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�

These lecture notes aim at developing a thorough understanding of the
core theory for interior�point methods� The overall theory continues to
grow at a rapid rate but the core ideas have remained largely unchanged
for several years� since Nesterov and Nemirovskii��� published their path�
breaking� broadly�encompassing and enormously in�uential work� Since
then� what has changed about the core ideas is our conception of them�
Whereas ��� is notoriously di�cult reading even for specialists� we now
know how to motivate and present the general theory in such a way as to
make it accessible for non�specialists and PhD students� Therein lies the
justi�cation for these lecture notes�

We develop the theory in �n although most of the theory can be devel�
oped in arbitrary real Hilbert spaces� The restriction to �nite dimensions
is primarily for accessibility�

The notes were developed largely in conjunction with a PhD�level course
on interior�point methods at Cornell University�

Presently� the notes contain only two chapters� but those are su�cient
to provide the reader with a solid introduction to the contemporary view of
interior�point methods� A chapter on Duality Theory is nearing comple�
tion� A chapter on Complexity Theory is planned� If you are interested in
receiving the chapters as they are completed� please send a brief message to
renegar�orie�cornell�edu�



	



Chapter �

Preliminaries

This chapter provides a review of material pertinent to continuous optimiza�
tion theory quite generally� albeit phrased so as to be readily applicable in
developing interior�point method 
ipm� theory� The primary di�erence be�
tween our exposition and more customary approaches is that we do not rely
on coordinate systems� For example� it is customary to de�ne the gradient
of a functional f 
 �n � � as the vector�valued function g 
 �n � �n
whose jth coordinate is �f��xj � Instead� we consider the gradient as de�
termined by an underlying inner product h � i� For us� the gradient is the
function g satisfying

lim
k�xk��

f
x��x� � f
x�� hg
x���xi
k�xk � ��

where k�xk 
� h�x��xi���� In general� the function whose jth coordinate
is �f��xj is the gradient only if h � i is the Euclidean inner product�

The natural geometry varies from point to point in the domains of
optimization problems that can be solved by ipm�s� As the algorithms
progress from one point to the next� one changes the inner product � and
hence the geometry � to visualize the headway achieved by the algorithms�
The relevant inner products may bear no relation to an initially�imposed
coordinate�system� Consequently� in aiming for the most transparent and
least cumbersome proofs� one should dispense with coordinate systems�

We begin with a review of linear algebra by recalling� for example�
the notion of a self�adjoint linear operator� We then de�ne gradients and
Hessians� emphasizing how they change when the underlying inner product
is changed� Next is a brief review of basic results for convex functionals�
followed by results akin to the Fundamental Theorem of Calculus� Although

�
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these �Calculus results� are elementary and rather dry� they are essential
in achieving lift�o� for the ipm theory� Finally� we recall Newton�s method
for continuous optimization� proving a standard theorem which later plays
a central motivational role�

��� Linear Algebra

We let h � i denote an arbitrary inner product on �n� In later sections� h � i
will act as a reference inner product� an inner product from which other
inner products are constructed� For the ipm theory� it happens that the
reference inner product h � i is irrelevant� the inner products essential to
the theory are independent of the reference inner product� To large extent�
the reference inner product will serve only to �x notation�

Although the particular reference inner product will prove to be irrele�
vant for ipm theory� for optimization problems to be solved by ipm�s there
typically are associated natural reference inner products� For example� in
linear programming 
LP� where vectors x are expressed coordinate�wise and
�x � �� means each coordinate is non�negative� the natural inner product
is the Euclidean inner product� which we refer to as the �dot product��
writing x� � x�� Similarly� in semi�de�nite programming 
SDP� where the
relevant vector space is Sn�n � the space of symmetric n� n real matrices
X � and �X � �� means X is positive semi�de�nite 
i�e�� has no negative
eigenvalues�� the natural inner product is the �trace product��

X � S 
� trace
XS��


Thus� X � S equals the sum of the eigenvalues of the matrix XS��

Throughout the general development� we use �n to denote an arbitrary
�nite�dimensional real vector space� be it Sn�n or whatever�

The inner product h � i induces a norm on �n�

kxk 
� hx� xi����

Perhaps the most useful relation between the inner product and the norm
is the Cauchy�Schwarz inequality�

jhx�� x�ij � kx�k kx�k

with equality i� x� and x� are co�linear� If neither x� nor x� is the zero
vector� Cauchy�Schwarz implies the existence of � satisfying

cos� � hx�� x�i�kx�k kx�k�
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The value � is referred to as the angle between x� and x��

Whereas the dot product gives rise to the Euclidean norm� the norm
arising from the trace product is known as the �Frobenius norm�� The
Frobenius norm can be extended to the vector space of all real n�nmatrices
by de�ning kMk 
� 


P
m�
ij�

��� where mij are the coe�cients of M �

We remark that the Frobenius norm is �submultiplicative�� meaning
kXSk � kXk kSk�

Recall that vectors x�� x� 	 �n are said to be orthogonal if hx�� x�i � ��
Recall that a basis v�� � � � � vn for �n is said to be an orthonormal if

hvi� vji � �ij for all i� j

where �ij is the Kronecker delta� A linear operator 
i�e�� a linear transfor�
mation� Q 
 �n � �n is said to be orthogonal if

hQx�� Qx�i � hx�� x�i for all x�� x� 	 �n�

If given an inner product h � i on �n� one adopts a coordinate system
obtained by expressing vectors as linear combinations of an orthonormal
basis� the inner product h � i is the dot product for that coordinate system�
Consequently� one can consider the results we review below as following
from the special case of the dot product� but one should keep in mind that
thinking in terms of coordinates is best avoided for understanding the ipm
theory�

If both �n and �m are endowed with inner products and A 
 �n � �m
is a linear operator� there exists a unique linear operator A� 
 �m � �n
satisfying

hAx� yi � hx�A�yi for all x 	 �n� y 	 �m�

The operator A� is the adjoint of A� The range of A� is orthogonal to the
nullspace of A�

Assuming A is surjective� the linear operator A�
AA����A projects �n
orthogonally onto the range space of A�� that is� the image of x is the point
in the range space closest to x� Likewise� I � A�
AA����A projects �n
orthogonally onto the nullspace of A�

If both �n and �m are endowed with the dot product and if A and A�

are written as matrices then A� is the transpose of A� Thus it is natural in
this setting to write AT rather than A��

It is a simple but important exercise for SDP to show that if S�� � � � � Sm 	
Sn�n and A 
 Sn�n � �m is the linear operator de�ned by

X 
� 
X � S�� � � � � X � Sm�
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then

A�y �
X
i

yiSi�

assuming Sn�n is endowed with the trace product and �m is endowed with
the dot product�

Continuing to assume �n and �m are endowed with inner products�
and hence norms� one obtains an induced operator norm on the vector
space consisting of linear operators A 
 �n � �m


kAk 
� maxfkAxk 
 kxk � �g�

Each linear operator A 
 �n � �m has a singular�value decomposition�
Precisely� there exist orthomormal bases u�� � � � � un and w�� � � � � wm� as well
as real numbers � � �� � � � � � �r where r is the rank of A� such that for
all x�

Ax �

rX
i��

�ihui� xiwi�

The numbers �i are the singular values of A� if r � n then the number � is
also considered to be a singular value of A� It is easily seen that kAk � �r�
Moreover�

A�y �

rX
i��

�ihwi� yiui�

so that the values �i 
and possibly �� are also the singular values of A�� It
immediately follows that kA�k � kAk�

If �n and �m are endowed with the dot product� the singular�value
decomposition corresponds to the fact that if A is an m� n matrix� there
exist orthogonal matrices Qm and Qn such that QmAQn � � where � is an
m � n matrix with zeros everywhere except possibly for positive numbers
on its main diagonal�

It is not di�cult to prove that a linear operator Q 
 �n � �n is orthog�
onal i� Q� � Q��� For orthogonal operators� kQk � ��

A linear operator S 
 �n � �n is said to be self�adjoint if S � S��

If h � i is the dot product and S is written as a matrix then S being
self�adjoint is equivalent to S being symmetric�

It is instructive to show that for S 	 Sn�n� the linear operator A 

Sn�n � Sn�n de�ned by

X 
� SXS
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is self�adjoint� Such operators are important in the ipm theory for SDP�

A linear operator S 
 �n � �n is said to be positive semi�de�nite 
psd�
if S is self�adjoint and

hx� Sxi � � for all x 	 �n�
If� further� S satis�es

hx� Sxi � � for all x �� �

then S is said to be positive de�nite 
pd��

Each self�adjoint linear operator S has a spectral decomposition� Pre�
cisely� for each self�adjoint linear operator S there exists an orthonormal
basis v�� � � � � vn and real numbers �� � � � � � �n such that for all x�

Sx �
X

�ihvi� xivi�

It is easily seen that vi is an eigenvector for S with eigenvalue �i�

If h � i is the dot product and S is a symmetric matrix then the spectral
decomposition corresponds to the fact that S can be diagonalized using an
orthogonal matrix� i�e�� QTSQ � ��

The following relations are easily established


� kSk � maxi j�ij � maxfjhx� Sxij 
 kxk � �g�
� S is psd i� �i � � for all i�

� S is pd i� �i � � for all i�

� If S�� exists then it� too� is self�adjoint� and has eigenvalues ���i�

In particular� kS��k � ��mini j�ij��

The spectral decomposition for a psd operator S allows one to easily
prove the existence of a psd operator S��� satisfying S � 
S������ simply
replace �i by

p
�i in the decomposition� In turn� the uniqueness of S���

can readily be proven by relying on the fact that if T is a psd operator
satisfying T � � S then the eigenvectors for T are eigenvectors for S� The
operator S��� is the �square root� of S�

Here is a crucial observation
 If S is pd then S de�nes a new inner
product� namely�

hx�� x�iS 
� hx�� Sx�i�
Every inner product on �n arises in this way� that is� regardless of the
initial inner product h � i� for every other inner product there exists S
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which is pd w�r�t� h � i and for which h � iS is precisely the other inner
product�

Let k kS denote the norm induced by h � iS �
Assume A� is the adjoint of A 
 �n � �m� Assuming S and T are pd

w�r�t� the respective inner products� if the inner product on �n is replaced
by h � iS and that on �m is replaced by h � iT then the adjoint of A
becomes S��A�T � as is easily shown� In particular� if m � n and S � T
then the adjoint of A becomes S��A�S� Moreover� letting kAkS�T denote
the resulting operator norm� it is easily proven that

kAkS�T � kT ���AS����k and kAk � kT����AS���kS�T �
The notation used in stating these facts illustrates our earlier assertion that
the reference inner product will be useful in �xing notation 
as the inner
products change��

It is instructive to consider the shape of the unit ball w�r�t� k kS viewed
in terms of the geometry of the reference inner product� The spectral
decomposition of S easily implies the unit ball to be an ellipsoid with axes
in the directions of the orthonormal basis vectors v�� � � � � vn� the length of
the axis in the direction of vi being 	

p
���i�

��� Gradients

Recall that a functional is a function whose range lies in �� We use Df to
denote the domain of a functional f � It will always be assumed that Df is
an open subset of �n in the norm topology 
recalling that all norms on �n
induce the same topology�� Let h � i denote an arbitrary inner product on
�n and let k k denote the norm induced by h � i�

The functional f is said to be 
Frechet� di�erentiable at x 	 Df if there
exists a vector g
x� satisfying

lim
k�xk��

f
x��x� � f
x�� hg
x���xi
k�xk � ��

The vector g
x� is the gradient of f at x w�r�t� h � i�
Of course if one chooses the inner product h � i on �n to be the dot

product and expresses g
x� coordinate�wise� the jth coordinate is �f��xj �

For an arbitrary inner product h � i� the gradient has the same geomet�
rical interpretation that is taught in Calculus for the dot product gradient�
Roughly speaking� the gradient g
x� points in the direction for which the
functional output increases the fastest per unit distance travelled� and the
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magnitude kg
x�k equals the amount the functional will change per unit
distance travelled in that direction� We give rigour to this geometrical
interpretation in x����

The �rst�order approximation of f at x is the linear functional

y 
� f
x� � hg
x�� y � xi�

If f is di�erentiable at each x 	 Df then f is said to be di�erentiable�
Henceforth� assume f is di�erentiable�

If the function x 
� g
x� is continuous at each x 	 Df then f is said to
be continuously di�erentiable� One then writes f 	 C��

To illustrate the de�nition of gradient� consider the functional

f
X� 
� � ln det
X�

with domain Sn�n�� � the set of all pd matrices in Sn�n� 
This functional
plays an especially important role in SDP�� We claim that w�r�t� the trace
product�

g
X� � �X���

For let �X 	 Sn�n and denote the eigenvalues of X����
�X�X���� by
��� � � � � �n� Since the trace of a matrix depends only on the eigenvalues �
hence� X�� ��X � trace
X����
�X�X����� � we have

f
X ��X�� f
X�� h�X����Xi
k�Xk

�
j � ln det
X ��X� � ln det
X� �X�� ��X j


�X ��X����

�
j � ln det
I �X����
�X�X����� � trace
X����
�X�X�����j

trace
X�����

�
jPi �i � ln
� � �i�j
trace

�X������

�

Letting �i
X� and �i
�X� denote the eigenvalues of X and �X � it is easily
proven that

trace

�X������ � max
i
j�i
�X�j � 
min

i
�i
X��
max

i
j�ij�
��	���

and hence

lim sup
k�Xk��

f
X ��X�� f
X�� h�X����Xi
k�Xk

� �

mini �i
X�
lim sup
k�Xk��

jPi �i � ln
� � �i�j
maxi j�ij �
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Since 
��	��� implies �i � � when k�Xk � �� it is now straightforward to
conclude that the value of the limit supremum is �� Thus� g
X� � �X���

Our de�nition of what it means for a functional f to be di�erentiable
depends on the inner product h � i� However� relying on the equivalence of
all norm topologies on �n� it is readily proven that the property of being
di�erentiable � and being continuously di�erentiable � is independent of
the inner product� The gradient depends on the inner product but di�er�
entiability does not�

The following proposition shows how the gradient changes as the inner
product changes�

Proposition ����� If S is pd and f is di�erentiable at x then the gradient
of f at x w�r�t� h � iS is S��g
x��

Proof� Letting �� denote the least eigenvalue of S� the proof relies on the
fact that p

��kxk � kxkS for all x�

as follows easily from the spectral decomposition of S�

To prove that S��g
x� is the gradient of f at x w�r�t� h � iS � we wish
to show

lim sup
k�xkS��

jf
x��x�� f
x�� hS��g
x���xiS j
k�xkS � ��

However� noting that for all v�

hS��g
x�� viS � hS��g
x�� Svi � hSS��g
x�� vi � hg
x�� vi

we have

lim sup
k�xkS��

jf
x��x� � f
x�� hS��g
x���xiS j
k�xkS

� lim sup
k�xkS��

jf
x��x�� f
x�� hg
x���xij
k�xkS

� �p
��

lim sup
k�xkS��

jf
x��x�� f
x�� hg
x���xij
k�xk

�
�p
��

lim
k�xk��

f
x��x� � f
x�� hg
x���xi
k�xk � ��

the next�to�last equality due to k�xk � � if k�xkS � � 
because k�xk �
k�xkS�

p
���� �
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Theorem ��	�	 has the unsurprising consequence that the �rst�order
approximation of f at x is independent of the inner product


f
x� � hg
x�� y � xi � f
x� � hS��g
x�� y � xiS �

Finally� we make an observation that will be important for applying
ipm theory to optimization problems having linear equations among the
constraints� Assume L is a subspace of �n� Restricting h � i to L makes L
into an inner product space� Thus� if f is a functional for which Df 
L �� ��
one can speak of the gradient of f jL� the functional obtained by restricting f
to L� Let gjL denote the gradient� a function from L to L� It is not di�cult
to prove gjL � PLg where PL is the operator projecting �n orthogonally
onto L� Summarizing� if x 	 L then the gradient gjL
x� of f jL at x is the
vector PLg
x��

��� Hessians

The functional f is said to be twice di�erentiable at x 	 Df if f 	 C� and
there exists a linear operator H
x� 
 �n � �n satisfying

lim
k�xk��

kg
x��x� � g
x��H
x��xk
k�xk � ��

If it exists� H
x� is said to be the Hessian of f at x w�r�t� h � i�
If h � i is the dot product and H
x� is written as a matrix� the 
i� j�

entry of H
x� is
��f

�xi�xj
�

The second�order approximation of f at x is the linear functional

y 
� f
x� � hg
x�� y � xi� �
� h
y � x�� H
x�
y � x�i�

If f is twice di�erentiable at each x 	 Df then f is said to be twice
di�erentiable� Henceforth� assume f is twice di�erentiable�

If the function x 
� H
x� is continuous at x 
w�r�t� the operator�norm
topology� or equivalently� any norm topology on the vector space of linear
operators from �n to �n�� then H
x� is self�adjoint� If the function x 
�
H
x� is continuous at each x 	 Df then f is said to be twice continuously
di�erentiable� One then writes f 	 C��
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The assumption of twice continuous di�erentiability� as opposed to mere
twice di�erentiability� is often made in optimization primarily to ensure self�
adjointness of the Hessian�

If the inner product is the dot product and Hessian is expressed as a
matrix� self�adjointness is equivalent to the matrix being symmetric� that
is�

��f

�xi�xj
�

��f

�xj�xi
�


If the Hessian matrix does not vary continuously in x� the order in which
the partials are taken can matter� resulting in a non�symmetric matrix��

To illustrate the de�nition of the Hessian� we again consider the func�
tional

f
X� 
� � ln det
X�

with domain Sn�n�� � the set of all pd matrices in Sn�n� We saw that g
X� �
�X��� We claim that H
X� is the linear operator given by

�X 
� X��
�X�X���

This can be proven by relying on the fact that if k�Xk is su�ciently small
then


X ��X��� � X��
�X
k��

��
�X�X���k�

and hence

g
X ��X�� g
X��H
X��X � �X��
�X
k��

��
�X�X���k�

For then� from the submultiplicativity of the Frobenius norm�

lim sup
k�Xk��

jg
X ��X�� g
X��H
X��X j
k�Xk

� lim sup
k�Xk��

k�Xk�kX��k�P�
k��
k
�X�k kX��k�k
k�Xk

� ��

The property of being twice continuously di�erentiable does not depend
on the inner product whereas the Hessian most certainly does depend on the
inner product� as is made explicit in the following proposition� The proof
of the following proposition is similar to the proof of Proposition ��	�	 and
hence is left to the reader�
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Proposition ����� If S is pd and f is twice di�erentiable at x then the
Hessian of f at x w�r�t� h � iS is S��H
x��

Propositions ��	�	 and ����� have the unsurprising consequence that the
second�order approximation of f at x is independent of the inner product


f
x� � hg
x�� y � xi� �
� h
y � x�� H
x�
y � x�i

� f
x� � hS��g
x�� y � xiS � �
� h
y � x�� S��H
x�
y � x�iS �

Finally� we make an observation regarding Hessians and subspaces� It
is straightforward to prove that if L is a subspace of �n and f satis�es
Df 
L �� � then the Hessian of f jL at x 	 L � an operator from L to L � is
given by H jL
x� � PLH
x�� That is� when one applies H jL
x� to a vector
v 	 L� one obtains the vector PLH
x�v�

��� Convexity

Recall that a set S � �n is said to be convex if whenever x� y 	 S and
� � t � � we have x� t
y � x� 	 S�

Recall that a functional f is said to be convex if Df is convex and if
whenever x� y 	 Df and � � t � �� we have

f
x� t
y � x�� � f
x� � t
f
y�� f
x���

If the inequality is strict whenever � � t � � and x �� y� then f is said to
be strictly convex�

The minimizers of a convex functional form a convex set� A strictly
convex functional has at most one minimizer�

Henceforth� we assume f 	 C� and we assume Df is an open� convex
set�

If f is a univariate functional� we know from Calculus that f is convex
i� f ��
x� � � for all x 	 Df � Similarly� if f ��
x� � � for all x 	 Df then f is
strictly convex� The following standard theorem generalizes these facts�

Proposition ����� The functional f is convex i� H
x� is psd for all x 	
Df � If H
x� is pd for all x 	 Df then f is strictly convex�

The following elementary proposition� which is relied on in the proof of
Proposition ������ is fundamental throughout these lecture notes� It does
not assume convexity of f �
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Proposition ����� Assume x� y 	 Df and de�ne a univariate functional
	 
 ��� ��� � by

	
t� 
� f
x� t
y � x���

Then
	�
t� � hg
x� t
y � x��� y � xi

and

	��
t� � hy � x�H
x� t
y � x��
y � x�i�

Proof� Fix t and let u � x� t
y � x�� We wish to prove

	�
t� � hg
u�� y � xi and 	��
t� � hy � x�H
u�
y � x�i�

To prove 	�
t� � hg
u�� y � xi it su�ces to show

lim sup
s��

����	
t� s�� 	
t�� shg
u�� y � xi
s

���� � ��

However� noting 	
t� � f
u� and 	
t � s� � f
u� s
y � x��� we have

lim sup
s��

����	
t � s�� 	
t� � shg
u�� y � xi
s

����
� lim sup

s��

����f
u� s
y � x��� f
u�� hg
u�� s
y � x�i
s

����
� ky � xk lim sup

ks�y�x�k��

jf
u� s
y � x��� f
u�� hg
u�� s
y � x�ij
ks
y � x�k � ��

the �nal equality by de�nition of g
u��

Similarly� to prove 	��
t� � hy � x�H
u�
y � x�i� it su�ces to show

lim sup
s��

����	�
t� s�� 	�
t�� shy � x�H
u�
y � x�i
s

���� � ��

However� since we now know

	�
t� � hg
u�� y � xi and 	�
t� s� � hg
u� s
y � x��� y � xi

we have

lim sup
s��

����	�
t� s�� 	�
t�� shy � x�H
u�
y � x�i
s

����
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� lim sup
s��

���� hg
u� s
y � x�� � g
u��H
u�s
y � x�� y � xi
s

����
� lim sup

s��

kg
u� s
y � x�� � g
u��H
u�s
y � x�k ky � xk
jsj

� ky � xk� lim sup
ks�y�x�k��

kg
u� s
y � x�� � g
u��H
u�s
y � x�k
ks
y � x�k � �

where the inequality is by Cauchy�Schwarz and the �nal equality is by
de�nition of H
u�� �

Proof of Proposition ������ We �rst show that if the Hessian is psd ev�
erywhere on Df then f is convex� So assume the Hessian is psd everywhere
on Df �

Assume x and y are arbitrary points in Df � We wish to show that if t
satis�es � � t � � then

f
x� t
y � x�� � f
x� � t
f
y�� f
x���
������

Consider the univariate functional 	 de�ned by

	
t� 
� f
x� t
y � x���

Observe 
������ is equivalent to

	
t� � 	
�� � t
	
��� 	
����

an inquality that is certainly valid if 	 is convex on the interval ��� ��� Hence
to prove 
������ it su�ces to prove 	��
t� � � for all � � t � �� However�
Proposition ����	 implies

	��
t� � hy � x�H
x� t
y � x��
y � x�i � ��

the inequality because H
x� t
y � x�� is psd�

The proof that f is strictly convex if the Hessian is everywhere pd on
Df is similar and hence is left to the reader�

To conclude the proof� it su�ces to show that if H
x� is not psd for some
x then f is not convex� If H
x� is not psd then H
x� has an eigenvector
v with negative eigenvalue �� To show f is not convex� it su�ces to show
the functional 	
t� 
� f
x � tv� is not convex� To show 	 is not convex�
it su�ces to show 	��
�� � �� This is straightforward� again relying on
Proposition ����	� �
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Earlier in the notes it was asserted that� roughly speaking� the gradient
g
x� points in the direction for which the functional output increases the
fastest per unit distance travelled� and the magnitude kg
x�k equals the
amount the functional will change per unit distance travelled in that direc�
tion� Proposition ����	 provides the means to make this rigorous
 Choose
an arbitrary direction v of unit length� The initial rate of change in the
output of f as one moves from x to x � v in unit time is given by 	�
��
where

	
t� 
� f
x� tv��

Note Proposition ����	 implies

	�
�� � hg
x�� vi
������

and hence� by Cauchy�Schwarz and kvk � �� we have

�kg
x�k � 	�
�� � kg
x�k�
So the initial rate of change cannot exceed kg
x�k in magnitude� regardless
of which direction v of unit length is chosen� However� assuming g
x� �� ��
if one chooses the direction

v �
�

kg
x�kg
x��


������ implies 	�
�� � kg
x�k�
We mention that a point z minimizes a convex functional f i� g
z� �

�� 
For the �if�� assume g
z� � �� For y 	 Df � consider the univariate
functional 	
t� 
� f
z � t
y � z��� By Proposition ����	� 	�
�� � �� Since
	 is convex� we know from univariate Calculus that � minimizes 	� In
particular� 	
�� � 	
��� that is� f
z� � f
y�� For the �only if�� assume
g
z� �� � and consider the discussion of the preceding paragraph��

As with the two preceding sections� we close this one with a discussion
of subspaces�

If L is a subspace of �n and Df 
 L �� �� we know the gradient of f jL
to be PLg� Thus� z 	 L solves the constrained optimization problem

min f
x�
s�t� x 	 L

i� PLg
z� � �� that is� i� g
z� is orthogonal to L� In particular� if L is the
nullspace of a linear operator A then z solves the optimization problem i�
g
z� � A�y for some y� Likewise when L is replaced by a translate of L�
that is� when L is replaced by an a�ne space v � L for some vector v� We
record this in the following proposition�
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Proposition ����� If f is convex and A is a linear operator then z 	 Df

solves the linearly�constrained optimization problem

min f
x�
s�t� Ax � b

i� Az � b and g
z� � A�y for some y�

��� Fundamental Theorems of Calculus

We continue to assume f 	 C� and Df is an open� convex set�

The following theorem generalizes the Fundamental Theorem of Calcu�
lus�

Theorem ����� If x� y 	 Df then

f
y�� f
x� �

Z �

�

hg
x� t
y � x��� y � xi dt�

Proof� Consider the univariate functional 	
t� 
� f
x � t
y � x��� The
fundamental theorem of Calculus asserts

	
��� 	
�� �

Z �

�

	�
t� dt�

Since 	
�� � f
y�� 	
�� � f
x� and� by Proposition ����	�

	�
t� � hg
x� t
y � x��� y � xi�
the proof is complete� �

In a similar vein� we have the following proposition�

Proposition ����� If x� y 	 Df then

f
y� � f
x� � hg
x�� y � xi
������

�

Z �

�

hg
x� t
y � x�� � g
x�� y � xi dt

and
f
y� � f
x� � hg
x�� y � xi� �

� hy � x�H
x�
y � x�i
������

�

Z �

�

Z t

�

hy � x� �H
x � s
y � x�� �H
x��
y � x�i ds dt�
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Proof� Again considering the univariate functional 	
t� 
� f
x� t
y�x���
the Fundamental Theorem of Calculus implies

	
�� � 	
�� � 	�
�� �
Z �

�

	�
t�� 	�
�� dt
������

and

	
�� � 	
�� � 	�
�� � �
�	

��
�� �
Z �

�

Z t

�

	��
s�� 	��
�� ds dt�
������

Using Proposition ����	 to make the obvious substitutions� 
������ yields

������ whereas 
������ yields 
������� �

Proposition ����	 provides the means to bound the error in the �rst and
second order approximations of f �

Corollary ����� If x� y 	 Df then

jf
y�� f
x�� hg
x�� y � xij

� ky � xk
Z �

�

kg
x� t
y � x�� � g
x�k dt
and

jf
y�� f
x�� hg
x�� y � xi � �
� hy � x�H
x�
y � x�ij

� ky � xk�
Z �

�

Z t

�

kH
x� s
y � x���H
x�k ds dt�

Relying on continuity of g and H � observe that the error in the �rst�
order approximation is o
ky � xk� 
i�e�� tends to zero faster than ky � xk��
whereas the error in the second�order approximation is o
ky � xk���

Theorem ����� gives a fundamental theorem of Calculus for a functional
f � It will be necessary to have an analogous theorem for g� a theorem which
expresses the di�erence g
y��g
x� as an integral involving the Hessian� To
keep our development coordinate�free� we introduce the following de�nition


The univariate function t 
� v
t� 	 �n� with domain �a� b�� is
said to be integrable if there exists a vector u such that

hu�wi �
Z b

a

hv
t�� wi dt for all w 	 �n�

If it exists� the vector u is uniquely determined 
as is not di�cult
to prove� and is called the integral of the function v
t�� One uses

the notation
R b
a
v
t� dt to represent this vector�
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Although the de�nition of the integral is phrased in terms of the inner
product h � i� it is independent of the inner product� For if u is the integral
as de�ned by h � i and if S is pd then for all vectors w�

hu�wiS � hu� Swi

�

Z b

a

hv
t�� Swi dt

�

Z b

a

hv
t�� wiS dt�

Following are two useful� elementary propositions�

Proposition ����� If the univariate function t 
� v
t� 	 �n� with domain
�a� b�� is integrable then

k
Z b

a

v
t� dtk �
Z b

a

kv
t�k dt�

Proof� Let u 
�
R b
a v
t� dt� By de�nition of the integral� for all w we have

hu�wi �
Z b

a

hv
t�� wi dt�

In particular� choosing w � u gives

kuk� �
Z b

a

hv
t�� ui dt
���� �

However� Z b

a

hv
t�� ui dt � j
Z b

a

hv
t�� ui dtj

�
Z b

a

jhv
t�� uij dt

�
Z b

a

kv
t�k kuk dt

� kuk
Z b

a

kv
t�k dt�
�������

Combining 
���� � and 
������� gives

kuk� � kuk
Z b

a

kv
t�k dt�
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Since kuk � k R b
a
v
t� dtk� the proof is complete� �

Proposition ������ If the univariate function t 
� v
t� 	 �n� with do�
main �a� b�� is integrable and if A 
 �n � �m is a linear operator then the
function t 
� Av
t� is integrable andZ b

a

Av
t� dt � A

Z b

a

v
t� dt�

Proof� Observe that for all w 	 �m we have

hA
Z b

a

v
t� dt� wi � h
Z b

a

v
t� dt� A�wi

�

Z b

a

hv
t�� A�wi dt

�

Z b

a

hAv
t�� wi dt�

where the second equality is by de�nition of
R b
a v
t� dt� �

Next is the fundamental theorem of Calculus for the gradient�

Theorem ������ If x� y 	 Df then

g
y�� g
x� �

Z �

�

H
x� t
y � x��
y � x� dt�

Proof� By de�nition of the integral� we wish to prove that for all w�

hg
y�� g
x�� wi �
Z �

�

hH
x� t
y � x��
y � x�� wi dt�
�������

Fix arbitrary w and consider the functional

	
t� 
� hg
x� t
y � x��� wi�
The Fundamental Theorem of Calculus asserts

	
��� 	
�� �

Z �

�

	�
t� dt

which� by de�nition of 	� is equivalent to

hg
y�� g
x�� wi �
Z �

�

	�
t� dt�
�������
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Comparing 
������� with 
�������� we see that to prove 
������� it su�ces
to show for arbitrary � � t � � that

	�
t� � hH
u�
y � x�� wi
�������

where

u 
� x� t
y � x��

Towards proving 
�������� recall that H
u� is the unique operator satis�
fying

� � lim
k�uk��

kg
u��u�� g
u��H
u��uk
k�uk �
�������

Thinking of �u as being s
y�x� where s �� �� it follows from 
������� that

� � lim
s��

kg
u� s
y � x�� � g
u�� sH
u�
y � x�k
s

�
�������

Since� by Cauchy�Schwarz�

kg
u� s
y � x�� � g
u�� sH
u�
y � x�k kwk

� jhg
u� s
y � x�� � g
u�� sH
u�
y � x�� wij�

������� implies

� � lim
s��

hg
u� s
y � x��� g
u�� sH
u�
y � x�� wi
s

�

Since

	
t� s� � hg
u� s
y � x��� wi and 	
t� � hg
u�� wi�
we thus have

� � lim
s��

	
t� s�� 	
t�� shH
u�
y � x�� wi
s

from which it is immediate that hH
u�
y�x�� wi � 	�
t�� Thus� 
������� is
established and the proof is complete� �

Proposition ������ If x� y 	 Df then

g
y� � g
x� �H
x�
y � x� �

Z �

�

�H
x� t
y � x�� �H
x��
y � x� dt�
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Proof� A simple consequence of Theorem �����	 andZ �

�

H
x�
y � x� dt � H
x�
y � x��

an identity which is trivially veri�ed� �

Corollary �����	 If x� y 	 Df then

kg
y�� g
x��H
x�
y � x�k � ky � xk
Z �

�

kH
x� t
y � x���H
x�k dt�
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��� Newton�s Method

In optimization� Newton�s method is an algorithm for minimizing func�
tionals� The idea behind the algorithm is simple
 Given a point x in the
domain of a functional f � where f is to be minimized� one replaces f by
the second�order approximation at x and minimizes the approximation to
obtain a new point x�� One iterates this procedure with x� in place of x�
and so on� generating a sequence of points which� under certain conditions�
converges rapidly to a minimizer of f �

For x 	 Df � we denote the second�order � or �quadratic� � approxima�
tion at x by

qx
y� 
� f
x� � hg
x�� y � xi� �
� hy � x�H
x�
y � x�i�

The domain of qx is all of �n�

Proposition ��
�� The gradient at y of qx is g
x� �H
x�
y � x� and the
Hessian is H
x� �regardless of y��

Proof� Using the self�adjointness of H
x�� is easily established that

qx
y ��y�� qx
y�� hg
x� �H
x�
y � x���yi � �
� h�y�H
x��yi�

Proving the gradient is as asserted is thus equivalent to proving

lim
k�yk��

h�y�H
x��yi
k�yk � ��

an easily established identity�

Having proven the gradient is as asserted� it is a trivial to prove the
Hessian is as asserted� �

Henceforth� assume H
x� is pd� Then qx is strictly convex and hence is
minimized by the point x� satisfying g
x� �H
x�
x� � x� � �� that is� qx
is minimized by the point

x� 
� x�H
x���g
x��

The �Newton�step at x� is de�ned to be the di�erence

n
x� 
� x� � x � �H
x���g
x��

Newton�s method steps from x to x� n
x��

We know the second�order approximation is independent of the inner
product� Consequently� so is Newton�s method� More explicitly� in the
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inner product h � iS � the gradient of f at x is S��g
x�� the Hessian is
S��H
x�� and so the Newton step is

�
S��H
x����S��g
x� � �H
x���g
x��

The Newton step is unchanged�

The following theorem is the main tool for analyzing the progress of
Newton�s method�

Theorem ��
�� If z minimizes f and H
x� is invertible then

kx� � zk � kx� zkkH
x���k
Z �

�

kH
x� t
z � x���H
x�k dt�

Proof� Noting g
z� � �� we have

kx� � zk � kx� z �H
x���g
x�k
� kx� z �H
x���
g
z�� g
x��k

� kx� z �H
x���
Z �

�

H
x� t
z � x��
z � x�dtk

� kH
x���
Z �

�

�H
x� t
z � x���H
x��
z � x� dtk

� kx� zkkH
x���k
Z �

�

kH
x� t
z � x���H
x�k dt�
�

Invoking the assumed continuity of the Hessian� the theorem is seen to
imply that if H
z� is invertible and x is su�ciently close to z then x� will
be closer to z than is x�

Now we present a brief discussion of Newton�s method and subspaces�
as will be important when we consider applications of ipm theory to opti�
mization problems having linear equations among the constraints� Assume
L is a subspace of �n and x 	 L
Df � Let njL
x� denote the Newton step
for f jL at x� Since the Hessian of f jL at x is PLH
x� and the gradient is
PLg
x�� the Newton step njL
x� is the vector in L solving

PLH
x�njL
x� � �PLg
x��
that is� njL
x� is the vector in L for which H
x�njL
x��g
x� is orthogonal
to L� In particular� if L is the nullspace of a linear operator A 
 �n � �m
then njL
x� is the vector in �n for which there exists y 	 �m satisfying

H
x�njL
x� � g
x� � A�y
AnjL
x� � ��
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Computing njL
x� 
and y� can thus be accomplished by solving a system
of m� n equations in m� n variables�

If H
x��� is readily computed 
as it is for functionals f used in ipm�s��
the size of the system of linear equations to be solved can easily be reduced
to m variables� One solves the linear system

AH
x���A�y � AH
x���g
x�

and then computes

njL
x� � H
x���
A�y � g
x���

In closing this section we remark that of course the error bound given by
Theorem ����	 applies to f jL if z minimizes f jL� x� 
� x�njL
x�� and the
Hessians for f are replaced by Hessians for f jL� In fact� the Hessians need
not be replaced by the Hessians for f jL� To verify the replacement need
not be done� one notes� for example� that because H jL
x� � PLH
x�PL�
we have

kH jL
x���k � ����� � ���� � kH
x���k�
where ���� ��� is the smallest eigenvalue of the pd operator H jL
x�� H
x��
respectively�
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Chapter �

Basic Interior�Point

Method Theory

Throughout this chapter� unless otherwise stated� f refers to a functional
having at least the following properties
 Df is open and convex� f 	 C��
H
x� is pd for all x 	 Df � In particular� f is strictly convex�

��� Intrinsic Inner Products

The functional f gives rise to a family of inner products� h � iH�x�� an
inner product for each point x 	 Df � These inner products vary continu�
ously with x� In particular� given 
 � �� there exists a neighborhood of x
consisting of points y with the property that for all vectors v �� ��

�� 
 �
kvkH�y�

kvkH�x�
� � � 
�

We often refer to the inner product h � iH�x� as the �local inner product

at x���

In the inner product h � iH�x�� the gradient at y is H
x���g
y� and
the Hessian is H
x���H
y�� In particular� the gradient at x is �n
x�� the
negative of the Newton�step� and the Hessian is I � the identity� Thus� in
the local inner product� Newton�s method coincides with the �method of
steepest descent�� i�e�� Newton�s method coincides with the algorithm which
attempts to minimize f by moving in the direction given by the negative of
the gradient� 
Whereas Newton�s method is independent of inner products�
the method of steepest descent is not independent because gradients are
not independent��

	�
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It appears from our de�nition that the local inner product potentially
depends on the reference inner product h � i because the Hessian H
x� is
w�r�t� that inner product� In fact� the local inner product is independent of
the reference inner product� For if the reference inner product is changed
to h � iS � and hence the Hessian is changed to S��H
x�� the resulting local
inner product is

hu� S��H
x�viS � hu� SS��H
x�vi � hu�H
x�vi�

that is� the local inner product is unchanged�

The independence of the local inner products from the reference inner
product shows the local inner products to be intrinsic to the functional
f � To highlight the independence of the local products from any reference
inner product� we adopt notation which avoids a reference� We denote the
local inner product at x by h � ix� Let k kx denote the induced norm�
For y 	 Df � let gx
y� denote the gradient at y and let Hx
y� denote the
Hessian� Thus� gx
x� � �n
x� and Hx
x� � I � If A 
 �n � �m is a linear
operator� let A�x denotes its adjoint w�r�t� h � ix� 
Of course the adjoint
also depends on the inner product on �m� That inner product will always
be �xed but arbitrary� unlike the intrinsic inner products which vary with
x and are not arbitrary� depending on f ��

The reader should be especially aware that we use gx
x� and �n
x�
interchangably� depending on context�

A miniscule amount of the ipm literature is written in terms of the
local inner products� Rather� in much of the literature� only a reference
inner product is explicit� say� the dot�product� There� the proofs are done
by manipulating operators built from Hessians� operators like H
x���H
y�
and AH
x���AT � operators we recognize as being Hx
y� and AA�x� An
advantage to working in the local inner products is that the underlying
geometry becomes evident and� consequently� the operator manipulations
in the proofs become less mysterious�

Observe that in the local inner product� the quadratic approximation
of f at x is

qx
y� � f
x�� hn
x�� y � xix � �
�ky � xk�x�

and its error in approximating f
y� 
Corollary ������ is no worse than

ky � xk�x
Z �

�

Z t

�

kI �Hx
x� s
y � x��kx ds dt

where the latter norm is the operator norm induced by the local norm�
Similarly� the progress made by Newton�s method towards approximating
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a minimizer z 
Theorem ����	� is captured by the inequality

kx� � zkx � kx� zkx
Z �

�

kI �Hx
x� t
z � x��kx dt�

Assume L is a subspace of �n and x 	 L 
 Df � Let PL�x denote the
operator projecting �n orthogonally onto L� orthogonal w�r�t� h � ix� In
the inner product obtained by restricting h � ix to L� the Hessian of f jL at
x is

PL�xHx
x� � PL�x � I 
the last equality is valid on L� not �n��

Consequently� the local inner product on L induced by f jL is precisely the
restriction of h � ix to L� Letting gjL�x denote the gradient of f jL w�r�t� the
local inner product on L� we thus have

njL
x� � �gjL�x
x� � �PL�xgx
x� � PL�xn
x��

That is� in the local inner product� the Newton step for f jL is the orthogonal
projection of the Newton step for f �

If L is the nullspace of a surjective linear operator A� the relation

njL
x� � PL�xn
x� � �I �A�x
AA
�
x�
��A�n
x�

provides the means to compute njL
x� from n
x�
 One solves the linear
system

AA�xy � �An
x�
and then computes

njL
x� � A�xy � n
x��

Expressed in terms of an arbitrary inner product h � i� the equations become

AH
x���A�y � AH
x���g
x� and njL
x� � H
x����A�y � g
x���

precisely the equations we arrived at in !��� by di�erent reasoning�

��� Self�Concordant Functionals

Let Bx
y� r� denote the open ball of radius r centered at y� where radius is
measured w�r�t� k kx� Let "Bx
y� r� denote the closed ball�
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A functional f is said to be �strongly non�degenerate� self�concordant
if for all x 	 Df we have Bx
x� �� � Df � and if whenever
y 	 Bx
x� �� we have

�� ky � xkx � kvky
kvkx �

�

�� ky � xkx for all v �� ��

Let SC denote the family of functionals thus de�ned�

Self�concordant functionals play a central role in the general theory of
ipm�s� as was �rst made evident in the pioneering work of Nesterov and
Nemirovskii���� Although our de�nition of strongly non�degenerate self�
concordant functionals is on the surface quite di�erent from the original
de�nition given in ���� it is in fact equivalent except in assuming f 	 C� as
opposed to the ever�so�slightly stronger assumption in ��� that f is thrice
di�erentiable� The equivalence is shown in x	��� where it is also shown that
our de�nition can be �relaxed� in a few ways without altering the family
of functionals so�de�ned� for example� the leftmost inequality involving
kvky�kvkx is redundant�

The term �strongly� refers to the requirement Bx
x� �� � Df � The
term �non�degenerate� refers to the Hessians being pd� thereby giving the
local inner products� The de�nition of self�concordant functionals � not
necessarily strongly non�degenerate � is a natural relaxation of the above
de�nition� only requiring the Hessians to be psd� However� it is the strongly
non�degenerate self�concordant functionals that play the central role in ipm
theory and so the relaxation of the de�nition is best postponed until the
reader has in mind a general outline of the theory�

As the parentheses in our de�nition indicate� for brevity we typically
refer to strongly non�degenerate self�concordant functionals simply as �self�
concordant functionals��

If a linear functional is added to a self�concordant functional � x 
�
hc� xi � f
x� � the resulting functional is self�concordant because the Hes�
sians are una�ected� Similarly� if one restricts a self�concordant functional
f to a subspace L 
or to a translation of the subspace�� one obtains a
self�concordant functional� a simple consequence of the local norms for f jL
being the restrictions of the local norms for f �

The primordial self�concordant barrier functional is the �logarithmic
barrier function for the non�negative orthant� having domain Df 
� �n��

i�e�� the strictly positive orthant�� It is de�ned by f
x� 
� �Pj ln xj �
Since the coordinates of vectors play such a prominent role in the de�nition
of this functional� to prove self�concordancy� it is natural to use the dot
product as a reference inner product� Expressing the Hessian H
x� as a
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matrix� one sees it is diagonal with jth diagonal entry ��x�j � Consequently�
y 	 Bx
x� �� is equivalent to

X
j

�
yj � xj
xj

��
� ��

an inequality which is easily seen to imply y 	 Df as required by the
de�nition of self�concordancy� Moreover� assuming y 	 Bx
x� �� and v is an
arbitrary vector� we have

kvk�y �
X
j

�
vj
yj

��

�
X
j

�
vj
xj

���
xj
yj

��

� kvk�xmax
j

�
xj
yj

��
�

Since

xj
yj

�

�
� �

yj � xj
xj

���

�

�X
k��

�
xj � yj
xj

�k

�
�X
k��

ky � xkkx

�
�

�� ky � xkx �

the rightmost inequality on kvky�kvkx in the de�nition of self�concordancy
is proven� The leftmost inequality is proven similarly�

For an LP
min c � x
s�t� Ax � b

x � ��

the most important self�concordant functionals are those of the form

�c � x� f jL
x��
where � � � is a �xed constant� f is the logarithmic barrier function for
the non�negative orthant� and L 
� fx 
 Ax � bg�
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Another important self�concordant functional is the �logarithmic barrier
function for the cone of pd matrices� in Sn�n� This is the functional de�ned
by f
X� 
� � ln det
X�� having domain Sn�n�� � To prove self�concordancy�
it is natural to rely on the trace product� for which we know H
X��X �
X��
�X�X��� For arbitrary Y 	 Sn�n� keeping in mind that the trace of
a matrix depends only on the eigenvalues� we have

kY �Xk�X � trace

Y �X�X��
Y �X�X���

� trace
X����
Y �X�X��
Y �X�X�����

�
X
j


�� �j�
��

where �� � � � � � �n are the eigenvalues of X����Y X����� Assuming kY �
XkX � �� all of the values �j are thus positive� and hence X����Y X����

is pd� which is easily seen to be equivalent to Y being pd� Consequently�
if kY � XkX � � then Y 	 Df � as required by the de�nition of self�
concordancy�

Assuming Y 	 BX
X� �� and letting Q be an orthogonal matrix for
which

QTX����Y X����Q � �

is diagonal� for arbitrary V 	 Sn�n we have

kV k�Y � trace
V Y ��V Y ���

� trace
X����V Y ��V Y ��X����

� trace
�
X����V X�����
X���Y ��X�������

� trace
X����V X�����
Q���QT ����

� trace
�
QTX����V X����Q�������

� �
��
�

trace
�QTX����V X����Q���

� �
��
�

trace
�X����V X�������

� �
��
�

trace
V X��V X���

� �
��
�

kV k�X �

Since

�
��

� 
� � 
�� � �����

�
�X
k��


�� ���
k
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�
�X
k��




nX
i��


�� �i�
��k��

�

�X
k��

trace
�X����
X � Y �X�������k��

�

�X
k��

trace

X � Y �X��
X � Y �X���k��

�

�X
k��

kY �XkkX

�
�

�� kY �XkX �

the rightmost inequality on kV kY �kV kX in the de�nition of self�concordancy
is proven� The leftmost inequality is proven similarly�

For an SDP

min C �X
s�t� A
X� � b

X � ��

where A 
 Sn�n � �m is a linear operator� the most important self�
concordant functionals are those of the form

�C �X � f jL
X��

where � � � is a �xed constant� f is the logarithmic barrier function for
the cone of pd matrices� and L 
� fX 
 A
X� � bg�

LP can be viewed as a special case of SDP by identifying� in the ob�
vious manner� �n with the subspace in Sn�n consisting of diagonal ma�
trices� Then the logarithmic barrier function for the pd cone restricts to
the logarithmic barrier function for the non�negative orthant� Thus� we
were redundant in giving a proof that the logarithmic barrier function for
the non�negative orthant is indeed a self�concordant functional� The in�
sight gained from the simplicity of the non�negative orthant justi�es the
redundancy� In x	�� we show that the self�conjugacy of each of these two
logarithmic barrier functions is a simple consequence of the original de�ni�
tion of self�concordancy due to Nesterov and Nemirovskii���� 
The original
de�nition is not particularly well�suited for a transparent development of
the theory� but it is well�suited for establishing self�conjugacy of logarithmic
barrier functions��



�� CHAPTER �� BASIC INTERIOR�POINT METHOD THEORY

To apply our de�nition of self�concordancy in developing the theory� it
is useful to rephrase it in terms of Hessians� Speci�cally� since

sup
v

kvk�y
kvk�x

� sup
v

hv�Hx
y�vix
kvk�x

� kHx
y�kx

and� similarly�

inf
v

kvk�y
kvk�x

� ��kHx
y�
��kx�

the pair of inequalities in the de�nition is equivalent to the pair

kHx
y�kx� kHx
y�
��kx � �


�� ky � xkx�� �
	�	���

In turn� since

kI �Hx
y�kx � maxfkHx
y�kx � �� �� ��kHx
y�
��kxg

and� similarly�

kI �Hx
y�
��kx � maxfkHx
y�

��kx � �� �� ��kHx
y�kxg�
the inequalities 
	�	�	� imply

kI �Hx
y�kx� kI �Hx
y�
��kx � �


�� ky � xkx�� � ��
	�	�	�

Recalling that Hx
x� � I � it is evident from 
	�	�	� that to assume self�
concordancy is essentially to assume Lipschitz continuity of the Hessians
w�r�t� the operator norms induced by the local norms�

An aside for those familar with third di�erentials
 Dividing the quan�
tities on the left and right of 
	�	�	� by ky � xkx and taking the limits
supremum as y tends to x� suggests when f is thrice di�erentiable that self�
concordancy implies the local norm of the third di�erential to be bounded
by �	�� In fact� the converse is also true� that is� a bound of �	� on the
local norm of the third di�erential for all x 	 Df � together with the require�
ment that the local unit balls be contained in the functional domain� imply
self�concordancy� as we shall see in x	��� Indeed� the original de�nition of
self�concordancy in ��� is phrased as a bound on the third di�erential�

The following proposition and theorem display the simplifying role the
conditions of self�concordancy play in analysis� The proposition bounds the
error of the quadratic approximation� and the theorem guarantees progress
made by Newton�s method� Note the elegance of the bounds when com�
pared to the more general Corollary ����� and Theorem ����	�



���� SELF�CONCORDANT FUNCTIONALS ��

Proposition ����� If f 	 SC� x 	 Df and y 	 Bx
x� �� then

jf
y�� qx
y�j � ky � xk�x
�
�� ky � xkx� �

Proof� Using Corollary ������ we have

jf
y�� qx
y�j � ky � xk�x
Z �

�

Z t

�

kI �Hx
x� s
y � x��kx ds dt

� ky � xk�x
Z �

�

Z t

�

�


�� sky � xkx�� � � ds dt

� ky � xk�x
Z �

�

t�

�� tky � xkx dt

� ky � xk�x
�� ky � xkx

Z �

�

t� dt

�
ky � xk�x

�
�� ky � xkx� �

�

Theorem ����� Assume f 	 SC and x 	 Df � If z minimizes f and
z 	 Bx
x� �� then

kx� � zkx � kx� zk�x
�� kx� zkx �

Proof� Using Theorem ����	� simply observe

kx� � zkx � kx� zkx
Z �

�

kI �Hx
x � t
z � x��kx dt

� kx� zkx
Z �

�

�


�� tky � xkx�� � � dt

�
kx� zk�x

�� kx� zkx �

�

The use of the local norm k kx in Theorem 	�	�� to measure the dif�
ference x� � z makes for a particularly simple proof but does not result
in a theorem immediately ready for induction� At x�� the containment
z 	 Bx�
x�� �� is needed to apply the theorem� i�e�� a bound on kx��zkx�
rather than a bound on kx� � zkx� Given that the de�nition of self�
concordancy restricts the norms to vary nicely� it is no surprise that the
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theorem can easily be transformed into a statement ready for induction�
For example� substituting into the theorem the inequalities

kx� � zkz
�� kx� zkz� � kx� � zkx
and

kx� zkz
�� kx� zkz� � kx� zkx � kx� zkz
�� kx� zkz �

as are immediate from the de�nition of self�concordancy when x 	 Bz
z� ���
we �nd as a corollary to the theorem that if kx� zkz � �

� then

kx� � zkz � kx� zk�z

�� kx� zkz��
�� 	kx� zkz� �
	�	���

Consequently� if one assumes kx� zkz � �
	 then

kx� � zkz � �
kx� zkz�� 
� �
	 � so x� 	 Df ��

and� inductively�

kxi � zkz � �
	 
�kx� zkz��i �
	�	���

where x� � x�� x�� � � � is the sequence generated by Newton�s method� The
bound 
	�	��� makes apparent the rapid convergence of Newton�s method�

The most elegant proofs of key results in the ipm theory are obtained by
phrasing the analysis in terms of kn
x�kx rather than in terms of kz � xkx
as was done in Theorem 	�	��� In this regard� the following theorem is
especially useful�

Theorem ����� Assume f 	 SC� If kn
x�kx � � then

kn
x��kx� �
� kn
x�kx
�� kn
x�kx

��
�

Proof� Assuming kn
x�kx � �� we have

kn
x��k�x� � kHx
x��
��gx
x��k�x�

� hgx
x��� Hx
x��
��gx
x��ix

� kHx
x��
��kxkgx
x��k�x�

Since by 
	�	��� we have

kHx
x��
��kx � �


�� kn
x�kx�� �
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we thus have

kn
x��kx� �
� kgx
x��kx
�� kn
x�kx

��
�

The proof is completed by observing

kgx
x��kx � k
Z �

�

�Hx
x� t n
x�� � I �n
x� dtkx

� kn
x�kx
Z �

�

kI �Hx
x� t n
x��kx dt

� kn
x�kx
Z �

�

�


�� tkn
x�kx�� � � dt

�
kn
x�k�x

�� kn
x�kx �

�

A rather unsatisfying� but unavoidable� aspect of general convergence
results for Newton�s method is an assumption of x being su�ciently close
to a minimizer z� where �su�ciently close� depends explicitly on z� For
general functionals� it is impossible to verify that x is indeed su�ciently
close to z without knowing z� For self�concordant functionals� we know
that the explicit dependence on z of what constitutes �su�ciently close�
can take a particularly simple form 
e�g�� we know x is su�ciently close to
z if kx � zkz � �

	 �� albeit a form which appears still to require knowing
z� The next proposition provides means to verify proximity to a minimizer
without knowing the minimizer�

Proposition ����� Assume f 	 SC� If kn
x�kx � �
	 then f has a mini�

mizer z and

kz � x�kx � �kn
x�k�x

�� kn
x�kx�� �

�So� kz � xkx � kn
x�kx � �kn
x�k�x�
�� kn
x�kx����

Proof� We �rst prove a weaker result� namely� if kn
x�kx � �

 then f has

a minimizer z and kx� zkx � �kn
x�kx�
Proposition 	�	�� implies that for all y 	 "Bx
x�

�
� ��

jf
y�� qx
y�j � �
�ky � xk�x

and hence
f
y� � f
x�� kn
x�kxky � xkx � �

�ky � xk�x�
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It follows that if kn
x�kx � �

 and ky � xkx � �kn
x�kx� then f
y� � f
x��

However� it is easily proven that whenever a continuous� convex functional
f satis�es f
y� � f
x� for all y on the boundary of a compact� convex set
S and some x in the interior of S� then f has a minimizer in S� Thus� if
kn
x�kx � �


 � f has a minimizer z and kx� zkx � �kn
x�kx�
Now assume kn
x�kx � �

	 � Theorem 	�	�� implies

kn
x��kx� �
� kn
x�kx
�� kn
x�kx

��
� �


 �

Applying the conclusion of the preceding paragraph to x� rather than to
x� we �nd that f has a minimizer z and kz � x�kx� � �kn
x��kx� � Thus�

kz � x�kx � kz � x�kx�
�� kn
x�kx

� �kn
x��kx�
�� kn
x�kx

� �kn
x�k�x

�� kn
x�kx�� �

�

We noted that adding a linear functional to a self�concordant functional
yields a self�concordant functional� The next two propositions demonstrate
other relevant ways for constructing self�concordant functionals�

Proposition ����	 The set SC is closed under addition� that is� if f� and
f� are self�concordant functionals satisfying Df� 
 Df� �� � then f� � f� 

Df� 
Df� � � is a self�concordant functional�

Proof� Let f 
� f� � f�� Assume x 	 Df � For all v�

hv�H
x�vi � hv�H�
x�vi � hv�H�
x�vi�
that is

kvk�x � kvk�x�� � kvk�x���
Hence�

Bx
x� �� � Bx��
x� �� 
 Bx��
x� �� � Df� 
Df� � Df �

as required by the de�nition of self�concordancy�

Note that whenever a� b� c� d are positive numbers�

minfac � bdg � a�b
c�d � maxfac � bdg�
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Consequently� if y 	 Df �

min
i

kvk�y�i
kvk�x�i

� kvk�y
kvk�x

� max
i

kvk�y�i
kvk�x�i

�

Thus� if ky � xkx � � 
and hence ky � xkx�i � ���

kvky
kvkx � max

i

�

�� ky � xkx�i �
�

�� ky � xkx �

establishing the upper bound on kvky�kvkx in the de�ntion of self�concordancy�
One establishes the lower bound similarly� �

Proposition ������ If f 	 SC� Df � �m and A 
 �n � �m is an in�
jective linear operator then x 
� f
Ax � b� is a self�concordant functional�
assuming the domain fx 
 Ax� b 	 Dfg is non�empty�

Proof� Denote the functional x 
� f
Ax � b� by f �� Assuming x 	 Df � �
one easily veri�es from the identity H �
x� � A�H
Ax � b�A that H �
x� is
pd and that kvk�x � kAvkAx�b for all v� In particular�

AB�x
x� ��� b � BAx�b
Ax � b� �� � Df

and thus
B�x
x� �� � fy 
 Ay � b 	 Dfg � Df � �

as required by the de�nition of self�concordancy�

If ky � xk�x � � � hence kA
y � x�kx � � � and v �� � then

kvk�y
kvk�x

�
kAvkAy�b
kAvkAx�b

� �

�� kA
y � x�kAx�b
�

�

�� ky � xk�x
�

establishing the upper bound on kvky�kvkx in the de�ntion of self�concordancy�
One establishes the lower bound similarly� �

Applying Proposition 	�	��� with the logarithmic barrier function for
the non�negative orthant in �m� we obtain the self�concordancy of the func�
tional

x 
� �
X
i

ln
ai � x� bi�
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whose domain consists of the points x satisfying the strict linear inequality
constraints ai �x � bi� This self�concordant functional is important for LP�s
with constraints written in the form Ax � b� It� too� is referred to as a
�logarithmic barrier function��

To provide the reader with another 
logarithmic barrier� functional with
which to apply the above propositions� we mention that x 
� � ln
��kxk��
is a self�concordant functional with domain the open unit ball� 
Veri�cation
of self�concordancy is made in x	���� Given an ellipsoid fx 
 kAxk � rg� it
then follows from Proposition 	�	��� that

x 
� � ln
r� � kAxk��
is a self�concordant functional whose domain is the ellipsoid� yet another
logarithmic barrier function� For an intersection of ellipsoids� one simply
adds the functionals for the individual ellipsoids� as justi�ed by Proposi�
tion 	�	� �

Nesterov and Nemirovskii��� showed that each open� convex set contain�
ing no lines is the domain of a 
strongly non�degenerate� self�concordant
functional� We give a somewhat di�erent proof of this in x���##� Unfortu�
nately� the result is only of theoretical interest� To rely on self�concordant
functionals in devising ipm�s� one must be able to readily compute their
gradients and Hessians� For the self�concordant functionals proven to ex�
ist� one cannot say much more than that the gradients and Hessians exist�
By contrast� the importance of the various logarithmic barrier functions
we have described lies largely in the ease with which their gradients and
Hessians can be computed�

Although the values of continuous convex functionals with bounded do�
mains 
i�e�� bounded w�r�t� any reference norm� are always bounded from
below� they need not have minimizers when the domain is open� Such is
not the case for self�concordant functionals�

Proposition ������ If f 	 SC and the values of f are bounded from below
then f has a minimizer� �In particular� if Df is bounded then f has a
minimizer��

Proof� Assume x satis�es

f
x�� �
��� � inf

y
f
y��

Letting y 
� x� �
�kn�x�kxn
x�� Proposition 	�	�� implies

f
y� � f
x�� �
�kn
x�kx � �

�
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and thus by choice of x�

�
�kn
x�kx � �

�
 �
�
��� �

that is�

kn
x�kx � �
 �
�
 �

�
��� � �

�
	 �

Proposition 	�	�� then implies f to have a minimizer� �

The conclusion of the next proposition is trivially veri�ed for important
self�concordant functionals like those obtained by adding linear functionals
to logarithmic barrier functions� Whereas the de�nition of self�concordancy
plays a useful role in both simplifying and unifying the analysis of New�
ton�s method for many functionals important to ipm�s� it certainly does not
simplify the proof of the property established in the next proposition for
those same functionals� Nonetheless� for the theory it is important that the
property is possessed by all self�concordant functionals�

Proposition ������ Assume f 	 SC and $x 	 �Df � the boundary of Df �
If the sequence fxig � Df converges to $x then lim inf i f
xi� ���

Proof� Adding f to a functional x 
� � ln
 $R � kxk�� where $R � k$xk�
one obtains a self�concordant functional $f for which D �f is bounded and

for which lim inf i $f
xi� � � i� lim inf i f
xi� � �� Consequently� we may
assume Df is bounded�

Assuming Df is bounded� we construct from fxig a sequence fyig � Df

whose limit points lie in �Df and for which

f
yi� � f
xi�� �
�� �

Applying the same construction to the sequence fyig� and so on� we will
thus conclude that if lim inf i f
xi� � � then f assumes arbitrarily small
values� contradicting the lower boundedness of continuous convex function�
als having bounded domains�

Shortly we prove lim inf i kn
xi�kxi � �
� � In particular� for su�ciently

large i� yi 
� xi�
�

�kn�xi�kxi
n
xi� is well�de�ned and� from Proposition 	�	���

f
yi� � f
xi�� �
�� � �

�� � �
��� � f
xi�� �

�� �

Moreover� all limit points of fyig lie in �Df � For otherwise� passing to a
subsequence of fyig if necessary� there exists 
 � � such that B
yi� 
� � Df

for all i� where the ball is with respect to the reference norm� However� since
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yi and xi� 
yi�xi� lie in Df 
because kyi�xikxi � �
� � ��� it then follows

from convexity of Df that B
xi� 
�	� � Df � contradicting xi � $x 	 �Df �

Finally we show lim inf i kn
xi�kxi � �
� � Since Df is bounded� Propo�

sition 	�	��� shows f has a minimizer z� Since Bz
z� �� � Df and xi �
$x 	 �Df � we have lim inf i kxi � zkz � �� Hence� from the de�nition of self�
concordancy� lim inf i kxi � zkxi � �

� � Because f has a most one minimizer�
Proposition 	�	�� then implies lim inf i kn
xi�kxi � �

� � concluding the proof�
�

We close this section with a technical proposition to be called upon
later�

If g
x� � v is a vector su�ciently near g
x�� there exists x � u close
to x such that g
x � u� � g
x� � v� a consequence of H
x� being pd and
hence invertible� It is useful to quantify �near� and �close� when the inner
product is the local inner product� that is� when Hx
x� � I and hence
u � v�

Proposition ������ Assume f 	 SC and x 	 Df � If kvkx � r where

r � �
	 � there exists u 	 "Bx
v�

�r�

���r�� � such that gx
x� u� � gx
x� � v�

Proof� Consider the self�concordant functional

y 
� �hgx
x� � v� yix � f
y��
	�	����

a functional whose local inner products agree with those of f � Note that
a point z� minimizes the functional i� gx
z

�� � gx
x� � v� Under the
assumption of the proposition� we thus wish to show z� exists and u 
� z��x
satis�es u 	 "Bx
v�

�r�

���r�� ��

Since at x� the Newton step for the functional 
	�	���� is v� the as�
sumption kvkx � r allows us to apply Proposition 	�	��� concluding that a

minimizer z� does indeed exist and kx� � 
x� v�kx � �r�

���r�� � �

��� Barrier Functionals

A functional f is said to be a �strongly non�degenerate self�
concordant� barrier functional if f 	 SC and

�f 
� sup
x�Df

kgx
x�k�x ���



���� BARRIER FUNCTIONALS ��

Let SCB denote the family of functionals thus de�ned� We typically refer
to elements of SCB as �barrier functionals��

The de�nition of barrier functionals is phrased in terms of kgx
x�kx
rather than in terms of the identical quantity kn
x�kx because the im�
portance of barrier functionals for ipm�s lies not in applying Newton�s
method to them directly� but rather� in applying Newton�s method to self�
concordant functionals built from them� As mentioned before� for an LP

min c � x
s�t� Ax � b

x � ��

the most important self�concordant functionals are those of the form

�c � x� f jL
x��
	�����

where � � � is a �xed constant� f is the logarithmic barrier function for
the non�negative orthant� and L 
� fx 
 Ax � bg�

When they de�ned barrier functionals� Nesterov and Nemirovskii��� ref�
ered to �f as �the parameter of the barrier f �� Unfortunately� this can be
confused with the phrase �barrier parameter� which predates ��� and refers
to the constant � in 
	������ Consequently� we prefer to call �f the �com�
plexity value of f �� especially because it is the quantity that most often
represents f in the complexity analysis of ipm�s relying on f �

If one restricts a barrier functional f to a subspace L 
or a translation
of a subspace�� one obtains a barrier functional simply because the local
norms for f jL are the restrictions of the local norms for f and

kgjL�x
x�kx � kPL�xgx
x�kx � kgx
x�kx � p

f �

Clearly� �f jL � �f �

The primordial barrier functional is the primordial self�concordant func�
tional� i�e�� the logarithmic barrier function for the non�negative orthant�
f
x� 
� �Pj lnxj � Relying on the dot product� so that g
x� is the vector

with jth entry ��xj and H
x� is the diagonal matrix with jth diagonal entry
��x�j � we have

kgx
x�k�x � hg
x�� H
x���g
x�i � n�

Thus� �f � n�

Now let f denote the logarithmic barrier function for the cone of pd
matrices in Sn�n� f
X� 
� � ln det
X�� Relying on the trace product� we
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have for all X 	 Sn�n�� �

kgX
X�k�X � hg
X�� H
X���g
X�i
� trace
X��XX��X�

� trace
I�

� n�

Thus� �f � n�

Finally� let f denote the logarithmic barrier function for the unit ball in
�n� f
x� 
� � ln
�� kxk�� 
where k k 
� h � i��� for some inner product��
It is not di�cult to verify that for x in the unit ball�

g
x� �
	

�� kxk�x� H
x��x �
	

�� kxk��x�
�hx��xi


�� kxk���x�

and hence�

H
x���g
x� �
�� kxk�
� � kxk�x�

Consequently�

kgx
x�k�x � hg
x�� H
x���g
x�i � 	kxk�
� � kxk� �

It readily follows that �f � �� showing the complexity value need not
depend on the dimension n�

In x	�	 we noted that if a linear functional is added to a self�concordant
functional� the resulting functional is self�concordant because the Hessians
are unchanged� the de�nition of self�concordancy depends on the Hessians
alone� By contrast� adding a linear functional to a barrier functional need
not result in a barrier functional� For example� consider the the univariate
barrier functional x 
� � lnx and the functional x 
� x� lnx�

The set SCB� like SC� is closed under addition�

Proposition ����� If f�� f� 	 SCB and Df� 
Df� �� � then f 
� f��f� 	
SCB �where Df � Df� 
Df�� and �f � �f� � �f� �

Proof� Assume x 	 Df � Let the reference inner product h � i be the local
inner product at x de�ned by f � Thus� I � H
x� � H�
x� � H�
x�� In
particular� H�
x� and H�
x� commute� i�e�� H�
x�H�
x� � H�
x�H�
x��
Consequently� so do H�
x�

��� and H�
x�
����

For brevity� let Hi 
� Hi
x� and gi 
� gi
x� for i � �� 	�
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To prove the inequality in the statement of the proposition� it su�ces
to show

kg� � g�k� � hg�� H��
� g�i� hg�� H��

� g�i�
For� by de�nition� the quantity on the right is bounded by �f� � �f� �

De�ning vi 
� H
����
i gi for i � �� 	� we have

kg� � g�k� � kg�k� � 	hg�� g�i� kg�k�
� hv�� H�v�i� 	hH���

� v�� H
���
� v�i� hv�� H�v�i

� hv�� 
I �H��v�i� 	hH���
� v�� H

���
� v�i� hv�� 
I �H��v�i

� hv�� v�i� hv�� v�i � kH���
� v� �H

���
� v�k�

� hv�� v�i� hv�� v�i
� hg�� H��

� g�i� hg�� H��
� g�i�

�

The set SCB� like SC� is closed under composition with injective linear
maps�

Proposition ����� If f 	 SCB� Df � �m and A 
 �n � �m is an injec�
tive linear operator then x 
� f
Ax� b� is a barrier functional 	 assuming
the domain fx 
 Ax� b 	 Dfg is non�empty 	 and its complexity value does
not exceed �f �

Proof� Assume Ax � b 	 Df � Endow �n with an arbitrary reference
inner product and let the reference inner product on �m be the local inner
product for f at Ax � b� Denoting the functional x 
� f
Ax � b� by f ��
we then have g�
x� � A�g
Ax � b�� H �
x� � A�H
Ax � b�A � A�A and
kg
Ax� b�k� � �f � Thus�

hg�
x�� H �
x���g�
x�i � hg
Ax� b�� A
A�A���A�g
Ax� b�i
� kA
A�A���A�k kg
Ax� b�k�
� �f �


The last inequality is due to the operator being a projection operator�
hence the operator has norm equal to one�� The proposition follows� �

With regards to theory� the following proposition is perhaps the most
useful tool in establishing properties possessed by all barrier functionals�
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Proposition ����� Assume f 	 SCB� If x� y 	 Df then

hg
x�� y � xi � �f �

Proof� We wish to prove 	�
�� � �f where 	 is the univariate functional
de�ned by 	
t� 
� f
x � t
y � x��� In doing so we may assume 	�
�� � �
and hence� by convexity of 	� 	�
t� � � for all t � � in the domain of 	�

Let v
t� 
� x� t
y � x�� Assuming t � � is in the domain of 	�

	��
t�
	�
t��

�
hy � x� y � xiv�t�

hgv�t�
v
t��� y � xi�v�t�
� �

kgv�t�
v
t��k�v�t�
� �

�f

and hence for all s � � in the domain of 	�Z s

�

	��
t�
	�
t��

dt � s

�f
�

Thus�
��
	�
t�

����
s

�

� s

�f
�

that is�

	�
s� � �f	
�
��

�f � s	�
��
�

Consequently� s � �f�	
�
�� is not in the domain of 	� Since s � � is in the

domain� we have � � �f�	
�
��� �

The next proposition implies that for each x in the domain of a barrier
functional� the ball Bx
x� �� is� to within a factor of ��f � �� the largest
among all ellipsoids centered at x which are contained in the domain�

Proposition ����� Assume f 	 SCB� If x� y 	 Df satisfy hg
x�� y�xi � �
then y 	 Bx
x� ��f � ���

Proof� Restricting f to the line through x and y� we may assume f is
univariate� Viewing the line as � with values increasing as one travels from
x to y� the assumption hg
x�� y�xi � � is then equivalent to g
x� � �� i�e��
g
x� is a non�negative number�
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Let v denote the smallest non�negative number for which kgx
x��vkx �
�
	 � Since gx
x� � �� we have kvkx � �

	 � Applying Proposition 	�	���� we
�nd there exists u satisfying

u 	 "Bx
v�
	

 � and kgx
x� u�kx � kgx
x� � vkx � �

	 �

Note kukx � ��

Proposition 	���� implies

�f � hgx
x� u�� y � 
x� u�ix
� hgx
x� � v� y � xix � hgx
x� � v� uix
� �

	ky � xkx � hgx
x� � v� uix�

where the last inequality makes use of gx
x� � v and y�x both being non�
negative� However� since kgx
x� � vkx � �

	 only if v � � 
and hence only if
u � ��� we have

hgx
x� � v� uix � �
	kukx � �

	 �

Thus�

�f �
�
	ky � xkx � �

	 �

from which the proposition is immediate� �

Minimizers of barrier functionals are called analytic centers� The fol�
lowing Corollary gives meaning to the term �center��

Corollary ����
 Assume f 	 SCB� If z is the analytic center for f then

Bz
z� �� � Df � Bz
z� ��f � ���

Proof� Since f 	 SC� the leftmost containment is by assumption� The
rightmost constainment is immediate from Proposition 	���� since g
z� � ��
�

Corollary 	���� suggests that if one was to choose a single inner product
as being especially natural for a barrier functional with bounded domain�
the local inner product at the analytic center would be an appropriate
choice�

Corollary ����� If f 	 SCB then f has an analytic center i� Df is
bounded�

Proof� Immediate from Proposition 	�	��� and Corollary 	����� �



�� CHAPTER �� BASIC INTERIOR�POINT METHOD THEORY

In the complexity analysis of ipm�s� it is desirable to have barrier func�
tionals with small complexity values� However� there is a positive threshold
below which the complexity values of no barrier functionals fall� Nesterov
and Nemirovskii��� prove that �f � � for all f 	 SCB� To understand
why there is indeed a lower bound� assume �f � �

�� for some f 	 SCB�
Proposition 	�	�� then implies f has a 
unique� minimizer z and all x 	 Df

satisfy kx�zkx � ��
�� � However� by choosing x so that in the line L through

x and z� the distance from x to the boundary of Df 
L is smaller than the
distance from x to z� the containment Bx
x� �� � Df implies kx� zkz � ��
a contradiction� Hence �f �

�
�� for all f 	 SCB�

Likewise� by Proposition 	�	��� if f 	 SCB and Df is unbounded �
hence f has no minimizer � then kgx
x�kx � � 
� �

	 for all x 	 Df �
In the unbounded case� Nesterov and Nemirovskii prove the lower bound
kgx
x�kx � � 
� � for all x 	 Df �

It is worth noting that a universal lower bound � as in the preceeding
paragraph implies a lower bound n� � �f for each barrier functional f
whose domain is the non�negative orthant �n��� For let e denote the vector
of all ones and let ej denote the jth unit vector� Consider the univariate
barrier functional fj obtained by restricting f to the line through e in
the direction ej � Let ge denote the gradient of f w�r�t� h � ie and let
gj�e denote the gradient of fj w�r�t� the restricted inner product� Since
Dfj is unbounded� and hence fj does not have an analytic center� it is
readily proven 
without making use of the particular inner product� that
hgj�e
e�� ejie � �� Since gj�e and ej are co�linear 
because Dfj is one�
dimensional�� it follows that

hgj�e
e�� ejie � �kgj�e
e�kekejke�
Noting kejke � � because e� ej �	 Df � we thus have

hgj�e
e�� ejie � �kgj�e
e�ke � ���
Hence�

n� �
X
j

hgj�e
e���ejie

�
X
j

hge
e���ejie

� hge
e�� �� eie
� �f �

the last inequality by Proposition 	�����



���� BARRIER FUNCTIONALS � 

In light of the two preceding paragraphs� we see that with regards to
the complexity value� the logarithmic barrier function for the non�negative
orthant �n�� is the optimal barrier functional having domain �n��� Like�
wise� viewing �n as a subspace of Sn�n� the logarithmic barrier function
for the cone of pd matrices is the optimal barrier functional having that
cone as its domain�

For arbitrary inner products� the bounds kgx
x�kx �
p
�f imply noth�

ing about the quantities kg
x�k� However� the bounds do imply bounds
on the quantities kgy
x�ky for all y 	 Df � This is the subject of the next
proposition� First� a de�nition�

For x in an arbitrary bounded convex set D� a natural way of measur�
ing the relative nearness of x to the boundary of D� in a manner that is
independent of a particular norm� is the quantity known as the symmetry
of D about x� denoted sym
x�D�� This quantity is de�ned in terms of the
set L
x�D� consisting of all lines through x which intersect D in an interval
of positive length� 
If D is lower dimensional� most lines through x will not
be in L
x�D��� If x is an endpoint of L 
 D for some L 	 L
x�D�� de�
�ne sym
x�D� 
� �� Otherwise� for each L 	 L
x�D�� letting r
L� denote
the ratio of the length of the smaller to the larger of the two intervals in
L 
 
D n fxg�� de�ne

sym
x�D� 
� inf
L�L�x�D�

r
L��

Clearly� if D is an ellipsoid centered at x then sym
x�D� � �� �perfect
symmetry�� Corollary 	���� implies that if z is the analytic center for a
barrier functional f then sym
z�Df � � ��
��f � ���

Proposition ����� Assume f 	 SCB� If x 	 Df then for all y 	 Df �

kgy
x�ky �
�
� �

�

sym
x�Df �

�
�f �

Proof� For brevity� let s 
� sym
x�Df �� Assuming x� y 	 Df � note that
w 
� y � 
� � s�
x� y� 	 "Df � the closure of Df � Since By
y� �� � Df and
Df is convex� we thus have

�
��sw � s

��sBy
y� �� � Df �

that is� By
x�
s

��s � � Df � Consequently�

kgy
x�ky � max
v�By�x���

hgy
x�� v � xiy
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� max
v�By�x�

s
��s �

��s
s hgy
x�� v � xiy

� max
v�Df

��s
s hgy
x�� v � xiy

� ��s
s �f �

the last inequality by Proposition 	����� �

At the end of x	�	 we saw that f
xi� � � if f is a self�concordant
functional and fxig converges to a point in the boundary of Df � To close
this section� we present a proposition that indicates the rate at which f
xi�
goes to � is �slow� if f is a barrier functional�

Proposition ����	 Assume f 	 SCB and x 	 Df � If y 	 "Df then for all
� � t � ��

f
y � t
x� y�� � f
x�� �f ln t�

Proof� For s � � let x
s� 
� y � e�s
x � y� and consider the univariate
functional 	
s� 
� f
x
s��� Relying on the chain rule� observe that

	
s� � 	
�� �

Z s

�

	�
t� dt

� f
x� �

Z s

�

hg
x
t����e�s
x� y�i dt

� f
x� �

Z s

�

hg
x
t��� y � x
t�i dt

� f
x� �

Z s

�

�f dt

� f
x� � s�f �

the inequality due to Proposition 	����� Hence� for � � t � ��

f
y � t
x � y�� � 	
� ln t� � f
x�� �f ln
t��

�

��� Primal Algorithms

The importance of a barrier functional f lies not in itself� but in that it can
be used to e�ciently solve optimization problems of the form

min hc� xi
s�t� x 	 "Df �


	�����
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where "Df denotes the closure of Df � Among many other problems� linear
programs are of this form� Speci�cally� restricting the logarithmic barrier
function for the non�negative orthant to the space fx 
 Ax � bg� we obtain
a barrier functional f for which

Df � fx 
 Ax � b� x � �g�
Similarly for SDP�

Let val denote the optimal value of the optimization problem 
	������

Path�following ipm�s solve 
	����� by following the central path� the path
consisting of the minimizers z
�� of the self�concordant functionals

f�
x� 
� �hc� xi� f
x��

for � � �� It is readily proven when Df is bounded that the central path
begins at the analytic center z of f and consists of the minimizers of the
barrier functionals f jL�v� obtained by restricting f to the spaces

L
v� 
� fx 
 hc� xi � vg
for val � v � hc� zi� Similarly� when Df is unbounded� the central path
consists of the minimizers of the barrier functionals f jL�v� for val � v�

We note the local inner products for the self�concordant functionals f�
are identical with those for f � We observe for each y 	 Df � the optimization
problem 
	����� is equivalent to

min hcy� xiy
s�t� x 	 "Df �

where cy 
� H
y���c� 
In other words� w�r�t� h � iy� the objective vector is
cy��

The desirability of following the central path is made evident by consid�
ering the objective values hc� z
��i� Since g
z
��� � ��c� Proposition 	����
implies for all y 	 "Df �

hc� z
��i � hc� yi � �
� hg
z
���� y � z
��i

� �
��f

and hence
hc� z
��i � val � �

��f �
	���	�

Moreover� the point z
�� is well�centered in the sense that all feasible points
y with objective value at least hc� z
��i satisfy y 	 Bz���
z
��� ��f � ��� a
consequence of Proposition 	�����
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Path�following ipm�s follow the central path approximately� generating
points near the central path where �near� is measured by local norms� If a
point y is computed for which ky � z
��kz��� is small then� relatively� the
objective value at y will not be much worse than at z
�� and hence 
	���	�
implies a bound on hc� yi� In fact� if x is an arbitrary point in Df and y
is a point for which ky � xkx is small then� relatively� the objective value
at y will not be much worse than at x� To make this precise� �rst observe
Bx
x� �� � Df implies x� tcx 	 Df if � � t � ��kcxkx� Since the objective
value at x� tcx is hc� xi � tkcxk�x we thus have

kcxkx � hc� xi � val�
	�����

Hence for all y 	 �n�
hc� yi � val

hc� xi � val
� � �

hcx� y � xix
hc� xi � val

� � �
kcxkxky � xkx
hc� xi � val

� � � ky � xkx�
In particular� using 
	���	��

hc� yi � 
� � ky � x
��kx����
val � �
��f ��
	�����

Before discussing algorithms� we record a piece of notation
 Let n�
x�
denote the Newton step for f� at x� that is�

n�
x� 
� �H
x���
�c� g
x��

� �
�cx � gx
x���

The Barrier Method

�Short�step� ipm�s follow the central path most closely� generating se�
quences of points all of which are near the path� We now present and
analyze an elementary short�step ipm� the �barrier method��

Assume� initially� we know �� � � and x� such that x� is �near� z
����
that is� x� is near the minimizer for the functional f�� � In the barrier
method� one increases �� by a �slight� amount to a value �� then applies
Newton�s method to approximate z
���� thus obtaining a point x�� Assum�
ing only one iteration of Newton�s method is applied�

x� 
� x� � n��
x���
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Continuing this procedure inde�nitely 
i�e�� increasing �� applying Newton�s
method� increasing �� � � � �� we have the algorithm known as the barrier
method�

One would like �� to be much larger than ��� However� if �� is �too�
large relative to ��� Newton�s method will fail to approximate z
���� in fact�
it can happen that x� �	 Df � bringing the algorithm to a halt� The key
ingredient in a complexity analysis of the barrier method is proving that ��
can be larger than �� by a reasonable amount without the algorithm losing
sight of the central path�

In analyzing the barrier method� it is most natural to rely on the length
of Newton steps to measure proximity to the central path� We will assume
x� is near z
��� in the sense that kn��
x��kx� is small� The Newton step
taken by the algorithm is n��
x��� not n��
x��� The relevance of n��
x��
for n��
x�� is due to the following easily proven relation


n��
x� �
��
��
n��
x� � 
���� � ��gx
x��

In particular�

kn��
x�kx � ��
��
kn��
x�kx � j���� � �jp�f �
	�����

Besides the bound 
	������ the other crucial ingredient in the analysis is
a bound on kn��
x��kx� in terms of kn��
x��kx� � Theorem 	�	�� provides
an appropriate bound
 If kn��
x��kx� � � then

kn��
x��kx� �
� kn��
x��kx�
�� kn��
x��kx�

��
�
	�����

Suppose we determine values � � � and � � � such that if we de�ne

� 
� �� � 
� � ��
p
�f

then � � � and �
�

�� �

��
� ��

By requiring kn��
x��kx� � � and � � ��
��
� �� we then �nd from 
	�����

that
kn��
x��kx� � ��

and thus� from 
	������
kn��
x��kx� � ��
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Consequently� x� will be close to the central path like x�� Continuing� by
requiring � � ��

��
� �� x� will be close to the central path� too� And so on�

Hence� we will have determined a value � such that if one has an initial
point appropriately close to the central path� and if one never increases the
barrier parameter from � to more than ��� the barrier method will follow
the central path� always generating points close to it�

The reader can verify� for example� that

� �
�

 
and � 
� � �

�

�maxf��p�fg

�
� � �

�

�
p
�f

�

satisfy the relations� Hence we have a �safe� value for �� Relying on it�
the algorithm is guaranteed to stay on track� It is a remarkable aspect of
ipm�s that safe values for quantities like � depend only on the complexity
value �f of the underlying barrier functional f � Concerning LP�s�

min hc� xi
s�t� Ax � b

x � ��

if one relies on the logarithmic barrier function for the strictly non�negative
orthant �n��� then � � 
� � �

�
p
n
� is safe� regardless of A� b and c�

Assuming at each iteration of the barrier method� the parameter � is
never increased by more than � � ���

p
�f � we now know that for each x

generated by the algorithm� there corresponds z
�� which x approximates
in that kn�
x�kx � �


 � hence� by Propositon 	�	��� kx�z
��kx � �
� � thus� by

the de�ntion of self�concordancy� kx� z
��kz��� � �
� � All points generated

by the algorithm lie within distance �
� of the central path�

Assuming that at each iteration of the barrier method� the parameter
� is increased by exactly the factor � � ���

p
�f � the number of iterations

required to increase the parameter from an initial value �� to some value
� � �� is

i �
ln
�����

ln
� � ���
p
�f �

� ��
p
�f ln
������

� O

p
�f log
�������
	�����

where in the inequality we rely on �f � �� Hence� from 
	������ given

 � ��

O

�p
�f log

�
�f

��

��

	�����
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iterations su�ce to produce x satisfying hc� xi � val � 
�

We have been assuming that an initial point x� near the central path is
available� What if� instead� we only know some arbitrary point x� 	 Df#
How might we use the barrier method to solve the optimization problem
e�ciently# We now describe a simple approach� assuming Df is bounded
and hence f has an analytic center�

Consider the optimization problem obtained by replacing the objective
vector c with �g
x��� The central path then consists of the minimizers z�
��
of the self�concordant functionals

f ��
x� 
� ��hg
x��� xi� f
x��

The point x� is on the central path for this optimization problem� In fact�
x� � z�
�� for � � ��

Let n��
x� denote the Newton step for f �� at x�

Rather than increasing the parameter �� we decrease it towards zero�
following the central path to the analytic center z of f � From there� we
switch to following the central path fz
��g as before�

We showed � can safely be increased by a factor of � � ���
p
�f � Brief

consideration of the analysis shows it is also safe to decrease � by a factor
�����

p
�f � and hence� safe to decrease � by that factor� Thus� to complete

our understanding of the di�culty of following the path fz�
��g� and then
the path fz
��g� it only remains to understand the process of switching
paths�

One way to know when it is safe to switch paths is to compute the
length of the gradients for f at the points x generated in following the path
fz�
��g� Once one encounters a point x for which� say� kgx
x�kx � �

� � one
can safely switch paths� For then� by choosing �� � ���	 kcxkx� we �nd the
Newton step for f�� at x satis�es

kn��
x�kx � k��cx � gx
x�kx � �
�� �

�
� � �

	 �

and hence� by Proposition 	�	��� the Newton step takes us from x to a
point x� for which kn��
x��kx� � �


 � putting us precisely in the setting of
the earlier analysis 
where � � �


 was determined safe��

How much will � have to be decreased from the initial value � � �
before we compute a point x for which kgx
x�kx � �

� so that paths can be
switched# An answer is found from the relations

kgx
x�kx � k�gx
x�� � n��
x�kx
� �kgx
x��kx � kn��
x�kx
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� ��f

�
� �

�

sym
x�� Df �

�
� kn��
x�kx�

the last inequality by Proposition 	����� In particular� with kn��
x�kx � �

 �

� need only satisfy

� � �

���f 
� � ��sym
x�� Df ��

	��� �

in order for kgx
x�kx � �
� �

The requirement on � speci�ed by 
	��� � gives geometric interpretation
to the e�ciency of the algorithm in following the path fz�
��g� beginning
with the initial value � � �� If the domain Df is nearly symmetric about
the initial point x�� not much time will be required to follow the path to a
point where we can switch to following the path fz
��g�

We stipulated that the algorithm switch paths when it encounters x
satisfying kgx
x�kx � �

� � and we stipulated that one choose the initial value
�� 
� ���	kcxkx� Letting

V 
� supfhc� xi 
 x 	 Dfg�
note 	���� implies

kcxkx � V � val

and hence
�� � ���	 
V � val��

We have now essentially proven the following theorem�

Theorem ������ Assume f 	 SCB and Df is bounded� Assume x� 	 Df �
a point at which to initiate the barrier method� If � � 
 � �� then within

O

�p
�f log

�
�f


 sym
x�� Df �

��

iterations of the method� all points x computed thereafter satisfy

hc� xi � val

V � val
� 
�

Consider the following modi�cation to the algorithm
 Choose V � �
hc� x�i� Rather than relying on f � rely on the barrier functional

x 
� f
x�� ln
V � � hc� xi��
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a functional whose domain is

Df 
 fx 
 hc� xi � V �g
	������

and whose complexity value does not exceed �f � �� In the theorem� the
quantity V � val is then replaced by the potentially much smaller quantity
V �� val� Of course the quantity sym
x�� Df � must then be replaced by the
symmetry of the set 
	������ about x��

Finally� we highlight an implicit assumption underlying our analysis�
namely� the complexity value �f is known� The value is used to safely
increase the parameter �� What is actually required is an upper bound � �
�f � If one relies on an upper bound � rather than the precise complexity
value �f then �f in the theorem must be replaced by ��

Except for �f � none of the quantities appearing in the theorem are
assumed to be known or approximated� The quantities appear naturally in
the analysis of the algorithm but the algorithm itself does not rely on the
quantities�

No ipm�s have proven complexity bounds which are better than 
	������
even in the restricted setting of linear programming� Nonetheless� the bar�
rier method is not considered to be practically e�cient relative to some
other ipm�s� especially relative to primal�dual methods 
discussed in Chap�
ter ��� The barrier method is an excellent algorithm with which to begin
one�s understanding of ipm�s� and it is often the perfect choice for concise
complexity theory proofs� but it is not one of the ipm�s that appear in
widely used software�

The Long�Step Barrier Method

One of the barrier method�s shortcomings is obvious� being implicit
in the terminology �short�step algorithm�� Although it is always safe to
increase � by a factor � � ���

p
�f with each iteration� that increase is

small if �f is large� No doubt� for many instances� a much larger increase
is safe�

There is a trivial manner in which to modify the barrier method in hopes
of having a more practical algorithm� Rather than increase � by the safe
amount� increase it by much more� apply 
perhaps several iterations of�
Newton�s method� and check 
say� using Proposition 	�	��� if the computed
point is near the desired minimizer� If not� increase � by a smaller amount
and try again�

A more interesting and more practical modi�cation of the barrier method
is known as the �long�step barrier method�� In this version� one increases
� by an arbitrarily large amount but does not take Newton steps� Instead�
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the Newton steps are used as directions for �exact line searches�� as we now
describe�

Assume as before that we have an initial value �� � � and a point
x� approximating z
���� Choose �� larger than ��� perhaps signi�cantly
larger� In search of a point x� which approximates z
���� the algorithm
will generate a �nite sequence of points

y� 
� x�� y�� � � � � yK��� yK �

then let x� 
� yK � At each point yk� the algorithm will determine if the
point is close to z
��� by� say� checking whether kn��
yk�kyk � �

	 � 
We
choose the speci�c value �

	 because it is the largest value for which Proposi�
tion 	�	�� applies�� The point yK will be the �rst point that is determined
to satisfy this inequality�

To compute yk�� from yk� the algorithm minimizes the univariate func�
tional

t 
� f
yk � t n��
yk���
	����	�

This is the step in the algorithm to which the phrase �exact line search�
alludes� �Line� refers to the functional being univariate� �Exact� refers to
an assumption that the exact minimizer is computed� certainly an exager�
ation� but an assumption needed to keep the complexity analysis succinct�
Letting tk�� denote the exact minimizer� de�ne

yk�� 
� yk � tk��n��
yk��

thus ending our description of the long�step barrier method�

The short�step barrier method is con�ned to making slow but sure
progress� The long�step method is more adventurous� having the poten�
tial for much quicker progress�

Clearly� the complexity analysis of the long�step barrier method revolves
around determining an upper bound on K in terms of the ratio ������ We
now undertake the task of determining such a bound�

We begin by determining an upper bound on the di�erence

� 
� f��
x��� f��
z
�����

Then we show that f��
yk� � f��
yk��� is bounded below by a positive
amount � independent of k� that is� each exact line search decreases the
value of f�� by at least a certain amount� Consequently K � ��� � Proofs
like this � showing a certain functional decreases by at least a certain
amount with each iteration � are common in the ipm literature�
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In proving an upper bound on the di�erence �� we make use of the fact
that for any convex functional f and x� y 	 Df � one has

f
x�� f
y� � �hg
x�� y � xi�
	������

The upper bound on � is obtained by adding upper bounds for

�� 
� f��
x��� f��
z
���� and �� 
� f��
z
����� f��
z
�����

Assuming x� is close to z
��� in the sense that kn��
x��kx� � �
	 � Propo�

sition 	�	�� implies kx� � z
���kx� � �
� � Thus� applying 
	������ to the

functional f�� �

�� � hn��
x��� z
���� x�ix�
� ��

��
hn��
x��� z
���� x�ix�
�
���� � ��hgx�
x��� z
���� x�ix�

� ��
��

�
	
�
� � 
���� � �� ��

p
�f

� ��
��

p
�f �

Similarly� for all y 	 Df �

f��
z
����� f��
y� � hn��
z
����� y � z
���iz����
� ��

��
hn��
z
����� y � z
���iz����
�
���� � ��hgz����
z
����� y � z
���iz����

� 
���� � ��hgz����
z
����� y � z
���iz�����

the �nal equality because z
��� minimizes f�� and hence n��
z
���� � ��
Thus�

�� � 
���� � ��hg
z
����� z
���� z
���iz����
� ��

��
�f �

the last inequality by Proposition 	�����

Now we show f��
yk��f��
yk��� is bounded below by a positive amount
� independent of k�

If the algorithm proceeds from yk to yk��� it is because yk happens not
to be appropriately close to z
���� i�e�� it happens that kn��
yk�kyk � �

	 �



�� CHAPTER �� BASIC INTERIOR�POINT METHOD THEORY

Letting $t 
� ���kn��
yk�kyk and $y 
� yk � $tn��
yk�� Proposition 	�	�� then
implies

f��
$y� � f��
yk�� �
	
�
� � �

� 

�
� �

� � ������

��������
� f��
yk�� �

	� �

Since tk�� minimizes the functional 
	����	�� we thus have

f��
yk�� f��
yk��� � � 
� �
	� �

Finally�

K � �

�
� �� � ��

�
� 	� ��

��

�f �

p
�f ��

It follows that if one �xes a positive constant � � � and always chooses
successive values �i� �i�� to satisfy �i�� � ��i� the number of points gener�
ated by the long�step barrier method 
i�e�� the number of exact line searches�
in increasing the parameter from an initial value �� to some value � � �� is

O
��f log
������

No better bound is known for the long�step method� Fixing � 
say� � �
����� we obtain the bound

O
�f log
������

This bound is worse than the analogous bound 
	����� for the short�step
method by a factor

p
�f � It is one of the ironies of t he ipm literature that

algorithms which are more e�cient in practice often have slightly worse
complexity bounds�

A Predictor�Corrector Method

The Newton step n�
x� 
� ��cx � gx
x� for the barrier method can be
viewed as the sum of two steps� one of which predicts the tangential direc�
tion of the central path and the other of which corrects for the discrepancy
between the tangential direction and the actual position of the 
curving�
path�

The corrector step is the Newton step at x for the barrier functional
f jL�v� where v � hc� xi and

L
v� 
� fy 
 hc� yi � vg�
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Thus� the correcting step is njL�v�
x�� this being the orthogonal projection
of the Newton step n
x� for f onto the subspace L
�� 
where �orthogonal�
is w�r�t� h � ix�� In the literature� the corrector step is often referred to as
the �centering direction�� It aims to move from x towards the point on the
central path having the same objective value as x�

Since the multiples of cx 
� H
x���c� form the orthogonal complement
of L
��� the di�erence n
x� � njL�v�
x� is a multiple of cx and hence so is
the predictor step

n�
x�� njL�v�
x� � ��cx � 
n
x�� njL�v�
x���
The vector �cx predicts the tangential direction of the central path near x�
If x is on the central path� the vector �cx is exactly tangential to the path�
pointing in the direction of decreasing objective values� In the literature�
�cx is often referred to as the �a�ne�scaling direction�� With regards to
h � ix� it is the direction in which one would move to decrease the objective
value most quickly�

Whereas the barrier method combines a predictor step and a corrector
step in one step� predictor�corrector methods separate the two types of
steps� After a predictor step� several corrector steps might be applied� In
practice� predictor�corrector methods tend to be substantially more e�cient
than the barrier method� but the 
worst�case� complexity bounds that have
been proven for them are worse�

Perhaps the most natural predictor�corrector method is based on mov�
ing in the predictor direction a �xed fraction of the distance towards the
boundary and then re�centering via exact line searches� We now formalize
and analyze such an algorithm�

Fix � satisfying � � � � �� Assume x� is near the central path� Let
v� 
� hc� x�i� The algorithm is assumed to �rst compute

s� 
� supfs 
 x� scx� 	 Dfg
and then let y� 
� x� �s�cx� � Thus� ��s�cx� is the predictor step� Let

v� 
� hc� y�i � v� � �s�kcx�k�x� �

Beginning with y�� the algorithm takes corrector steps� moving towards
the point z� on the central path with objective value v� by using the New�
ton steps for the functional f jL�v�� as directions in performing exact line
searches� Precisely� given yk� the algorithm is assumed to compute exactly
the minimizer tk�� for the univariate functional

t 
� f
yk � tnjL�v��
yk���
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and then let
yk�� 
� yk � tk��njL�v��
yk��

When the �rst point yK is encountered for which knjL�v��
yK�kyK is ap�
propriately small� the algorithm lets x� 
� yK and takes a predictor step
from x�� relying on the same value � as in the predictor step from x�� The
predictor step is followed by corrector steps� and so on�

Typically� � is chosen very nearly equal to �� say � � �  � In the
following analysis� we assume � � �

	 �

In analyzing the predictor�corrector method� we determine an upper
bound on the number K of exact line searches made in moving from x� to
x�� and we determine a lower bound on progress made in decreasing the
objective value by moving from x� to x��

For the analysis� we consider knjL�v�
x�kx � �
�� to be the criterion

for claiming x to be close to the point z on the central path satisfying
hc� zi � hc� xi� The speci�c value �

�� is chosen so we will be in position to
rely on the barrier method analysis� To see how it puts us in position to
rely on that analysis� let z� denote the minimizer of f jL�v�� and let �� � �

denote the value for which z
��� � z�� We claim that knjL�v��
x��kx� � �
��

implies kn��
x��kx� � �

 � precisely the criteria we assumed x� to satisfy

in the barrier method� For if knjL�v��
x��kx� � �
�� then Proposition 	�	��

applied to f jL�v�� implies

kz� � x�kx� � �
�� �
	������

Since z� � z
���� applying Theorem 	�	�� to f�� then yields kn��
x��kx� �
�

 �

The barrier method moves from x� to x� � n��
x�� where �� � 
� �
���
p
�f ���� 
It is not necessarily the case that z� � z
��� where z� mini�

mizes f jL�v���� The length of the barrier method step is thus

kn��
x��kx� � k����n��
x�� � 
���� � ��gx�
x��kx�
� 


�
�

 �

�
�

� �
	 �

Consequently� in one step of the barrier method� the objective value de�
creases by at most �

	kcxkx�
Assuming � � �

	 � in the predictor�corrector method the predictor step is
in the direction�cx� and has length at least �

	 � a consequence ofBx�
x�� �� �
Df � Thus� v��v� � �

	kcx�kx� � Hence� in moving from x� to x�� the progress
made by the predictor�corrector method in decreasing the objective value is
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at least as great as the progress made by the barrier method in taking one
step from x�� Of course in moving from x� to x�� the predictor�corrector
method might require several exact line searches� We now bound the num�
ber K of exact line searches�

Analogous to our analysis for the long�step barrier method� we obtain
an upper bound on K by dividing an upper bound on f
y�� � f
z�� by a
lower bound on the di�erences f
yk�� f
yk����

The lower bound on the di�erences f
yk��f
yk��� is proven exactly as
was the lower bound for the di�erences f��
yk��f��
yk��� in our analysis of
the long�step barrier method
 Assuming knjL�v��
yk�kyk � �

�� 
as is the case
if the algorithm proceeds to compute yk���� one relies on Propositon 	�	���
now applied to the functional f jL�v��� to show f
yk�� f
yk��� is bounded
below independently of k�

To obtain an upper bound on f
y��� f
z��� one can use the relation

f
y��� f
z�� � 
f
y��� f
x��� � 
f
x��� f
z��� � 
f
z��� f
z����

Proposition 	��� and the de�nition of y� imply

f
y��� f
x�� � ��f ln
�� ���

Relation 
	������ applied to f jL�v��� together with 
	������� give

f
x��� f
z�� � knjL�v��
x��kx�kz� � x�kx� � �
��

�
�� �

Finally� 
	������ applied to f gives

f
z��� f
z�� � h��c� z� � z�i � ��

In all�
f
z��� f
z�� � �f ln


�
��� � �

�
��� �

Combined with the constant lower bound on the di�erences f
yk��f
yk���
we thus �nd the number K of exact line searches performed in moving from
x� to x� satis�es

K � O

�
�f log

�
�

�� �

��
�

Having shown the progress made by the predictor�corrector method in
decreasing the objective value is at least as great as the progress made by
the barrier method in taking one step from x�� we obtain complexity bounds
for the predictor�corrector method which are greater than the bounds for
the barrier method by a factor K� that is� by a factor �f 
assuming � �xed�
say� � � �  �� The bounds are greater than the bounds for the long�step
barrier method by a factor

p
�f � No better bounds are known for the

predictor�corrector method�
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��� Matters of De	nition

There are various equivalent ways to de�ne self�concordant functionals�
Our de�nition is geometric and simple to employ in theory� but it is not
the original de�nition due to Nesterov and Nemirovskii���� In this section
we consider various equivalent de�nitions of self�concordancy� including the
original de�nition� We close the section with a brief discussion of the term
�strongly non�degenerate�� a term we have supressed thus far�

Unless otherwise stated� we assume that f 	 C�� Df is open and convex�
and H
x� is pd for all x 	 Df �

For ease of reference� we recall our de�nition of self�concordancy


A functional f is said to be �strongly non�degenerate� self�concordant
if for all x 	 Df we have Bx
x� �� � Df � and if whenever
y 	 Bx
x� �� we have

�� ky � xkx � kvky
kvkx �

�

�� ky � xkx for all v �� ��

Recall SC denotes the family of functionals thus de�ned�

An important property is establishing the equivalence of various de�ni�
tions of self�concordancy is the �transitivity� of the condition

�v �� ��
kvky
kvkx �

�

�� ky � xkx �
	�����

Speci�cally� if x� y and z are co�linear with y between x and z� if x and y
satisfy 
	������ if y and z satisfy the analogous inqualities

�v �� ��
kvkz
kvky �

�

�� kz � yky �
	���	�

and if kz � xkx � �� then

�v �� ��
kvkz
kvkx �

�

�� kz � xkx �
	�����

To establish this transitivity� note 
	����� implies

kz � yky � kz � ykx
�� ky � xkx �

Substituting into 
	���	� gives for all v �� ��

kvkz
kvky � �� ky � xkx

�� ky � xkx � kz � ykx
�

�� ky � xkx
�� kz � xkx �
	�����
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the equality relying on the co�linearity of x� y and z� Note 
	����� is
immediate from 
	����� and 
	������ Hence the transitivity�

Our �rst modi�cation to the de�nition of self�concordancy is to show
the redundancy of the leftmost inequality in the de�nition�

Proposition ����� Assume f is such that for all x 	 Df we have Bx
x� �� �
Df � and is such that whenever y 	 Bx
x� �� we have

kvky
kvkx �

�

�� ky � xkx for all v �� ��
	�����

Then

�� ky � xkx � kvky
kvkx for all v �� ��

Proof� Since

kHx
y�
��kx � sup

v ���

kvk�x
kvk�y

�

it su�ces to show for all x� y and � � 
 � ��

ky � xkx � �

� � 

� kHx
y�

��kx � �


�� 
� � 
�ky � xkx�� �
	�����

Towards establishing the implication 
	������ note that from 
	������
whenever points y and z satisfy kz � yky � �

��� we have

kz � ykz � kz � yky
�� kz � yky � 
� � 
�kz � yky�
	�����

Letting �min denote the minimum eigenvalue of Hy
z�� also note that since
Hy
z� is self�adjoint w�r�t� both h � iy and h � iz� we have

kHy
z�
��ky � ���min � kHy
z�

��kz � kHz
y�kz�

Recalling

kHz
y�kz � sup
v ���

kvk�y
kvk�z

�

we thus have by 
	����� and 
	������

kHy
z�
��ky � �


�� ky � zkz�� �
�


�� 
� � 
�ky � zkz�� �
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In other words�

kz � yky � 


� � 

� kHy
z�

��ky � �


�� 
� � 
�kz � yky�� �
	��� �

which would give the desired implication 
	����� except that �
��� replaces

�
��� �

In light of 
	��� �� to prove 
	����� it su�ces to establish that for all y

�� x� satisfying

ky � xkx � �

� � 

and kHx
y�

��kx � �

�� 
� � 
�ky � xkx�� �
	������

if we de�ne z 
� y � t
y � x� where t is chosen so that

kz � ykx � 

 �
��� � ky � xkx��

then

kHx
z�
��kx � �


�� 
� � 
�kz � xkz�� �

Assuming x� y and z satisfy the assumptions just stated� using 
	�����
we have

kz � yky � kz � ykx
�� ky � xkx

�
�

��� ��� 
� � 
�ky � xkx
�� ky � xkx

� 


� � 

�

Hence� by 
	��� ��

kHy
z�
��ky � �


�� 
� � 
�kz � yky�� �

Since by 
	������

kz � yky � kz � ykx
�� ky � xkx �

kz � ykx
�� 
� � 
�ky � xkx �

we thus have

kHy
z�
��ky �

�
�� 
� � 
�ky � xkx

�� 
� � 
�
kz � ykx � ky � xkx�
��

�

�
�� 
� � 
�ky � xkx
�� 
� � 
�kz � xkx

��
�
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the equality relying on the co�linearity of x� y and z� That is� for all v �� ��

kvky
kvkz �

�� 
� � 
�ky � xkx
�� 
� � 
�kz � xkx �

Since kvkx
kvky �

�

�� 
� � 
�ky � xkx �

it follows that kvkx
kvkz �

�

�� 
� � 
�kz � xkx �

In other words�

kHx
z�
��kx � �


�� 
� � 
�kz � xkz�� �

completing the proof of the proposition� �

The following theorem provides various equivalent de�nitions of self�
concordant functionals�

Theorem ������ The following conditions on a functional f are equiva�
lent


� �a
 For all x� y 	 Df � if ky � xkx � � then

kvky
kvkx �

�

�� ky � xkx for all v �� ��

� �b
 For all x 	 Df � and for all y in some open neighborhood of x�

kvky
kvkx �

�

�� ky � xkx for all v �� ��

� �c
 For all x 	 Df �

lim sup
y�x

kI �Hx
y�kx
ky � xkx � 	�

Moreover� if f satis�es any one �and hence all� of the above conditions�
as well as any one condition from the following list� then f satis�es all
conditions from the following list�

� �a
 For all x 	 Df we have Bx
x� �� � Df �
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� �b
 There exists � � r � � such that for all x 	 Df we have Bx
x� r� �
Df �

� �c
 If a sequence fxkg converges to a point in the boundary �Df then
f
xk����

Hence� since SC consists precisely of those functionals satisfying conditions
�a and �a� by choosing one condition from the �rst set and one from the
second� the set SC can be de�ned as the set of functionals satisfying the
two chosen conditions�

Proof� To prove the theorem� we �rst establish the equivalence of condi�
tions �a� �b and �c� We then prove conditions �a and 	b together imply 	a
as do conditions �a and 	c� Trivially� 	a implies 	b� To conclude the proof�
it then su�ces to recall that by Proposition 	�	��	� conditions �a and 	a
together imply 	c�

Now to establish the equivalence of �a� �b and �c� Trivially� �a implies
�b� Next note

kI �Hx
y�kx � lim sup
v ���

���� hv� �I �Hx
y��vix
kvk�x

����
� lim sup

v ���

������� kvk�y
kvk�x

����� �
Consequently� condition �b implies for y near x�

kI �Hx
y�kx � �


�� ky � xkx�� � �

�
	ky � xkx � ky � xk�x


�� ky � xkx�� �

Thus� �b implies �c�

To conclude the proof of the equivalence of �a� �b and �c� we assume
�c holds but �a does not� then obtain a contradiction�

Since

kHx
y�kx � sup
v ���

kvk�y
kvk�x

�

condition �a not holding implies there exist x� y� and 
 � � such that
ky � xkx � �

��� and

kHx
y�kx � �


�� 
� � 
�ky � xkx�� �
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Considering points on the line segment between x and y and relying on
continuity of the Hessian� it then readily follows that there exists y 
possibly
y � x� satisfying ky � xkx � �

��� �

kHx
y�kx �
�


�� 
� � 
�ky � xkx�� �
	����	�

and

kHx
z�kx � �


�� 
� � 
�kz � xkx��
	������

for all z 
� y � t
y � x� where t � � is su�ciently small�

Condition �c implies for z near y�

kHy
z�ky � �


�� 
� � 
�kz � yky�� �

That is� for all v �� ��

kvkz
kvky �

�


�� 
� � 
�kz � yky�� �
	������

Likewise� from 
	����	��

kvky
kvkx �

�


�� 
� � 
�ky � xkx�� �
	������

In particular�

kz � yky � kz � ykx
�� 
� � 
�ky � xkx �

Substituting into 
	������ and relying on the co�linearity of x� y and z� we
have kvkz

kvky �
�� 
� � 
�ky � xkx
�� 
� � 
�kz � xkx �
	������

From 
	������ and 
	������� for all v �� ��

kvkz
kvkx �

�

�� 
� � 
�kz � xkx �

that is�

kHx
z�kx � �


�� 
� � 
�kz � xkx�� �

contradicting 
	������� We have thus proven the equivalence of conditions
�a� �b and �c�
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Now we prove conditions �a and 	b together imply 	a� Let � � r � �
be as in 	b� i�e�� Bx
x� r� � Df for all x 	 Df � Assuming y 	 Df satis�es
ky � xkx � � and letting

t 
� r
�� ky � xkx�� z 
� y � t
y � x��

we show �a and 	b together imply z 	 Df � Condition 	a readily follows�

By condition �a�

ky � xky � ky � xkx
�� ky � xkx �

from which it follows that z 	 By
y� r�� Hence� by 	b we have z 	 Df as
desired�

To conclude the proof of the theorem� it only remains to prove that
conditions �a and 	c together imply 	a�

Assuming y 	 Df satis�es ky � xkx � �� condition �a implies

f
y� � f
x� � hgx
x�� y � xix �
Z �

�

Z t

�

hy � x�Hx
x� s
y � x��
y � x�ix ds dt

� f
x� � kgx
x�kx �
Z �

�

Z t

�

kHx
x� s
y � x��kx ds dt

� f
x� � kgx
x�kx � �

	
�� ky � xkx�� �

In particular� f
y� is bounded away from �� By condition 	c we conclude
Bx
x� �� � Df � �

We turn to the original de�nition of self�concordancy� due to Nesterov
and Nemirovskii� First� some motivation�

We know that if one restricts a self�concordant functional f to sub�
spaces � or translates thereof � one obtains self�concordant functionals� In
particular� if f is restricted to a line t 
� x� td 
where x� d 	 �n� then

	
t� 
� f
x� td�

is a univariate self�concordant functional� Since for 	 we have

kvkt �
p
	��
t�jvj�

the property
kvks
kvkt �

�

�� ks� tkt
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is identical to p
	��
s�p
	��
t�

� �

��p	��
t�js� tj �

Squaring both sides� then subtracting � from both sides� and �nally multi�
plying both sides by 	��
t��js� tj� we �nd

	��
s�� 	��
t�
js� tj � 		��
t���� � 	��
t��js� tj


��p	��
t�js� tj�� �

If f � and hence 	 � is thrice�di�erentiable this implies

	���
t� � 		��
t�����
	������

This result has a converse� The converse� given by the following theorem�
coincides with the original de�nition of self�concordancy due to Nesterov
and Nemirovskii�

Theorem ������ Assume f 	 C� and assume each of the univariate func�
tionals 	 obtained by restricting f to lines intersecting Df satisfy ���
����
for all t in their domains� Furthermore� assume that if a sequence fxkg
converges to a point in the boundary �Df then f
xk���� Then f 	 SC�

Proof� The proof assumes the reader to be familar with certain properties
of di�erentials�

To prove the theorem� it su�ces to prove f satis�es condition �c and 	c
of Theorem 	������ Of course 	c is satis�ed by assumption�

Assuming the third di�erential D�
x� of f at x is written in terms
of a basis which is orthonormal w�r�t� h � ix� The inequality 
	������ is
equivalent to requiring

jD�
x��u� u� u�j � 	 whenever kukx � ��
	���� �

On the other hand� condition �c is equivalent to requiring

jD�
x��u� v� v�j � 	 whenever kukx� kvkx � ��
	���	��

However� for any C��functional f and for any inner product norm k k 
�
h � i����

maxfjD�
x��u� v� w�j 
 kuk� kvk� kwk � �g � maxfD�
x��u� u� u�j 
 kuk � �g�

Hence 
	���	�� follows from 
	���� �� �
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The original de�nition of 
strongly non�degenerate� self�concordancy
was that f satisfy the assumptions of Theorem 	������ The theorem shows
such f to be self�concordant according to the de�nition relied on in these
lecture notes� The de�nition in these notes is ever�so�slightly less�restrictive
by requiring only f 	 C�� not f 	 C�� For example� letting k k denote the
Euclidean norm� the functionals

f
x� 
� �
�kxk� � �

�kxk�

and

f
x� 
� ekxk � kxk
are self�concordant according to the de�nition in these notes� but not ac�
cording to the original de�nition� 
Neither functional is thrice�di�erentiable
at the origin��

The de�nition in these notes was not chosen for the slightly broader set
of functionals it de�nes� It was chosen because it provides the reader upfront
with some sense of the geometry underlying self�concordancy� and because
it is handy in developing the theory� Nonetheless� the original de�nition has
distinct advantages� especially in proving a functional to be self�concordant�
For example� assume D � �n is open and convex� and assume F 	 C� is
a functional which takes on only positive values in D� and only the value �
on the boundary �D� Furthermore� assume that for each line intersecting
D� the univariate functional 	
t� 
� f
x� td� obtained by restricting F to
the line happens to be a polynomial � moreover� a polynomial with only
real roots� Then� relying on the original de�nition of self�concordancy� it is
not di�cult to prove the functional

f
x� 
� � ln
F 
x��

to be self�concordant� For� letting r�� � � � � rd denote the roots of 	 and
assuming w�l�o�g� that 	 is monic� we have

	���
t� � � d�

dt� ln
Y
i


t� ri�

� � d�

dt�

X
i

ln
t� ri�

� �	
X
i

�


t� ri��

� 	

�
�


t� ri��

����
�
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the inequality due to the relation k k� � k k� between the 	�norm and the
��norm on �d�

It is an insightful exercise to show that the self�concordancy of the
various logarithmic barrier functions are special cases of the result described
in the preceding paragraph� Incidentally� functionals F as above are known
as �hyperbolic polynomials��

We close this section with a discussion of the qualifying phrase �strongly
non�degenerate�� which we have suppressed throughout�

Nesterov and Nemirovskii de�ne self�concordant functionals 
with no
quali�ers� as functionals f 	 C�� with open and convex domains� satisfying

	������ for the univariate functionals 	 obtained by restricting f to lines�
They de�ne strongly self�concordant functionals as having the additional
property that f
xk� �� if the sequence fxkg converges to a point in the
boundary �Df � Finally� strongly non�degenerate self�concordant function�
als are those which satisfy the yet further property that H
x� is pd for all
x 	 Df �

It is readily proven that self�concordant functionals 
thus de�ned� have
psd Hessians�

One might ask if the Nesterov�Nemirovskii de�nition of� say� strong self�
concordancy has a geometric analogue similar to the de�nition of strongly
non�degenerate self�concordancy used in these lecture notes� One would
not expect the analogue to be as simple as the de�nition in these notes
because the bilinear forms

hu� vix 
� hu�H
x�vi
need not be inner products if f is not non�degenerate� However� there
is indeed an analogue� obtained as a direct extension of the de�nition for
strongly non�degenerate self�concordancy� Roughly� strongly self�concordant
functionals are those obtained by extending strongly non�degenerate self�
concordant functionals to larger vector spaces by having the functional be
constant on parallel slices� Speci�cally� one can prove 
as is done in ����
that f is strongly self�concordant i� �n can be written as a direct sum
L� � L� for which there exists a strongly non�degenerate self�concordant
functional h� with Dh � L�� satisfying f
x�� x�� � h
x��� For example�
f
x� 
� � ln
x�� is a strongly self�concordant functional with domain the
half�space �� ��n�� in �n� but it is not non�degenerate�

If self�concordant 
resp� strongly self�concordant� functionals are added�
the resulting functional is self�concordant 
resp� strongly self�concordant��
If one of the summands is strongly non�degenerate� so is the sum� This is
an indication of how the theory of self�concordant functionals� and strongly
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self�concordant functionals� parallels the theory developed in these notes�
To get to the heart of the theory expeditously� these notes focus on strongly
non�degenerate self�concordant functionals� Those are by far the most im�
portant functionals�

Henceforth� we return to our practice of refering to functionals as self�
concordant when� strictly speaking� we mean strongly non�degenerate self�
concordant�
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