University of Pennsylvania ## ESE 605 Modern Convex Optimization Homework 8 Due on Friday April 6 1. Robust least-squares with interval coefficient matrix: An interval matrix in $R^{m \times n}$ is a matrix whose entries are intervals: $$\mathcal{A} = \{ A \in \mathbb{R}^{m \times n} | A_{ij} - \bar{A}_{ij} | \le R_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n \}.$$ The matrix $\bar{A} \in \mathbb{R}^{m \times n}$ is called the nominal value or center value, and $R \subset \mathbb{R}^{m \times n}$, which is element-wise nonnegative, is called the radius. The robust least-squares problem, with interval matrix, is minimize $$\sup_{A \in \mathcal{A}} ||Ax - b||_2$$, with optimization variable $x \in \mathbb{R}^n$. The problem data are \mathcal{A} (i.e., \bar{A} and R) and $b \in \mathbb{R}^m$. The objective, as a function of x, is called the worst-case residual norm. The robust least-squares problem is evidently a convex optimization problem. - (a) Formulate the interval matrix robust least-squares problem as a standard optimization problem, e.g., a QP, SOCP, or SDP. You can introduce new variables if needed. Your reformulation should have a number of variables and constraints that grows linearly with m and n, and not exponentially. - (b) Consider an over-determined specific problem instance with m = 10, n = 5, with A generated in Matlab as \bar{A} =round(10*rand(10,5)), b=round(5*rand(10,1)). The matrix R should be chosen in such a way that the uncertainty in each entry of A is ± 0.1 . Find the solution x_{ls} of the nominal problem (i.e., minimize $||\bar{A}x b||_2$), and robust least-squares solution x_{rls} . For each of these, find the nominal residual norm, and also the worst-case residual norm. You need to use CVX for this problem. - 2. Assume the set A in problem 1 is given by $\bar{A} + U$, where $||U||_2 \le 0.1$. Find the robust least squares solution with the same problem data as before. Find the worst case residual norm. - 3. Problem 8.9 and 8.20 from the text - 4. State and solve the optimality conditions for the problem **minimize** $$\log \det \begin{bmatrix} X_1 & X_2 \\ X_2^T & X_3 \end{bmatrix}^{-1}$$ subject to $$\mathbf{tr} X_1 = \alpha$$ $$\operatorname{tr} X_2 = \beta$$ $$\mathbf{tr} X_3 = \gamma$$ The optimization variable is $X = \begin{bmatrix} X_1 & X_2 \\ X_2^T & X_3 \end{bmatrix}$ with $X_1 \in \mathbb{S}^n, \ X_2 \in \mathbb{R}^{n \times n}, \ X_3 \in \mathbb{S}^n$. The domain of the objective function is \mathbb{S}^{2n}_{++} . We assume $\alpha > 0$, and $\alpha \gamma > \beta^2$.