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Spectacular progress in understanding
networked systems





Collective phenomena

IN soclal and economic networks

Social and Economic Networks

» Epidemics and Pandemics

» Bubbles

» Bank Runs



meagn
Example: Flocking and motion coordination

 How can a group of moving agents collectively decide on
direction, based on nearest neighbor interaction?

neighbors o
agent i

agent i

How does global behavior (herding) emerge from local interactions?




An intuitive model (Vicsek' 1995)

The heading value updated (in discrete time)
as a weighted average of the value of its
neighbors: move one step along updated

direction .0k 1 1) =< 6,(K) >po— atan ((gjem(k) sin ejgkg ! sin 9,((;)
Locally: FEN (k) PO T o
1
< 0;(k) >,= O 1( Z w; 0, (k) +w;0;(k))
’ FEN: (k)

Neighborhood relation depends on heading
value, resulting in change in topology

MAIN QUEST|ON . When do all

headings converge to the same value?

A network which changes as a result of
node dynamics
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Consensus in changing networks

Theorem (Jadbabaie et al. 2003): If there is a sequence of
bounded, non-overlapping time intervals T,, such that over any
interval of length T,, the network of agents is “jointly connected ”,
then all agents will asymptotically reach consensus.

@ Special case: network is connected “once in a while”

@ Similar result for continuous time, leader follower,
@ Time-delays, dynamic agents, nonlinear averaging....




Nonlinear dynamics and time delays

N : Number of agents

k.. Positive gains.

X. . Information held by agenti, 1 =1,...,N.
f; - Locally Passive Functions
A Interaction Graph Adjacency Matrix

dx, (1)
dt

N

=K, ZAi?(t)fij (Xj (t - T )—X (t))

o(t) is a switching signal, o :t — {1,...,k} indexing

graphs in N vertices, {G,,...,G,}.

Theorem (Papachristodoulou & J'06): If switching with dwell time,
and interaction graph contains a spanning tree over time

then consensus set is asymptotically attracting
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Consensus and flocking in dynamic agents
& S

@ Double integrator model
Ty = U
v, = U = a; + oy
@ Neighbors of | distance
dependent:

N, C{1,...,N}

@ Cohesion/Separation
aj = =VVi= =V > Vi(|lrgl)

@ Alignment JEN;

Y
Oy — —k Z (fUZ' — ’Uj) o = —Lg(t)v
JeN; z

o

—~

(7anner et al., 2007) Connectivity implies velocity alignment

Cucker & Smale 07: Similar result for distance-dependent adacency




Consensus literature:
N S

an incomplete surve

Opinion Dynamics:
[DeGroot 1974, Chaterjee & Seneta 1974]

Parallel and Distributed Computation:
[Tsitsiklis 1984, Tsitsiklis et al. 1986]

Distributed Control and Optimization:

» distributed multi-agent optimization: [Nedi¢ & Ozdaglar 2008]
» velocity alignment of kinematic agents: [Jadbabaie et al. 2003]
» continuous time dynamics: [Olfati-Saber & Murray 2004]
» directed networks: [Ren & Beard 2004, Lin & Francis 2004]

» nonlinear updates: [Moreau 2004, Lin et al. 2005]
» random networks: [Hatano & Mesbahi 2005, Wu 2006]
» time delays: [Angeli & Bliman 2006]
» quantized values: [Savkin 2004]



Endogenous change of network:

="  Simplest non-trivial exam

@ Bounded confidence opinion model o
(Krause, 2000, Hendrix et al. 2008) zi(k) = Z Wij(k)x;(k —1)
@ Nodes update their opinions as a JEN:
weighted average of the opinion
value of their friends Wij(k) >0, > icn, Wij(k) = 1.

@ Friends are those whose opinion 1o
Is already close (e.g. within 1 unit) =
@ When will there be fragmentation =

and when will there be
convergence of opinions? 7

@ Node dynamics changes 6

topology .-
@ Vicsek model in 1d
@ Special case: Gossiping: each

node only talks to one neighbor at 3
a time 2

@ Simulations informative but not
enough

0 3] 10 15
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Consensus in random networks

In the real world, network communication links are random.
(link failures, interference, physical obstacles, etc.)

» What are the conditions for consensus when the weight matrices
W, are random?

Reaching consensus in probability: For all z(0), e >0, and i,j €V,
P(lzi(k) — x;(k)| > €) — 0

Reaching consensus almost surely: For all (0) and i,j5 € V,

i (k) — x; (k)| — 0 almost surely



Consensus In Random Networks

The matrices W} are independent and identically distributed.
» Edges of the graph maybe dependent at one time-instant.

» The graphs are independent from one time step to another.

The graphs could even be correlated so long as they are stationary-ergodic.

Theorem

The agents reach consensus almost surely if and only if

X (EW)| < 1, that is, the expected graph contains a rooted
spanning tree.

D A. Tahbaz-Salehi and A. Jadbabaie,

A necessary and sufficient condition for consensus over random networks
IEEE Transactions on Automatic Control, April 2008.

Also Hatano & Mesbahi 2006; Wu 2006; Picci & Taylor 2007;

e



What about consensus value?

A random graph sequence means a random consensus value z*.

What is its distribution?

Open problem, but ...

> Ez* = z(0)! v{(EW})
> var(z*) = [2(0) ® z(0)]" v1(E[Wi @ Wi]) — [(0)T vi (EWy))?

» Degenerate distribution iff all matrices have same left eigenvector.

» Large-scale behavior

Can we say more? Almost Surely

[Tahbaz-Salehi and Jadbabaie, TAC, 2009 (To Appear)]
[Preciado, Tahbaz-Salehi, and Jadbabaie 2009]

[Boyd, Ghosh, Prabhakar, Shah, 2006]




Switching Erdos-Renyi Graphs

@ Consider a network with n nodes and a vector of initial values, x(0)

@ Repeated local averaging using a switching and directed graph ¢ (fn,j p)

@ In each time step,Y« (72, p) is a realization of a random graph where
edges appear with probability, Pr(a;=1)=p, independently of each other

Consensus dynamics
x(k +1) =W, x(k)

Wk - (Dk + In)_l(Ak + In)
Stationary behavior
x(k) =U,x(0), withU, =W,_W, ,..W,,

lim,_,_U, =1v', wherev is a random vector,

X" =lim,__x (k) is a random variable.

We can find a close form expression for the mean & variance of x*




B . .
Mean and variance in E-R graphs
N T

@ Remember, for any IID graph sequence
Ez* = x(0)" vi(BW})
; , 2
var (z%) = [x(0)®@x (0)]" vi (E[W, @ Wy]) — [X (0)" vy (EI-"[-%)}

@ Expected weight matrix is symmetric! Therefore mean is just
average of initial condiitons!

EWk = Ewij 1n1£ -+ (Ew% — Eww) In
1 — 1 —
_ f1(p,n) 1n1£— n fi (p’n)fn
n—1 n—1

@ Computing the variance of x* is more complicated
@ Involves the Perron vector of the matrix E[W, &W, ] .
(it is not Kronecker product of two eigenvectors!)
@ Can derive a closed form expression of the left eigenvector of
E[W,&W,] for any network size n, link probability p, and initial
condition x(0).



What does E[W,&W,] look like?

@ E[W,&W,] is Not E[W,] ®E[W, ], but it almost Is!

@ Only n of the n? entries are different!
(1) E(wywi) = ¢~ H (p,n),

T

(2) B(wiwj;) = (1—;;%)2,

(3) E(wiwis) = B (wijwi;) = B (w;wy) = q_ang%;ff;;ép:n)):

(4) E ('U_)m.u;ﬂ) - E (wz-z-wm) — (1—qn)(np_1_|_qn):

n?p?(n—1)

o\ g(np—3)+¢"(3—3p+2np H(p,n))
(5) B (wijwis) = L=t =2

(6) E(wiwy) = E(wiw;s) = E (wiw)

)\ 2
= B (wiw,;) = B (wijw,) = (1(;_1_5]0) !

g=1-p and H(p,n) can be written
In terms of a hypergeometric function




A Surprising Result

@ Theorem: var(z*) = 1—p 2:(0) — H(0)]2

2

>
=
S
|
=
>
=
S
>
S

P(p,’n) n + (TZQ —n)P(p~n)

@ No Kronecker products or hyper-geometric functions

@ As network size grows, variance of consensus value goes to
zero!

@ What about other random graph models?



From consensus to

information agqgregation

Do consensus algorithms aggregate information correctly?

Sometimes.

» Computing the maximum likelihood estimator
Boyd, Xiao, and Lall 2006]

» Learning in large networks
(Golub and Jackson 2008]

In many scenarios agreement is not sufficient.
Agents need to agree on the “right” value: learning.



B . .
Consensus and naive social learning

@ Need to make sure update converges to the correct
value

Agents initially receive a noisy signal about the true state of the world.
Update their beliefs as a weighted average of the neighbors’ beliefs.

In a connected network, people reach asymptotic consensus.

What is this value if the size of the network grows?

If no agent is overly influential, then the consensus value converges

to the true state of the world in probability, that is, everybody
learns the true state.

B. Golub and M. O. Jackson. W|Sd0m Of CrOWdS

Naive Learning in Social Networks: Convergence, Influence, and the Wisdom of Crowds
Unpublished Manuscript, December 2008.




Social learning

@ There is a (pay-off relevant) true state of the world, among
countably many (eg quality of a product, suitability of a
political candidate, ...)

@ We start from a prior distribution, would like to update the
distribution (or belief on the true state) with more
observations

@ Ideally we use Bayes rule to do the information aggregation

@ Works well when there is one agent (Blackwell,
Dubins’1962), becomes hard when more than 2!



S BEET
RSO8 ocial learning

Bayesian learning over social networks:
[Banerjee 1998]

[Smith and Sgrensen 1998]

[Acemoglu, Dahleh, Lobel, and Ozdaglar 2008]

Rule-of-thumb learning over networks (DeGroot's Model):
[DeMarzo, Vayanos, and Zwiebel 2003]

[Acemoglu, Nedi¢, and Ozdaglar 2008]

[Golub and Jackson 2008]

[Acemoglu, Ozdaglar, and ParandehGheibi 2009]

Non-Bayesian learning:
[Ellison and Fudenberg 1993, 1995]

[Bala and Goyal 1998, 2001]
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—&. Bayesian learning

H-i,t(m =P [9 = !9*|5Ei,t]
where
Fii = (H?_ e H; {}Ljﬁ 1] E .:"'u; k< 1"})

Is the Iinformation available to agent ¢ up to time *.

Agents need to make rational deductions about everybody’s beliefs based
on only observing neighbors’ beliefs:



@ Problem with Bayesian social learning
St S

1.
2.
3.
4.

Incomplete network information
Incomplete information about other agents’ signal structures

Higher order beliefs matter €220l

The source of each piece of information is not immediately clear
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4. Naive vs. Rational learning

Naive learning

Consensus/
Flocking

Just average!

Bayesian

Social
*Learning

Network
Complexity

Asymptotically, as good
as rational learning

Boundedly Rational
Learnln

Fuse info with Bayes Rule
Bayesian Learning/
Game Theory

t .
naive Rationality




Locally Rational, Globally Naive:

=" Bayesian learning under peer pressure

Need a local and computationally tractable update, which hopefully
delivers asymptotic social learning.

Agent ¢ Is

» Bayesian when it comes to her observation

» non-Bayesian when incorporating others information

[Tahbaz-Salehi, Sandroni, and Jadbabaie 2009]



Model description

N =1{1,2,...,n} individuals in the society

G = (N,€) social network

© finite parameter space

0* € © the unobservable true state of the world

sp = (84,...,5") st is the signal observed by agent i at time ¢

S=51 x5 x---x5, signal space

((s)|0) the likelihood function
(prob. of observing s if the true state is )

Vi(s'10) the marginal likelihood function



N e

Model description

fi ¢ (0) time t beliefs of agent i
(a probability measure on ©)

1io(0) agent i's prior belief

P* = ®@72,0(-]6*) the true probability measure

Agent i's time t forecasts of the next observation profile:

mis(ses) = [ a6 (0
©
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What do we mean by learning?

N,
s

Definition | Weak merging of opinions
The Forecasts of agent i are eventually correct on a path {s:}7° if,
along that path,

mi(-) — £4;(-|07) as t— oo.

Definition| Asymptotic learning
Agent i asymptotically learns the true parameter 6* on a path {s;}:° if,
along that path,

pit(07) —1 as t— oc.

» Asymptotic learning, in this setup, is stronger.

» Depends on the information structure.



!ﬁ Belief Update Rule

pig1(0) = aiBU (pig; siy)(0) + Y i (6)
JEN;

where ,
fi(si110)
mé,t(5%+1)

ai; 20 Zaijzl

JEN;

BU (pti,t; 8141)(0) = i,1(0)

» Individuals rationally update the beliefs after observing the signal

» exhibit a bias towards the average belief in the neighborhood



Why this update?

fi i1 (0) = az‘z‘ﬂi,t(‘g)fn StH’Q + > aijia(0 Vo € ©
it SH—I it
» Does not require knowledge about the network.
» Does not require deduction about the beliefs of others.
» Does not require knowledge about other agents’ signallings.
» The update is local and tractable.
» |f the signals are uninformative, reduces to the consensus update.
» Reduces to the benchmark Bayesian case if agents assign weight

zero to the beliefs of their neighbors. [Blackwell and Dubins 1962]
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Eventually correct forecasts

N,
s

li(st, 10
(St—|—1‘ ) _1_ Zazjuj’t(g) \v/g c @

mi,t(3§+1) i

fit+1 (9) = Cliz‘ﬂz‘,t(e)

Theorem

Suppose that
1. the social network is strongly connected,

2. ay; >0forallieN,

3. there exists an agent i such that p; o(6%) > 0.

Then the forecasts of all agents are eventually correct P*-almost surely,
that IS, m,,;,t(-) — g@(m*)

Agents will make accurate predictions about the future
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w8, Why strong connectivity?

What if the network has a directed spanning tree but is not strongly
connected?

{01,02},{03}

» N ={B,N}
> O = {01,005} {61}, {62}, {63}
> 0% = 0

EN(S?LHQ)

0) = Ain ¢ (0
N t+1(0) 0N )me’t(Sé\il)

+ (1 =MNupt(0) VOO

@ No convergence if different people interpret signals differently
@ N is misled by listening to the less informed agent B



In any strongly connected social network, forecasts of all agents are
correct on almost all sample paths.

{01,602}, {03}

> N: {172}
> @ — {91;92993} {91}:{92363}
> 0% =6

One can actually learn from others



Observationally -equivalent

=" States and distinguishabili

@ A state is observationally-equivalent with the true state from
the point of view of an agent if the conditional likelihoods are

the same, 1.e. |7, (s7|0) = (;(s'|0*) for all &' € S;

@ States that are not equivalent to the true state are
distinguishable, i.e., there exists signals and a large enough

time such that #;(s%, st---s%|6
z( it_|_1 it Z.1| *) S 5 < 1
Ei(st+1st---sl|9 )

@ Technical assumption (*):

For any agent ¢, there exists a signal §' € S; and a positive number §;

;(5'10) _
(807 — < Z ©;. | distinguishable states




Agreement on Beliefs

Proposition

Under the assumptions of the previous proposition:

1. The beliefs of all agents converge with P*-probability 1.
2. Moreover, all agents have asymptotically equal beliefs P*-almost

surely.

lim; .o f1i.¢(A) exists and is independent of i.

Consensus!




Learning from others
nooa J

All agents have asymptotically equal forecasts. Therefore,

» Each agent can correctly forecast every other agent’s signals.

Vi, j € N f@(-m)dm,tw)—>ej(-\9*) P* —as.
©

Local information of any agent is revealed to every other agent.

» This does not mean that the agents can forecast the joint
distributions. They can only forecast the marginals correctly.

» To be expected: only marginals appear in the belief update scheme.



Saocial Learnin
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Theorem

Suppose that:

a) The social network is strongly connected.

There exists an agent with positive prior belief on the truth 6*.

(c

)
b) All agents have strictly positive self-reliances.
)
(d)

There is no state 6 # 6* that is observationally equivalent to 6* from
the point of view of all agents in the network.

Then, all agents in the social network learn the true state of the world P*
almost surely; that is,

pi 1 (0%) — 1 P* — a.s. Vi.



Rate of Convergence
- 9

Exponential convergence: e~

Fy(sy) = A+ diag (Clu[éz((sjlti)) — 1])

1
— —min lim =E]|l F L F
A min lim - log [[Fy(s1) - - Fo(sT)|l]
Therefore:

— mli : > A\ > — 1ml 0 .
min logp ({Fp(s) :s € 5}) = A i log p ({Fy(s) : s € S})

where p(M) and p(M) are the upper and lower spectral radii of
the set of matrices M.



O = {61,0o,....60:)

0* = 604
Si ={H.T}

— ifo=6;
fz'(HW) —

iil otherwise

Local information of every agent is revealed to every other agent.




How information is aggregated over networks?

.

From local information to inference about global uncertainties

Non-Bayesian social learning model

>

[

Learning the true parameter, with little cost
No information about network topology

No information on signal structures

No rational deductions

Complete learning under mild conditions: Agents learn as if they
have access to the observations of all agents at all times.

On-going work:

>

=S

Extends to changing graphs under some conditions on weights

Exponential convergence
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