem is strictly feasible, i.e., there exists a point x̄ with fi(x) < 0,
i = 1, . . . ,m. (This is called Slater’s condition.) Show that K has nonempty interior.

(c) Suppose that the inequalities define a bounded set, i.e., {x | fi(x) ≤ 0, i = 1, . . . ,m} is
bounded. Show that K is pointed.

3.16 Exploring nearly optimal points. An optimization algorithm will find an optimal point for a problem,
provided the problem is feasible. It is often useful to explore the set of nearly optimal points. When
a problem has a ‘strong minimum’, the set of nearly optimal points is small; all such points are close
to the original optimal point found. At the other extreme, a problem can have a ‘soft minimum’,
which means that there are many points, some quite far from the original optimal point found, that
are feasible and have nearly optimal objective value. In this problem you will use a typical method
to explore the set of nearly optimal points.

We start by finding the optimal value p⋆ of the given problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

as well as an optimal point x⋆ ∈ Rn. We then pick a small positive number ǫ, and a vector c ∈ Rn,
and solve the problem

minimize cTx
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
f0(x) ≤ p⋆ + ǫ.

Note that any feasible point for this problem is ǫ-suboptimal for the original problem. Solving this
problem multiple times, with different c’s, will generate (perhaps different) ǫ-suboptimal points. If
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the problem has a strong minimum, these points will all be close to each other; if the problem has
a weak minimum, they can be quite different.

There are different strategies for choosing c in these experiments. The simplest is to choose the
c’s randomly; another method is to choose c to have the form ±ei, for i = 1, . . . , n. (This method
gives the ‘range’ of each component of x, over the ǫ-suboptimal set.)

You will carry out this method for the following problem, to determine whether it has a strong
minimum or a weak minimum. You can generate the vectors c randomly, with enough samples for
you to come to your conclusion. You can pick ǫ = 0.01p⋆, which means that we are considering the
set of 1% suboptimal points.

The problem is a minimum fuel optimal control problem for a vehicle moving in R2. The position
at time kh is given by p(k) ∈ R2, and the velocity by v(k) ∈ R2, for k = 1, . . . ,K. Here h > 0 is
the sampling period. These are related by the equations

p(k + 1) = p(k) + hv(k), v(k + 1) = (1− α)v(k) + (h/m)f(k), k = 1, . . . ,K − 1,

where f(k) ∈ R2 is the force applied to the vehicle at time kh, m > 0 is the vehicle mass, and
α ∈ (0, 1) models drag on the vehicle; in the absense of any other force, the vehicle velocity decreases
by the factor 1− α in each discretized time interval. (These formulas are approximations of more
accurate formulas that involve matrix exponentials.)

The force comes from two thrusters, and from gravity:

f(k) =

[

cos θ1
sin θ1

]

u1(k) +

[

cos θ2
sin θ2

]

u2(k) +

[

0
−mg

]

, k = 1, . . . ,K − 1.

Here u1(k) ∈ R and u2(k) ∈ R are the (nonnegative) thruster force magnitudes, θ1 and θ2 are the
directions of the thrust forces, and g = 10 is the constant acceleration due to gravity.

The total fuel use is

F =
K−1
∑

k=1

(u1(k) + u2(k)) .

(Recall that u1(k) ≥ 0, u2(k) ≥ 0.)

The problem is to minimize fuel use subject to the initial condition p(1) = 0, v(1) = 0, and the
way-point constraints

p(ki) = wi, i = 1, . . . ,M.

(These state that at the time hki, the vehicle must pass through the location wi ∈ R2.) In addition,
we require that the vehicle should remain in a square operating region,

‖p(k)‖∞ ≤ Pmax, k = 1, . . . ,K.

Both parts of this problem concern the specific problem instance with data given in thrusters_data.m.

(a) Find an optimal trajectory, and the associated minimum fuel use p⋆. Plot the trajectory p(k)
in R2 (i.e., in the p1, p2 plane). Verify that it passes through the way-points.
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(b) Generate several 1% suboptimal trajectories using the general method described above, and
plot the associated trajectories in R2. Would you say this problem has a strong minimum, or
a weak minimum?

3.17 Minimum fuel optimal control. Solve the minimum fuel optimal control problem described in
exercise 4.16 of Convex Optimization, for the instance with problem data

A =







−1 0.4 0.8
1 0 0
0 1 0






, b =







1
0
0.3






, xdes =







7
2

−6






, N = 30.

You can do this by forming the LP you found in your solution of exercise 4.16, or more directly
using CVX. Plot the actuator signal u(t) as a function of time t.

3.18 Heuristic suboptimal solution for Boolean LP. This exercise builds on exercises 4.15 and 5.13 in
Convex Optimization, which involve the Boolean LP

minimize cTx
subject to Ax � b

xi ∈ {0, 1}, i = 1, . . . , n,

with optimal value p⋆. Let xrlx be a solution of the LP relaxation

minimize cTx
subject to Ax � b

0 � x � 1,

so L = cTxrlx is a lower bound on p⋆. The relaxed solution xrlx can also be used to guess a Boolean
point x̂, by rounding its entries, based on a threshold t ∈ [0, 1]:

x̂i =

{

1 xrlxi ≥ t
0 otherwise,

for i = 1, . . . , n. Evidently x̂ is Boolean (i.e., has entries in {0, 1}). If it is feasible for the Boolean
LP, i.e., if Ax̂ � b, then it can be considered a guess at a good, if not optimal, point for the Boolean
LP. Its objective value, U = cT x̂, is an upper bound on p⋆. If U and L are close, then x̂ is nearly
optimal; specifically, x̂ cannot be more than (U − L)-suboptimal for the Boolean LP.

This rounding need not work; indeed, it can happen that for all threshold values, x̂ is infeasible.
But for some problem instances, it can work well.

Of course, there are many variations on this simple scheme for (possibly) constructing a feasible,
good point from xrlx.

Finally, we get to the problem. Generate problem data using

rand(’state’,0);

n=100;

m=300;

A=rand(m,n);

b=A*ones(n,1)/2;

c=-rand(n,1);
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You can think of xi as a job we either accept or decline, and −ci as the (positive) revenue we
generate if we accept job i. We can think of Ax � b as a set of limits on m resources. Aij , which
is positive, is the amount of resource i consumed if we accept job j; bi, which is positive, is the
amount of resource i available.

Find a solution of the relaxed LP and examine its entries. Note the associated lower bound L.
Carry out threshold rounding for (say) 100 values of t, uniformly spaced over [0, 1]. For each value
of t, note the objective value cT x̂ and the maximum constraint violation maxi(Ax̂− b)i. Plot the
objective value and the maximum violation versus t. Be sure to indicate on the plot the values of
t for which x̂ is feasible, and those for which it is not.

Find a value of t for which x̂ is feasible, and gives minimum objective value, and note the associated
upper bound U . Give the gap U −L between the upper bound on p⋆ and the lower bound on p⋆. If
you define vectors obj and maxviol, you can find the upper bound as U=min(obj(find(maxviol<=0))).

3.19 Optimal operation of a hybrid vehicle. Solve the instance of the hybrid vehicle operation problem de-
scribed in exercise 4.65 in Convex Optimization, with problem data given in the file hybrid_veh_data.m,
and fuel use function F (p) = p+ γp2 (for p ≥ 0).

Hint. You will actually formulate and solve a relaxation of the original problem. You may find that
some of the equality constraints you relaxed to inequality constraints do not hold for the solution
found. This is not an error: it just means that there is no incentive (in terms of the objective) for
the inequality to be tight. You can fix this in (at least) two ways. One is to go back and adjust
certain variables, without affecting the objective and maintaining feasibility, so that the relaxed
constraints hold with equality. Another simple method is to add to the objective a term of the
form

ǫ
T
∑

t=1

max{0,−Pmg(t)},

where ǫ is small and positive. This makes it more attractive to use the brakes to extract power
from the wheels, even when the battery is (or will be) full (which removes any fuel incentive).

Find the optimal fuel consumption, and compare to the fuel consumption with a non-hybrid ver-
sion of the same vehicle (i.e., one without a battery). Plot the braking power, engine power,
motor/generator power, and battery energy versus time.

How would you use optimal dual variables for this problem to find ∂Ftotal/∂E
max
batt , i.e., the partial

derivative of optimal fuel consumption with respect to battery capacity? (You can just assume
that this partial derivative exists.) You do not have to give a long derivation or proof; you can
just state how you would fine this derivative from optimal dual variables for the problem. Verify
your method numerically, by changing the battery capacity a small amount and re-running the
optimization, and comparing this to the prediction made using dual variables.

3.20 Optimal vehicle speed scheduling. A vehicle (say, an airplane) travels along a fixed path of n
segments, between n + 1 waypoints labeled 0, . . . , n. Segment i starts at waypoint i − 1 and
terminates at waypoint i. The vehicle starts at time t = 0 at waypoint 0. It travels over each
segment at a constant (nonnegative) speed; si is the speed on segment i. We have lower and upper
limits on the speeds: smin � s � smax. The vehicle does not stop at the waypoints; it simply
proceeds to the next segment. The travel distance of segment i is di (which is positive), so the
travel time over segment i is di/si. We let τi, i = 1, . . . , n, denote the time at which the vehicle
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arrives at waypoint i. The vehicle is required to arrive at waypoint i, for i = 1, . . . , n, between
times τmin

i and τmax
i , which are given. The vehicle consumes fuel over segment i at a rate that

depends on its speed, Φ(si), where Φ is positive, increasing, and convex, and has units of kg/s.

You are given the data d (segment travel distances), smin and smax (speed bounds), τmin and τmax

(waypoint arrival time bounds), and the fuel use function Φ : R → R. You are to choose the speeds
s1, . . . , sn so as to minimize the total fuel consumed in kg.

(a) Show how to pose this as a convex optimization problem. If you introduce new variables, or
change variables, you must explain how to recover the optimal speeds from the solution of
your problem. If convexity of the objective or any constraint function in your formulation is
not obvious, explain why it is convex.

(b) Carry out the method of part (a) on the problem instance with data in
veh_speed_sched_data.m. Use the fuel use function Φ(si) = as2i + bsi + c (the parameters a,
b, and c are defined in the data file). What is the optimal fuel consumption? Plot the optimal
speed versus segment, using the matlab command stairs to better show constant speed over
the segments.

3.21 Norm approximation via SOCP, for ℓp-norms with rational p.

(a) Use the observation at the beginning of exercise 4.26 in Convex Optimization to express the
constraint

y ≤ √
z1z2, y, z1, z2 ≥ 0,

with variables y, z1, z2, as a second-order cone constraint. Then extend your result to the
constraint

y ≤ (z1z2 · · · zn)1/n, y ≥ 0, z � 0,

where n is a positive integer, and the variables are y ∈ R and z ∈ Rn. First assume that n is
a power of two, and then generalize your formulation to arbitrary positive integers.

(b) Express the constraint
f(x) ≤ t

as a second-order cone constraint, for the following two convex functions f :

f(x) =

{

xα x ≥ 0
0 x < 0,

where α is rational and nonnegative, and

f(x) = xα, dom f = R++,

where α is rational and negative.

(c) Formulate the norm approximation problem

minimize ‖Ax− b‖p
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as a second-order cone program, where p is a rational number greater than or equal to one.
The variable in the optimization problem is x ∈ Rn. The matrix A ∈ Rm×n and the vector
b ∈ Rm are given. For an m-vector y, the norm ‖y‖p is defined as

‖y‖p =
(

m
∑

k=1

|yk|p
)1/p

when p ≥ 1.

20



4 Duality

4.1 Numerical perturbation analysis example. Consider the quadratic program

minimize x21 + 2x22 − x1x2 − x1
subject to x1 + 2x2 ≤ u1

x1 − 4x2 ≤ u2,
5x1 + 76x2 ≤ 1,

with variables x1, x2, and parameters u1, u2.

(a) Solve this QP, for parameter values u1 = −2, u2 = −3, to find optimal primal variable values
x⋆1 and x

⋆
2, and optimal dual variable values λ⋆1, λ

⋆
2 and λ

⋆
3. Let p

⋆ denote the optimal objective
value. Verify that the KKT conditions hold for the optimal primal and dual variables you
found (within reasonable numerical accuracy).

Hint: See §3.6 of the CVX users’ guide to find out how to retrieve optimal dual variables. To
specify the quadratic objective, use quad_form().

(b) We will now solve some perturbed versions of the QP, with

u1 = −2 + δ1, u2 = −3 + δ2,

where δ1 and δ2 each take values from {−0.1, 0, 0.1}. (There are a total of nine such combi-
nations, including the original problem with δ1 = δ2 = 0.) For each combination of δ1 and δ2,
make a prediction p⋆pred of the optimal value of the perturbed QP, and compare it to p⋆exact,
the exact optimal value of the perturbed QP (obtained by solving the perturbed QP). Put
your results in the two righthand columns in a table with the form shown below. Check that
the inequality p⋆pred ≤ p⋆exact holds.

δ1 δ2 p⋆pred p⋆exact
0 0
0 −0.1
0 0.1

−0.1 0
−0.1 −0.1
−0.1 0.1

0.1 0
0.1 −0.1
0.1 0.1

4.2 A determinant maximization problem. We consider the problem

minimize log detX−1

subject to AT
i XAi � Bi, i = 1, . . . ,m,

with variable X ∈ Sn, and problem data Ai ∈ Rn×ki , Bi ∈ S
ki
++, i = 1, . . . ,m. The constraint

X ≻ 0 is implicit.

We can give several interpretations of this problem. Here is one, from statistics. Let z be a random
variable in Rn, with covariance matrix X, which is unknown. However, we do have (matrix) upper
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bounds on the covariance of the random variables yi = AT
i z ∈ Rki , which is AT

i XAi. The problem
is to find the covariance matrix for z, that is consistent with the known upper bounds on the
covariance of yi, that has the largest volume confidence ellipsoid.

Derive the Lagrange dual of this problem. Be sure to state what the dual variables are (e.g.,
vectors, scalars, matrices), any constraints they must satisfy, and what the dual function is. If
the dual function has any implicit equality constraints, make them explicit. You can assume that
∑m

i=1AiA
T
i ≻ 0, which implies the feasible set of the original problem is bounded.

What can you say about the optimal duality gap for this problem?

4.3 The relative entropy between two vectors x, y ∈ Rn
++ is defined as

n
∑

k=1

xk log(xk/yk).

This is a convex function, jointly in x and y. In the following problem we calculate the vector x
that minimizes the relative entropy with a given vector y, subject to equality constraints on x:

minimize
n
∑

k=1

xk log(xk/yk)

subject to Ax = b
1Tx = 1

The optimization variable is x ∈ Rn. The domain of the objective function is Rn
++. The parameters

y ∈ Rn
++, A ∈ Rm×n, and b ∈ Rm are given.

Derive the Lagrange dual of this problem and simplify it to get

maximize bT z − log
∑n

k=1 yke
aT
k
z

(ak is the kth column of A).

4.4 Source localization from range measurements. [BSL08] A signal emitted by a source at an unknown
position x ∈ Rn (n = 2 or n = 3) is received by m sensors at known positions y1, . . . , ym ∈ Rn.
From the strength of the received signals, we can obtain noisy estimates dk of the distances ‖x−yk‖2.
We are interested in estimating the source position x based on the measured distances dk.

In the following problem the error between the squares of the actual and observed distances is
minimized:

minimize f0(x) =
m
∑

k=1

(

‖x− yk‖22 − d2k

)2
.

Introducing a new variable t = xTx, we can express this as

minimize
m
∑

k=1

(

t− 2yTk x+ ‖yk‖22 − d2k

)2

subject to xTx− t = 0.

(5)

The variables are x ∈ Rn, t ∈ R. Although this problem is not convex, it can be shown that
strong duality holds. (It is a variation on the problem discussed on page 229 and in exercise 5.29
of Convex Optimization.)
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Solve (5) for an example with m = 5,

y1 =

[

1.8
2.5

]

, y2 =

[

2.0
1.7

]

, y3 =

[

1.5
1.5

]

, y4 =

[

1.5
2.0

]

, y5 =

[

2.5
1.5

]

,

and
d = (2.00, 1.24, 0.59, 1.31, 1.44).

The figure shows some contour lines of the cost function f0, with the positions yk indicated by
circles.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2
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3

x1

x
2

To solve the problem, you can note that x⋆ is easily obtained from the KKT conditions for (5) if
the optimal multiplier ν⋆ for the equality constraint is known. You can use one of the following
two methods to find ν⋆.

• Derive the dual problem, express it as an SDP, and solve it using CVX.

• Reduce the KKT conditions to a nonlinear equation in ν, and pick the correct solution (simi-
larly as in exercise 5.29 of Convex Optimization).

4.5 Projection on the ℓ1 ball. Consider the problem of projecting a point a ∈ Rn on the unit ball in
ℓ1-norm:

minimize (1/2)‖x − a‖22
subject to ‖x‖1 ≤ 1.

Derive the dual problem and describe an efficient method for solving it. Explain how you can
obtain the optimal x from the solution of the dual problem.

4.6 A nonconvex problem with strong duality. On page 229 of Convex Optimization, we consider the
problem

minimize f(x) = xTAx+ 2bTx
subject to xTx ≤ 1

(6)
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with variable x ∈ Rn, and data A ∈ Sn, b ∈ Rn. We do not assume that A is positive semidefinite,
and therefore the problem is not necessarily convex. In this exercise we show that x is (globally)
optimal if and only if there exists a λ such that

‖x‖2 ≤ 1, λ ≥ 0, A+ λI � 0, (A+ λI)x = −b, λ(1− ‖x‖22) = 0. (7)

From this we will develop an efficient method for finding the global solution. The conditions (7)
are the KKT conditions for (6) with the inequality A+ λI � 0 added.

(a) Show that if x and λ satisfy (7), then f(x) = inf x̃ L(x̃, λ) = g(λ), where L is the Lagrangian
of the problem and g is the dual function. Therefore strong duality holds, and x is globally
optimal.

(b) Next we show that the conditions (7) are also necessary. Assume that x is globally optimal
for (6). We distinguish two cases.

(i) ‖x‖2 < 1. Show that (7) holds with λ = 0.

(ii) ‖x‖2 = 1. First prove that (A+ λI)x = −b for some λ ≥ 0. (In other words, the negative
gradient −(Ax+ b) of the objective function is normal to the unit sphere at x, and point
away from the origin.) You can show this by contradiction: if the condition does not
hold, then there exists a direction v with vTx < 0 and vT (Ax + b) < 0. Show that
f(x+ tv) < f(x) for small positive t.
It remains to show that A+ λI � 0. If not, there exists a w with wT (A+ λI)w < 0, and
without loss of generality we can assume that wTx 6= 0. Show that the point y = x+ tw
with t = −2wTx/wTw satisfies ‖y‖2 = 1 and f(y) < f(x).

(c) The optimality conditions (7) can be used to derive a simple algorithm for (6). Using the
eigenvalue decomposition A =

∑n
i=1 αiqiq

T
i , of A, we make a change of variables yi = qTi x,

and write (6) as
minimize

∑n
i=1 αiy

2
i + 2

∑n
i=1 βiyi

subject to yT y ≤ 1

where βi = qTi b. The transformed optimality conditions (7) are

‖y‖2 ≤ 1, λ ≥ −αn, (αi + λ)yi = −βi, i = 1, . . . , n, λ(1− ‖y‖2) = 0,

if we assume that α1 ≥ α2 ≥ · · · ≥ αn. Give an algorithm for computing the solution y and λ.

4.7 Connection between perturbed optimal cost and Lagrange dual functions. In this exercise we explore
the connection between the optimal cost, as a function of perturbations to the righthand sides of
the constraints,

p⋆(u) = inf{f0(x) | ∃x ∈ D, fi(x) ≤ ui, i = 1, . . . ,m},
(as in §5.6), and the Lagrange dual function

g(λ) = inf
x
(f0(x) + λ1f1(x) + · · ·+ λmfm(x)) ,

with domain restricted to λ � 0. We assume the problem is convex. We consider a problem with
inequality constraints only, for simplicity.

We have seen several connections between p⋆ and g:
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• Slater’s condition and strong duality. Slater’s condition is: there exists u ≺ 0 for which
p⋆(u) < ∞. Strong duality (which follows) is: p⋆(0) = supλ g(λ). (Note that we include the
condition λ � 0 in the domain of g.)

• A global inequality. We have p⋆(u) ≥ p⋆(0) − λ⋆Tu, for any u, where λ⋆ maximizes g.

• Local sensitivity analysis. If p⋆ is differentiable at 0, then we have ∇p⋆(0) = −λ⋆, where λ⋆
maximizes g.

In fact the two functions are closely related by conjugation. Show that

p⋆(u) = (−g)∗(−u).

Here (−g)∗ is the conjugate of the function −g. You can show this for u ∈ int dom p⋆.

Hint. Consider the problem

minimize f0(x)

subject to f̃i(x) = fi(x)− ui ≤ 0, i = 1, . . . ,m.

Verify that Slater’s condition holds for this problem, for u ∈ int dom p⋆.

4.8 Exact penalty method for SDP. Consider the pair of primal and dual SDPs

(P) minimize cTx
subject to F (x) � 0

(D) maximize tr(F0Z)
subject to tr(FiZ) + ci = 0, i = 1, . . . ,m

Z � 0,

where F (x) = F0 + x1F1 + · · · + xnFn and Fi ∈ Sp for i = 0, . . . , n. Let Z⋆ be a solution of (D).
Show that every solution x⋆ of the unconstrained problem

minimize cTx+M max{0, λmax(F (x))},

where M > trZ⋆, is a solution of (P).

4.9 Quadratic penalty. Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

(8)

where the functions fi : R
n → R are differentiable and convex.

Show that

φ(x) = f0(x) + α
m
∑

i=1

max{0, fi(x)}2,

where α > 0, is convex. Suppose x̃ minimizes φ. Show how to find from x̃ a feasible point for the
dual of (8). Find the corresponding lower bound on the optimal value of (8).

4.10 Binary least-squares. We consider the non-convex least-squares approximation problem with binary
constraints

minimize ‖Ax− b‖22
subject to x2k = 1, k = 1, . . . , n,

(9)
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where A ∈ Rm×n and b ∈ Rm. We assume that rank(A) = n, i.e., ATA is nonsingular.

One possible application of this problem is as follows. A signal x̂ ∈ {−1, 1}n is sent over a noisy
channel, and received as b = Ax̂+ v where v ∼ N (0, σ2I) is Gaussian noise. The solution of (9) is
the maximum likelihood estimate of the input signal x̂, based on the received signal b.

(a) Derive the Lagrange dual of (9) and express it as an SDP.

(b) Derive the dual of the SDP in part (a) and show that it is equivalent to

minimize tr(ATAZ)− 2bTAz + bT b
subject to diag(Z) = 1

[

Z z
zT 1

]

� 0.
(10)

Interpret this problem as a relaxation of (9). Show that if

rank(

[

Z z
zT 1

]

) = 1 (11)

at the optimum of (10), then the relaxation is exact, i.e., the optimal values of problems (9)
and (10) are equal, and the optimal solution z of (10) is optimal for (9). This suggests a
heuristic for rounding the solution of the SDP (10) to a feasible solution of (9), if (11) does
not hold. We compute the eigenvalue decomposition

[

Z z
zT 1

]

=
n+1
∑

i=1

λi

[

vi
ti

] [

vi
ti

]T

,

where vi ∈ Rn and ti ∈ R, and approximate the matrix by a rank-one matrix

[

Z z
zT 1

]

≈ λ1

[

v1
t1

] [

v1
t1

]T

.

(Here we assume the eigenvalues are sorted in decreasing order). Then we take x = sign(v1)
as our guess of good solution of (9).

(c) We can also give a probabilistic interpretation of the relaxation (10). Suppose we interpret z
and Z as the first and second moments of a random vector v ∈ Rn (i.e., z = E v, Z = E vvT ).
Show that (10) is equivalent to the problem

minimize E ‖Av − b‖22
subject to E v2k = 1, k = 1, . . . , n,

where we minimize over all possible probability distributions of v.

This interpretation suggests another heuristic method for computing suboptimal solutions
of (9) based on the result of (10). We choose a distribution with first and second moments
E v = z, E vvT = Z (for example, the Gaussian distribution N (z, Z − zzT )). We generate a
number of samples ṽ from the distribution and round them to feasible solutions x = sign(ṽ).
We keep the solution with the lowest objective value as our guess of the optimal solution of (9).
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(d) Solve the dual problem (10) using CVX. Generate problem instances using the Matlab code

randn(’state’,0)

m = 50;

n = 40;

A = randn(m,n);

xhat = sign(randn(n,1));

b = A*xhat + s*randn(m,1);

for four values of the noise level s: s = 0.5, s = 1, s = 2, s = 3. For each problem instance,
compute suboptimal feasible solutions x using the the following heuristics and compare the
results.

(i) x(a) = sign(xls) where xls is the solution of the least-squares problem

minimize ‖Ax− b‖22.

(ii) x(b) = sign(z) where z is the optimal value of the variable z in the SDP (10).

(iii) x(c) is computed from a rank-one approximation of the optimal solution of (10), as ex-
plained in part (b) above.

(iv) x(d) is computed by rounding 100 samples of N (z, Z−zzT ), as explained in part (c) above.

4.11 Monotone transformation of the objective. Consider the optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m.

(12)

where fi : R
n → R for i = 0, 1, . . . ,m are convex. Suppose φ : R → R is increasing and convex.

Then the problem
minimize f̃0(x) = φ(f0(x))
subject to fi(x) ≤ 0, i = 1, . . . ,m

(13)

is convex and equivalent to it; in fact, it has the same optimal set as (12).

In this problem we explore the connections between the duals of the two problems (12) and (13).
We assume fi are differentiable, and to make things specific, we take φ(a) = exp a.

(a) Suppose λ is feasible for the dual of (12), and x̄ minimizes

f0(x) +
m
∑

i=1

λifi(x).

Show that x̄ also minimizes

exp f0(x) +
m
∑

i=1

λ̃ifi(x)

for appropriate choice of λ̃. Thus, λ̃ is dual feasible for (13).

(b) Let p⋆ denote the optimal value of (12) (so the optimal value of (12) is exp p⋆). From λ we
obtain the bound

p⋆ ≥ g(λ),
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where g is the dual function for (12). From λ̃ we obtain the bound exp p⋆ ≥ g̃(λ̃), where g̃ is
the dual function for (13). This can be expressed as

p⋆ ≥ log g̃(λ̃).

How do these bounds compare? Are they the same, or is one better than the other?

4.12 Variable bounds and dual feasibility. In many problems the constraints include variable bounds, as
in

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

li ≤ xi ≤ ui, i = 1, . . . , n.
(14)

Let µ ∈ Rn
+ be the Lagrange multipliers associated with the constraints xi ≤ ui, and let ν ∈ Rn

+

be the Lagrange multipliers associated with the constraints li ≥ xi. Thus the Lagrangian is

L(x, λ, µ, ν) = f0(x) +
m
∑

i=1

λifi(x) + µT (x− u) + νT (l − x).

(a) Show that for any x ∈ Rn and any λ, we can choose µ � 0 and ν � 0 so that x minimizes
L(x, λ, µ, ν). In particular, it is very easy to find dual feasible points.

(b) Construct a dual feasible point (λ, µ, ν) by applying the method you found in part (a) with
x = (l + u)/2 and λ = 0. From this dual feasible point you get a lower bound on f⋆. Show
that this lower bound can be expressed as

f⋆ ≥ f0((l + u)/2) − ((u− l)/2)T |∇f0((l + u)/2)|
where | · | means componentwise. Can you prove this bound directly?

4.13 Deducing costs from samples of optimal decision. A system (such as a firm or an organism) chooses
a vector of values x as a solution of the LP

minimize cTx
subject to Ax � b,

with variable x ∈ Rn. You can think of x ∈ Rn as a vector of activity levels, b ∈ Rm as a
vector of requirements, and c ∈ Rn as a vector of costs or prices for the activities. With this
interpretation, the LP above finds the cheapest set of activity levels that meet all requirements.
(This interpretation is not needed to solve the problem.)

We suppose that A is known, along with a set of data

(b(1), x(1)), . . . , (b(r), x(r)),

where x(j) is an optimal point for the LP, with b = b(j). (The solution of an LP need not be unique;
all we say here is that x(j) is an optimal solution.) Roughly speaking, we have samples of optimal
decisions, for different values of requirements.

You do not know the cost vector c. Your job is to compute the tightest possible bounds on the
costs ci from the given data. More specifically, you are to find cmax

i and cmin
i , the maximum and

minimum possible values for ci, consistent with the given data.

Note that if x is optimal for the LP for a given c, then it is also optimal if c is scaled by any positive
factor. To normalize c, then, we will assume that c1 = 1. Thus, we can interpret ci as the relative
cost of activity i, compared to activity 1.
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(a) Explain how to find cmax
i and cmin

i . Your method can involve the solution of a reasonable
number (not exponential in n, m or r) of convex or quasiconvex optimization problems.

(b) Carry out your method using the data found in deducing_costs_data.m. You may need
to determine whether individual inequality constraints are tight; to do so, use a tolerance
threshold of ǫ = 10−3. (In other words: if aTk x − bk ≤ 10−3, you can consider this inequality
as tight.)

Give the values of cmax
i and cmin

i , and make a very brief comment on the results.

4.14 Kantorovich inequality.

(a) Suppose a ∈ Rn with a1 ≥ a2 ≥ · · · ≥ an > 0, and b ∈ Rn with bk = 1/ak.

Derive the KKT conditions for the convex optimization problem

minimize − log(aTx)− log(bTx)
subject to x � 0, 1Tx = 1.

Show that x = (1/2, 0, . . . , 0, 1/2) is optimal.

(b) Suppose A ∈ Sn
++ with eigenvalues λk sorted in decreasing order. Apply the result of part (a),

with ak = λk, to prove the Kantorovich inequality:

2
(

uTAu
)1/2 (

uTA−1u
)1/2

≤
√

λ1
λn

+

√

λn
λ1

for all u with ‖u‖2 = 1.

4.15 State and solve the optimality conditions for the problem

minimize log det





[

X1 X2

XT
2 X3

]−1




subject to trX1 = α
trX2 = β
trX3 = γ.

The optimization variable is

X =

[

X1 X2

XT
2 X3

]

,

with X1 ∈ Sn, X2 ∈ Rn×n, X3 ∈ Sn. The domain of the objective function is S2n
++. We assume

α > 0, and αγ > β2.

4.16 Consider the optimization problem

minimize − log detX + tr(SX)
subject to X is tridiagonal

with domain Sn
++ and variable X ∈ Sn. The matrix S ∈ Sn is given. Show that the optimal Xopt

satisfies
(X−1

opt)ij = Sij , |i− j| ≤ 1.
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4.17 We denote by f(A) the sum of the largest r eigenvalues of a symmetric matrix A ∈ Sn (with
1 ≤ r ≤ n), i.e.,

f(A) =
r
∑

k=1

λk(A),

where λ1(A), . . . , λn(A) are the eigenvalues of A sorted in decreasing order.

(a) Show that the optimal value of the SDP

maximize tr(AX)
subject to trX = r

0 � X � I,

with variable X ∈ Sn, is equal to f(A).

(b) Show that f is a convex function.

(c) Assume A(x) = A0 + x1A1 + · · · + xmAm, with Ak ∈ Sn. Use the observation in part (a) to
formulate the optimization problem

minimize f(A(x)),

with variable x ∈ Rm, as an SDP.

4.18 An exact penalty function. Suppose we are given a convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

(15)

with dual
maximize g(λ)
subject to λ � 0.

(16)

We assume that Slater’s condition holds, so we have strong duality and the dual optimum is
attained. For simplicity we will assume that there is a unique dual optimal solution λ⋆.

For fixed t > 0, consider the unconstrained minimization problem

minimize f0(x) + t max
i=1,...,m

fi(x)
+, (17)

where fi(x)
+ = max{fi(x), 0}.

(a) Show that the objective function in (17) is convex.

(b) We can express (17) as

minimize f0(x) + ty
subject to fi(x) ≤ y, i = 1. . . . ,m

0 ≤ y
(18)

where the variables are x and y ∈ R.

Find the Lagrange dual problem of (18) and express it in terms of the Lagrange dual function
g for problem (15).

30



(c) Use the result in (b) to prove the following property. If t > 1Tλ⋆, then any minimizer of (17)
is also an optimal solution of (15).

(The second term in (17) is called a penalty function for the constraints in (15). It is zero if x is
feasible, and adds a penalty to the cost function when x is infeasible. The penalty function is called
exact because for t large enough, the solution of the unconstrained problem (17) is also a solution
of (15).)

4.19 Infimal convolution. Let f1, . . . , fm be convex functions on Rn. Their infimal convolution, denoted
g = f1 ⋄ · · · ⋄ fm (several other notations are also used), is defined as

g(x) = inf{f1(x1) + · · ·+ fm(xm) | x1 + · · ·+ xm = x},

with the natural domain (i.e., defined by g(x) <∞). In one simple interpretation, fi(xi) is the cost
for the ith firm to produce a mix of products given by xi; g(x) is then the optimal cost obtained
if the firms can freely exchange products to produce, all together, the mix given by x. (The name
‘convolution’ presumably comes from the observation that if we replace the sum above with the
product, and the infimum above with integration, then we obtain the normal convolution.)

(a) Show that g is convex.

(b) Show that g∗ = f∗1 + · · ·+ f∗m. In other words, the conjugate of the infimal convolution is the
sum of the conjugates.

(c) Verify the identity in part (b) for the specific case of two strictly convex quadratic functions,
fi(x) = (1/2)xTPix, with Pi ∈ Sn

++, i = 1, 2.

Hint: Depending on how you work out the conjugates, you might find the matrix identity
(X + Y )−1Y = X−1(X−1 + Y −1)−1 useful.
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5 Approximation and fitting

5.1 Three measures of the spread of a group of numbers. For x ∈ Rn, we define three functions that
measure the spread or width of the set of its elements (or coefficients). The first function is the
spread, defined as

φsprd(x) = max
i=1,...,n

xi − min
i=1,...,n

xi.

This is the width of the smallest interval that contains all the elements of x.

The second function is the standard deviation, defined as

φstdev(x) =





1

n

n
∑

i=1

x2i −
(

1

n

n
∑

i=1

xi

)2




1/2

.

This is the statistical standard deviation of a random variable that takes the values x1, . . . , xn, each
with probability 1/n.

The third function is the average absolute deviation from the median of the values:

φaamd(x) = (1/n)
n
∑

i=1

|xi −med(x)|,

where med(x) denotes the median of the components of x, defined as follows. If n = 2k − 1 is
odd, then the median is defined as the value of middle entry when the components are sorted, i.e.,
med(x) = x[k], the kth largest element among the values x1, . . . , xn. If n = 2k is even, we define
the median as the average of the two middle values, i.e., med(x) = (x[k] + x[k+1])/2.

Each of these functions measures the spread of the values of the entries of x; for example, each
function is zero if and only if all components of x are equal, and each function is unaffected if a
constant is added to each component of x.

Which of these three functions is convex? For each one, either show that it is convex, or give a
counterexample showing it is not convex. By a counterexample, we mean a specific x and y such
that Jensen’s inequality fails, i.e., φ((x+ y)/2) > (φ(x) + φ(y))/2.

5.2 Minimax rational fit to the exponential. (See exercise 6.9 of Convex Optimization.) We consider
the specific problem instance with data

ti = −3 + 6(i− 1)/(k − 1), yi = eti , i = 1, . . . , k,

where k = 201. (In other words, the data are obtained by uniformly sampling the exponential
function over the interval [−3, 3].) Find a function of the form

f(t) =
a0 + a1t+ a2t

2

1 + b1t+ b2t2

that minimizes maxi=1,...,k |f(ti)− yi|. (We require that 1 + b1ti + b2t
2
i > 0 for i = 1, . . . , k.)

Find optimal values of a0, a1, a2, b1, b2, and give the optimal objective value, computed to an
accuracy of 0.001. Plot the data and the optimal rational function fit on the same plot. On a
different plot, give the fitting error, i.e., f(ti)− yi.

Hint. You can use strcmp(cvx_status,’Solved’), after cvx_end, to check if a feasibility problem
is feasible.
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5.3 Approximation with trigonometric polynomials. Suppose y : R → R is a 2π-periodic function. We
will approximate y with the trigonometric polynomial

f(t) =
K
∑

k=0

ak cos(kt) +
K
∑

k=1

bk sin(kt).

We consider two approximations: one that minimizes the L2-norm of the error, defined as

‖f − y‖2 =
(∫ π

−π
(f(t)− y(t))2 dt

)1/2

,

and one that minimizes the L1-norm of the error, defined as

‖f − y‖1 =
∫ π

−π
|f(t)− y(t)| dt.

The L2 approximation is of course given by the (truncated) Fourier expansion of y.

To find an L1 approximation, we discretize t at 2N points,

ti = −π + iπ/N, i = 1, . . . , 2N,

and approximate the L1 norm as

‖f − y‖1 ≈ (π/N)
2N
∑

i=1

|f(ti)− y(ti)|.

(A standard rule of thumb is to take N at least 10 times larger than K.) The L1 approximation (or
really, an approximation of the L1 approximation) can now be found using linear programming.

We consider a specific case, where y is a 2π-periodic square-wave, defined for −π ≤ t ≤ π as

y(t) =

{

1 |t| ≤ π/2
0 otherwise.

(The graph of y over a few cycles explains the name ‘square-wave’.)

Find the optimal L2 approximation and (discretized) L1 optimal approximation for K = 10. You
can find the L2 optimal approximation analytically, or by solving a least-squares problem associated
with the discretized version of the problem. Since y is even, you can take the sine coefficients in
your approximations to be zero. Show y and the two approximations on a single plot.

In addition, plot a histogram of the residuals (i.e., the numbers f(ti)−y(ti)) for the two approxima-
tions. Use the same horizontal axis range, so the two residual distributions can easily be compared.
(Matlab command hist might be helpful here.) Make some brief comments about what you see.

5.4 Penalty function approximation. We consider the approximation problem

minimize φ(Ax− b)

where A ∈ Rm×n and b ∈ Rm, the variable is x ∈ Rn, and φ : Rm → R is a convex penalty
function that measures the quality of the approximation Ax ≈ b. We will consider the following
choices of penalty function:
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(a) Euclidean norm.

φ(y) = ‖y‖2 = (
m
∑

k=1

y2k)
1/2.

(b) ℓ1-norm.

φ(y) = ‖y‖1 =
m
∑

k=1

|yk|.

(c) Sum of the largest m/2 absolute values.

φ(y) =

⌊m/2⌋
∑

k=1

|y|[k]

where |y|[1], |y|[2], |y|[3], . . . , denote the absolute values of the components of y sorted in
decreasing order.

(d) A piecewise-linear penalty.

φ(y) =
m
∑

k=1

h(yk), h(u) =











0 |u| ≤ 0.2
|u| − 0.2 0.2 ≤ |u| ≤ 0.3
2|u| − 0.5 |u| ≥ 0.3.

(e) Huber penalty.

φ(y) =
m
∑

k=1

h(yk), h(u) =

{

u2 |u| ≤M
M(2|u| −M) |u| ≥M

with M = 0.2.

(f) Log-barrier penalty.

φ(y) =
m
∑

k=1

h(yk), h(u) = − log(1− u2), dom h = {u | |u| < 1}.

Here is the problem. Generate data A and b as follows:

m = 200;

n = 100;

A = randn(m,n);

b = randn(m,1);

b = b/(1.01*max(abs(b)));

(The normalization of b ensures that the domain of φ(Ax− b) is nonempty if we use the log-barrier
penalty.) To compare the results, plot a histogram of the vector of residuals y = Ax − b, for each
of the solutions x, using the Matlab command

hist(A*x-b,m/2);

Some additional hints and remarks for the individual problems:
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(a) This problem can be solved using least-squares (x=A\b).

(b) Use the CVX function norm(y,1).

(c) Use the CVX function norm_largest().

(d) Use CVX, with the overloaded max(), abs(), and sum() functions.

(e) Use the CVX function huber().

(f) The current version of CVX does not directly handle the logarithm. However, you can refor-
mulate this problem as

maximize (
∏m

k=1 ((1− (Ax− b)k)(1 + (Ax− b)k)))
1/2m ,

and use the CVX function geomean().

5.5 ℓ1.5 optimization. Optimization and approximation methods that use both an ℓ2-norm (or its
square) and an ℓ1-norm are currently very popular in statistics, machine learning, and signal and
image processing. Examples include Huber estimation, LASSO, basis pursuit, SVM, various ℓ1-
regularized classification methods, total variation de-noising, etc. Very roughly, an ℓ2-norm cor-
responds to Euclidean distance (squared), or the negative log-likelihood function for a Gaussian;
in contrast the ℓ1-norm gives ‘robust’ approximation, i.e., reduced sensitivity to outliers, and also
tends to yield sparse solutions (of whatever the argument of the norm is). (All of this is just
background; you don’t need to know any of this to solve the problem.)

In this problem we study a natural method for blending the two norms, by using the ℓ1.5-norm,
defined as

‖z‖1.5 =

(

k
∑

i=1

|zi|3/2
)2/3

for z ∈ Rk. We will consider the simplest approximation or regression problem:

minimize ‖Ax− b‖1.5,
with variable x ∈ Rn, and problem data A ∈ Rm×n and b ∈ Rm. We will assume that m > n and
the A is full rank (i.e., rank n). The hope is that this ℓ1.5-optimal approximation problem should
share some of the good features of ℓ2 and ℓ1 approximation.

(a) Give optimality conditions for this problem. Try to make these as simple as possible. Your
solution should have the form ‘x is optimal for the ℓ1.5-norm approximation problem if and
only if . . . ’.

(b) Explain how to formulate the ℓ1.5-norm approximation problem as an SDP. (Your SDP can
include linear equality and inequality constraints.)

(c) Solve the specific numerical instance generated by the following code:

randn(’state’,0);

A=randn(100,30);

b=randn(100,1);

Numerically verify the optimality conditions. Give a histogram of the residuals, and repeat
for the ℓ2-norm and ℓ1-norm approximations. You can use any method you like to solve the
problem (but of course you must explain how you did it); in particular, you do not need to
use the SDP formulation found in part (b).
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5.6 Total variation image interpolation. A grayscale image is represented as an m × n matrix of
intensities Uorig. You are given the values Uorig

ij , for (i, j) ∈ K, where K ⊂ {1, . . . ,m} × {1, . . . , n}.
Your job is to interpolate the image, by guessing the missing values. The reconstructed image
will be represented by U ∈ Rm×n, where U satisfies the interpolation conditions Uij = Uorig

ij for
(i, j) ∈ K.

The reconstruction is found by minimizing a roughness measure subject to the interpolation con-
ditions. One common roughness measure is the ℓ2 variation (squared),

m
∑

i=2

n
∑

j=2

(

(Uij − Ui−1,j)
2 + (Uij − Ui,j−1)

2
)

.

Another method minimizes instead the total variation,

m
∑

i=2

n
∑

j=2

(|Uij − Ui−1,j|+ |Uij − Ui,j−1|) .

Evidently both methods lead to convex optimization problems.

Carry out ℓ2 and total variation interpolation on the problem instance with data given in tv_img_interp.m.
This will define m, n, and matrices Uorig and Known. The matrix Known is m× n, with (i, j) entry
one if (i, j) ∈ K, and zero otherwise. The mfile also has skeleton plotting code. (We give you
the entire original image so you can compare your reconstruction to the original; obviously your
solution cannot access Uorig

ij for (i, j) 6∈ K.)

5.7 Piecewise-linear fitting. In many applications some function in the model is not given by a formula,
but instead as tabulated data. The tabulated data could come from empirical measurements,
historical data, numerically evaluating some complex expression or solving some problem, for a set
of values of the argument. For use in a convex optimization model, we then have to fit these data
with a convex function that is compatible with the solver or other system that we use. In this
problem we explore a very simple problem of this general type.

Suppose we are given the data (xi, yi), i = 1, . . . ,m, with xi, yi ∈ R. We will assume that xi are
sorted, i.e., x1 < x2 < · · · < xm. Let a0 < a1 < a2 < · · · < aK be a set of fixed knot points, with
a0 ≤ x1 and aK ≥ xm. Explain how to find the convex piecewise linear function f , defined over
[a0, aK ], with knot points ai, that minimizes the least-squares fitting criterion

m
∑

i=1

(f(xi)− yi)
2.

You must explain what the variables are and how they parametrize f , and how you ensure convexity
of f .

Hints. One method to solve this problem is based on the Lagrange basis, f0, . . . , fK , which are the
piecewise linear functions that satisfy

fj(ai) = δij , i, j = 0, . . . ,K.

Another method is based on defining f(x) = αix + βi, for x ∈ (ai−1, ai]. You then have to add
conditions on the parameters αi and βi to ensure that f is continuous and convex.
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Apply your method to the data in the file pwl_fit_data.m, which contains data with xj ∈ [0, 1].
Find the best affine fit (which corresponds to a = (0, 1)), and the best piecewise-linear convex
function fit for 1, 2, and 3 internal knot points, evenly spaced in [0, 1]. (For example, for 3 internal
knot points we have a0 = 0, a1 = 0.25, a2 = 0.50, a3 = 0.75, a4 = 1.) Give the least-squares
fitting cost for each one. Plot the data and the piecewise-linear fits found. Express each function
in the form

f(x) = max
i=1...,K

(αix+ βi).

(In this form the function is easily incorporated into an optimization problem.)

5.8 Least-squares fitting with convex splines. A cubic spline (or fourth-order spline) with breakpoints
α0, α1, . . . , αM (that satisfy α0 < α1 < · · · < αM ) is a piecewise-polynomial function with the
following properties:

• the function is a cubic polynomial on each interval [αi, αi+1]

• the function values, and the first and second derivatives are continuous on the interval (α0, αM ).

The figure shows an example of a cubic spline f(t) with M = 10 segments and breakpoints α0 = 0,
α1 = 1, . . . , α10 = 10.
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In approximation problems with splines it is convenient to parametrize a spline as a linear combi-
nation of basis functions, called B-splines. The precise definition of B-splines is not important for
our purposes; it is sufficient to know that every cubic spline can be written as a linear combination
of M + 3 cubic B-splines gk(t), i.e., in the form

f(t) = x1g1(t) + · · ·+ xM+3gM+3(t) = xT g(t),

and that there exist efficient algorithms for computing g(t) = (g1(t), . . . , gM+3(t)). The next figure
shows the 13 B-splines for the breakpoints 0, 1, . . . , 10.
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In this exercise we study the problem of fitting a cubic spline to a set of data points, subject to the
constraint that the spline is a convex function. Specifically, the breakpoints α0, . . . , αM are fixed,
and we are given N data points (tk, yk) with tk ∈ [α0, αM ]. We are asked to find the convex cubic
spline f(t) that minimizes the least-squares criterion

N
∑

k=1

(f(tk)− yk)
2.

We will use B-splines to parametrize f , so the variables in the problem are the coefficients x in
f(t) = xT g(t). The problem can then be written as

minimize
N
∑

k=1

(

xT g(tk)− yk
)2

subject to xT g(t) is convex in t on [α0, αM ].

(19)

(a) Express problem (19) as a convex optimization problem of the form

minimize ‖Ax− b‖22
subject to Gx � h.

(b) Use CVX to solve a specific instance of the optimization problem in part (a). As in the figures
above, we take M = 10 and α0 = 0, α1 = 1, . . . , α10 = 10.

Download the Matlab files spline_data.m and bsplines.m. The first m-file is used to generate
the problem data. The command [t, y] = spline_data will generate two vectors t, y of
length N = 51, with the data points tk, yk.

The second function can be used to compute the B-splines, and their first and second deriva-
tives, at any given point u ∈ [0, 10]. The command [g, gp, gpp] = bsplines(u) returns
three vectors of length 13 with elements gk(u), g

′
k(u), and g′′k(u). (The right derivatives are

returned for u = 0, and the left derivatives for u = 10.)

Solve the convex spline fitting problem (19) for this example, and plot the optimal spline.
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5.9 Robust least-squares with interval coefficient matrix. An interval matrix in Rm×n is a matrix whose
entries are intervals:

A = {A ∈ Rm×n | |Aij − Āij | ≤ Rij , i = 1, . . . ,m, j = 1, . . . , n}.

The matrix Ā ∈ Rm×n is called the nominal value or center value, and R ∈ Rm×n, which is
elementwise nonnegative, is called the radius.

The robust least-squares problem, with interval matrix, is

minimize supA∈A ‖Ax− b‖2,

with optimization variable x ∈ Rn. The problem data are A (i.e., Ā and R) and b ∈ Rm. The
objective, as a function of x, is called the worst-case residual norm. The robust least-squares
problem is evidently a convex optimization problem.

(a) Formulate the interval matrix robust least-squares problem as a standard optimization prob-
lem, e.g., a QP, SOCP, or SDP. You can introduce new variables if needed. Your reformulation
should have a number of variables and constraints that grows linearly with m and n, and not
exponentially.

(b) Consider the specific problem instance with m = 4, n = 3,

A =











60± 0.05 45 ± 0.05 −8± 0.05
90± 0.05 30 ± 0.05 −30± 0.05
0± 0.05 −8± 0.05 −4± 0.05
30± 0.05 10 ± 0.05 −10± 0.05











, b =











−6
−3
18
−9











.

(The first part of each entry in A gives Āij; the second gives Rij , which are all 0.05 here.) Find
the solution xls of the nominal problem (i.e., minimize ‖Āx − b‖2), and robust least-squares
solution xrls. For each of these, find the nominal residual norm, and also the worst-case residual
norm. Make sure the results make sense.

5.10 Identifying a sparse linear dynamical system. A linear dynamical system has the form

x(t+ 1) = Ax(t) +Bu(t) + w(t), t = 1, . . . , T − 1,

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input signal, and w(t) ∈ Rn is the process noise,
at time t. We assume the process noises are IID N (0,W ), where W ≻ 0 is the covariance matrix.
The matrix A ∈ Rn×n is called the dynamics matrix or the state transition matrix, and the matrix
B ∈ Rn×m is called the input matrix.

You are given accurate measurements of the state and input signal, i.e., x(1), . . . , x(T ), u(1), . . . , u(T−
1), and W is known. Your job is to find a state transition matrix Â and input matrix B̂ from these
data, that are plausible, and in addition are sparse, i.e., have many zero entries. (The sparser the
better.)

By doing this, you are effectively estimating the structure of the dynamical system, i.e., you are
determining which components of x(t) and u(t) affect which components of x(t + 1). In some
applications, this structure might be more interesting than the actual values of the (nonzero)
coefficients in Â and B̂.
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By plausible, we mean that

T−1
∑

t=1

∥

∥

∥W−1/2
(

x(t+ 1)− Âx(t)− B̂u(t)
)∥

∥

∥

2

2
∈ n(T − 1)± 2

√

2n(T − 1),

where a± b means the interval [a− b, a+ b]. (You can just take this as our definition of plausible.
But to explain this choice, we note that when Â = A and B̂ = B, the left-hand side is χ2, with
n(T − 1) degrees of freedom, and so has mean n(T − 1) and standard deviation

√

2n(T − 1).)

(a) Describe a method for finding Â and B̂, based on convex optimization.

We are looking for a very simple method, that involves solving one convex optimization
problem. (There are many extensions of this basic method, that would improve the simple
method, i.e., yield sparser Â and B̂ that are still plausible. We’re not asking you to describe
or implement any of these.)

(b) Carry out your method on the data found in sparse_lds_data.m. Give the values of Â and
B̂ that you find, and verify that they are plausible.

In the data file, we give you the true values of A and B, so you can evaluate the performance
of your method. (Needless to say, you are not allowed to use these values when forming Â and
B̂.) Using these true values, give the number of false positives and false negatives in both Â
and B̂. A false positive in Â, for example, is an entry that is nonzero, while the corresponding
entry in A is zero. A false negative is an entry of Â that is zero, while the corresponding
entry of A is nonzero. To judge whether an entry of Â (or B̂) is nonzero, you can use the test
|Âij | ≥ 0.01 (or |B̂ij | ≥ 0.01).

5.11 Measurement with bounded errors. A series of K measurements y1, . . . , yK ∈ Rp, are taken in order
to estimate an unknown vector x ∈ Rq. The measurements are related to the unknown vector x by
yi = Ax+ vi, where vi is a measurement noise that satisfies ‖vi‖∞ ≤ α but is otherwise unknown.
(In other words, the entries of v1, . . . , vK are no larger than α.) The matrix A and the measurement
noise norm bound α are known. Let X denote the set of vectors x that are consistent with the
observations y1, . . . , yK , i.e., the set of x that could have resulted in the measurements made. Is X
convex?

Now we will examine what happens when the measurements are occasionally in error, i.e., for a few
i we have no relation between x and yi. More precisely suppose that Ifault is a subset of {1, . . . ,K},
and that yi = Ax+ vi with ‖vi‖∞ ≤ α (as above) for i 6∈ Ifault, but for i ∈ Ifault, there is no relation
between x and yi. The set Ifault is the set of times of the faulty measurements.

Suppose you know that Ifault has at most J elements, i.e., out of K measurements, at most J are
faulty. You do not know Ifault; you know only a bound on its cardinality (size). For what values of
J is X, the set of x consistent with the measurements, convex?

5.12 Least-squares with a few permuted measurements. We want to estimate a vector x ∈ Rn, given
some linear measurements of x corrupted with Gaussian noise. Here’s the catch: some of the
measurements have been permuted.

More precisely, our measurement vector y ∈ Rm has the form

y = P (Ax+ v),
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where vi are IID N (0, I) measurement noises, x ∈ Rn is the vector of parameters we wish to
estimate, and P ∈ Rn×n is a permutation matrix. (This means that each row and column of P has
exactly one entry equal to one, and the remaining n− 1 entries zero.) We know that fewer than k
of the measurements are permuted; i.e., Pei 6= ei for at most k indices i. We wish to guess what x

is, and also what P is. There are

(

m
k

)

possible values of P , which is very large in the cases we

are interested in, such as m = 100 and k = 5.

Once we make a guess P̂ for P , we can get the maximum likelihood estimate of x by minimizing
‖Ax− P T y‖2. The residual Ax̂− P T y is then our guess of what P T v is, and should be consistent
with being a sample of a N (0, I) vector.

In principle, we can find the maximum likelihood estimate of x and P by solving a set of

(

m
k

)

least-squares problems, and choosing one that has minimum residual norm. But this is not practical
unless m and k are both very small.

Describe a heuristic method for approximately solving this problem, using convex optimization.

5.13 Fitting with censored data. In some experiments there are two kinds of measurements or data
available: The usual ones, in which you get a number (say), and censored data, in which you don’t
get the specific number, but are told something about it, such as a lower bound. A classic example
is a study of lifetimes of a set of subjects (say, laboratory mice). For those who have died by the end
of data collection, we get the lifetime. For those who have not died by the end of data collection,
we do not have the lifetime, but we do have a lower bound, i.e., the length of the study. These are
the censored data values.

We wish to fit a set of data points,

(x(1), y(1)), . . . , (x(K), y(K)),

with x(k) ∈ Rn and y(k) ∈ R, with a linear model of the form y ≈ cTx. The vector c ∈ Rn is the
model parameter, which we want to choose. We will use a least-squares criterion, i.e., choose c to
minimize

J =
K
∑

k=1

(

y(k) − cTx(k)
)2
.

Here is the tricky part: some of the values of y(k) are censored; for these entries, we have only a
(given) lower bound. We will re-order the data so that y(1), . . . , y(M) are given (i.e., uncensored),
while y(M+1), . . . , y(K) are all censored, i.e., unknown, but larger than D, a given number. All the
values of x(k) are known.

(a) Explain how to find c (the model parameter) and y(M+1), . . . , y(K) (the censored data values)
that minimize J .

(b) Carry out the method of part (a) on the data values in cens_fit_data.m. Report ĉ, the value
of c found using this method.

Also find ĉls, the least-squares estimate of c obtained by simply ignoring the censored data
samples, i.e., the least-squares estimate based on the data

(x(1), y(1)), . . . , (x(M), y(M)).
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The data file contains ctrue, the true value of c, in the vector c_true. Use this to give the two
relative errors

‖ctrue − ĉ‖2
‖ctrue‖2

,
‖ctrue − ĉls‖2

‖ctrue‖2
.

5.14 Spectrum analysis with quantized measurements. A sample is made up of n compounds, in quantities
qi ≥ 0, for i = 1, . . . , n. Each compound has a (nonnegative) spectrum, which we represent as a
vector s(i) ∈ Rm

+ , for i = 1, . . . , n. (Precisely what s(i) means won’t matter to us.) The spectrum
of the sample is given by s =

∑n
i=1 qis

(i). We can write this more compactly as s = Sq, where
S ∈ Rm×n is a matrix whose columns are s(1), . . . , s(n).

Measurement of the spectrum of the sample gives us an interval for each spectrum value, i.e.,
l, u ∈ Rm

+ for which
li ≤ si ≤ ui, i = 1, . . . ,m.

(We don’t directly get s.) This occurs, for example, if our measurements are quantized.

Given l and u (and S), we cannot in general deduce q exactly. Instead, we ask you to do the
following. For each compound i, find the range of possible values for qi consistent with the spectrum
measurements. We will denote these ranges as qi ∈ [qmin

i , qmax
i ]. Your job is to find qmin

i and qmax
i .

Note that if qmin
i is large, we can confidently conclude that there is a significant amount of compound

i in the sample. If qmax
i is small, we can confidently conclude that there is not much of compound

i in the sample.

(a) Explain how to find qmin
i and qmax

i , given S, l, and u.

(b) Carry out the method of part (a) for the problem instance given in spectrum_data.m. (Ex-
ecuting this file defines the problem data, and plots the compound spectra and measurement
bounds.) Plot the minimum and maximum values versus i, using the commented out code in
the data file. Report your values for qmin

4 and qmax
4 .
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6 Statistical estimation

6.1 Maximum likelihood estimation of x and noise mean and covariance. Consider the maximum
likelihood estimation problem with the linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m.

The vector x ∈ Rn is a vector of unknown parameters, yi are the measurement values, and vi are
independent and identically distributed measurement errors.

In this problem we make the assumption that the normalized probability density function of the
errors is given (normalized to have zero mean and unit variance), but not their mean and variance.
In other words, the density of the measurement errors vi is

p(z) =
1

σ
f(
z − µ

σ
),

where f is a given, normalized density. The parameters µ and σ are the mean and standard
deviation of the distribution p, and are not known.

The maximum likelihood estimates of x, µ, σ are the maximizers of the log-likelihood function

m
∑

i=1

log p(yi − aTi x) = −m log σ +
m
∑

i=1

log f(
yi − aTi x− µ

σ
),

where y is the observed value. Show that if f is log-concave, then the maximum likelihood estimates
of x, µ, σ can be determined by solving a convex optimization problem.

6.2 Mean and covariance estimation with conditional independence constraints. Let X ∈ Rn be a
Gaussian random variable with density

p(x) =
1

(2π)n/2(detS)1/2
exp(−(x− a)TS−1(x− a)/2).

The conditional density of a subvector (Xi,Xj) ∈ R2 of X, given the remaining variables, is also
Gaussian, and its covariance matrix Rij is equal to the Schur complement of the 2× 2 submatrix

[

Sii Sij
Sij Sjj

]

in the covariance matrix S. The variables Xi, Xj are called conditionally independent if the
covariance matrix Rij of their conditional distribution is diagonal.

Formulate the following problem as a convex optimization problem. We are given N independent
samples y1, . . . , yN ∈ Rn of X. We are also given a list N ∈ {1, . . . , n} × {1, . . . , n} of pairs of
conditionally independent variables: (i, j) ∈ N means Xi and Xj are conditionally independent.
The problem is to compute the maximum likelihood estimate of the mean a and the covariance
matrix S, subject to the constraint that Xi and Xj are conditionally independent for (i, j) ∈ N .

6.3 Maximum likelihood estimation for exponential family. A probability distribution on D ⊆ Rn,
parametrized by θ ∈ Rm, is called an exponential family if it has the form

pθ(x) = a(θ) exp(θT c(x))
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for x ∈ D, where c : Rn → Rm, and

a(θ) =

(∫

D
exp(θT c(x)) dx

)−1

.

(We consider only values of θ for which the integral above is finite.) Many families of distributions
have this form, for appropriate choice of the parameter θ.

(a) When c(x) = x and D = Rn
+, what is the associated family of distributions? What is the set

of valid values of θ?

(b) Explain how to represent the normal family N (µ,Σ) as an exponential family. Hint. Use pa-
rameter (z, Y ) = (Σ−1µ,Σ−1). With this parameter, θT c(x) has the form zT c1(x)+tr Y C2(x),
where C2(x) ∈ Sn.

(c) Show that for any x ∈ D, the log-likelihood function log pθ(x) is concave in θ. This means
that maximum-likelihood estimation for an exponential family leads to a convex optimization
problem. You don’t have to give a formal proof of concavity of log pθ(x); if you like, you
can approximate the integral appearing in the expression as a (finite) Riemann sum, show
concavity of this approxmation, and then just state ‘take the limit’.

6.4 Maximum likelihood prediction of team ability. A set of n teams compete in a tournament. We
model each team’s ability by a number aj ∈ [0, 1], j = 1, . . . , n. When teams j and k play each
other, the probability that team j wins is equal to prob(aj − ak + v > 0), where v ∼ N (0, σ2).

You are given the outcome of m past games. These are organized as

(j(i), k(i), y(i)), i = 1, . . . ,m,

meaning that game i was played between teams j(i) and k(i); y(i) = 1 means that team j(i) won,
while y(i) = −1 means that team k(i) won. (We assume there are no ties.)

(a) Formulate the problem of finding the maximum likelihood estimate of team abilities, â ∈ Rn,
given the outcomes, as a convex optimization problem. You will find the game incidence

matrix A ∈ Rm×n, defined as

Ail =











y(i) l = j(i)

−y(i) l = k(i)

0 otherwise,

useful.

The prior constraints âi ∈ [0, 1] should be included in the problem formulation. Also, we
note that if a constant is added to all team abilities, there is no change in the probabilities of
game outcomes. This means that â is determined only up to a constant, like a potential. But
this doesn’t affect the ML estimation problem, or any subsequent predictions made using the
estimated parameters.

(b) Find â for the team data given in team_data.m, in the matrix train. (This matrix gives the
outcomes for a tournament in which each team plays each other team once.) You may find
the cvx function log_normcdf helpful for this problem.

You can form A using the commands

44



A = sparse(1:m,train(:,1),train(:,3),m,n) + ...

sparse(1:m,train(:,2),-train(:,3),m,n);

(c) Use the maximum likelihood estimate â found in part (b) to predict the outcomes of next
year’s tournament games, given in the matrix test, using ŷ(i) = sign(âj(i) − âk(i)). Compare
these predictions with the actual outcomes, given in the third column of test. Given the
fraction of correctly predicted outcomes.

The games played in train and test are the same, so another, simpler method for predicting
the outcomes in test it to just assume the team that won last year’s match will also win this
year’s match. Give the percentage of correctly predicted outcomes using this simple method.

6.5 Estimating a vector with unknown measurement nonlinearity. (A specific instance of exercise 7.9
in Convex Optimization.) We want to estimate a vector x ∈ Rn, given some measurements

yi = φ(aTi x+ vi), i = 1, . . . ,m.

Here ai ∈ Rn are known, vi are IID N (0, σ2) random noises, and φ : R → R is an unknown
monotonic increasing function, known to satisfy

α ≤ φ′(u) ≤ β,

for all u. (Here α and β are known positive constants, with α < β.) We want to find a maximum
likelihood estimate of x and φ, given yi. (We also know ai, σ, α, and β.)

This sounds like an infinite-dimensional problem, since one of the parameters we are estimating is a
function. In fact, we only need to know them numbers zi = φ−1(yi), i = 1, . . . ,m. So by estimating
φ we really mean estimating the m numbers z1, . . . , zm. (These numbers are not arbitrary; they
must be consistent with the prior information α ≤ φ′(u) ≤ β for all u.)

(a) Explain how to find a maximum likelihood estimate of x and φ (i.e., z1, . . . , zm) using convex
optimization.

(b) Carry out your method on the data given in nonlin_meas_data.m, which includes a matrix
A ∈ Rm×n, with rows aT1 , . . . , a

T
m. Give x̂ml, the maximum likelihood estimate of x. Plot your

estimated function φ̂ml. (You can do this by plotting (ẑml)i versus yi, with yi on the vertical
axis and (ẑml)i on the horizontal axis.)

Hint. You can assume the measurements are numbered so that yi are sorted in nondecreasing order,
i.e., y1 ≤ y2 ≤ · · · ≤ ym. (The data given in the problem instance for part (b) is given in this
order.)

6.6 Maximum likelihood estimation of an increasing nonnegative signal. We wish to estimate a scalar
signal x(t), for t = 1, 2, . . . , N , which is known to be nonnegative and monotonically nondecreasing:

0 ≤ x(1) ≤ x(2) ≤ · · · ≤ x(N).

This occurs in many practical problems. For example, x(t) might be a measure of wear or dete-
rioration, that can only get worse, or stay the same, as time t increases. We are also given that
x(t) = 0 for t ≤ 0.
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We are given a noise-corrupted moving average of x, given by

y(t) =
k
∑

τ=1

h(τ)x(t− τ) + v(t), t = 2, . . . , N + 1,

where v(t) are independent N (0, 1) random variables.

(a) Show how to formulate the problem of finding the maximum likelihood estimate of x, given
y, taking into account the prior assumption that x is nonnegative and monotonically nonde-
creasing, as a convex optimization problem. Be sure to indicate what the problem variables
are, and what the problem data are.

(b) We now consider a specific instance of the problem, with problem data (i.e., N , k, h, and y)
given in the file l_estim_incr_signal_data.m. Find the maximum likelihood estimate x̂ml,
and plot it. Also find the maximum likelihood estimate x̂ml,free not taking into account the

signal nonnegativity and monotonicity, and plot it as well. Be sure to explain how you solve
the problem, and to give your source code for the solution.

(Note: We will reveal the true signal x used to generate the data in the solutions.)

6.7 Relaxed and discrete A-optimal experiment design. This problem concerns the A-optimal experi-
ment design problem, described on page 387, with data generated as follows.

n = 5; % dimension of parameters to be estimated

p = 20; % number of available types of measurements

m = 30; % total number of measurements to be carried out

randn(’state’, 0);

V=randn(n,p); % columns are vi, the possible measurement vectors

Solve the relaxed A-optimal experiment design problem,

minimize (1/m) tr
(

∑p
i=1 λiviv

T
i

)−1

subject to 1Tλ = 1, λ � 0,

with variable λ ∈ Rp. Find the optimal point λ⋆ and the associated optimal value of the relaxed
problem. This optimal value is a lower bound on the optimal value of the discrete A-optimal
experiment design problem,

minimize tr
(

∑p
i=1miviv

T
i

)−1

subject to m1 + · · ·+mp = m, mi ∈ {0, . . . ,m}, i = 1, . . . , p,

with variables m1, . . . ,mp. To get a suboptimal point for this discrete problem, round the entries
in mλ⋆ to obtain integers m̂i. If needed, adjust these by hand or some other method to ensure that
they sum to m, and compute the objective value obtained. This is, of course, an upper bound on
the optimal value of the discrete problem. Give the gap between this upper bound and the lower
bound obtained from the relaxed problem. Note that the two objective values can be interpreted
as mean-square estimation error E ‖x̂− x‖22.
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6.8 Optimal detector design. We adopt here the notation of §7.3 of the book. Explain how to design a
(possibly randomized) detector that minimizes the worst-case probability of our estimate being off
by more than one,

Pwc = max
θ

prob(|θ̂ − θ| ≥ 2).

(The probability above is under the distribution associated with θ.)

Carry out your method for the problem instance with data in off_by_one_det_data.m. Give the
optimal detection probability matrix D. Compare the optimal worst-case probability P ⋆

wc with the
worst-case probability Pml

wc obtained using a maximum-likelihood detector.

6.9 Experiment design with condition number objective. Explain how to solve the experiment design
problem (§7.5) with the condition number cond(E) of E (the error covariance matrix) as the
objective to be minimized.
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7 Geometry

7.1 Efficiency of maximum volume inscribed ellipsoid. In this problem we prove the following geo-
metrical result. Suppose C is a polyhedron in Rn, symmetric about the origin, and described
as

C = {x | − 1 ≤ aTi x ≤ 1, i = 1, . . . , p}.
Let

E = {x | xTQ−1x ≤ 1},
with Q ∈ Sn

++ucc0, be the maximum volume ellipsoid with center at the origin, inscribed in C.
Then the ellipsoid √

nE = {x | xTQ−1x ≤ n}
(i.e., the ellipsoid E , scaled by a factor

√
n about the origin) contains C.

(a) Show that the condition E ⊆ C is equivalent to aTi Qai ≤ 1 for i = 1, . . . , p.

(b) The volume of E is proportional to (detQ)1/2, so we can find the maximum volume ellipsoid
E inside C by solving the convex problem

minimize log detQ−1

subject to aTi Qai ≤ 1, i = 1. . . . , p.
(20)

The variable is the matrix Q ∈ Sn and the domain of the objective function is Sn
++.

Derive the Lagrange dual of problem (20).

(c) Note that Slater’s condition for (20) holds (aTi Qai < 1 for Q = ǫI and ǫ > 0 small enough),
so we have strong duality, and the KKT conditions are necessary and sufficient for optimality.
What are the KKT conditions for (20)?

Suppose Q is optimal. Use the KKT conditions to show that

x ∈ C =⇒ xTQ−1x ≤ n.

In other words C ⊆ √
nE , which is the desired result.

7.2 Euclidean distance matrices. A matrix X ∈ Sn is a Euclidean distance matrix if its elements xij
can be expressed as

xij = ‖pi − pj‖22, i, j = 1, . . . , n,

for some vectors p1, . . . , pn (of arbitrary dimension). In this exercise we prove several classical
characterizations of Euclidean distance matrices, derived by I. Schoenberg in the 1930s.

(a) Show that X is a Euclidean distance matrix if and only if

X = diag(Y )1T + 1diag(Y )T − 2Y (21)

for some matrix Y ∈ Sn
+ (the symmetric positive semidefinite matrices of order n). Here,

diag(Y ) is the n-vector formed from the diagonal elements of Y , and 1 is the n-vector with
all its elements equal to one. The equality (21) is therefore equivalent to

xij = yii + yjj − 2yij, i, j = 1, . . . , n.

Hint. Y is the Gram matrix associated with the vectors p1, . . . , pn, i.e., the matrix with
elements yij = pTi pj.
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(b) Show that the set of Euclidean distance matrices is a convex cone.

(c) Show that X is a Euclidean distance matrix if and only if

diag(X) = 0, X22 −X211
T − 1XT

21 � 0. (22)

The subscripts refer to the partitioning

X =

[

x11 XT
21

X21 X22

]

with X21 ∈ Rn−1, and X22 ∈ Sn−1.

Hint. The definition of Euclidean distance matrix involves only the distances ‖pi − pj‖2, so
the origin can be chosen arbitrarily. For example, it can be assumed without loss of generality
that p1 = 0. With this assumption there is a unique Gram matrix Y for a given Euclidean
distance matrix X. Find Y from (21), and relate it to the lefthand side of the inequality (22).

(d) Show that X is a Euclidean distance matrix if and only if

diag(X) = 0, (I − 1

n
11T )X(I − 1

n
11T ) � 0. (23)

Hint. Use the same argument as in part (c), but take the mean of the vectors pk at the origin,
i.e., impose the condition that p1 + p2 + · · ·+ pn = 0.

(e) Suppose X is a Euclidean distance matrix. Show that the matrix W ∈ Sn with elements

wij = e−xij , i, j = 1, . . . , n,

is positive semidefinite.

Hint. Use the following identity from probability theory. Define z ∼ N (0, I) (the normal
distribution with zero mean and covariance I). Then

E eiz
Tx = e−

1
2
‖x‖22

for all x, where i =
√
−1 and E denotes expectation with respect to z. (This is the character-

istic function of a multivariate normal distribution.)

7.3 Minimum total covering ball volume. We consider a collection of n points with locations x1, . . . , xn ∈
Rk. We are also given a set of m groups or subsets of these points, G1, . . . , Gm ⊆ {1, . . . , n}. For
each group, let Vi be the volume of the smallest Euclidean ball that contains the points in group
Gi. (The volume of a Euclidean ball of radius r in Rk is akr

k, where ak is known constant that
is positive but otherwise irrelevant here.) We let V = V1 + · · · + Vm be the total volume of these
minimal covering balls.

The points xk+1, . . . , xn are fixed (i.e., they are problem data). The variables to be chosen are
x1, . . . , xk. Formulate the problem of choosing x1, . . . , xk, in order to minimize the total minimal
covering ball volume V , as a convex optimization problem. Be sure to explain any new variables
you introduce, and to justify the convexity of your objective and inequality constraint functions.
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7.4 Maximum-margin multiclass classification. In an m-category pattern classification problem, we are
given m sets Ci ⊆ Rn. Set Ci contains Ni examples of feature vectors in class i. The learning
problem is to find a decision function f : Rn → {1, 2, . . . ,m} that maps each training example to
its class, and also generalizes reliably to feature vectors that are not included in the training sets
Ci.

(a) A common type of decision function for two-way classification is

f(x) =

{

1 if aTx+ b > 0
2 if aTx+ b < 0.

In the simplest form, finding f is equivalent to solving a feasibility problem: find a and b such
that

aTx+ b > 0 if x ∈ C1

aTx+ b < 0 if x ∈ C2.

Since these strict inequalities are homogeneous in a and b, they are feasible if and only if the
nonstrict inequalities

aTx+ b ≥ 1 if x ∈ C1

aTx+ b ≤ −1 if x ∈ C2

are feasible. This is a feasibility problem with N1 +N2 linear inequalities in n+1 variables a,
b.

As an extension that improves the robustness (i.e., generalization capability) of the classifier,
we can impose the condition that the decision function f classifies all points in a neighborhood
of C1 and C2 correctly, and we can maximize the size of the neighborhood. This problem can
be expressed as

maximize t
subject to aTx+ b > 0 if dist(x,C1) ≤ t,

aTx+ b < 0 if dist(x,C2) ≤ t,

where dist(x,C) = miny∈C ‖x− y‖2.
This is illustrated in the figure. The centers of the shaded disks form the set C1. The centers
of the other disks form the set C2. The set of points at a distance less than t from Ci is the
union of disks with radius t and center in Ci. The hyperplane in the figure separates the two
expanded sets. We are interested in expanding the circles as much as possible, until the two
expanded sets are no longer separable by a hyperplane.

aTx+ b > 0
aTx+ b < 0
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Since the constraints are homogeneous in a, b, we can again replace them with nonstrict
inequalities

maximize t
subject to aTx+ b ≥ 1 if dist(x,C1) ≤ t,

aTx+ b ≤ −1 if dist(x,C2) ≤ t.
(24)

The variables are a, b, and t.

(b) Next we consider an extension to more than two classes. If m > 2 we can use a decision
function

f(x) = argmax
i=1,...,m

(aTi x+ bi),

parameterized by m vectors ai ∈ Rn and m scalars bi. To find f , we can solve a feasibility
problem: find ai, bi, such that

aTi x+ bi > max
j 6=i

(aTj x+ bj) if x ∈ Ci, i = 1, . . . ,m,

or, equivalently,

aTi x+ bi ≥ 1 + max
j 6=i

(aTj x+ bj) if x ∈ Ci, i = 1, . . . ,m.

Similarly as in part (a), we consider a robust version of this problem:

maximize t
subject to aTi x+ bi ≥ 1 + maxj 6=i (a

T
j x+ bj) if dist(x,Ci) ≤ t,

i = 1, . . . ,m.

(25)

The variables in the problem are ai ∈ Rn, bi ∈ R, i = 1, . . . ,m, and t.

Formulate the optimization problems (24) and (25) as SOCPs (if possible), or as quasiconvex
optimization problems involving SOCP feasibility problems (otherwise).

7.5 Three-way linear classification. We are given data

x(1), . . . , x(N), y(1), . . . , y(M), z(1), . . . , z(P ),

three nonempty sets of vectors in Rn. We wish to find three affine functions on Rn,

fi(z) = aTi z − bi, i = 1, 2, 3,

that satisfy the following properties:

f1(x
(j)) > max{f2(x(j)), f3(x(j))}, j = 1, . . . , N,

f2(y
(j)) > max{f1(y(j)), f3(y(j))}, j = 1, . . . ,M,

f3(z
(j)) > max{f1(z(j)), f2(z(j))}, j = 1, . . . , P.

In words: f1 is the largest of the three functions on the x data points, f2 is the largest of the three
functions on the y data points, f3 is the largest of the three functions on the z data points. We
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can give a simple geometric interpretation: The functions f1, f2, and f3 partition Rn into three
regions,

R1 = {z | f1(z) > max{f2(z), f3(z)}},
R2 = {z | f2(z) > max{f1(z), f3(z)}},
R3 = {z | f3(z) > max{f1(z), f2(z)}},

defined by where each function is the largest of the three. Our goal is to find functions with
x(j) ∈ R1, y

(j) ∈ R2, and z
(j) ∈ R3.

Pose this as a convex optimization problem. You may not use strict inequalities in your formulation.

Solve the specific instance of the 3-way separation problem given in sep3way_data.m, with the
columns of the matrices X, Y and Z giving the x(j), j = 1, . . . , N , y(j), j = 1, . . . ,M and z(j), j =
1, . . . , P . To save you the trouble of plotting data points and separation boundaries, we have
included the plotting code in sep3way_data.m. (Note that a1, a2, a3, b1 and b2 contain arbitrary
numbers; you should compute the correct values using CVX.)

7.6 Feature selection and sparse linear separation. Suppose x(1), . . . , x(N) and y(1), . . . , y(M) are two
given nonempty collections or classes of vectors in Rn that can be (strictly) separated by a hyper-
plane, i.e., there exists a ∈ Rn and b ∈ R such that

aTx(i) − b ≥ 1, i = 1, . . . , N, aT y(i) − b ≤ −1, i = 1, . . . ,M.

This means the two classes are (weakly) separated by the slab

S = {z | |aT z − b| ≤ 1},

which has thickness 2/‖a‖2. You can think of the components of x(i) and y(i) as features; a and b
define an affine function that combines the features and allows us to distinguish the two classes.

To find the thickest slab that separates the two classes, we can solve the QP

minimize ‖a‖2
subject to aTx(i) − b ≥ 1, i = 1, . . . , N

aT y(i) − b ≤ −1, i = 1, . . . ,M,

with variables a ∈ Rn and b ∈ R. (This is equivalent to the problem given in (8.23), p424, §8.6.1;
see also exercise 8.23.)

In this problem we seek (a, b) that separate the two classes with a thick slab, and also has a sparse,
i.e., there are many j with aj = 0. Note that if aj = 0, the affine function aT z− b does not depend
on zj, i.e., the jth feature is not used to carry out classification. So a sparse a corresponds to a
classification function that is parsimonious; it depends on just a few features. So our goal is to find
an affine classification function that gives a thick separating slab, and also uses as few features as
possible to carry out the classification.

This is in general a hard combinatorial (bi-criterion) optimization problem, so we use the standard
heuristic of solving

minimize ‖a‖2 + λ‖a‖1
subject to aTx(i) − b ≥ 1, i = 1, . . . , N

aT y(i) − b ≤ −1, i = 1, . . . ,M,

52



where λ ≥ 0 is a weight vector that controls the trade-off between separating slab thickness and
(indirectly, through the ℓ1 norm) sparsity of a.

Get the data in sp_ln_sp_data.m, which gives x(i) and y(i) as the columns of matrices X and Y,
respectively. Find the thickness of the maximum thickness separating slab. Solve the problem above
for 100 or so values of λ over an appropriate range (we recommend log spacing). For each value,
record the separation slab thickness 2/‖a‖2 and card(a), the cardinality of a (i.e., the number
of nonzero entries). In computing the cardinality, you can count an entry aj of a as zero if it
satisfies |aj | ≤ 10−4. Plot these data with slab thickness on the vertical axis and cardinality on the
horizontal axis.

Use this data to choose a set of 10 features out of the 50 in the data. Give the indices of the features
you choose. You may have several choices of sets of features here; you can just choose one. Then
find the maximum thickness separating slab that uses only the chosen features. (This is standard
practice: once you’ve chosen the features you’re going to use, you optimize again, using only those
features, and without the ℓ1 regularization.

7.7 Thickest slab separating two sets. We are given two sets in Rn: a polyhedron

C1 = {x | Cx � d},

defined by a matrix C ∈ Rm×n and a vector d ∈ Rm, and an ellipsoid

C2 = {Pu+ q | ‖u‖2 ≤ 1},

defined by a matrix P ∈ Rn×n and a vector q ∈ Rn. We assume that the sets are nonempty and
that they do not intersect. We are interested in the optimization problem

maximize infx∈C1 a
Tx− supx∈C2

aTx
subject to ‖a‖2 = 1.

with variable a ∈ Rn.

Explain how you would solve this problem. You can answer the question by reducing the problem
to a standard problem class (LP, QP, SOCP, SDP, . . . ), or by describing an algorithm to solve it.

Remark. The geometrical interpretation is as follows. If we choose

b =
1

2
( inf
x∈C1

aTx+ sup
x∈C2

aTx),

then the hyperplane H = {x | aTx = b} is the maximum margin separating hyperplane separating
C1 and C2. Alternatively, a gives us the thickest slab that separates the two sets.

7.8 Bounding object position from multiple camera views. A small object is located at unknown position
x ∈ R3, and viewed by a set of m cameras. Our goal is to find a box in R3,

B = {z ∈ R3 | l � z � u},

for which we can guarantee x ∈ B. We want the smallest possible such bounding box. (Although
it doesn’t matter, we can use volume to judge ‘smallest’ among boxes.)
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Now we describe the cameras. The object at location x ∈ R3 creates an image on the image plane
of camera i at location

vi =
1

cTi x+ di
(Aix+ bi) ∈ R2.

The matrices Ai ∈ R2×3, vectors bi ∈ R2 and ci ∈ R3, and real numbers di ∈ R are known, and
depend on the camera positions and orientations. We assume that cTi x+ di > 0. The 3× 4 matrix

Pi =

[

Ai bi
cTi di

]

is called the camera matrix (for camera i). It is often (but not always) the case the that the first 3
columns of Pi (i.e., Ai stacked above cTi ) form an orthogonal matrix, in which case the camera is
called orthographic.

We do not have direct access to the image point vi; we only know the (square) pixel that it lies in.
In other words, the camera gives us a measurement v̂i (the center of the pixel that the image point
lies in); we are guaranteed that

‖vi − v̂i‖∞ ≤ ρi/2,

where ρi is the pixel width (and height) of camera i. (We know nothing else about vi; it could be
any point in this pixel.)

Given the data Ai, bi, ci, di, v̂i, ρi, we are to find the smallest box B (i.e., find the vectors l and
u) that is guaranteed to contain x. In other words, find the smallest box in R3 that contains all
points consistent with the observations from the camera.

(a) Explain how to solve this using convex or quasiconvex optimization. You must explain any
transformations you use, any new variables you introduce, etc. If the convexity or quasicon-
vexity of any function in your formulation isn’t obvious, be sure justify it.

(b) Solve the specific problem instance given in the file camera_data.m. Be sure that your final
numerical answer (i.e., l and u) stands out.

7.9 Triangulation from multiple camera views. A projective camera can be described by a linear-
fractional function f : R3 → R2,

f(x) =
1

cTx+ d
(Ax+ b), dom f = {x | cTx+ d > 0},

with

rank(

[

A
cT

]

) = 3.

The domain of f consists of the points in front of the camera.

Before stating the problem, we give some background and interpretation, most of which will not
be needed for the actual problem.
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principal axis

x

x′

camera center

image planeprincipal plane

The 3× 4-matrix

P =

[

A b
cT d

]

is called the camera matrix and has rank 3. Since f is invariant with respect to a scaling of P , we
can normalize the parameters and assume, for example, that ‖c‖2 = 1. The numerator cTx+ d is
then the distance of x to the plane {z | cT z + d = 0}. This plane is called the principal plane. The
point

xc = −
[

A
cT

]−1 [

b
d

]

lies in the principal plane and is called the camera center. The ray {xc + θc | θ ≥ 0}, which is
perpendicular to the principal plane, is the principal axis. We will define the image plane as the
plane parallel to the principal plane, at a unit distance from it along the principal axis.

The point x′ in the figure is the intersection of the image plane and the line through the camera
center and x, and is given by

x′ = xc +
1

cT (x− xc)
(x− xc).

Using the definition of xc we can write f(x) as

f(x) =
1

cT (x− xc)
A(x− xc) = A(x′ − xc) = Ax′ + b.

This shows that the mapping f(x) can be interpreted as a projection of x on the image plane to
get x′, followed by an affine transformation of x′. We can interpret f(x) as the point x′ expressed
in some two-dimensional coordinate system attached to the image plane.

In this exercise we consider the problem of determining the position of a point x ∈ R3 from its
image in N cameras. Each of the cameras is characterized by a known linear-fractional mapping
fk and camera matrix Pk:

fk(x) =
1

cTk x+ dk
(Akx+ bk), Pk =

[

Ak bk
cTk dk

]

, k = 1, . . . , N.
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The image of the point x in camera k is denoted y(k) ∈ R2. Due to camera imperfections and
calibration errors, we do not expect the equations fk(x) = y(k), k = 1, . . . , N , to be exactly
solvable. To estimate the point x we therefore minimize the maximum error in the N equations by
solving

minimize g(x) = max
k=1,...,N

‖fk(x)− y(k)‖2. (26)

(a) Show that (26) is a quasiconvex optimization problem. The variable in the problem is x ∈ R3.
The functions fk (i.e., the parameters Ak, bk, ck, dk) and the vectors y(k) are given.

(b) Solve the following instance of (26) using CVX (and bisection): N = 4,

P1 =







1 0 0 0
0 1 0 0
0 0 1 0






, P2 =







1 0 0 0
0 0 1 0
0 −1 0 10






,

P3 =







1 1 1 −10
−1 1 1 0
−1 −1 1 10






, P4 =







0 1 1 0
0 −1 1 0

−1 0 0 10






,

y(1) =

[

0.98
0.93

]

, y(2) =

[

1.01
1.01

]

, y(3) =

[

0.95
1.05

]

, y(4) =

[

2.04
0.00

]

.

You can terminate the bisection when a point is found with accuracy g(x)− p⋆ ≤ 10−4, where
p⋆ is the optimal value of (26).

7.10 Ellipsoidal peeling. In this exercise you will implement an outlier identification and removal tech-
nique called ellipsoidal peeling. We are given a set of points x1, . . . , xN ∈ Rn; our goal is to find
a small (measured by volume) ellipsoid E , for which xi ∈ E for i 6∈ O, where O ⊂ {1, . . . , N} is
the set of ‘outliers’. Of course, there is a trade-off between cardO (the candinality of the set of
outliers) and vol E . Of course, once we choose O, we can find E as the minimum volume ellipsoid
that contains xi for i 6∈ O.

Ellipsoidal peeling a heuristic for finding reasonable choices for O. We start with O = ∅, and find
the minimum volume ellipsoid E containing all xi for i 6∈ O (which, at this first step, is all xi).
Some of the points xi will be on the surface of E ; we add these points to O, and repeat. Roughly
speaking, in each step we ‘peel off’ the points that lie on surface of the smallest volume enclosing
ellipsoid. We then plot vol E versus cardO, and hope that we see a clear knee of the curve.

There are many variations on this approach. For example, instead of dropping all points on the
surface of the current ellipsoid, we might drop only the one that corresponds to the largest Lagrange
multiplier for the constraint that requires xi ∈ E .
Apply ellipsoidal peeling to the data given in ellip_peel_data.m. Plot volE (on a log scale)
versus cardO. The data includes a list of the ‘true’ outliers. How did ellipsoidal peeling do?

Hint. In CVX, you should use det_rootn (which is handled exactly), rather than log_det (which
is handled using an inefficient iterative procedure).

7.11 Projection onto the probability simplex. In this problem you will work out a simple method for
finding the Euclidean projection y of x ∈ Rn onto the probability simplex P = {z | z � 0, 1T z = 1}.
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Hints. Consider the problem of minimizing (1/2)‖y − x‖22 subject to y � 0, 1T y = 1. Form the
partial Lagrangian

L(y, ν) = (1/2)‖y − x‖22 + ν(1T y − 1),

leaving the constraint y � 0 implicit. Show that y = (x− ν1)+ minimizes L(y, ν) over y � 0.

7.12 Minimum total covering ball volume. We consider a collection of n points with locations x1, . . . , xn ∈
Rk. We are also given a set of m groups or subsets of these points, G1, . . . , Gm ⊆ {1, . . . , n}. For
each group, let Vi be the volume of the smallest Euclidean ball than contains the points in group
Gi. (The volume of a Euclidean ball of radius r in Rk is akr

k, where ak is known constant that
is positive but otherwise irrelevant here.) We let V = V1 + · · · + Vm be the total volume of these
minimal covering balls.

The points xk+1, . . . , xn are fixed (i.e., they are problem data). The variables to be chosen are
x1, . . . , xk. Formulate the problem of choosing x1, . . . , xk, in order to minimize the total minimal
covering ball volume V , as a convex optimization problem. Be sure to explain any new variables
you introduce, and to justify the convexity of your objective and inequality constraint functions.

7.13 Conformal mapping via convex optimization. Suppose that Ω is a closed bounded region in C with
no holes (i.e., it is simply connected). The Riemann mapping theorem states that there exists a
conformal mapping ϕ from Ω onto D = {z ∈ C | |z| ≤ 1}, the unit disk in the complex plane.
(This means that ϕ is an analytic function, and maps Ω one-to-one onto D.)

One proof of the Riemann mapping theorem is based on an infinite dimensional optimization
problem. We choose a point a ∈ intΩ (the interior of Ω). Among all analytic functions that map
∂Ω (the boundary of Ω) into D, we choose one that maximizes the magnitude of the derivative at
a. Amazingly, it can be shown that this function is a conformal mapping of Ω onto D.

We can use this theorem to construct an approximate conformal mapping, by sampling the bound-
ary of Ω, and by restricting the optimization to a finite-dimensional subspace of analytic functions.
Let b1, . . . , bN be a set of points in ∂Ω (meant to be a sampling of the boundary). We will search
only over polynomials of degree up to n,

ϕ̂(z) = α1z
n + α2z

n−1 + · · ·+ αnz + αn+1,

where α1, . . . , αn+1 ∈ C. With these approximations, we obtain the problem

maximize |ϕ̂′(a)|
subject to |ϕ̂(bi)| ≤ 1, i = 1, . . . , N,

with variables α1, . . . , αn+1 ∈ C. The problem data are b1, . . . , bN ∈ ∂Ω and a ∈ intΩ.

(a) Explain how to solve the problem above via convex or quasiconvex optimization.

(b) Carry out your method on the problem instance given in conf_map_data.m. This file defines
the boundary points bi and plots them. It also contains code that will plot ϕ̂(bi), the boundary
of the mapped region, once you provide the values of αj ; these points should be very close to
the boundary of the unit disk. (Please turn in this plot, and give us the values of αj that you
find.) The function polyval may be helpful.

Remarks.
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• We’ve been a little informal in our mathematics here, but it won’t matter.

• You do not need to know any complex analysis to solve this problem; we’ve told you everything
you need to know.

• A basic result from complex analysis tells us that ϕ̂ is one-to-one if and only if the image of
the boundary does not ‘loop over’ itself. (We mention this just for fun; we’re not asking you
to verify that the ϕ̂ you find is one-to-one.)

7.14 Fitting a vector field to given directions. This problem concerns a vector field on Rn, i.e., a function
F : Rn → Rn. We are given the direction of the vector field at points x(1), . . . , x(N) ∈ Rn,

q(i) =
1

‖F (x(i))‖2
F (x(i)), i = 1, . . . , N.

(These directions might be obtained, for example, from samples of trajectories of the differential
equation ż = F (z).) The goal is to fit these samples with a vector field of the form

F̂ = α1F1 + · · · + αmFm,

where F1, . . . , Fm : Rn → Rn are given (basis) functions, and α ∈ Rm is a set of coefficients that
we will choose.

We will measure the fit using the maximum angle error,

J = max
i=1,...,N

∣

∣

∣

6 (q(i), F̂ (x(i)))
∣

∣

∣ ,

where 6 (z, w) = cos−1((zTw)/‖z‖2‖w‖2) denotes the angle between nonzero vectors z and w. We
are only interested in the case when J is smaller than π/2.

(a) Explain how to choose α so as to minimize J using convex optimization. Your method can
involve solving multiple convex problems. Be sure to explain how you handle the constraints
F̂ (x(i)) 6= 0.

(b) Use your method to solve the problem instance with data given in vfield_fit_data.m, with
an affine vector field fit, i.e., F̂ (z) = Az + b. (The matrix A and vector b are the parameters
α above.) Give your answer to the nearest degree, as in ‘20◦ < J⋆ ≤ 21◦’.

This file also contains code that plots the vector field directions, and also (but commented
out) the directions of the vector field fit, F̂ (x(i))/‖F̂ (x(i))‖2. Create this plot, with your fitted
vector field.

7.15 Robust minimum volume covering ellipsoid. Suppose z is a point in Rn and E is an ellipsoid in Rn

with center c. The Mahalanobis distance of the point to the ellipsoid center is defined as

M(z, E) = inf{t ≥ 0 | z ∈ c+ t(E − c)},

which is the factor by which we need to scale the ellipsoid about its center so that z is on its
boundary. We have z ∈ E if and only if M(z, E) ≤ 1. We can use (M(z, E) − 1)+ as a measure of
the Mahalanobis distance of the point z to the ellipsoid E .
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Now we can describe the problem. We are given m points x1, . . . , xm ∈ Rn. The goal is to find the
optimal trade-off between the volume of the ellipsoid E and the total Mahalanobis distance of the
points to the ellipsoid, i.e.,

m
∑

i=1

(M(z, E) − 1)+ .

Note that this can be considered a robust version of finding the smallest volume ellipsoid that
covers a set of points, since here we allow one or more points to be outside the ellipsoid.

(a) Explain how to solve this problem. You must say clearly what your variables are, what problem
you solve, and why the problem is convex.

(b) Carry out your method on the data given in rob_min_vol_ellips_data.m. Plot the optimal
trade-off curve of ellipsoid volume versus total Mahalanobis distance. For some selected points
on the trade-off curve, plot the ellipsoid and the points (which are in R2). We are only
interested in the region of the curve where the ellipsoid volume is within a factor of ten (say)
of the minimum volume ellipsoid that covers all the points.

Important. Depending on how you formulate the problem, you might encounter problems that
are unbounded below, or where CVX encounters numerical difficulty. Just avoid these by
appropriate choice of parameter.

Very important. If you use Matlab version 7.0 (which is filled with bugs) you might find that
functions involving determinants don’t work in CVX. If you use this version of Matlab, then
you must download the file blkdiag.m on the course website and put it in your Matlab path
before the default version (which has a bug).
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8 Unconstrained and equality constrained minimization

8.1 Suggestions for exercises 9.30 in Convex Optimization. We recommend the following to generate
a problem instance:

n = 100;

m = 200;

randn(’state’,1);

A=randn(m,n);

Of course, you should try out your code with different dimensions, and different data as well.

In all cases, be sure that your line search first finds a step length for which the tentative point is
in dom f ; if you attempt to evaluate f outside its domain, you’ll get complex numbers, and you’ll
never recover.

To find expressions for ∇f(x) and ∇2f(x), use the chain rule (see Appendix A.4); if you attempt
to compute ∂2f(x)/∂xi∂xj , you will be sorry.

To compute the Newton step, you can use vnt=-H\g.

8.2 Suggestions for exercise 9.31 in Convex Optimization. For 9.31a, you should try out N = 1,
N = 15, and N = 30. You might as well compute and store the Cholesky factorization of the
Hessian, and then back solve to get the search directions, even though you won’t really see any
speedup in Matlab for such a small problem. After you evaluate the Hessian, you can find the
Cholesky factorization as L=chol(H,’lower’). You can then compute a search step as -L’\(L\g),
where g is the gradient at the current point. Matlab will do the right thing, i.e., it will first solve
L\g using forward substitution, and then it will solve -L’\(L\g) using backward substitution. Each
substitution is order n2.

To fairly compare the convergence of the three methods (i.e., N = 1, N = 15, N = 30), the
horizontal axis should show the approximate total number of flops required, and not the number
of iterations. You can compute the approximate number of flops using n3/3 for each factorization,
and 2n2 for each solve (where each ‘solve’ involves a forward substitution step and a backward
substitution step).

8.3 Efficient numerical method for a regularized least-squares problem. We consider a regularized least
squares problem with smoothing,

minimize
k
∑

i=1

(aTi x− bi)
2 + δ

n−1
∑

i=1

(xi − xi+1)
2 + η

n
∑

i=1

x2i ,

where x ∈ Rn is the variable, and δ, η > 0 are parameters.

(a) Express the optimality conditions for this problem as a set of linear equations involving x.
(These are called the normal equations.)

(b) Now assume that k ≪ n. Describe an efficient method to solve the normal equations found
in (1). Give an approximate flop count for a general method that does not exploit structure,
and also for your efficient method.
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(c) A numerical instance. In this part you will try out your efficient method. We’ll choose k = 100
and n = 2000, and δ = η = 1. First, randomly generate A and b with these dimensions. Form
the normal equations as in (1), and solve them using a generic method. Next, write (short)
code implementing your efficient method, and run it on your problem instance. Verify that the
solutions found by the two methods are nearly the same, and also that your efficient method
is much faster than the generic one.

Note: You’ll need to know some things about Matlab to be sure you get the speedup from the
efficient method. Your method should involve solving linear equations with tridiagonal coefficient
matrix. In this case, both the factorization and the back substitution can be carried out very
efficiently. The Matlab documentation says that banded matrices are recognized and exploited,
when solving equations, but we found this wasn’t always the case. To be sure Matlab knows your
matrix is tridiagonal, you can declare the matrix as sparse, using spdiags, which can be used to
create a tridiagonal matrix. You could also create the tridiagonal matrix conventionally, and then
convert the resulting matrix to a sparse one using sparse.

One other thing you need to know. Suppose you need to solve a group of linear equations with the
same coefficient matrix, i.e., you need to compute F−1a1, ..., F

−1am, where F is invertible and ai
are column vectors. By concatenating columns, this can be expressed as a single matrix

[

F−1a1 · · · F−1am
]

= F−1 [a1 · · · am] .

To compute this matrix using Matlab, you should collect the righthand sides into one matrix (as
above) and use Matlab’s backslash operator: F\A. This will do the right thing: factor the matrix
F once, and carry out multiple back substitutions for the righthand sides.

8.4 Newton method for approximate total variation de-noising. Total variation de-noising is based on
the bi-criterion problem with the two objectives

‖x− xcor‖2, φtv(x) =
n−1
∑

i=1

|xi+1 − xi|.

Here xcor ∈ Rn is the (given) corrupted signal, x ∈ Rn is the de-noised signal to be computed,
and φtv is the total variation function. This bi-criterion problem can be formulated as an SOCP,
or, by squaring the first objective, as a QP. In this problem we consider a method used to approx-
imately formulate the total variation de-noising problem as an unconstrained problem with twice
differentiable objective, for which Newton’s method can be used.

We first observe that the Pareto optimal points for the bi-criterion total variation de-noising problem
can found as the minimizers of the function

‖x− xcor‖22 + µφtv(x),

where µ ≥ 0 is parameter. (Note that the Euclidean norm term has been squared here, and so is
twice differentiable.) In approximate total variation de-noising, we substitute a twice differentiable
approximation of the total variation function,

φatv(x) =
n−1
∑

i=1

(

√

ǫ2 + (xi+1 − xi)2 − ǫ

)

,
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for the total variation function φtv. Here ǫ > 0 is parameter that controls the level of approximation.
In approximate total variation de-noising, we use Newton’s method to minimize

ψ(x) = ‖x− xcor‖22 + µφatv(x).

(The parameters µ > 0 and ǫ > 0 are given.)

(a) Find expressions for the gradient and Hessian of ψ.

(b) Explain how you would exploit the structure of the Hessian to compute the Newton direction
for ψ efficiently. (Your explanation can be brief.) Compare the approximate flop count for
your method with the flop count for a generic method that does not exploit any structure in
the Hessian of ψ.

(c) Implement Newton’s method for approximate total variation de-noising. Get the corrupted
signal xcor from the file approx_tv_denoising_data.m, and compute the de-noised signal x⋆,
using parameters ǫ = 0.001, µ = 50 (which are also in the file). Use line search parameters
α = 0.01, β = 0.5, initial point x(0) = 0, and stopping criterion λ2/2 ≤ 10−8. Plot the
Newton decrement versus iteration, to verify asymptotic quadratic convergence. Plot the final
smoothed signal x⋆, along with the corrupted one xcor.

8.5 Derive the Newton equation for the unconstrained minimization problem

minimize (1/2)xT x+ log
∑m

i=1 exp(a
T
i x+ bi).

Give an efficient method for solving the Newton system, assuming the matrix A ∈ Rm×n (with
rows aTi ) is dense with m≪ n. Give an approximate flop count of your method.

8.6 We consider the equality constrained problem

minimize tr(CX)− log detX
subject to diag(X) = 1.

The variable is the matrix X ∈ Sn. The domain of the objective function is Sn
++. The matrix

C ∈ Sn is a problem parameter. This problem is similar to the analytic centering problem discussed
in lecture 11 (p.18–19) and pages 553-555 of the textbook. The differences are the extra linear term
tr(CX) in the objective, and the special form of the equality constraints. (Note that the equality
constraints can be written as tr(AiX) = 1 with Ai = eie

T
i , a matrix of zeros except for the i, i

element, which is equal to one.)

(a) Show that X is optimal if and only if

X ≻ 0, X−1 −C is diagonal, diag(X) = 1.

(b) The Newton step ∆X at a feasible X is defined as the solution of the Newton equations

X−1∆XX−1 + diag(w) = −C +X−1, diag(∆X) = 0,

with variables ∆X ∈ Sn, w ∈ Rn. (Note the two meanings of the diag function: diag(w) is
the diagonal matrix with the vector w on its diagonal; diag(∆X) is the vector of the diagonal
elements of ∆X.) Eliminating ∆X from the first equation gives an equation

diag(X diag(w)X) = 1− diag(XCX).
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This is a set of n linear equations in n variables, so it can be written as Hw = g. Give a
simple expression for the coefficients of the matrix H.

(c) Implement the feasible Newton method in Matlab. You can use X = I as starting point. The
code should terminate when λ(X)2/2 ≤ 10−6, where λ(X) is the Newton decrement.

You can use the Cholesky factorization to evaluate the cost function: if X = LLT where L is
triangular with positive diagonal then log detX = 2

∑

i logLii.

To ensure that the iterates remain feasible, the line search has to consist of two phases. Starting
at t = 1, you first need to backtrack until X + t∆X ≻ 0. Then you continue the backtracking
until the condition of sufficient decrease

f0(X + t∆X) ≤ f0(X) + αt tr(∇f0(X)∆X)

is satisfied. To check that a matrix X + t∆X is positive definite, you can use the Cholesky
factorization with two output arguments ([R, p] = chol(A) returns p > 0 if A is not positive
definite).

Test your code on randomly generated problems of sizes n = 10, . . . , 100 (for example, using
n = 100; C = randn(n); C = C + C’).

8.7 Estimation of a vector from one-bit measurements. A system of m sensors is used to estimate an
unknown parameter x ∈ Rn. Each sensor makes a noisy measurement of some linear combination
of the unknown parameters, and quantizes the measured value to one bit: it returns +1 if the
measured value exceeds a certain threshold, and −1 otherwise. In other words, the output of
sensor i is given by

yi = sign(aTi x+ vi − bi) =

{

1 aTi x+ vi ≥ bi
−1 aTi x+ vi < bi,

where ai and bi are known, and vi is measurement error. We assume that the measurement errors
vi are independent random variables with a zero-mean unit-variance Gaussian distribution (i.e.,
with a probability density φ(v) = (1/

√
2π)e−v2/2). As a consequence, the sensor outputs yi are

random variables with possible values ±1. We will denote prob(yi = 1) as Pi(x) to emphasize that
it is a function of the unknown parameter x:

Pi(x) = prob(yi = 1) = prob(aTi x+ vi ≥ bi) =
1√
2π

∫ ∞

bi−aT
i
x
e−t2/2dt

1− Pi(x) = prob(yi = −1) = prob(aTi x+ vi < bi) =
1√
2π

∫ bi−aT
i
x

−∞
e−t2/2dt.

The problem is to estimate x, based on observed values ȳ1, ȳ2, . . . , ȳm of the m sensor outputs.

We will apply the maximum likelihood (ML) principle to determine an estimate x̂. In maximum
likelihood estimation, we calculate x̂ by maximizing the log-likelihood function

l(x) = log





∏

ȳi=1

Pi(x)
∏

ȳi=−1

(1− Pi(x))



 =
∑

ȳi=1

log Pi(x) +
∑

ȳi=−1

log(1− Pi(x)).

(a) Show that the maximum likelihood estimation problem

maximize l(x)
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is a convex optimization problem. The variable is x. The measured vector ȳ, and the param-
eters ai and bi are given.

(b) Solve the ML estimation problem with data defined in one_bit_meas_data.m, using Newton’s
method with backtracking line search. This file will define a matrix A (with rows aTi ), a vector
b, and a vector ȳ with elements ±1.

Remark. The Matlab functions erfc and erfcx are useful to evaluate the following functions:

1√
2π

∫ u

−∞
e−t2/2 dt =

1

2
erfc(− u√

2
),

1√
2π

∫ ∞

u
e−t2/2 dt =

1

2
erfc(

u√
2
)

1√
2π
eu

2/2
∫ u

−∞
e−t2/2 dt =

1

2
erfcx(− u√

2
),

1√
2π
eu

2/2
∫ ∞

u
e−t2/2 dt =

1

2
erfcx(

u√
2
).
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9 Interior point methods

9.1 Dual feasible point from analytic center. We consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

(27)

where the functions fi are convex and differentiable. For u > p⋆, define xac(u) as the analytic
center of the inequalities

f0(x) ≤ u, fi(x) ≤ 0, i = 1, . . . ,m,

i.e.,

xac(u) = argmin

(

− log(u− f0(x)) −
m
∑

i=1

log(−fi(x))
)

.

Show that λ ∈ Rm, defined by

λi =
u− f0(xac(u))

−fi(xac(u))
, i = 1, . . . ,m

is dual feasible for the problem above. Express the corresponding dual objective value in terms of
u, xac(u) and the problem parameters.

9.2 Efficient solution of Newton equations. Explain how you would solve the Newton equations in the
barrier method applied to the quadratic program

minimize (1/2)xT x+ cTx
subject to Ax � b

where A ∈ Rm×n is dense. Distinguish two cases, m ≫ n and n ≫ m, and give the most efficient
method in each case.

9.3 Efficient solution of Newton equations. Describe an efficient method for solving the Newton equa-
tion in the barrier method for the quadratic program

minimize (1/2)(x − a)TP−1(x− a)
subject to 0 � x � 1,

with variable x ∈ Rn. The matrix P ∈ Sn and the vector a ∈ Rn are given.

Assume that the matrix P is large, positive definite, and sparse, and that P−1 is dense. ‘Efficient’
means that the complexity of the method should be much less than O(n3).

9.4 Dual feasible point from incomplete centering. Consider the SDP

minimize 1Tx
subject to W + diag(x) � 0,

with variable x ∈ Rn, and its dual

maximize − trWZ
subject to Zii = 1, i = 1, . . . , n

Z � 0,
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with variable X ∈ Sn. (These problems arise in a relaxation of the two-way partitioning problem,
described on page 219; see also exercises 5.39 and 11.23.)

Standard results for the barrier method tell us that when x is on the central path, i.e., minimizes
the function

φ(x) = t1Tx+ log det(W + diag(x))−1

for some parameter t > 0, the matrix

Z =
1

t
(W + diag(x))−1

is dual feasible, with objective value − trWZ = 1Tx− n/t.

Now suppose that x is strictly feasible, but not necessarily on the central path. (For example, x
might be the result of using Newton’s method to minimize φ, but with early termination.) Then
the matrix Z defined above will not be dual feasible. In this problem we will show how to construct
a dual feasible Ẑ (which agrees with Z as given above when x is on the central path), from any
point x that is near the central path. Define X =W + diag(x), and let v = −∇2φ(x)−1∇φ(x) be
the Newton step for the function φ defined above. Define

Ẑ =
1

t

(

X−1 −X−1 diag(v)X−1
)

.

(a) Verify that when x is on the central path, we have Ẑ = Z.

(b) Show that Ẑii = 1, for i = 1, . . . , n.

(c) Let λ(x) = ∇φ(x)T∇2φ(x)−1∇φ(x) be the Newton decrement at x. Show that

λ(x) = tr(X−1 diag(v)X−1 diag(v)) = tr(X−1/2 diag(v)X−1/2)2.

(d) Show that λ(x) < 1 implies that Ẑ ≻ 0. Thus, when x is near the central path (meaning,
λ(x) < 1), Z is dual feasible.

9.5 Standard form LP barrier method. In the following three parts of this exercise, you will implement
a barrier method for solving the standard form LP

minimize cTx
subject to Ax = b, x � 0,

with variable x ∈ Rn, where A ∈ Rm×n, with m < n. Throughout these exercises we will assume
that A is full rank, and the sublevel sets {x | Ax = b, x � 0, cTx ≤ γ} are all bounded. (If this is
not the case, the centering problem is unbounded below.)

(a) Centering step. Implement Newton’s method for solving the centering problem

minimize cTx−∑n
i=1 log xi

subject to Ax = b,

with variable x, given a strictly feasible starting point x0.

Your code should accept A, b, c, and x0, and return x⋆, the primal optimal point, ν⋆, a dual
optimal point, and the number of Newton steps executed.
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Use the block elimination method to compute the Newton step. (You can also compute the
Newton step via the KKT system, and compare the result to the Newton step computed via
block elimination. The two steps should be close, but if any xi is very small, you might get a
warning about the condition number of the KKT matrix.)

Plot λ2/2 versus iteration k, for various problem data and initial points, to verify that your
implementation gives asymptotic quadratic convergence. As stopping criterion, you can use
λ2/2 ≤ 10−6. Experiment with varying the algorithm parameters α and β, observing the effect
on the total number of Newton steps required, for a fixed problem instance. Check that your
computed x⋆ and ν⋆ (nearly) satisfy the KKT conditions.

To generate some random problem data (i.e., A, b, c, x0), we recommend the following ap-
proach. First, generate A randomly. (You might want to check that it has full rank.) Then
generate a random positive vector x0, and take b = Ax0. (This ensures that x0 is strictly
feasible.) The parameter c can be chosen randomly. To be sure the sublevel sets are bounded,
you can add a row to A with all positive elements. If you want to be able to repeat a run with
the same problem data, be sure to set the state for the uniform and normal random number
generators.

Here are some hints that may be useful.

• We recommend computing λ2 using the formula λ2 = −∆xTnt∇f(x). You don’t really need
λ for anything; you can work with λ2 instead. (This is important for reasons described
below.)

• There can be small numerical errors in the Newton step ∆xnt that you compute. When
x is nearly optimal, the computed value of λ2, i.e., λ2 = −∆xTnt∇f(x), can actually be
(slightly) negative. If you take the squareroot to get λ, you’ll get a complex number,
and you’ll never recover. Moreover, your line search will never exit. However, this only
happens when x is nearly optimal. So if you exit on the condition λ2/2 ≤ 10−6, everything
will be fine, even when the computed value of λ2 is negative.

• For the line search, you must first multiply the step size t by β until x+ t∆xnt is feasible
(i.e., strictly positive). If you don’t, when you evaluate f you’ll be taking the logarithm
of negative numbers, and you’ll never recover.

(b) LP solver with strictly feasible starting point. Using the centering code from part (1), imple-
ment a barrier method to solve the standard form LP

minimize cTx
subject to Ax = b, x � 0,

with variable x ∈ Rn, given a strictly feasible starting point x0. Your LP solver should take
as argument A, b, c, and x0, and return x⋆.

You can terminate your barrier method when the duality gap, as measured by n/t, is smaller
than 10−3. (If you make the tolerance much smaller, you might run into some numerical trou-
ble.) Check your LP solver against the solution found by cvx, for several problem instances.

The comments in part (1) on how to generate random data hold here too.

Experiment with the parameter µ to see the effect on the number of Newton steps per centering
step, and the total number of Newton steps required to solve the problem.

Plot the progress of the algorithm, for a problem instance with n = 500 and m = 100, showing
duality gap (on a log scale) on the vertical axis, versus the cumulative total number of Newton
steps (on a linear scale) on the horizontal axis.
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Your algorithm should return a 2×k matrix history, (where k is the total number of centering
steps), whose first row contains the number of Newton steps required for each centering step,
and whose second row shows the duality gap at the end of each centering step. In order to
get a plot that looks like the ones in the book (e.g., figure 11.4, page 572), you should use the
following code:

[xx, yy] = stairs(cumsum(history(1,:)),history(2,:));

semilogy(xx,yy);

(c) LP solver. Using the code from part (2), implement a general standard form LP solver, that
takes arguments A, b, c, determines (strict) feasibility, and returns an optimal point if the
problem is (strictly) feasible.

You will need to implement a phase I method, that determines whether the problem is strictly
feasible, and if so, finds a strictly feasible point, which can then be fed to the code from
part (2). In fact, you can use the code from part (2) to implement the phase I method.

To find a strictly feasible initial point x0, we solve the phase I problem

minimize t
subject to Ax = b

x � (1− t)1, t ≥ 0,

with variables x and t. If we can find a feasible (x, t), with t < 1, then x is strictly feasible for
the original problem. The converse is also true, so the original LP is strictly feasible if and
only if t⋆ < 1, where t⋆ is the optimal value of the phase I problem.

We can initialize x and t for the phase I problem with any x0 satisfying Ax0 = b, and
t0 = 2 − mini x

0
i . (Here we can assume that minx0i ≤ 0; otherwise x0 is already a strictly

feasible point, and we are done.) You can use a change of variable z = x+(t−1)1 to transform
the phase I problem into the form in part (2).

Check your LP solver against cvx on several numerical examples, including both feasible and
infeasible instances.
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10 Mathematical background

10.1 Some famous inequalities. The Cauchy-Schwarz inequality states that

|aT b| ≤ ‖a‖2‖b‖2
for all vectors a, b ∈ Rn (see page 633 of the textbook).

(a) Prove the Cauchy-Schwarz inequality.

Hint. A simple proof is as follows. With a and b fixed, consider the function g(t) = ‖a+ tb‖22
of the scalar variable t. This function is nonnegative for all t. Find an expression for inft g(t)
(the minimum value of g), and show that the Cauchy-Schwarz inequality follows from the fact
that inft g(t) ≥ 0.

(b) The 1-norm of a vector x is defined as ‖x‖1 =
∑n

k=1 |xk|. Use the Cauchy-Schwarz inequality
to show that

‖x‖1 ≤
√
n‖x‖2

for all x.

(c) The harmonic mean of a positive vector x ∈ Rn
++ is defined as

(

1

n

n
∑

k=1

1

xk

)−1

.

Use the Cauchy-Schwarz inequality to show that the arithmetic mean (
∑

k xk)/n of a positive
n-vector is greater than or equal to its harmonic mean.

10.2 Schur complements. Consider a matrix X = XT ∈ Rn×n partitioned as

X =

[

A B
BT C

]

,

where A ∈ Rk×k. If detA 6= 0, the matrix S = C − BTA−1B is called the Schur complement of
A in X. Schur complements arise in many situations and appear in many important formulas and
theorems. For example, we have detX = detAdetS. (You don’t have to prove this.)

(a) The Schur complement arises when you minimize a quadratic form over some of the variables.
Let f(u, v) = (u, v)TX(u, v), where u ∈ Rk. Let g(v) be the minimum value of f over u, i.e.,
g(v) = infu f(u, v). Of course g(v) can be −∞.

Show that if A ≻ 0, we have g(v) = vTSv.

(b) The Schur complement arises in several characterizations of positive definiteness or semidefi-
niteness of a block matrix. As examples we have the following three theorems:

• X ≻ 0 if and only if A ≻ 0 and S ≻ 0.

• If A ≻ 0, then X � 0 if and only if S � 0.

• X � 0 if and only if A � 0, BT (I − AA†) = 0 and C − BTA†B � 0, where A† is the
pseudo-inverse of A. (C −BTA†B serves as a generalization of the Schur complement in
the case where A is positive semidefinite but singular.)

Prove one of these theorems. (You can choose which one.)
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11 Circuit design

11.1 Interconnect sizing. In this problem we will size the interconnecting wires of the simple circuit
shown below, with one voltage source driving three different capacitive loads Cload1, Cload2, and
Cload3.

Cload1

Cload2

Cload3

We divide the wires into 6 segments of fixed length li; our variables will be the widths wi of the
segments. (The height of the wires is related to the particular IC technology process, and is fixed.)
The total area used by the wires is, of course,

A =
∑

i

wili.

We’ll take the lengths to be one, for simplicity. The wire widths must be between a minimum and
maximum allowable value:

Wmin ≤ wi ≤Wmax.

For our specific problem, we’ll take Wmin = 0.1 and Wmax = 10.

Each of the wire segments will be modeled by a simple simple RC circuit, with the resistance
inversely proportional to the width of the wire and the capacitance proportional to the width. (A
far better model uses an extra constant term in the capacitance, but this complicates the equations.)
The capacitance and resistance of the ith segment is thus

Ci = k0wi, Ri = ρ/wi,

where k0 and ρ are positive constants, which we take to be one for simplicity. We also have
Cload1 = 1.5, Cload2 = 1, and Cload3 = 5.

Using the RC model for the wire segments yields the circuit shown below.
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R1

R2 R3

R4

R5

R6

C1

C2 C3 + Cload1

C4

C5 + Cload2

C6 + Cload3

We will use the Elmore delay to model the delay from the source to each of the loads. The Elmore
delay to loads 1, 2, and 3 are given by

T1 = (C3 +Cload1)(R1 +R2 +R3) +C2(R1 +R2) +

+(C1 + C4 + C5 + C6 + Cload2 + Cload3)R1

T2 = (C5 +Cload2)(R1 +R4 +R5) +C4(R1 +R4) +

+(C6 + Cload3)(R1 +R4) + (C1 +C2 + C3 +Cload1)R1

T3 = (C6 +Cload3)(R1 +R4 +R6) +C4(R1 +R4) +

+(C1 + C2 + C3 + Cload1)R1 + (C5 + Cload2)(R1 +R4).

Our main interest is in the maximum of these delays,

T = max{T1, T2, T3}.

(a) Explain how to find the optimal trade-off curve between area A and delay T .

(b) Optimal area-delay sizing. For the specific problem parameters given, plot the area-delay
trade-off curve, together with the individual Elmore delays. Comment on the results you
obtain.

(c) The simple method. Plot the area-delay trade-off obtained when you assign all wire widths
to be the same width (which varies between Wmin and Wmax). Compare this curve to the
optimal one, obtained in part (b). How much better does the optimal method do than the
simple method? Note: for a large circuit, say with 1000 wires to size, the difference is far

larger.

For this problem you can use the CVX in GP mode. We’ve also made available the function
elm_del_example.m, which evaluates the three delays, given the widths of the wires.

11.2 Optimal sizing of power and ground trees. We consider a system or VLSI device with many sub-
systems or subcircuits, each of which needs one or more power supply voltages. In this problem we
consider the case where the power supply network has a tree topology with the power supply (or
external pin connection) at the root. Each node of the tree is connected to some subcircuit that
draws power.
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We model the power supply as a constant voltage source with value V . The m subcircuits are
modeled as current sources that draw currents i1(t), . . . , im(t) from the node (to ground) (see the
figure below).

V

R1

R2 R3

R4

R5

R6

i1(t)

i4(t) i6(t)

i5(t)

i3(t)i2(t)

The subcircuit current draws have two components:

ik(t) = idck + iack (t)

where idck is the DC current draw (which is a positive constant), and iack (t) is the AC draw (which
has zero average value). We characterize the AC current draw by its RMS value, defined as

RMS(iack ) =

(

lim
T→∞

1

T

∫ T

0
iack (t)2 dt

)1/2

.

For each subcircuit we are given maximum values for the DC and RMS AC currents draws, i.e.,
constants Idck and Iack such that

0 ≤ idck ≤ Idck , RMS(iack ) ≤ Iack . (28)

The n wires that form the distribution network are modeled as resistors Rk (which, presumably, have
small value). (Since the circuit has a tree topology, we can use the following labeling convention:
node k and the current source ik(t) are immediately following resistor Rk.) The resistance of the
wires is given by

Ri = αli/wi,

where α is a constant and li are the lengths of the wires, which are known and fixed. The variables
in the problem are the width of the wires, w1, . . . , wn. Obviously by making the wires very wide,
the resistances become very low, and we have a nearly ideal power network. The purpose of this
problem is to optimally select wire widths, to minimize area while meeting certain specfications.
Note that in this problem we ignore dynamics, i.e., we do not model the capacitance or inductance
of the wires.

As a result of the current draws and the nonzero resistance of the wires, the voltage at node k
(which supplies subcircuit k) has a DC value less than the supply voltage, and also an AC voltage
(which is called power supply ripple or noise). By superposition these two effects can be analyzed
separately.
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• The DC voltage drop V − vdck at node k is equal to the sum of the voltage drops across wires
on the (unique) path from node k to the root. It can be expressed as

V − vdck =
m
∑

j=1

idcj
∑

i∈N (j,k)

Ri, (29)

where N (j, k) consists of the indices of the branches upstream from nodes j and k, i.e.,
i ∈ N (j, k) if and only if Ri is in the path from node j to the root and in the path from node
k to the root.

• The power supply noise at a node can be found as follows. The AC voltage at node k is equal
to

vack (t) = −
m
∑

j=1

iacj (t)
∑

i∈N (j,k)

Ri.

We assume the AC current draws are independent, so the RMS value of vack (t) is given by the
squareroot of the sum of the squares of the RMS value of the ripple due to each other node,
i.e.,

RMS(vack ) =







m
∑

j=1



RMS(iacj )
∑

i∈N (j,k)

Ri





2






1/2

. (30)

The problem is to choose wire widths wi that minimize the total wire area
∑n

i=k wklk subject to
the following specifications:

• maximum allowable DC voltage drop at each node:

V − vdck ≤ V dc
max, k = 1, . . . ,m, (31)

where V − vdck is given by (29), and V dc
max is a given constant.

• maximum allowable power supply noise at each node:

RMS(vack ) ≤ V ac
max, k = 1, . . . ,m, (32)

where RMS(vack ) is given by (30), and V ac
max is a given constant.

• upper and lower bounds on wire widths:

wmin ≤ wi ≤ wmax, i = 1, . . . , n, (33)

where wmin and wmax are given constants.

• maximum allowable DC current density in a wire:





∑

j∈M(k)

idcj





/

wk ≤ ρmax, k = 1, . . . , n, (34)

where M(k) is the set of all indices of nodes downstream from resistor k, i.e., j ∈ M(k) if
and only if Rk is in the path from node j to the root, and ρmax is a given constant.
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• maximum allowable total DC power dissipation in supply network:

n
∑

k=1

Rk





∑

j∈M(k)

idcj





2

≤ Pmax, (35)

where Pmax is a given constant.

These specifications must be satisfied for all possible ik(t) that satisfy (28).

Formulate this as a convex optimization problem in the standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

Ax = b.

You may introduce new variables, or use a change of variables, but you must say very clearly

• what the optimization variable x is, and how it corresponds to the problem variables w (i.e.,
is x equal to w, does it include auxiliary variables, . . . ?)

• what the objective f0 and the constraint functions fi are, and how they relate to the objectives
and specifications of the problem description

• why the objective and constraint functions are convex

• what A and b are (if applicable).

11.3 Optimal amplifier gains. We consider a system of n amplifiers connected (for simplicity) in a chain,
as shown below. The variables that we will optimize over are the gains a1, . . . , an > 0 of the
amplifiers. The first specification is that the overall gain of the system, i.e., the product a1 · · · an,
is equal to Atot, which is given.

a1 a2 an

We are concerned about two effects: noise generated by the amplifiers, and amplifier overload.
These effects are modeled as follows.

We first describe how the noise depends on the amplifier gains. Let Ni denote the noise level (RMS,
or root-mean-square) at the output of the ith amplifier. These are given recursively as

N0 = 0, Ni = ai
(

N2
i−1 + α2

i

)1/2
, i = 1, . . . , n

where αi > 0 (which is given) is the (‘input-referred’) RMS noise level of the ith amplifier. The
output noise level Nout of the system is given by Nout = Nn, i.e., the noise level of the last amplifier.
Evidently Nout depends on the gains a1, . . . , an.
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Now we describe the amplifier overload limits. Si will denote the signal level at the output of the
ith amplifier. These signal levels are related by

S0 = Sin, Si = aiSi−1, i = 1, . . . , n,

where Sin > 0 is the input signal level. Each amplifier has a maximum allowable output level
Mi > 0 (which is given). (If this level is exceeded the amplifier will distort the signal.) Thus we
have the constraints Si ≤Mi, for i = 1, . . . , n. (We can ignore the noise in the overload condition,
since the signal levels are much larger than the noise levels.)

The maximum output signal level Smax is defined as the maximum value of Sn, over all input signal
levels Sin that respect the the overload constraints Si ≤ Mi. Of course Smax ≤ Mn, but it can be
smaller, depending on the gains a1, . . . , an.

The dynamic range D of the system is defined as D = Smax/Nout. Evidently it is a (rather
complicated) function of the amplifier gains a1, . . . , an.

The goal is to choose the gains ai to maximize the dynamic range D, subject to the constraint
∏

i ai = Atot, and upper bounds on the amplifier gains, ai ≤ Amax
i (which are given).

Explain how to solve this problem as a convex (or quasiconvex) optimization problem. If you intro-
duce new variables, or transform the variables, explain. Clearly give the objective and inequality
constraint functions, explaining why they are convex if it is not obvious. If your problem involves
equality constraints, give them explicitly.

Carry out your method on the specific instance with n = 4, and data

Atot = 10000,

α = (10−5, 10−2, 10−2, 10−2),

M = (0.1, 5, 10, 10),

Amax = (40, 40, 40, 20).

Give the optimal gains, and the optimal dynamic range.
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12 Signal processing and communications

12.1 FIR low-pass filter design. Consider the (symmetric, linear phase) finite impulse response (FIR)
filter described by its frequency response

H(ω) = a0 +
N
∑

k=1

ak cos kω,

where ω ∈ [0, π] is the frequency. The design variables in our problems are the real coefficients
a = (a0, . . . , aN ) ∈ RN+1, where N is called the order or length of the FIR filter. In this problem
we will explore the design of a low-pass filter, with specifications:

• For 0 ≤ ω ≤ π/3, 0.89 ≤ H(ω) ≤ 1.12, i.e., the filter has about ±1dB ripple in the ‘passband’
[0, π/3].

• For ωc ≤ ω ≤ π, |H(ω)| ≤ α. In other words, the filter achieves an attenuation given by α in
the ‘stopband’ [ωc, π]. Here ωc is called the filter ‘cutoff frequency’.

(It is called a low-pass filter since low frequencies are allowed to pass, but frequencies above the
cutoff frequency are attentuated.) These specifications are depicted graphically in the figure below.

ω

H
(ω

)

0 π/3 ωc π−α
0

α

0.89

1.00

1.12

For parts (a)–(c), explain how to formulate the given problem as a convex or quasiconvex optimiza-
tion problem.

(a) Maximum stopband attenuation. We fix ωc and N , and wish to maximize the stopband atten-
uation, i.e., minimize α.

(b) Minimum transition band. We fix N and α, and want to minimize ωc, i.e., we set the stopband
attenuation and filter length, and wish to minimize the ‘transition’ band (between π/3 and
ωc).

(c) Shortest length filter. We fix ωc and α, and wish to find the smallest N that can meet the
specifications, i.e., we seek the shortest length FIR filter that can meet the specifications.
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(d) Plot the optimal tradeoff curve of attenuation (α) versus cutoff frequency (ωc) for N = 7.

For this subproblem, you may sample the constraints in frequency, which means the following.
Choose K ≫ N (perhaps K ≈ 10N), and set ωk = kπ/K, k = 0, . . . ,K. Then replace the
specifications with

• For k with 0 ≤ ωk ≤ π/3, 0.89 ≤ H(ωk) ≤ 1.12.

• For k with ωc ≤ ωk ≤ π, |H(ωk)| ≤ α.

12.2 SINR maximization. Solve the following instance of problem 4.20: We have n = 5 transmitters,
grouped into two groups: {1, 2} and {3, 4, 5}. The maximum power for each transmitter is 4, the
total power limit for the first group is 6, and the total power limit for the second group is 9. The
noise σ is equal to 0.5 and the limit on total received power is 6 for each receiver. Finally, the path
gain matrix is given by

G =















1.0 0.1 0.2 0.1 0.0
0.1 1.0 0.1 0.1 0.0
0.2 0.1 2.0 0.2 0.2
0.1 0.1 0.2 1.0 0.1
0.0 0.0 0.2 0.1 1.0















.

Find the optimal transmitter powers p1, . . . , p5 that maximize the minimum SINR ratio over all
receivers. Also report the maximum SINR value.

12.3 Power control for sum rate maximization in interference channel. We consider the optimization
problem

maximize
n
∑

i=1

log

(

1 +
pi

∑

j 6=iAijpj + vi

)

subject to
n
∑

i=1

pi = 1

pi ≥ 0, i = 1, . . . , n

with variables p ∈ Rn. The problem data are the matrix A ∈ Rn×n and the vector v ∈ Rn.
We assume A and v are componentwise nonnegative (Aij ≥ 0 and vi ≥ 0), and that the diagonal
elements of A are equal to one. If the off-diagonal elements of A are zero (A = I), the problem
has a simple solution, given by the waterfilling method. We are interested in the case where the
off-diagonal elements are nonzero.

We can give the following interpretation of the problem, which is not needed below. The variables
in the problem are the transmission powers in a communications system. We limit the total power
to one (for simplicity; we could have used any other number). The ith term in the objective is
the Shannon capacity of the ith channel; the fraction in the argument of the log is the signal to
interference plus noise ratio.

We can express the problem as

maximize
n
∑

i=1

log

(
∑n

j=1Bijpj
∑n

j=1Bijpj − pi

)

subject to
n
∑

i=1

pi = 1

pi ≥ 0, i = 1, . . . , n,

77



where B ∈ Rn×n is defined as B = A + v1T , i.e., Bij = Aij + vi, i, j = 1, . . . , n. Suppose B is
nonsingular and

B−1 = I − C

with Cij ≥ 0. Express the problem above as a convex optimization problem. Hint. Use y = Bp as
variables.

12.4 Radio-relay station placement and power allocation. Radio relay stations are to be located at posi-
tions x1, . . . , xn ∈ R2, and transmit at power p1, . . . , pn ≥ 0. In this problem we will consider the
problem of simultaneously deciding on good locations and operating powers for the relay stations.

The received signal power Sij at relay station i from relay station j is proportional to the transmit
power and inversely proportional to the distance, i.e.,

Sij =
αpj

‖xi − xj‖2
,

where α > 0 is a known constant.

Relay station j must transmit a signal to relay station i at the rate (or bandwidth) Rij ≥ 0 bits
per second; Rij = 0 means that relay station j does not need to transmit any message (directly)
to relay station i. The matrix of bit rates Rij is given. Although it doesn’t affect the problem, R
would likely be sparse, i.e., each relay station needs to communicate with only a few others.

To guarantee accurate reception of the signal from relay station j to i, we must have

Sij ≥ βRij ,

where β > 0 is a known constant. (In other words, the minimum allowable received signal power
is proportional to the signal bit rate or bandwidth.)

The relay station positions xr+1, . . . , xn are fixed, i.e., problem parameters. The problem variables
are x1, . . . , xr and p1, . . . , pn. The goal is to choose the variables to minimize the total transmit
power, i.e., p1 + · · ·+ pn.

Explain how to solve this problem as a convex or quasiconvex optimization problem. If you intro-
duce new variables, or transform the variables, explain. Clearly give the objective and inequality
constraint functions, explaining why they are convex. If your problem involves equality constraints,
express them using an affine function.

12.5 Power allocation with coherent combining receivers. In this problem we consider a variation on
the power allocation problem described on pages 4-13 and 4-14 of the notes. In that problem we
have m transmitters, each of which transmits (broadcasts) to n receivers, so the total number of
receivers is mn. In this problem we have the converse: multiple transmitters send a signal to each
receiver.

More specifically we have m receivers labeled 1, . . . ,m, and mn transmitters labeled (j, k), j =
1, . . . ,m, k = 1, . . . , n. The transmitters (i, 1), . . . , (i, n) all transmit the same message to the
receiver i, for i = 1, . . . ,m.

Transmitter (j, k) operates at power pjk, which must satisfy 0 ≤ pjk ≤ Pmax, where Pmax is a given
maximum allowable transmitter power.
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The path gain from transmitter (j, k) to receiver i is Aijk > 0 (which are given and known). Thus
the power received at receiver i from transmitter (j, k) is given by Aijkpjk.

For i 6= j, the received power Aijkpjk represents an interference signal. The total interference-plus-
noise power at receiver i is given by

Ii =
∑

j 6=i, k=1,...,n

Aijkpjk + σ

where σ > 0 is the known, given (self) noise power of the receivers. Note that the powers of the
interference and noise signals add to give the total interference-plus-noise power.

The receivers use coherent detection and combining of the desired message signals, which means
the effective received signal power at receiver i is given by

Si =





∑

k=1,...,n

(Aiikpik)
1/2





2

.

(Thus, the amplitudes of the desired signals add to give the effective signal amplitude.)

The total signal to interference-plus-noise ratio (SINR) for receiver i is given by γi = Si/Ii.

The problem is to choose transmitter powers pjk that maximize the minimum SINR mini γi, subject
to the power limits.

Explain in detail how to solve this problem using convex or quasiconvex optimization. If you
transform the problem by using a different set of variables, explain completely. Identify the objective
function, and all constraint functions, indicating if they are convex or quasiconvex, etc.

12.6 Antenna array weight design. We consider an array of n omnidirectional antennas in a plane, at
positions (xk, yk), k = 1, . . . , n.

(xk, yk)

θ

A unit plane wave with frequency ω is incident from an angle θ. This incident wave induces in
the kth antenna element a (complex) signal exp(i(xk cos θ + yk sin θ − ωt)), where i =

√
−1. (For

simplicity we assume that the spatial units are normalized so that the wave number is one, i.e., the
wavelength is λ = 2π.) This signal is demodulated, i.e., multiplied by eiωt, to obtain the baseband
signal (complex number) exp(i(xk cos θ + yk sin θ)). The baseband signals of the n antennas are
combined linearly to form the output of the antenna array

G(θ) =
n
∑

k=1

wk e
i(xk cos θ+yk sin θ)

= (wre,k cos γk(θ)− wim,k sin γk(θ)) + i (wre,k sin γk(θ) + wim,k cos γk(θ)) ,
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if we define γk(θ) = xk cos θ + yk sin θ. The complex weights in the linear combination,

wk = wim,k + iwre,k, k = 1, . . . , n,

are called the antenna array coefficients or shading coefficients, and will be the design variables
in the problem. For a given set of weights, the combined output G(θ) is a function of the angle
of arrival θ of the plane wave. The design problem is to select weights wi that achieve a desired
directional pattern G(θ).

We now describe a basic weight design problem. We require unit gain in a target direction θtar,
i.e., G(θtar) = 1. We want |G(θ)| small for |θ− θtar| ≥ ∆, where 2∆ is our beamwidth. To do this,
we can minimize

max
|θ−θ|≥∆

|G(θ)|,

where the maximimum is over all θ ∈ [−π, π] with |θ−θtar| ≥ ∆. This number is called the sidelobe
level for the array; our goal is to minimize the sidelobe level. If we acheve a small sidelobe level,
then the array is relatively insensitive to signals arriving from directions more than ∆ away from
the target direction. This results in the optimization problem

minimize max|θ|≥∆ |G(θ)|
subject to G(0) = 1,

with w ∈ Cn as variables.

The objective function can be approximated by discretizing the angle of arrival with (say) N values
(say, uniformly spaced) θ1, . . . , θN over the interval [−π, π], and replacing the objective with

max{|G(θk)| | |θk − θtar| ≥ ∆}

(a) Formulate the antenna array weight design problem as an SOCP.

(b) Solve an instance using CVX, with n = 40, θtar = 15◦, ∆ = 15◦, N = 400, and antenna
positions generated using

>> rand(’state’,0);

>> n = 40;

>> x = 30 * rand(n,1);

>> y = 30 * rand(n,1);

Compute the optimal weights and make a plot of |G(θ)| (on a logarithmic scale) versus θ.
Hint. CVX can directly handle complex variables, and recognizes the modulus abs(x) of a
complex number as a convex function of its real and imaginary parts, so you do not need to
explicitly form the SOCP from part (a).

12.7 Power allocation problem with analytic solution. Consider a system of n transmitters and n re-
ceivers. The ith transmitter transmits with power xi, i = 1, . . . , n. The vector x will be the variable
in this problem. The path gain from each transmitter j to each receiver i will be denoted Aij and
is assumed to be known (obviously, Aij ≥ 0, so the matrix A is elementwise nonnegative, and
Aii > 0). The signal received by each receiver i consists of three parts: the desired signal, arriving
from transmitter i with power Aiixi, the interfering signal, arriving from the other receivers with
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power
∑

j 6=iAijxj, and noise βi (which are positive and known). We are interested in allocating
the powers xi in such a way that the signal to noise plus interference ratio at each of the receivers
exceeds a level α. (Thus α is the minimum acceptable SNIR for the receivers; a typical value
might be around α = 3, i.e., around 10dB). In other words, we want to find x � 0 such that for
i = 1, . . . , n

Aiixi ≥ α





∑

j 6=i

Aijxj + βi



 .

Equivalently, the vector x has to satisfy

x � 0, Bx � αβ (36)

where B ∈ Rn×n is defined as

Bii = Aii, Bij = −αAij , j 6= i.

(a) Show that (36) is feasible if and only if B is invertible and z = B−11 � 0 (1 is the vector with
all components 1). Show how to construct a feasible power allocation x from z.

(b) Show how to find the largest possible SNIR, i.e., how to maximize α subject to the existence
of a feasible power allocation.

To solve this problem you may need the following:

Hint. Let T ∈ Rn×n be a matrix with nonnegative elements, and s ∈ R. Then the following are
equivalent:

(a) s > ρ(T ), where ρ(T ) = maxi |λi(T )| is the spectral radius of T .

(b) sI − T is nonsingular and the matrix (sI − T )−1 has nonnegative elements.

(c) there exists an x � 0 with (sI − T )x ≻ 0.

(For such s, the matrix sI − T is called a nonsingular M-matrix.)

Remark. This problem gives an analytic solution to a very special form of transmitter power
allocation problem. Specifically, there are exactly as many transmitters as receivers, and no power
limits on the transmitters. One consequence is that the receiver noises βi play no role at all in the
solution — just crank up all the transmitters to overpower the noises!

12.8 Optimizing rates and time slot fractions. We consider a wireless system that uses time-domain
multiple access (TDMA) to support n communication flows. The flows have (nonnegative) rates
r1, . . . , rn, given in bits/sec. To support a rate ri on flow i requires transmitter power

p = ai(e
br − 1),

where b is a (known) positive constant, and ai are (known) positive constants related to the noise
power and gain of receiver i.

TDMA works like this. Time is divided up into periods of some fixed duration T (seconds). Each
of these T -long periods is divided into n time-slots, with durations t1, . . . , tn, that must satisfy
t1 + · · · + tn = T , ti ≥ 0. In time-slot i, communications flow i is transmitted at an instantaneous
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rate r = Tri/ti, so that over each T -long period, Tri bits from flow i are transmitted. The power
required during time-slot i is ai(e

bTri/ti − 1), so the average transmitter power over each T -long
period is

P = (1/T )
n
∑

i=1

aiti(e
bTri/ti − 1).

When ti is zero, we take P = ∞ if ri > 0, and P = 0 if ri = 0. (The latter corresponds to the case
when there is zero flow, and also, zero time allocated to the flow.)

The problem is to find rates r ∈ Rn and time-slot durations t ∈ Rn that maximize the log utility
function

U(r) =
n
∑

i=1

log ri,

subject to P ≤ Pmax. (This utility function is often used to ensure ‘fairness’; each communication
flow gets at least some positive rate.) The problem data are ai, b, T and Pmax; the variables are ti
and ri.

(a) Formulate this problem as a convex optimization problem. Feel free to introduce new variables,
if needed, or to change variables. Be sure to justify convexity of the objective or constraint
functions in your formulation.

(b) Give the optimality conditions for your formulation. Of course we prefer simpler optimality
conditions to complex ones. Note: We do not expect you to solve the optimality conditions;
you can give them as a set of equations (and possibly inequalities).

Hint. With a log utility function, we cannot have ri = 0, and therefore we cannot have ti = 0;
therefore the constraints ri ≥ 0 and ti ≥ 0 cannot be active or tight. This will allow you to simplify
the optimality conditions.

12.9 Optimal jamming power allocation. A set of n jammers transmit with (nonnegative) powers
p1, . . . , pn, which are to be chosen subject to the constraints

p � 0, Fp � g.

The jammers produce interference power at m receivers, given by

di =
n
∑

j=1

Gijpj, i = 1, . . . ,m,

where Gij is the (nonnegative) channel gain from jammer j to receiver i.

Receiver i has capacity (in bits/s) given by

Ci = α log(1 + βi/(σ
2
i + di)), i = 1, . . . ,m,

where α, βi, and σi are positive constants. (Here βi is proportional to the signal power at receiver
i and σ2i is the receiver i self-noise, but you won’t need to know this to solve the problem.)

Explain how to choose p to minimize the sum channel capacity, C = C1 + · · ·+ Cm, using convex
optimization. (This corresponds to the most effective jamming, given the power constraints.) The
problem data are F , g, G, α, βi, σi.
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If you change variables, or transform your problem in any way that is not obvious (for example, you
form a relaxation), you must explain fully how your method works, and why it gives the solution.
If your method relies on any convex functions that we have not encountered before, you must show
that the functions are convex.

12.10 2D filter design. A symmetric convolution kernel with support {−(N − 1), . . . , N − 1}2 is charac-
terized by N2 coefficients

hkl, k, l = 1, . . . , N.

These coefficients will be our variables. The corresponding 2D frequency response (Fourier trans-
form) H : R2 → R is given by

H(ω1, ω2) =
∑

k,l=1,...,N

hkl cos((k − 1)ω1) cos((l − 1)ω2),

where ω1 and ω2 are the frequency variables. Evidently we only need to specify H over the region
[0, π]2, although it is often plotted over the region [−π, π]2. (It won’t matter in this problem, but
we should mention that the coefficients hkl above are not exactly the same as the impulse response
coefficients of the filter.)

We will design a 2D filter (i.e., find the coefficients hkl) to satisfy H(0, 0) = 1 and to minimize the
maximum response R in the rejection region Ωrej ⊂ [0, π]2,

R = sup
(ω1,ω2)∈Ωrej

|H(ω1, ω2)|.

(a) Explain why this 2D filter design problem is convex.

(b) Find the optimal filter for the specific case with N = 5 and

Ωrej = {(ω1, ω2) ∈ [0, π]2 | ω2
1 + ω2

2 ≥W 2},

with W = π/4.

You can approximate R by sampling on a grid of frequency values. Define

ω(p) = π(p− 1)/M, p = 1, . . . ,M.

(You can use M = 25.) We then replace the exact expression for R above with

R̂ = max{|H(ω(p), ω(q))| | p, q = 1, . . . ,M, (ω(p), ω(q)) ∈ Ωrej}.

Give the optimal value of R̂. Plot the optimal frequency response using plot_2D_filt(h),
available on the course web site, where h is the matrix containing the coefficients hkl.
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13 Finance

13.1 Transaction cost. Consider a market for some asset or commodity, which we assume is infinitely
divisible, i.e., can be bought or sold in quantities of shares that are real numbers (as opposed to
integers). The order book at some time consists of a set of offers to sell or buy the asset, at a given
price, up to a given quantity of shares. The N offers to sell the asset have positive prices per share
psell1 , . . . , psellN , sorted in increasing order, in positive share quantities qsell1 , . . . , qsellN . The M offers to

buy the asset have positive prices pbuy1 , . . . , pbuyN , sorted in decreasing order, and positive quantities

qbuy1 , . . . , qbuyM . The price psell1 is called the (current) ask price for the asset; pbuy1 is the bid price

for the asset. The ask price is larger than the bid price; the difference is called the spread. The
average of the ask and bid prices is called the mid-price, denoted pmid.

Now suppose that you want to purchase q > 0 shares of the asset, where q ≤ qsell1 + · · ·+ qsellN , i.e.,
your purchase quantity does not exceed the total amount of the asset currently offered for sale.
Your purchase proceeds as follows. Suppose that

qsell1 + · · · + qsellk < q ≤ qsellk+1.

Then you pay an amount

A = psell1 qsell1 + · · ·+ psellk qsellk + psellk+1(q − qsell1 − · · · − qsellk ).

Roughly speaking, you work you way through the offers in the order book, from the least (ask)
price, and working your way up the order book until you fill the order. We define the transaction

cost as
T (q) = A− pmidq.

This is the difference between what you pay, and what you would have paid had you been able to
purchase the shares at the mid-price. It is always positive.

We handle the case of selling the asset in a similar way. Here we take q < 0 to mean that we sell −q
shares of the asset. Here you sell shares at the bid price, up the quantity qbuy (or −q, whichever is
smaller); if needed, you sell shares at the price pbuy2 , and so on, until all −q shares are sold. Here

we assume that −q ≤ qbuy1 + · · ·+ qbuyM , i.e., you are not selling more shares than the total quantity
of offers to buy. Let A denote the amount you receive from the sale. Here we define the transaction
cost as

T (q) = pmid −A,

the difference between the amount you would have received had you sold the shares at the mid-price,
and the amount you received. It is always positive. We set T (0) = 0.

(a) Show that T is a convex piecewise linear function.

(b) Show that T (q) ≥ (s/2)|q|, where s is the spread. When would we have T (q) = (s/2)|q| for
all q (in the range between the total shares offered to purchase or sell)?

(c) Give an interpretation of the conjugate function T ∗(y) = supq(yq−T (q)). Hint. Suppose you

can purchase or sell the asset in another market, at the price pother.
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13.2 Risk-return trade-off in portfolio optimization. We consider the portfolio risk-return trade-off prob-
lem of page 185, with the following data:

p̄ =











0.12
0.10
0.07
0.03











, Σ =











0.0064 0.0008 −0.0011 0
0.0008 0.0025 0 0
−0.0011 0 0.0004 0

0 0 0 0











.

(a) Solve the quadratic program

minimize −p̄Tx+ µxTΣx
subject to 1Tx = 1, x � 0

for a large number of positive values of µ (for example, 100 values logarithmically spaced
between 1 and 107). Plot the optimal values of the expected return p̄Tx versus the standard
deviation (xTΣx)1/2. Also make an area plot of the optimal portfolios x versus the standard
deviation (as in figure 4.12).

(b) Assume the price change vector p is a Gaussian random variable, with mean p̄ and covariance
Σ. Formulate the problem

maximize p̄Tx
subject to prob(pTx ≤ 0) ≤ η

1Tx = 1, x � 0,

as a convex optimization problem, where η < 1/2 is a parameter. In this problem we maximize
the expected return subject to a constraint on the probability of a negative return. Solve the
problem for a large number of values of η between 10−4 and 10−1, and plot the optimal values
of p̄Tx versus η. Also make an area plot of the optimal portfolios x versus η.

Hint: TheMatlab functions erfc and erfcinv can be used to evaluate Φ(x) = (1/
√
2π)

∫ x
−∞ e−t2/2dt

and its inverse:

Φ(u) =
1

2
erfc(−u/

√
2).

Since you will have to solve this problem for a large number of values of η, you may find the
command cvx_quiet(true) helpful...

(c) Monte Carlo simulation. Let x be the optimal portfolio found in part (b), with η = 0.05.
This portfolio maximizes the expected return, subject to the probability of a loss being no
more than 5%. Generate 10000 samples of p, and plot a histogram of the returns. Find the
empirical mean of the return samples, and calculate the percentage of samples for which a loss
occurs.

Hint: You can generate samples of the price change vector using

p=pbar+sqrtm(Sigma)*randn(4,1);

13.3 Simple portfolio optimization. We consider a portfolio optimization problem as described on pages
155 and 185–186 of Convex Optimization, with data that can be found in the file simple_portfolio_data.m.

(a) Find minimum-risk portfolios with the same expected return as the uniform portfolio (x =
(1/n)1), with risk measured by portfolio return variance, and the following portfolio con-
straints (in addition to 1Tx = 1):
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• No (additional) constraints.

• Long-only: x � 0.

• Limit on total short position: 1T (x−) ≤ 0.5, where (x−)i = max{−xi, 0}.
Compare the optimal risk in these portfolios with each other and the uniform portfolio.

(b) Plot the optimal risk-return trade-off curves for the long-only portfolio, and for total short-
position limited to 0.5, in the same figure. Follow the style of figure 4.12 (top), with horizontal
axis showing standard deviation of portfolio return, and vertical axis showing mean return.

13.4 Bounding portfolio risk with incomplete covariance information. Consider the following instance of
the problem described in §4.6, on p171–173 of Convex Optimization. We suppose that Σii, which
are the squares of the price volatilities of the assets, are known. For the off-diagonal entries of Σ,
all we know is the sign (or, in some cases, nothing at all). For example, we might be given that
Σ12 ≥ 0, Σ23 ≤ 0, etc. This means that we do not know the correlation between p1 and p2, but we
do know that they are nonnegatively correlated (i.e., the prices of assets 1 and 2 tend to rise or
fall together).

Compute σwc, the worst-case variance of the portfolio return, for the specific case

x =











0.1
0.2

−0.05
0.1











, Σ =









0.2 + + ±
+ 0.1 − −
+ − 0.3 +
± − + 0.1









,

where a “+” entry means that the element is nonnegative, a “−” means the entry is nonpositive,
and “±” means we don’t know anything about the entry. (The negative value in x represents a
short position: you sold stocks that you didn’t have, but must produce at the end of the investment
period.) In addition to σwc, give the covariance matrix Σwc associated with the maximum risk.
Compare the worst-case risk with the risk obtained when Σ is diagonal.

13.5 Log-optimal investment strategy. In this problem you will solve a specific instance of the log-optimal
investment problem described in exercise 4.60, with n = 5 assets and m = 10 possible outcomes in
each period. The problem data are defined in log_opt_invest.m, with the rows of the matrix P

giving the asset return vectors pTj . The outcomes are equiprobable, i.e., we have πj = 1/m. Each
column of the matrix P gives the return of the associated asset in the different posible outcomes.
You can examine the columns to get an idea of the types of assets. For example, the last asset gives
a fixed and certain return of 1%; the first asset is a very risky one, with occasional large return,
and (more often) substantial loss.

Find the log-optimal investment strategy x⋆, and its associated long term growth rate R⋆
lt. Compare

this to the long term growth rate obtained with a uniform allocation strategy, i.e., x = (1/n)1, and
also with a pure investment in each asset.

For the optimal investment strategy, and also the uniform investment strategy, plot 10 sample
trajectories of the accumulated wealth, i.e., W (T ) = W (0)

∏T
t=1 λ(t), for T = 0, . . . , 200, with

initial wealth W (0) = 1.

To save you the trouble of figuring out how to simulate the wealth trajectories or plot them nicely,
we’ve included the simulation and plotting code in log_opt_invest.m; you just have to add the
code needed to find x⋆.
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Hint: The current version of CVX handles the logarithm via an iterative method, which can be
slow and unreliable. You’re better off using geo_mean(), which is directly handled by CVX, to
solve the problem.

13.6 Optimality conditions and dual for log-optimal investment problem.

(a) Show that the optimality conditions for the log-optimal investment problem described in
exercise 4.60 can be expressed as: 1Tx = 1, x � 0, and for each i,

xi > 0 ⇒
m
∑

j=1

πj
pij
pTj x

= 1, xi = 0 ⇒
m
∑

j=1

πj
pij
pTj x

≤ 1.

We can interpret this as follows. pij/p
T
j x is a random variable, which gives the ratio of the

investment gain with asset i only, to the investment gain with our mixed portfolio x. The
optimality condition is that, for each asset we invest in, the expected value of this ratio is one,
and for each asset we do not invest in, the expected value cannot exceed one. Very roughly
speaking, this means our portfolio does as well as any of the assets that we choose to invest
in, and cannot do worse than any assets that we do not invest in.

Hint. You can start from the simple criterion given in §4.2.3 or the KKT conditions.

(b) In this part we will derive the dual of the log-optimal investment problem. We start by writing
the problem as,

minimize −∑m
j=1 πj log yj

subject to y = P Tx, x � 0, 1Tx = 1.

Here, P has columns p1, . . . , pm, and we have the introduced new variables y1, . . . , ym, with
the implicit constraint y ≻ 0. We will associate dual variables ν, λ and ν0 with the constraints
y = P Tx, x � 0, and 1Tx = 1, respectively. Defining ν̃j = νj/ν0 for j = 1, . . . ,m, show that
the dual problem can be written as

maximize
∑m

j=1 πj log(ν̃j/πj)

subject to P ν̃ � 1,

with variable ν̃. The objective here is the (negative) Kullback-Leibler divergence between the
given distribution π and the dual variable ν̃.

13.7 Arbitrage and theorems of alternatives. Consider an event (for example, a sports game, political
elections, the evolution of the stockmarket over a certain period) withm possible outcomes. Suppose
that n wagers on the outcome are possible. If we bet an amount xj on wager j, and the outcome
of the event is i (i = 1, . . . ,m), then our return will be equal to rijxj. The return rijxj is the net
gain: we pay xj initially, and receive (1 + rij)xj if the outcome of the event is i. We allow the bets
xj to be positive, negative, or zero. The interpretation of a negative bet is as follows. If xj < 0,
then initially we receive an amount of money |xj |, with an obligation to pay (1+ rij)|xj | if outcome
i occurs. In that case, we lose rij |xj |, i.e., our net is gain rijxj (a negative number).

We call the matrix R ∈ Rm×n with elements rij the return matrix. A betting strategy is a vector
x ∈ Rn, with as components xj the amounts we bet on each wager. If we use a betting strategy
x, our total return in the event of outcome i is equal to

∑n
j=1 rijxj , i.e., the ith component of the

vector Rx.
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Country Odds

Holland 3.5

Italy 5.0

Spain 5.5

France 6.5

Germany 7.0

England 10.0

Belgium 14.0

Sweden 16.0

Country Odds

Czech Republic 17.0

Romania 18.0

Yugoslavia 20.0

Portugal 20.0

Norway 20.0

Denmark 33.0

Turkey 50.0

Slovenia 80.0

Table 1: Odds for the 2000 European soccer championships.

(a) The arbitrage theorem. Suppose you are given a return matrix R. Prove the following theorem:
there is a betting strategy x ∈ Rn for which

Rx ≻ 0

if and only if there exists no vector p ∈ Rm that satisfies

RT p = 0, p � 0, p 6= 0.

We can interpret this theorem as follows. If Rx ≻ 0, then the betting strategy x guarantees a
positive return for all possible outcomes, i.e., it is a sure-win betting scheme. In economics,
we say there is an arbitrage opportunity.

If we normalize the vector p in the second condition, so that 1T p = 1, we can interpret it as
a probability vector on the outcomes. The condition RT p = 0 means that

ERx = pTRx = 0

for all x, i.e., the expected return is zero for all betting strategies. In economics, p is called a
risk neutral probability.

We can therefore rephrase the arbitrage theorem as follows: There is no sure-win betting
strategy (or arbitrage opportunity) if and only if there is a probability vector on the outcomes
that makes all bets fair (i.e., the expected gain is zero).

(b) Betting. In a simple application, we have exactly as many wagers as there are outcomes
(n = m). Wager i is to bet that the outcome will be i. The returns are usually expressed as
odds. For example, suppose that a bookmaker accepts bets on the result of the 2000 European
soccer championships. If the odds against Belgium winning are 14 to one, and we bet $100 on
Belgium, then we win $1400 if they win the tournament, and we lose $100 otherwise.

In general, if we have m possible outcomes, and the odds against outcome i are λi to one,
then the return matrix R ∈ Rm×m is given by

rij = λi if j = i
rij = −1 otherwise.
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Show that there is no sure-win betting scheme (or arbitrage opportunity) if

m
∑

i=1

1

1 + λi
= 1.

In fact, you can verify that if this equality is not satisfied, then the betting strategy

xi =
1/(1 + λi)

1−∑m
i=1 1/(1 + λi)

always results in a profit.

The common situation in real life is

m
∑

i=1

1

1 + λi
> 1,

because the bookmakers take a cut on all bets.

13.8 Log-optimal investment. We consider an instance of the log-optimal investment problem described
in exercise 4.60 of Convex Optimization. In this exercise, however, we allow x, the allocation vector,
to have negative components. Investing a negative amount xiW (t) in an asset is called shorting

the asset. It means you borrow the asset, sell it for |xiW (t)|, and have an obligation to purchase it
back later and return it to the lender.

(a) Let R be the n×m-matrix with columns rj:

R =
[

r1 r2 · · · rm
]

.

We assume that the elements rij of R are all positive, which implies that the log-optimal
investment problem is feasible. Show the following property: if there exists a v ∈ Rn with

1T v = 0, RT v � 0, RT v 6= 0 (37)

then the log-optimal investment problem is unbounded (assuming that the probabilities pj are
all positive).

(b) Derive a Lagrange dual of the log-optimal investment problem (or an equivalent problem of
your choice). Use the Lagrange dual to show that the condition in part a is also necessary for
unboundedness. In other words, the log-optimal investment problem is bounded if and only
if there does not exist a v satisfying (37).

(c) Consider the following small example. We have four scenarios and three investment options.
The return vectors for the four scenarios are

r1 =







2
1.3
1






, r2 =







2
0.5
1






, r3 =







0.5
1.3
1






, r4 =







0.5
0.5
1






.

The probabilities of the three scenarios are

p1 = 1/3, p2 = 1/6, p3 = 1/3, p4 = 1/6.
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The interpretation is as follows. We can invest in two stocks. The first stock doubles in value
in each period with a probability 1/2, or decreases by 50% with a probability 1/2. The second
stock either increases by 30% with a probability 2/3, or decreases by 50% with a probability
1/3. The fluctuations in the two stocks are independent, so we have four scenarios: both stocks
go up (probability 2/6), stock 1 goes up and stock 2 goes down (probability 1/6), stock 1 goes
down and stock 2 goes up (probability 1/3), both stocks go down (probability 1/6). The
fractions of our capital we invest in stocks 1 and 2 are denoted by x1 and x2, respectively.
The rest of our capital, x3 = 1− x1 − x2 is not invested.

What is the expected growth rate of the log-optimal strategy x? Compare with the strategies
(x1, x2, x3) = (1, 0, 0), (x1, x2, x3) = (0, 1, 0) and (x1, x2, x3) = (1/2, 1/2, 0). (Obviously the
expected growth rate for (x1, x2, x3) = (0, 0, 1) is zero.)

Remark. The figure below shows a simulation that compares three investment strategies over
200 periods. The solid line shows the log-optimal investment strategy. The dashed lines show
the growth for strategies x = (1, 0, 0), (0, 1, 0), and (0, 0, 1).
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13.9 Maximizing house profit in a gamble and imputed probabilities. A set of n participants bet on
which one of m outcomes, labeled 1, . . . ,m, will occur. Participant i offers to purchase up to qi > 0
gambling contracts, at price pi > 0, that the true outcome will be in the set Si ⊂ {1, . . . ,m}. The
house then sells her xi contracts, with 0 ≤ xi ≤ qi. If the true outcome j is in Si, then participant
i receives $1 per contract, i.e., xi. Otherwise, she loses, and receives nothing. The house collects a
total of x1p1 + · · · + xnpn, and pays out an amount that depends on the outcome j,

∑

j∈Si

xi.

The difference is the house profit.
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(a) Optimal house strategy. How should the house decide on x so that its worst-case profit (over the
possible outcomes) is maximized? (The house determines x after examining all the participant
offers.)

(b) Imputed probabilities. Suppose x⋆ maximizes the worst-case house profit. Show that there
exists a probability distribution π on the possible outcomes (i.e., π ∈ Rm

+ , 1Tπ = 1) for which
x⋆ also maximizes the expected house profit. Explain how to find π.

Hint. Formulate the problem in part (a) as an LP; you can construct π from optimal dual
variables for this LP.

Remark. Given π, the ‘fair’ price for offer i is pfairi =
∑

j∈Si
πj. All offers with pi > pfairi will

be completely filled (i.e., xi = qi); all offers with pi < pfairi will be rejected (i.e., xi = 0).

Remark. This exercise shows how the probabilities of outcomes (e.g., elections) can be guessed
from the offers of a set of gamblers.

(c) Numerical example. Carry out your method on the simple example below with n = 5 partici-
pants, m = 5 possible outcomes, and participant offers

Participant i pi qi Si
1 0.50 10 {1,2}
2 0.60 5 {4}
3 0.60 5 {1,4,5}
4 0.60 20 {2,5}
5 0.20 10 {3}

Compare the optimal worst-case house profit with the worst-case house profit, if all offers were
accepted (i.e., xi = qi). Find the imputed probabilities.

13.10 Optimal investment to fund an expense stream. An organization (such as a municipality) knows
its operating expenses over the next T periods, denoted E1, . . . , ET . (Normally these are positive;
but we can have negative Et, which corresponds to income.) These expenses will be funded by a
combination of investment income, from a mixture of bonds purchased at t = 0, and a cash account.

The bonds generate investment income, denoted I1, . . . , IT . The cash balance is denotedB0, . . . , BT ,
where B0 ≥ 0 is the amount of the initial deposit into the cash account. We can have Bt < 0 for
t = 1, . . . , T , which represents borrowing.

After paying for the expenses using investment income and cash, in period t, we are left with
Bt−Et+ It in cash. If this amount is positive, it earns interest at the rate r+ > 0; if it is negative,
we must pay interest at rate r−, where r− ≥ r+. Thus the expenses, investment income, and cash
balances are linked as follows:

Bt+1 =

{

(1 + r+)(Bt − Et + It) Bt − Et + It ≥ 0
(1 + r−)(Bt − Et + It) Bt − Et + It < 0,

for t = 1, . . . , T − 1. We take B1 = (1 + r+)B0, and we require that BT − ET + IT = 0, which
means the final cash balance, plus income, exactly covers the final expense.

The initial investment will be a mixture of bonds, labeled 1, . . . , n. Bond i has a price Pi > 0,
a coupon payment Ci > 0, and a maturity Mi ∈ {1, . . . , T}. Bond i generates an income stream
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given by

a
(i)
t =











Ci t < Mi

Ci + 1 t =Mi

0 t > Mi,

for t = 1, . . . , T . If xi is the number of units of bond i purchased (at t = 0), the total investment
cash flow is

It = x1a
(1)
t + · · · + xna

(n)
t , t = 1, . . . , T.

We will require xi ≥ 0. (The xi can be fractional; they do not need to be integers.)

The total initial investment required to purchase the bonds, and fund the initial cash balance at
t = 0, is x1P1 + · · ·+ xnPn +B0.

(a) Explain how to choose x and B0 to minimize the total initial investment required to fund the
expense stream.

(b) Solve the problem instance given in opt_funding_data.m. Give optimal values of x and B0.
Give the optimal total initial investment, and compare it to the initial investment required if
no bonds were purchased (which would mean that all the expenses were funded from the cash
account). Plot the cash balance (versus period) with optimal bond investment, and with no
bond investment.

13.11 Planning production with uncertain demand. You must order (nonnegative) amounts rI, . . . , rm of
raw materials, which are needed to manufacture (nonnegative) quantities q1, . . . , qn of n different
products. To manufacture one unit of product j requires at least Aij units of raw material i, so
we must have r � Aq. (We will assume that Aij are nonnegative.) The per-unit cost of the raw
materials is given by c ∈ Rm

+ , so the total raw material cost is cT r.

The (nonnegative) demand for product j is denoted dj ; the number of units of product j sold is
sj = min{qj, dj}. (When qj > dj , qj − dj is the amount of product j produced, but not sold; when
dj > qj, dj − qj is the amount of unmet demand.) The revenue from selling the products is pT s,
where p ∈ Rn

+ is the vector of product prices. The profit is pT s − cT r. (Both d and q are real
vectors; their entries need not be integers.)

You are given A, c, and p. The product demand, however, is not known. Instead, a set of K
possible demand vectors, d(1), . . . , d(K), with associated probabilities π1, . . . , πK , is given. (These
satisfy 1Tπ = 1, π � 0.)

You will explore two different optimization problems that arise in choosing r and q (the variables).

I. Choose r and q ahead of time. You must choose r and q, knowing only the data listed
above. (In other words, you must order the raw materials, and commit to producing the chosen
quantities of products, before you know the product demand.) The objective is to maximize the
expected profit.

II. Choose r ahead of time, and q after d is known. You must choose r, knowing only the
data listed above. Some time after you have chosen r, the demand will become known to you.
This means that you will find out which of the K demand vectors is the true demand. Once you
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know this, you must choose the quantities to be manufactured. (In other words, you must order
the raw materials before the product demand is known; but you can choose the mix of products to
manufacture after you have learned the true product demand.) The objective is to maximize the
expected profit.

(a) Explain how to formulate each of these problems as a convex optimization problem. Clearly
state what the variables are in the problem, what the constraints are, and describe the roles
of any auxiliary variables or constraints you introduce.

(b) Carry out the methods from part (a) on the problem instance with numerical data given in
planning_data.m. This file will define A, D, K, c, m, n, p and pi. The K columns of D are the
possible demand vectors. For both of the problems described above, give the optimal value of
r, and the expected profit.

13.12 Gini coefficient of inequality. Let x1, . . . , xn be a set of nonnegative numbers with positive sum,
which typically represent the wealth or income of n individuals in some group. The Lorentz curve

is a plot of the fraction fi of total wealth held by the i poorest individuals,

fi = (1/1Tx)
i
∑

j=1

x(j), i = 0, . . . , n,

versus i/n, where x(j) denotes the jth smallest of the numbers {x1, . . . , xn}, and we take f0 = 0.
The Lorentz curve starts at (0, 0) and ends at (1, 1). Interpreted as a continuous curve (as, say,
n → ∞) the Lorentz curve is convex and increasing, and lies on or below the straight line joining
the endpoints. The curve coincides with this straight line, i.e., fi = (i/n), if and only if the wealth
is distributed equally, i.e., the xi are all equal.

The Gini coefficient is defined as twice the area between the straight line corresponding to uniform
wealth distribution and the Lorentz curve:

G(x) = (2/n)
n
∑

i=1

((i/n) − fi).

The Gini coefficient is used as a measure of wealth or income inequality: It ranges between 0 (for
equal distribution of wealth) and 1− 1/n (when one individual holds all wealth).

(a) Show that G is a quasiconvex function on x ∈ Rn
+ \ {0}.

(b) Gini coefficient and marriage. Suppose that individuals i and j get married (i 6= j) and
therefore pool wealth. This means that xi and xj are both replaced with (xi + xj)/2. What
can you say about the change in Gini coefficient caused by this marriage?

13.13 Internal rate of return for cash streams with a single initial investment. We use the notation of
example 3.34 in the textbook. Let x ∈ Rn+1 be a cash flow over n periods, with x indexed from 0
to n, where the index denotes period number. We assume that x0 < 0, xj ≥ 0 for j = 1, . . . , n, and
x0+ · · ·+xn > 0. This means that there is an initial positive investment; thereafter, only payments
are made, with the total of the payments exceeding the initial investment. (In the more general
setting of example 3.34, we allow additional investments to be made after the initial investment.)

93



(a) Show that IRR(x) is quasilinear in this case.

(b) Blending initial investment only streams. Use the result in part (a) to show the following.
Let x(i) ∈ Rn+1, i = 1, . . . , k, be a set of k cash flows over n periods, each of which satisfies
the conditions above. Let w ∈ Rk

+, with 1Tw = 1, and consider the blended cash flow given
by x = w1x

(1) + · · · + wkx
(k). (We can think of this as investing a fraction wi in cash flow

i.) Show that IRR(x) ≤ maxi IRR(x
(i)). Thus, blending a set of cash flows (with initial

investment only) will not improve the IRR over the best individual IRR of the cash flows.

13.14 Efficient solution of basic portfolio optimization problem. This problem concerns the simplest
possible portfolio optimization problem:

maximize µTw − (λ/2)wTΣw
subject to 1Tw = 1,

with variable w ∈ Rn (the normalized portfolio, with negative entries meaning short positions),
and data µ (mean return), Σ ∈ Sn

++ (return covariance), and λ > 0 (the risk aversion parameter).
The return covariance has the factor form Σ = FQF T + D, where F ∈ Rn×k (with rank K) is
the factor loading matrix, Q ∈ Sk

++ is the factor covariance matrix, and D is a diagonal matrix
with positive entries, called the idiosyncratic risk (since it describes the risk of each asset that is
independent of the factors). This form for Σ is referred to as a ‘k-factor risk model’. Some typical
dimensions are n = 2500 (assets) and k = 30 (factors).

(a) What is the flop count for computing the optimal portfolio, if the low-rank plus diagonal
structure of Σ is not exploited? You can assume that λ = 1 (which can be arranged by
absorbing it into Σ).

(b) Explain how to compute the optimal portfolio more efficiently, and give the flop count for your
method. You can assume that k ≪ n. You do not have to give the best method; any method
that has linear complexity in n is fine. You can assume that λ = 1.

Hints. You may want to introduce a new variable y = F Tw (which is called the vector of
factor exposures). You may want to work with the matrix

G =

[

1 F
0 −I

]

∈ R(n+k)×(1+k),

treating it as dense, ignoring the (little) exploitable structure in it.

(c) Carry out your method from part (b) on some randomly generated data with dimensions
n = 2500, k = 30. For comparison (and as a check on your method), compute the optimal
portfolio using the method of part (a) as well. Give the (approximate) CPU time for each
method, using tic and toc. Hints. After you generate D and Q randomly, you might want to
add a positive multiple of the identity to each, to avoid any issues related to poor conditioning.
Also, to be able to invert a block diagonal matrix efficiently, you’ll need to recast it as sparse.

(d) Risk return trade-off curve. Now suppose we want to compute the optimal portfolio for M
values of the risk aversion parameter λ. Explain how to do this efficiently, and give the
complexity in terms of M , n, and k. Compare to the complexity of using the method of
part (b) M times. Hint. Show that the optimal portfolio is an affine function of 1/λ.
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14 Mechanical engineering

14.1 Optimal design of a tensile structure. A tensile structure is modeled as a set of n masses in R2,
some of which are fixed, connected by a set of N springs. The masses are in equilibrium, with spring
forces, connection forces for the fixed masses, and gravity balanced. (This equilibrium occurs when
the position of the masses minimizes the total energy, defined below.)

We let (xi, yi) ∈ R2 denote the position of mass i, and mi > 0 its mass value. The first p masses
are fixed, which means that xi = xfixedi and yi = yfixedi , for i = 1, . . . , p. The gravitational potential
energy of mass i is gmiyi, where g ≈ 9.8 is the gravitational acceleration.

Suppose spring j connects masses r and s. Its elastic potential energy is

(1/2)kj
(

(xr − xs)
2 + (yr − ys)

2
)

,

where kj ≥ 0 is the stiffness of spring j.

To describe the topology, i.e., which springs connect which masses, we will use the incidence matrx
A ∈ Rn×N , defined as

Aij =











1 head of spring j connects to mass i
−1 tail of spring j connects to mass i
0 otherwise.

Here we arbitrarily choose a head and tail for each spring, but in fact the springs are completely
symmetric, and the choice can be reversed without any effect. (Hopefully you will discover why it
is convenient to use the incidence matrix A to specify the topology of the system.)

The total energy is the sum of the gravitational energies, over all the masses, plus the sum of the
elastic energies, over all springs. The equilibrium positions of the masses is the point that minimizes
the total energy, subject to the constraints that the first p positions are fixed. (In the equilibrium
positions, the total force on each mass is zero.) We let Emin denote the total energy of the system,
in its equilibrium position. (We assume the energy is bounded below; this occurs if and only if each
mass is connected, through some set of springs with positive stiffness, to a fixed mass.)

The total energy Emin is a measure of the stiffness of the structure, with larger Emin corresponding
to stiffer. (We can think of Emin = −∞ as an infinitely unstiff structure; in this case, at least one
mass is not even supported against gravity.)

(a) Suppose we know the fixed positions xfixed1 , . . . , xfixedp , yfixed1 , . . . , yfixedp , the mass valuesm1, . . . ,mn,
the spring topology A, and the constant g. You are to choose nonnegative k1, . . . , kN , subject
to a budget constraint 1T k = k1+· · ·+kN = ktot, where ktot is given. Your goal is to maximize
Emin.

Explain how to do this using convex optimization.

(b) Carry out your method for the problem data given in tens_struct_data.m. This file defines
all the needed data, and also plots the equilibrium configuration when the stiffness is evenly
distributed across the springs (i.e., k = (ktot/N)1).

Report the optimal value of Emin. Plot the optimized equilibrium configuration, and compare
it to the equilibrium configuration with evenly distributed stiffness. (The code for doing this
is in the file tens_struct_data.m, but commented out.)
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14.2 Equilibrium position of a system of springs. We consider a collection of n masses in R2, with
locations (x1, y1), . . . , (xn, yn), and masses m1, . . . ,mn. (In other words, the vector x ∈ Rn gives
the x-coordinates, and y ∈ Rn gives the y-coordinates, of the points.) The masses mi are, of course,
positive.

For i = 1, . . . , n− 1, mass i is connected to mass i+1 by a spring. The potential energy in the ith
spring is a function of the (Euclidean) distance di = ‖(xi, yi) − (xi+1, yi+1)‖2 between the ith and
(i+ 1)st masses, given by

Ei =

{

0 di < li
(ki/2)(di − li)

2 di ≥ li

where li ≥ 0 is the rest length, and ki > 0 is the stiffness, of the ith spring. The gravitational
potential energy of the ith mass is gmiyi, where g is a positive constant. The total potential energy
of the system is therefore

E =
n−1
∑

i=1

Ei + gmT y.

The locations of the first and last mass are fixed. The equilibrium location of the other masses is
the one that minimizes E.

(a) Show how to find the equilibrium positions of the masses 2, . . . , n−1 using convex optimization.
Be sure to justify convexity of any functions that arise in your formulation (if it is not obvious).
The problem data are mi, ki, li, g, x1, y1, xn, and yn.

(b) Carry out your method to find the equilibrium positions for a problem with n = 10, mi = 1,
ki = 10, li = 1, x1 = y1 = 0, xn = yn = 10, with g varying from g = 0 (no gravity) to g = 10
(say). Verify that the results look reasonable. Plot the equilibrium configuration for several
values of g.

14.3 Elastic truss design. In this problem we consider a truss structure with m bars connecting a set
of nodes. Various external forces are applied at each node, which cause a (small) displacement in
the node positions. f ∈ Rn will denote the vector of (components of) external forces, and d ∈ Rn

will denote the vector of corresponding node displacements. (By ‘corresponding’ we mean if fi is,
say, the z-coordinate of the external force applied at node k, then di is the z-coordinate of the
displacement of node k.) The vector f is called a loading or load.

The structure is linearly elastic, i.e., we have a linear relation f = Kd between the vector of
external forces f and the node displacements d. The matrix K = KT ≻ 0 is called the stiffness

matrix of the truss. Roughly speaking, the ‘larger’ K is (i.e., the stiffer the truss) the smaller the
node displacement will be for a given loading.

We assume that the geometry (unloaded bar lengths and node positions) of the truss is fixed; we
are to design the cross-sectional areas of the bars. These cross-sectional areas will be the design
variables xi, i = 1, . . . ,m. The stiffness matrix K is a linear function of x:

K(x) = x1K1 + · · ·+ xmKm,

where Ki = KT
i � 0 depend on the truss geometry. You can assume these matrices are given or

known. The total weight Wtot of the truss also depends on the bar cross-sectional areas:

Wtot(x) = w1x1 + · · ·+ wmxm,
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where wi > 0 are known, given constants (density of the material times the length of bar i). Roughly
speaking, the truss becomes stiffer, but also heavier, when we increase xi; there is a tradeoff between
stiffness and weight.

Our goal is to design the stiffest truss, subject to bounds on the bar cross-sectional areas and total
truss weight:

l ≤ xi ≤ u, i = 1, . . . ,m, Wtot(x) ≤W,

where l, u, and W are given. You may assume that K(x) ≻ 0 for all feasible vectors x. To obtain
a specific optimization problem, we must say how we will measure the stiffness, and what model of
the loads we will use.

(a) There are several ways to form a scalar measure of how stiff a truss is, for a given load f . In
this problem we will use the elastic stored energy

E(x, f) = 1

2
fTK(x)−1f

to measure the stiffness. Maximizing stiffness corresponds to minimizing E(x, f).
Show that E(x, f) is a convex function of x on {x | K(x) ≻ 0}.
Hint. Use Schur complements to prove that the epigraph is a convex set.

(b) We can consider several different scenarios that reflect our knowledge about the possible
loadings f that can occur. The simplest is that f is a single, fixed, known loading. In more
sophisticated formulations, the loading f might be a random vector with known distribution,
or known only to lie in some set F , etc.

Show that each of the following four problems is a convex optimization problem, with x as
variable.

• Design for a fixed known loading. The vector f is known and fixed. The design problem
is

minimize E(x, f)
subject to l ≤ xi ≤ u, i = 1, . . . ,m

Wtot(x) ≤W.

• Design for multiple loadings. The vector f can take any of N known values f (i), i =
1, . . . , N , and we are interested in the worst-case scenario. The design problem is

minimize maxi=1,...,N E(x, f (i))
subject to l ≤ xi ≤ u, i = 1, . . . ,m

Wtot(x) ≤W.

• Design for worst-case, unknown but bounded load. Here we assume the vector f can take
arbitrary values in a ball B = {f | ‖f‖ ≤ α}, for a given value of α. We are interested in
minimizing the worst-case stored energy, i.e.,

minimize sup‖f‖≤α E(x, f (i))
subject to l ≤ xi ≤ u, i = 1, . . . ,m

Wtot(x) ≤W.
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• Design for a random load with known statistics. We can also use a stochastic model of the
uncertainty in the load, and model the vector f as a random variable with known mean
and covariance:

E f = f (0), E(f − f (0))(f − f (0))T = Σ.

In this case we would be interested in minimizing the expected stored energy, i.e.,

minimize E E(x, f (i))
subject to l ≤ xi ≤ u, i = 1, . . . ,m

Wtot(x) ≤W.

Hint. If v is a random vector with zero mean and covariance Σ, thenE vTAv = EtrAvvT =
trAE vvT = trAΣ.

(c) Formulate the four problems in (b) as semidefinite programming problems.

14.4 A structural optimization problem. [BSS93] The figure shows a two-bar truss with height 2h and
width w. The two bars are cylindrical tubes with inner radius r and outer radius R. We are
interested in determining the values of r, R, w, and h that minimize the weight of the truss subject
to a number of constraints. The structure should be strong enough for two loading scenarios. In the
first scenario a vertical force F1 is applied to the node; in the second scenario the force is horizontal
with magnitude F2.

h

h

w

F1

F2 r
R

The weight of the truss is proportional to the total volume of the bars, which is given by

2π(R2 − r2)
√

w2 + h2

This is the cost function in the design problem.

The first constraint is that the truss should be strong enough to carry the load F1, i.e., the stress
caused by the external force F1 must not exceed a given maximum value. To formulate this
constraint, we first determine the forces in each bar when the structure is subjected to the vertical
load F1. From the force equilibrium and the geometry of the problem we can determine that the
magnitudes of the forces in two bars are equal and given by

√
w2 + h2

2h
F1.
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The maximum force in each bar is equal to the cross-sectional area times the maximum allowable
stress σ (which is a given constant). This gives us the first constraint:

√
w2 + h2

2h
F1 ≤ σπ(R2 − r2).

The second constraint is that the truss should be strong enough to carry the load F2. When F2 is
applied, the magnitudes of the forces in two bars are again equal and given by

√
w2 + h2

2w
F2,

which gives us the second constraint:

√
w2 + h2

2w
F2 ≤ σπ(R2 − r2).

We also impose limits wmin ≤ w ≤ wmax and hmin ≤ h ≤ hmax on the width and the height of the
structure, and limits 1.1r ≤ R ≤ Rmax on the outer radius.

In summary, we obtain the following problem:

minimize 2π(R2 − r2)
√
w2 + h2

subject to

√
w2 + h2

2h
F1 ≤ σπ(R2 − r2)

√
w2 + h2

2w
F2 ≤ σπ(R2 − r2)

wmin ≤ w ≤ wmax

hmin ≤ h ≤ hmax

1.1r ≤ R ≤ Rmax

R > 0, r > 0, w > 0, h > 0.

The variables are R, r, w, h.

Formulate this as a geometric programming problem.

14.5 Optimizing the inertia matrix of a 2D mass distribution. An object has density ρ(z) at the point
z = (x, y) ∈ R2, over some region R ⊂ R2. Its mass m ∈ R and center of gravity c ∈ R2 are given
by

m =

∫

R
ρ(z) dxdy, c =

1

m

∫

R
ρ(z)z dxdy,

and its inertia matrix M ∈ R2×2 is

M =

∫

R
ρ(z)(z − c)(z − c)T dxdy.

(You do not need to know the mechanics interpretation of M to solve this problem, but here it is,
for those interested. Suppose we rotate the mass distribution around a line passing through the
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center of gravity in the direction q ∈ R2 that lies in the plane where the mass distribution is, at
angular rate ω. Then the total kinetic energy is (ω2/2)qTMq.)

The goal is to choose the density ρ, subject to 0 ≤ ρ(z) ≤ ρmax for all z ∈ R, and a fixed total
mass m = mgiven, in order to maximize λmin(M).

To solve this problem numerically, we will discretize R into N pixels each of area a, with pixel
i having constant density ρi and location (say, of its center) zi ∈ R2. We will assume that the
integrands above don’t vary too much over the pixels, and from now on use instead the expressions

m = a
N
∑

i=1

ρi, c =
a

m

N
∑

i=1

ρizi, M = a
N
∑

i=1

ρi(zi − c)(zi − c)T .

The problem below refers to these discretized expressions.

(a) Explain how to solve the problem using convex (or quasiconvex) optimization.

(b) Carry out your method on the problem instance with data in inertia_dens_data.m. This
file includes code that plots a density. Give the optimal inertia matrix and its eigenvalues,
and plot the optimal density.
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15 Graphs and networks

15.1 A hypergraph with nodes 1, . . . , m is a set of nonempty subsets of {1, 2, . . . ,m}, called edges. An
ordinary graph is a special case in which the edges contain no more than two nodes.

We consider a hypergraph with m nodes and assume coordinate vectors xj ∈ Rp, j = 1, . . . ,m, are
associated with the nodes. Some nodes are fixed and their coordinate vectors xj are given. The
other nodes are free, and their coordinate vectors will be the optimization variables in the problem.
The objective is to place the free nodes in such a way that some measure of the physical size of the
nets is small.

As an example application, we can think of the nodes as modules in an integrated circuit, placed
at positions xj ∈ R2. Every edge is an interconnect network that carries a signal from one module
to one or more other modules.

To define a measure of the size of a net, we store the vectors xj as columns of a matrix X ∈ Rp×m.
For each edge S in the hypergraph, we use XS to denote the p × |S| submatrix of X with the
columns associated with the nodes of S. We define

fS(X) = inf
y
‖XS − y1T ‖. (38)

as the size of the edge S, where ‖ · ‖ is a matrix norm, and 1 is a vector of ones of length |S|.

(a) Show that the optimization problem

minimize
∑

edges S fS(X)

is convex in the free node coordinates xj .

(b) The size fS(X) of a net S obviously depends on the norm used in the definition (38). We
consider five norms.

• Frobenius norm:

‖Xs − y1T ‖F =





∑

j∈S

p
∑

i=1

(xij − yi)
2





1/2

.

• Maximum Euclidean column norm:

‖XS − y1T ‖2,1 = max
j∈S

( p
∑

i=1

(xij − yi)
2

)1/2

.

• Maximum column sum norm:

‖XS − y1T ‖1,1 = max
j∈S

p
∑

i=1

|xij − yi|.

• Sum of absolute values norm:

‖Xs − y1T ‖sav =
∑

j∈S

p
∑

i=1

|xij − yi|
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• Sum-row-max norm:

‖Xs − y1T ‖srm =
p
∑

i=1

max
j∈S

|xij − yi|

For which of these norms does fS have the following interpretations?

(i) fS(X) is the radius of the smallest Euclidean ball that contains the nodes of S.

(ii) fS(X) is (proportional to) the perimeter of the smallest rectangle that contains the nodes
of S:

fS(X) =
1

4

p
∑

i=1

(max
j∈S

xij −min
j∈S

xij).

(iii) fS(X) is the squareroot of the sum of the squares of the Euclidean distances to the mean
of the coordinates of the nodes in S:

fS(X) =





∑

j∈S

‖xj − x̄‖22





1/2

where x̄i =
1

|S|
∑

k∈S

xik, i = 1, . . . , p.

(iv) fS(X) is the sum of the ℓ1-distances to the (coordinate-wise) median of the coordinates
of the nodes in S:

fS(X) =
∑

j∈S

‖xj − x̂‖1 where x̂i = median({xik | k ∈ S}), i = 1, . . . , p.

15.2 Let W ∈ Sn be a symmetric matrix with nonnegative elements wij and zero diagonal. We can
interpret W as the representation of a weighted undirected graph with n nodes. If wij = wji > 0,
there is an edge between nodes i and j, with weight wij. If wij = wji = 0 then nodes i and j are
not connected. The Laplacian of the weighted graph is defined as

L(W ) = −W + diag(W1).

This is a symmetric matrix with elements

Lij(W ) =

{

∑n
k=1wik i = j

−wij i 6= j.

The Laplacian has the useful property that

yTL(W )y =
∑

i≤j

wij(yi − yj)
2

for all vectors y ∈ Rn.

(a) Show that the function f : Sn → R,

f(W ) = inf
1T x=0

nλmax (L(W ) + diag(x)) ,

is convex.
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(b) Give a simple argument why f(W ) is an upper bound on the optimal value of the combinatorial
optimization problem

maximize yTL(W )y
subject to yi ∈ {−1, 1}, i = 1, . . . , n.

This problem is known as the max-cut problem, for the following reason. Every vector y
with components ±1 can be interpreted as a partition of the nodes of the graph in a set
S = {i | yi = 1} and a set T = {i | yi = −1}. Such a partition is called a cut of the graph.
The objective function in the max-cut problem is

yTL(W )y =
∑

i≤j

wij(yi − yj)
2.

If y is ±1-vector corresponding to a partition in sets S and T , then yTL(W )y equals four
times the sum of the weights of the edges that join a point in S to a point in T . This is called
the weight of the cut defined by y. The solution of the max-cut problem is the cut with the
maximum weight.

(c) The function f defined in part 1 can be evaluated, for a given W , by solving the optimization
problem

minimize nλmax(L(W ) + diag(x))
subject to 1Tx = 0,

with variable x ∈ Rn. Express this problem as an SDP.

(d) Derive an alternative expression for f(W ), by taking the dual of the SDP in part 3. Show
that the dual SDP is equivalent to the following problem:

maximize
∑

i≤j

wij‖pi − pj‖22

subject ‖pi‖2 = 1, i = 1, . . . , n,

with variables pi ∈ Rn, i = 1, . . . , n. In this problem we place n points pi on the unit sphere
in Rn in such a way that the weighted sum of their squared pair-wise distances is maximized.

15.3 Utility versus latency trade-off in a network. We consider a network with m edges, labeled 1, . . . ,m,
and n flows, labeled 1, . . . , n. Each flow has an associated nonnegative flow rate fj; each edge or
link has an associated positive capacity ci. Each flow passes over a fixed set of links (its route);
the total traffic ti on link i is the sum of the flow rates over all flows that pass through link i. The
flow routes are described by a routing matrix R ∈ Rm×n, defined as

Rij =

{

1 flow j passes through link i
0 otherwise.

Thus, the vector of link traffic, t ∈ Rm, is given by t = Rf . The link capacity constraint can be
expressed as Rf � c. The (logarithmic) network utility is defined as U(f) =

∑n
j=1 log fj.

The (average queuing) delay on link i is given by

di =
1

ci − ti
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(multiplied by a constant, that doesn’t matter to us). We take di = ∞ for ti = ci. The delay or
latency for flow j, denoted lj, is the sum of the link delays over all links that flow j passes through.
We define the maximum flow latency as

L = max{l1, . . . , ln}.

We are given R and c; we are to choose f .

(a) How would you find the flow rates that maximize the utility U , ignoring flow latency? (In
particular, we allow L = ∞.) We’ll refer to this maximum achievable utility as Umax.

(b) How would you find the flow rates that minimize the maximum flow latency L, ignoring utility?
(In particular, we allow U = −∞.) We’ll refer to this minimum achievable latency as Lmin.

(c) Explain how to find the optimal trade-off between utility U (which we want to maximize) and
latency L (which we want to minimize).

(d) Find Umax, Lmin, and plot the optimal trade-off of utility versus latency for the network with
data given in net_util_data.m, showing Lmin and Umax on the same plot. Your plot should
cover the range from L = 1.1Lmin to L = 11Lmin. Plot U vertically, on a linear scale, and L
horizontally, using a log scale.

Note. For parts (a), (b), and (c), your answer can involve solving one or more convex optimization
problems. But if there is a simpler solution, you should say so.
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16 Energy and power

16.1 Power flow optimization with ‘N −1’ reliability constraint. We model a network of power lines as a
graph with n nodes and m edges. The power flow along line j is denoted pj, which can be positive,
which means power flows along the line in the direction of the edge, or negative, which means power
flows along the line in the direction opposite the edge. (In other words, edge orientation is only
used to determine the direction in which power flow is considered positive.) Each edge can support
power flow in either direction, up to a given maximum capacity Pmax

j , i.e., we have |pj| ≤ Pmax
j .

Generators are attached to the first k nodes. Generator i provides power gi to the network. These
must satisfy 0 ≤ gi ≤ Gmax

i , where Gmax
i is a given maximum power available from generator i.

The power generation costs are ci > 0, which are given; the total cost of power generation is cT g.

Electrical loads are connected to the nodes k+ 1, . . . , n. We let di ≥ 0 denote the demand at node
k + i, for i = 1, . . . , n − k. We will consider these loads as given. In this simple model we will
neglect all power losses on lines or at nodes. Therefore, power must balance at each node: the total
power flowing into the node must equal the sum of the power flowing out of the node. This power
balance constraint can be expressed as

Ap =

[

−g
d

]

,

where A ∈ Rn×m is the node-incidence matrix of the graph, defined by

Aij =











+1 edge j enters node i,
−1 edge j leaves node i,
0 otherwise.

In the basic power flow optimization problem, we choose the generator powers g and the line flow
powers p to minimize the total power generation cost, subject to the constraints listed above.
The (given) problem data are the incidence matrix A, line capacities Pmax, demands d, maximum
generator powers Gmax, and generator costs c.

In this problem we will add a basic (and widely used) reliability constraint, commonly called an
‘N − 1 constraint’. (N is not a parameter in the problem; ‘N − 1’ just means ‘all-but-one’.) This
states that the system can still operate even if any one power line goes out, by re-routing the line
powers. The case when line j goes out is called ‘failure contingency j’; this corresponds to replacing
Pmax
j with 0. The requirement is that there must exist a contingency power flow vector p(j) that

satisfies all the constraints above, with p
(j)
j = 0, using the same given generator powers. (This

corresponds to the idea that power flows can be re-routed quickly, but generator power can only
be changed more slowly.) The ‘N − 1 reliability constraint’ requires that for each line, there is a
contingency power flow vector. The ‘N − 1 reliability constraint’ is (implicitly) a constraint on the
generator powers.

The questions below concern the specific instance of this problem with data given in rel_pwr_flow_data.m.
(Executing this file will also generate a figure showing the network you are optimizating.) Especially
for part (b) below, you must explain exactly how you set up the problem as a convex optimization
problem.
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(a) Nominal optimization. Find the optimal generator and line power flows for this problem
instance (without the N − 1 reliability constraint). Report the optimal cost and generator
powers. (You do not have to give the power line flows.)

(b) Nominal optimization with N − 1 reliability constraint. Minimize the nominal cost, but you
must choose generator powers that meet the N − 1 reliability requirement as well. Report the
optimal cost and generator powers. (You do not have to give the nominal power line flows, or
any of the contingency flows.)

16.2 Optimal generator dispatch. In the generator dispatch problem, we schedule the electrical output
power of a set of generators over some time interval, to minimize the total cost of generation while
exactly meeting the (assumed known) electrical demand. One challenge in this problem is that the
generators have dynamic constraints, which couple their output powers over time. For example,
every generator has a maximum rate at which its power can be increased or decreased.

We label the generators i = 1, . . . , n, and the time periods t = 1, . . . , T . We let pi,t denote the
(nonnegative) power output of generator i at time interval t. The (positive) electrical demand in
period t is dt. The total generated power in each period must equal the demand:

n
∑

i=1

pi,t = dt, t = 1, . . . , T.

Each generator has a minimum and maximum allowed output power:

Pmin
i ≤ pi,t ≤ Pmax

i , i = 1, . . . , n, t = 1, . . . , T.

The cost of operating generator i at power output u is φi(u), where φi is an increasing strictly
convex function. (Assuming the cost is mostly fuel cost, convexity of φi says that the thermal
efficiency of the generator decreases as its output power increases.) We will assume these cost
functions are quadratic: φi(u) = αiu+ βiu

2, with αi and βi positive.

Each generator has a maximum ramp-rate, which limits the amount its power output can change
over one time period:

|pi,t+1 − pi,t| ≤ Ri, i = 1, . . . , n, t = 1, . . . , T − 1.

In addition, changing the power output of generator i from ut to ut+1 incurs an additional cost
ψi(ut+1 − ut), where ψi is a convex function. (This cost can be a real one, due to increased fuel
use during a change of power, or a fictitious one that accounts for the increased maintenance cost
or decreased lifetime caused by frequent or large changes in power output.) We will use the power
change cost functions ψi(v) = γi|v|, where γi are positive.

Power plants with large capacity (i.e., Pmax
i ) are typically more efficient (i.e., have smaller αi, βi),

but have smaller ramp-rate limits, and higher costs associated with changing power levels. Small
gas-turbine plants (‘peakers’) are less efficient, have less capacity, but their power levels can be
rapidly changed.

The total cost of operating the generators is

C =
n
∑

i=1

T
∑

t=1

φi(pi,t) +
n
∑

i=1

T−1
∑

t=1

ψi(pi,t+1 − pi,t).
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Choosing the generator output schedules to minimize C, while respecting the constraints described
above, is a convex optimization problem. The problem data are dt (the demands), the generator
power limits Pmin

i and Pmax
i , the ramp-rate limits Ri, and the cost function parameters αi, βi, and

γi. We will assume that problem is feasible, and that p⋆i,t are the (unique) optimal output powers.

(a) Price decomposition. Show that there are power prices Q1, . . . , QT for which the following
holds: For each i, p⋆i,t solves the optimization problem

minimize
∑T

t=1 (φi(pi,t)−Qtpi,t) +
∑T−1

t=1 ψi(pi,t+1 − pi,t)
subject to Pmin

i ≤ pi,t ≤ Pmax
i , t = 1, . . . , T

|pi,t+1 − pi,t| ≤ Ri, t = 1, . . . , T − 1.

The objective here is the portion of the objective for generator i, minus the revenue generated
by the sale of power at the prices Qt. Note that this problem involves only generator i; it can
be solved independently of the other generators (once the prices are known). How would you
find the prices Qt?

You do not have to give a full formal proof; but you must explain your argument fully. You
are welcome to use results from the text book.

(b) Solve the generator dispatch problem with the data given in gen_dispatch_data.m, which
gives (fake, but not unreasonable) demand data for 2 days, at 15 minute intervals. This file
includes code to plot the demand, optimal generator powers, and prices. (You must replace
these variables with their correct values.) Comment on anything you see in your solution
that might at first seem odd. Using the prices found, solve the problems in part (a) for the
generators separately, to be sure they give the optimal powers (up to some small numerical
errors).

Remark. While beyond the scope of this course, we mention that there are very simple price update
mechanisms that adjust the prices in such a way that when the generators independently schedule
themselves using the prices (as described above), we end up with the total power generated in each
period matching the demand, i.e., the optimal solution of the whole (coupled) problem. This gives
a decentralized method for generator dispatch.

16.3 Optimizing a portfolio of energy sources. We have n different energy sources, such as coal-fired
plants, several wind farms, and solar farms. Our job is to size each of these, i.e., to choose its
capacity. We will denote by ci the capacity of plant i; these must satisfy cmin

i ≤ ci ≤ cmax
i , where

cmin
i and cmax

i are given minimum and maximum values.

Each generation source has a cost to build and operate (including fuel, maintenance, government
subsidies and taxes) over some time period. We lump these costs together, and assume that the
cost is proportional to ci, with (given) coefficient bi. Thus, the total cost to build and operate the
energy sources is bT c (in, say, $/hour).

Each generation source is characterized by an availability ai, which is a random variable with values
in [0, 1]. If source i has capacity ci, then the power available from the plant is ciai; the total power
available from the portfolio of energy sources is cTa, which is a random variable. A coal fired plant
has ai = 1 almost always, with ai < 1 when one of its units is down for maintenance. A wind farm,
in contrast, is characterized by strong fluctations in availability with ai = 1 meaning a strong wind
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is blowing, and ai = 0 meaning no wind is blowing. A solar farm has ai = 1 only during peak sun
hours, with no cloud cover; at other times (such as night) we have ai = 0.

Energy demand d ∈ R+ is also modeled as a random variable. The components of a (the availabil-
ities) and d (the demand) are not independent. Whenever the total power available falls short of
the demand, the additional needed power is generated by (expensive) peaking power plants at a
fixed positive price p. The average cost of energy produced by the peakers is

E p(d− cTa)+,

where x+ = max{0, x}. This average cost has the same units as the cost bT c to build and operate
the plants.

The objective is to choose c to minimize the overall cost

C = bT c+E p(d− cT a)+.

Sample average approximation. To solve this problem, we will minimize a cost function based
on a sample average of peaker cost,

Csa = bT c+
1

N

N
∑

j=1

p(d(j) − cT a(j))+

where (a(j), d(j)), j = 1, . . . , N , are (given) samples from the joint distribution of a and d. (These
might be obtained from historical data, weather and demand forecasting, and so on.)

Validation. After finding an optimal value of c, based on the set of samples, you should double
check or validate your choice of c by evaluating the overall cost on another set of (validation)
samples, (ã(j), d̃(j)), j = 1, . . . , Nval,

Cval = bT c+
1

Nval

Nval
∑

j=1

p(d̃(j) − cT ã(j))+.

(These could be another set of historical data, held back for validation purposes.) If Csa ≈ Cval,
our confidence that each of them is approximately the optimal value of C is increased.

Finally we get to the problem. Get the data in energy_portfolio_data.m, which includes the
required problem data, and the samples, which are given as a 1 × N row vector d for the scalars
d(j), and an n×N matrix A for a(j). A second set of samples is given for validation, with the names
d_val and A_val.

Carry out the optimization described above. Give the optimal cost obtained, Csa, and compare to
the cost evaluated using the validation data set, Cval.

Compare your solution with the following naive (‘certainty-equivalent’) approach: Replace a and
d with their (sample) means, and then solve the resulting optimization problem. Give the optimal
cost obtained, Cce (using the average values of a and d). Is this a lower bound on the optimal value
of the original problem? Now evaluate the cost for these capacities on the validation set, Cce,val.
Make a brief statement.
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16.4 Optimizing processor speed. A set of n tasks is to be completed by n processors. The variables
to be chosen are the processor speeds s1, . . . , sn, which must lie between a given minimum value
smin and a maximum value smax. The computational load of task i is αi, so the time required to
complete task i is τi = αi/si.

The power consumed by processor i is given by pi = f(si), where f : R → R is positive, increasing,
and convex. Therefore, the total energy consumed is

E =
n
∑

i=1

αi

si
f(si).

(Here we ignore the energy used to transfer data between processors, and assume the processors
are powered down when they are not active.)

There is a set of precedence constraints for the tasks, which is a set of m ordered pairs P ⊆
{1, . . . , n} × {1, . . . , n}. If (i, j) ∈ P, then task j cannot start until task i finishes. (This would be
the case, for example, if task j requires data that is computed in task i.) When (i, j) ∈ P, we refer
to task i as a precedent of task j, since it must precede task j. We assume that the precedence
constraints define a directed acyclic graph (DAG), with an edge from i to j if (i, j) ∈ P.

If a task has no precedents, then it starts at time t = 0. Otherwise, each task starts as soon as all
of its precedents have finished. We let T denote the time for all tasks to be completed.

To be sure the precedence constraints are clear, we consider the very small example shown below,
with n = 6 tasks and m = 6 precedence constraints.

P = {(1, 4), (1, 3), (2, 3), (3, 6), (4, 6), (5, 6)}.

1

2 3

4

5

6

In this example, tasks 1, 2, and 5 start at time t = 0 (since they have no precedents). Task 1
finishes at t = τ1, task 2 finishes at t = τ2, and task 5 finishes at t = τ5. Task 3 has tasks 1 and 2 as
precedents, so it starts at time t = max{τ1, τ2}, and ends τ3 seconds later, at t = max{τ1, τ2}+ τ3.
Task 4 completes at time t = τ1 + τ4. Task 6 starts when tasks 3, 4, and 5 have finished, at time
t = max{max{τ1, τ2} + τ3, τ1 + τ4, τ5}. It finishes τ6 seconds later. In this example, task 6 is the
last task to be completed, so we have

T = max{max{τ1, τ2}+ τ3, τ1 + τ4, τ5}+ τ6.

(a) Formulate the problem of choosing processor speeds (between the given limits) to minimize
completion time T , subject to an energy limit E ≤ Emax, as a convex optimization problem.
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The data in this problem are P, smin, smax, α1, . . . , αn, Emax, and the function f . The variables
are s1, . . . , sn.

Feel free to change variables or to introduce new variables. Be sure to explain clearly why
your formulation of the problem is convex, and why it is equivalent to the problem statement
above.

Important:

• Your formulation must be convex for any function f that is positive, increasing, and
convex. You cannot make any further assumptions about f .

• This problem refers to the general case, not the small example described above.

(b) Consider the specific instance with data given in proc_speed_data.m, and processor power

f(s) = 1 + s+ s2 + s3.

The precedence constraints are given by an m × 2 matrix prec, where m is the number of
precedence constraints, with each row giving one precedence constraint (the first column gives
the precedents).

Plot the optimal trade-off curve of energy E versus time T , over a range of T that extends
from its minimum to its maximum possible value. (These occur when all processors operate at
smax and smin, respectively, since T is monotone nonincreasing in s.) On the same plot, show
the energy-time trade-off obtained when all processors operate at the same speed s̄, which is
varied from smin to smax.

Note: In this part of the problem there is no limit Emax on E as in part (a); you are to find
the optimal trade-off of E versus T .

16.5 Minimum energy processor speed scheduling. A single processor can adjust its speed in each of T
time periods, labeled 1, . . . , T . Its speed in period t will be denoted st, t = 1, . . . , T . The speeds
must lie between given (positive) minimum and maximum values, Smin and Smax, respectively, and
must satisfy a slew-rate limit, |st+1−st| ≤ R, t = 1, . . . , T −1. (That is, R is the maximum allowed
period-to-period change in speed.) The energy consumed by the processor in period t is given by
φ(st), where φ : R → R is increasing and convex. The total energy consumed over all the periods
is E =

∑T
t=1 φ(st).

The processor must handle n jobs, labeled 1, . . . , n. Each job has an availability time Ai ∈
{1, . . . , T}, and a deadline Di ∈ {1, . . . , T}, with Di ≥ Ai. The processor cannot start work
on job i until period t = Ai, and must complete the job by the end of period Di. Job i involves a
(nonnegative) total work Wi. You can assume that in each time period, there is at least one job
available, i.e., for each t, there is at least one i with Ai ≤ t and Di ≥ t.

In period t, the processor allocates its effort across the n jobs as θt, where 1T θt = 1, θt � 0. Here
θti (the ith component of θt) gives the fraction of the processor effort devoted to job i in period t.
Respecting the availability and deadline constraints requires that θti = 0 for t < Ai or t > Di. To
complete the jobs we must have

Di
∑

t=Ai

θtist ≥Wi, i = 1, . . . , n.
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(a) Formulate the problem of choosing the speeds s1, . . . , sT , and the allocations θ1, . . . , θT , in
order to minimize the total energy E, as a convex optimization problem. The problem data
are Smin, Smax, R, φ, and the job data, Ai, Di, Wi, i = 1, . . . , n. Be sure to justify any change
of variables, or introduction of new variables, that you use in your formulation.

(b) Carry out your method on the problem instance described in proc_sched_data.m, with
quadratic energy function φ(st) = α + βst + γs2t . (The parameters α, β, and γ are given
in the data file.) Executing this file will also give a plot showing the availability times and
deadlines for the jobs.

Give the energy obtained by your speed profile and allocations. Plot these using the command
bar((s*ones(1,n)).*theta,1,’stacked’), where s is the T × 1 vector of speeds, and θ is
the T ×n matrix of allocations with components θti. This will show, at each time period, how
much effective speed is allocated to each job. The top of the plot will show the speed st. (You
don’t need to turn in a color version of this plot; B&W is fine.)

16.6 AC power flow analysis via convex optimization. This problem concerns an AC (alternating current)
power system consisting of m transmission lines that connect n nodes. We describe the topology
by the node-edge incidence matrix A ∈ Rn×m, where

Aij =











+1 line j leaves node i
−1 line j enters node i
0 otherwise.

The power flow on line j is pj (with positive meaning in the direction of the line as defined in A,
negative meaning power flow in the opposite direction).

Node i has voltage phase angle φi, and external power input si. (If a generator is attached to node
i we have si > 0; if a load is attached we have si < 0; if the node has neither, si = 0.) Neglecting
power losses in the lines, and assuming power is conserved at each node, we have Ap = s. (We must
have 1T s = 0, which means that the total power pumped into the network by generators balances
the total power pulled out by the loads.)

The line power flows are a nonlinear function of the difference of the phase angles at the nodes they
connect to:

pj = κj sin(φk − φl),

where line j goes from node k to node l. Here κj is a known positive constant (related to the
inductance of the line). We can write this in matrix form as p = diag(κ) sin(ATφ), where sin is
applied elementwise.

The DC power flow equations are

Ap = s, p = diag(κ) sin(ATφ).

In the power analysis problem, we are given s, and want to find p and φ that satisfy these equations.
We are interested in solutions with voltage phase angle differences that are smaller than ±90◦.
(Under normal conditions, real power lines are never operated with voltage phase angle differences
more than ±20◦ or so.)
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You will show that the DC power flow equations can be solved by solving the convex optimization
problem

minimize
∑m

i=j ψj(pj)

subject to Ap = s,

with variable s, where

ψj(u) = κj

∫ u

0
sin−1(v/κj) dv = u sin−1(u/κj) + κj(

√

1− (u/κj)2 − 1),

with domain domψj = (−κj , κj). (The second expression will be useless in this problem.)

(a) Show that the problem above is convex.

(b) Suppose the problem above has solution p⋆, with optimal dual variable ν⋆ associated with the
equality constraint Ap = s. Show that p⋆, φ = ν⋆ solves the DC power flow equation. Hint.

Write out the optimality conditions for the problem above.
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17 Miscellaneous applications

17.1 Earth mover’s distance. In this exercise we explore a general method for constructing a distance
between two probability distributions on a finite set, called the earth mover’s distance, Wasserstein

metric, or Dubroshkin metric. Let x and y be two probability distributions on {1, . . . , n}, i.e.,
1Tx = 1T y = 1, x � 0, y � 0. We imagine that xi is the amount of earth stored at location i;
our goal is to move the earth between locations to obtain the distribution given by y. Let Cij be
the cost of moving one unit of earth from location j to location i. We assume that Cii = 0, and
Cij = Cji > 0 for i 6= j. (We allow Cij = ∞, which means that earth cannot be moved directly from
node j to node i.) Let Sij ≥ 0 denote the amount of earth moved from location j to location i. The
total cost is

∑n
i,j=1 SijCij = trCTS. The shipment matrix S must satisfy the balance equations,

n
∑

j=1

Sij = yi, i = 1, . . . , n,
n
∑

i=1

Sij = xj, j = 1, . . . , n,

which we can write compactly as S1 = y, ST1 = x. (The first equation states that the total
amount shipped into location i equals yi; the second equation states that the total shipped out
from location j is xj.) The earth mover’s distance between x and y is given by the minimal cost of
earth moving required to transform x to y, i.e., the optimal value of the problem

minimize trCTS
subect to Sij ≥ 0, i, j = 1, . . . , n

S1 = y, ST1 = x,

with variables S ∈ Rn×n. We can also give a probabality interpretation: We seek the joint distri-
bution that minimizes the expected value of C, with given marginals x and y.

The earth mover’s distance is used to compare, for example, 2D images, with Cij equal to the
distance between pixels i and j. If x and y represent two photographs of the same scene, from
slightly different viewpoints and with an offset in camera position (say), d(x, y) will be small, but
the distance between x and y measured by most common norms (e.g., ‖x− y‖1) will be large.

(a) Show that d is a metric, i.e., d(x, y) = d(y, x), d(x, x) = 0, d(x, y) > 0 for x 6= y, and that the
triangle inequality holds: d(x, z) = d(x, y) + d(y, z) (where z is another distribution).

(b) Show that d(x, y) is the optimal value of the problem

maximize νTx+ µTy
subject to νi + µj ≤ Cij , i, j = 1, . . . , n,

with variables ν, µ ∈ Rn.

(c) Now consider the special case with Ci,i+1 = 1, i = 1, . . . , n−1, Cii = 0, and Cij = ∞ otherwise.
Express d in terms of the cumulative distributions of x and y, fi =

∑i
j=1 xj, gi =

∑i
j=1 yj.

(You do not need to give a fully formal argument here; an informal derivation is fine.)

17.2 Radiation treatment planning. In radiation treatment, radiation is delivered to a patient, with the
goal of killing or damaging the cells in a tumor, while carrying out minimal damage to other tissue.
The radiation is delivered in beams, each of which has a known pattern; the level of each beam can
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be adjusted. (In most cases multiple beams are delivered at the same time, in one ‘shot’, with the
treatment organized as a sequence of ‘shots’.) We let bj denote the level of beam j, for j = 1, . . . , n.
These must satisfy 0 ≤ bj ≤ Bmax, where Bmax is the maximum possible beam level. The exposure
area is divided into m voxels, labeled i = 1, . . . ,m. The dose di delivered to voxel i is linear in
the beam levels, i.e., di =

∑n
j=1Aijbj . Here A ∈ Rm×n

+ is a (known) matrix that characterizes the
beam patterns. We now describe a simple radiation treatment planning problem.

A (known) subset of the voxels, T ⊂ {1, . . . ,m}, corresponds to the tumor or target region. We
require that a minimum radiation doseDtarget be administered to each tumor voxel, i.e., di ≥ Dtarget

for i ∈ T . For all other voxels, we would like to have di ≤ Dother, whereDother is a desired maximum
dose for non-target voxels. This is generally not feasible, so instead we settle for minimizing the
penalty

E =
∑

i 6∈T

((di −Dother)+)
2,

where (·)+ denotes the nonnegative part. We can interpret E as the sum of the squares of the
nontarget excess doses.

(a) Show that the treatment planning problem is convex. The optimization variable is b ∈ Rn;
the problem data are Bmax, A, T , Dtarget, and Dother.

(b) Solve the problem instance with data given in the file treatment_planning_data.m. Here we
have split the matrix A into Atarget, which contains the rows corresponding to the target
voxels, and Aother, which contains the rows corresponding to other voxels. Give the optimal
value. Plot the dose histogram for the target voxels, and also for the other voxels. Make a
brief comment on what you see. Remark. The beam pattern matrix in this problem instance
is randomly generated, but similar results would be obtained with realistic data.

17.3 Flux balance analysis in systems biology. Flux balance analysis is based on a very simple model of
the reactions going on in a cell, keeping track only of the gross rate of consumption and production
of various chemical species within the cell. Based on the known stoichiometry of the reactions, and
known upper bounds on some of the reaction rates, we can compute bounds on the other reaction
rates, or cell growth, for example.

We focus on m metabolites in a cell, labeled M1, . . . ,Mm. There are n reactions going on, labeled
R1, . . . , Rn, with nonnegative reaction rates v1, . . . , vn. Each reaction has a (known) stoichiometry,
which tells us the rate of consumption and production of the metabolites per unit of reaction rate.
The stoichiometry data is given by the stoichiometry matrix S ∈ Rm×n, defined as follows: Sij
is the rate of production of Mi due to unit reaction rate vj = 1. Here we consider consumption
of a metabolite as negative production; so Sij = −2, for example, means that reaction Rj causes
metabolite Mi to be consumed at a rate 2vj .

As an example, suppose reaction R1 has the form M1 →M2 +2M3. The consumption rate of M1,
due to this reaction, is v1; the production rate of M2 is v1; and the production rate of M3 is 2v1.
(The reaction R1 has no effect on metabolites M4, . . . ,Mm.) This corresponds to a first column of
S of the form (−1, 1, 2, 0, . . . , 0).

Reactions are also used to model flow of metabolites into and out of the cell. For example, suppose
that reaction R2 corresponds to the flow of metabolite M1 into the cell, with v2 giving the flow
rate. This corresponds to a second column of S of the form (1, 0, . . . , 0).
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The last reaction, Rn, corresponds to biomass creation, or cell growth, so the reaction rate vn is
the cell growth rate. The last column of S gives the amounts of metabolites used or created per
unit of cell growth rate.

Since our reactions include metabolites entering or leaving the cell, as well as those converted
to biomass within the cell, we have conservation of the metabolites, which can be expressed as
Sv = 0. In addition, we are given upper limits on some of the reaction rates, which we express as
v � vmax, where we set vmax

j = ∞ if no upper limit on reaction rate j is known. The goal is to
find the maximum possible cell growth rate (i.e., largest possible value of vn) consistent with the
constraints

Sv = 0, v � 0, v � vmax.

The questions below pertain to the data found in fba_data.m.

(a) Find the maximum possible cell growth rate G⋆, as well as optimal Lagrange multipliers for
the reaction rate limits. How sensitive is the maximum growth rate to the various reaction
rate limits?

(b) Essential genes and synthetic lethals. For simplicity, we’ll assume that each reaction is con-
trolled by an associated gene, i.e., gene Gi controls reaction Ri. Knocking out a set of genes
associated with some reactions has the effect of setting the reaction rates (or equivalently, the
associated vmax entries) to zero, which of course reduces the maximum possible growth rate.
If the maximum growth rate becomes small enough or zero, it is reasonable to guess that
knocking out the set of genes will kill the cell. An essential gene is one that when knocked
out reduces the maximum growth rate below a given threshold Gmin. (Note that Gn is always
an essential gene.) A synthetic lethal is a pair of non-essential genes that when knocked out
reduces the maximum growth rate below the threshold. Find all essential genes and synthetic
lethals for the given problem instance, using the threshold Gmin = 0.2G⋆.
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