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Abstre

In this short note. we studv a class of nonlinear control svstens

-t

whicht can be controlled by switching between many linear dynamics.
We show the following results

1. A dynamical svstemn that can be controlled by switching between
two linear modes is quadratically stabilizable via stare-feedback
of and only if there exists an asyvmptotically stable convex com-
bination of these modes.

2. A dynamical system that can be controlled by switehing hetween
many lincar modes is gquadratically stabilizable via output feed-
back if there exists an asvmptotically stable convex combination
of these modes and it is quadratically detectable.

A mechanical example is provided that illustrates these two results

Keywords: switching syvstews. quadratic stabilizability., S-procedure.

1 Introduction

This note is concerned with the dvnamical system

7
EJ' = Ay (1)
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[image: image3.jpg]where a(t) is a switching rule defined by o) : R = L., L. Thus. the
nalrix Ay is allowed to take values only in the set {4 . A1}, Such
a svstem is said to be switched. With the advent of new smart materials,
switching systems arc likely to take a growing importance in cont rol theory
and practice. Switching systems may be studied from a variety of viewpoints.
The first viewpoint is that the switching rule er(t) is an exogenous variable.
and then the problem is to study whether there exists a certain sequence a(f)
that will render the system (1) unstable. Such a problem is particularly im-
portant in aerospace applications. for example. where badly gain-scheduled
control logics may result in aircraft instability. and it has been the subject
of a large mumber of publications. See for example [3. 5. 4. 16. 15, ], See

also the book by Den Hartog {101
The sccond viewpoint. which is of interest here. is when the switehing
rule is available to the control engineer. It may then be used for control pur-
poses. to suppress vibrations i a structure using variable stiffuess (see [6]
and references therein. for example). Many techniques have been envisioned
o use switches between linear modes for control purposes. Solutions based
on maximization of instantancous energy decay rate have been proposed
in "12]. and optimal control techniques have been proposed in [6'. T o the-
oretical franework. solutions based on Lyapunov stability theory have been
proposed i (17]. Tu particular. it has been shown in [17] that existence of
oAy

s the

an asymprotically stable convex combination of the linear modes 4.

implies the existence of a state-feedback switching law that stabiliz
systewn (1), along with a quadratic Lyapunov function that proves it 1n
the present paper. we extend this result in two directions: First. we prove
that when the number of modes is equal to two (L = 2). then existence of
an asvinptotically stable convex combination of the linear modes Ap. Ay 18
equivalent to the existence of a state-feedback switching law that stabilizes
the svstem (1), along with a quadratic Lyvapunov function that proves it
Second. we provide an attractive set of conditions for which stability via
quadratic Lyapunov functions can be ensured via dynamic output feedback.

2 Quadratic Stabilization via State Feedback
We introduce the following definition:

Definition 2.1 The system (1} is quadratically stabilizable via state-feedback
if and only if there crists a positive-definite function V(x) = ' Pa.a posi-
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for all trajectories & of the system (1.
We now recall a theorem of [17]:

Theorem 2.1 The system (1) 15 quadratically stabilizable if there czists o,
L
B S L nonnegative and not all zero such thal Z o, A, ds asymptotically

Tl
stable.

The first contribution of this note is to extend this theorew from an “if”
statenent to au " and only if7 statement in the case when L = 2. In order
to do so. we introduce the following lennma on the S-procedure (see (2] for
a4 complete presentation and bibliograplv).

Lemma 2.1 Let Ty 1) € R be symmetvic matvices. We consider 1

Jollowing condition on 1.1,

CITyC > 0 for all $ /0 such that iy (2)
Then (2) holds if and only +f
there erists 70 2 O such that Ty — 71 > 00 (3)

provided theve is some Gy such that 1:({ T1¢y > 0.

One should note that the ~if7 part of the lemma is casy to prove. whereas
the ~only i part requires more care. A proof of it may be found in {8}, We
arc now ready to state our improved theorem:

Theorem 2.2 Assume L = 2. The system (1) s quadratically stabidizable
it aud ouly if there cwtsts puy, o nonneqalive satisfying py + s =t such that

A~ Ay as asymplotically stable.

Proof: Assume the system (1) is quadratically stabilizable with the quadratic
Lvapunov function V{z) = 2" Pa. P > 0. Thew. computing,

d

Vi) = 2T (AL WP+ PA)e

air.t}
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auch that for any nonzero 2. either

x! (A‘l"P + PAr < —r
or

a! (45 P+ PAy)r < —exl
Another way of restating this is to say that guadratic stability will ocenr if
and only if for any = # O

1 (A¥[7 4 PAr < —eay

i . 5
whenever 27 (:’15 P+ PAds)r > —er’ o, Gl
and ’
sATP 4 PAyr < —exl iy )
o

whenever «/ (A’lr P4 PAYe 2 'y

Asstnning there exists o such that 27ATP 4 PAYr > —eal o Lenmina 2.1
applies and we conclude that (1) holds if and only if there exists 4 > 0 such
that

ATP £ PA LA D A < (1 + 01 vl (6G)

Similarly. (5) will hold if and only if there exists 6, 2 0 such that
AP Py e sl PA) < (14 soreal . (7)

Note that the condition (7) is implied by (6). Indeed. by continuiry. if (6)
holds for some 4, > 0 then it must bold for some 4y » 0. Then (7} 18
equivalent to {6) for & = 1/a;. The condition (6) can also be written

s 8y sy ]

A §1407 Et
Sk ) 1’+P( ‘ < -t (&)

1+ & 1+

which is equivalent to say that (A - 8, A /(1 +8,) is asymptotically stable.
and g = 114010 g2 = 1/(L + d).

Assume now that the last condition of Lemma 2.1 does not apply for
cither one of the conditions (4) or {5). Then either for all o

2! (_41 P+ PAYr 'ty <0

or. for all »

x! (A! P+ PAy)e+ exl < 0.





[image: image6.jpg]Tn any case. we then conclude directly that Ay or Ay is asymptotically stable.
Thus. in anv case. quadratic stabilizability of the system (1) holds if and
only if a convex combination of 4; and A, is asymptotically stable. | ]

We remark that interpreting the Lyapunov function V() - TPy as an
energy function. an efficient control stategy that cnsures maximum instan-
tancous decay of 1 is

{91

(1) = Vit (AT P+ PADr < 0T (AL P+ Payyr
TN 9 otherwise

3 Quadratic Stabilizability via Output Feedback

We now study the switched system

o
o 55 ol (10
y=Cx

where o () is allowed to take any value in the set {l ..... L}, and we assmne

that only the output y. rather than the state x is available for feedback.
We look for a strategy using y 1o asymptotically stabilize » to 0. Straight-
forward techniques using. say. a Kalman filter mmay work on this system,
However, besides implementation issues. convergenee of the Iahnan filter
necds proving. In this paper. we are interested in finding an observer-hased
control strategy that is guarantecd to be stable. Much of the developments
presented here are similar to those of [7. 2], We assume for simplicity that
1. = 2. However. these results easily extend to the more general case.
We have the following theorem:

Theorem 3.1 Assumc there erst {joy. ) nonnegative and satisfying o -
o = Losuch that 4y = Ay us asymptotically stable. Asswme morcover
se-definite matric Pyoand o malrie Y such that

that there erists o pos

ATP + P —COTYT YO < -l (11]
AP+ PA, - CTYT YO <yl
for some 1y > 0. Then, for any posifive -definite symanetric matriz 1 satis-
fuing )

G Ay + oA Py + Polpn Ay + ppAy) < =l
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|
(‘17.1 o Ay + Lly — Ci)
alf) = { L if #T((AL - A P+ PalAy — Aol < 0

2 otheruisc

drives v and & to U with L = I’l’l)"
Proof: We start by rewriting the closed-loop systenn in the coordinates
i T
i = {.1’] (4 — .1')’}
We have:

d . . .

71.1' = Aaipd t LCLe =)

. .
d ) (13]

e =) - {(Aaprs = LOMa = ).

Let us prove Lyvapunov stability of this system. using the quadratic Lyi-

5 4
tiay = gl B A
Vo) = ol { 0 /\Pl}']'

where A is a positive constant to be determined, We have

punov function

,H\'m ool (AT Pk PpAggn)t - 25T Py L — 1)

‘ (B ' .

M= Y (A — LOYTP A Pl - LONG =)
AL P Py A )i 2 P LC (0 = 1)

alr — B AT Py Py Ay = CTY T YO =)

< i a4 20T P LC (= @) = Al — e -0

A

(1)

Tt is casily checked that the last Jine of (1.1} is negative-definite when choosing
A > UI’A;L("HQ fen (I1H]| denotes the maxinmm singular value of the mafrix
H). Thus. Lyapunov stability of (13) is proved. | |
A few conments may be made regarding this theorem: first. it 1s pre-
sented in a form which is suitable for computer implementation: indeed. the
sot of inequalities (11) is a linear matrix inequality (LMI) in and Y. and
s its feasibility may casily be checked on a computer. Note also that the
~controllability” property is the same as in the state-feedback case. The
set of LMIs (11) is equivalent to a robust detectability condition. alveady
encountered in other situations (13, 2. 7. 1]. This robust detectability con-
dition ensures convergence to 0 of the error between the estimate and the

true state. in spite of jumps in the linear dynamics.

6
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4 DMechanical example

L this section. we consider the mechanical system shown in Figure 1. Two
masses are attached to a string with tension 1 and they are free to move
along the vertical axis. A gross mechanical device (such as an electromagnet )
is able to set the string tension to either one of the two values Ty = 1 or
Ty = 1 Note that the assumption of coustant tension is fine if we allow

the string to be elastic. since the string elongation is proportional to the
square of the masses™ displacements. Note also that models similar to this
one have appeared in [10]. for example. It might be the very simple nodel
of a rope [121 or even a presstressed concrete beam where the pre-stress
tension might be adjustable. Other similar setups wight include mass-spring

svstens where the springs have variable stiffnesses. as can now be done nsing

simart materials 61 The two masses ave subject to a very light drag with
a damping coefficient = 0.01. Assuming the masses to be unity and the
distance herween them to be equal to 1L the dynamics of the system may be

written as

b 0 0 1 0 £y
(7/7 ryo| 4] 0 4] 1 Iy ()
di |y 2T 7 0.1 5} Ty

B T =27 0 0.1 ] | e

where T can either take the values 1 or 4. We wish to apply the techuigues
presented in this paper to this model. We agsume first that full-state feed-
back is available. Of course. in this case. the system is stable in principle
(although very badly damped). such that not changing the tension of the
However. it does not take full advantage of

string s an acceptable strategy.
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2: Response to random initial conditions. Top: closed-loop. state-
feedback. Bottom: open-loop. Continnous: . Dashed: 1

9.

the system’s characteristics: indeed. it is obvious that the string tension can
be used to pump into or remove energy from the system [10]. From our first
theorent. the quadratic Lyapunov funetions we can choose for state-feedback
purposes are the ones proving stability of the system (19) for any value of
T between 1 and 4. Note that this is a very lightly damped system. Thus.
there are not that mwany Lvapunov functions to choose from for a given T
(for more details. see [21 for example). Tn owr problem. we chose

150,00 =50.00 033 0.17

P = 5000 150.00 017 0.33
h .33 0.17 8333 16.67
0.17 0.33 16.67 83.33

1, can be proved to be a Lyapunov function for the open-loop systemn with
1. Figure 2 shows the positions of the two masses through time. using
state-feedback control. when the systen is excited to start from some random
initial condition. using the strategy (9). It is clear that using state-feedback.
along with the chosen Lyapunov function helps a lot. Keeping the sane
reference quadratic Lyapunov function. we now assume partial observation

o
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of the state only (the position of the first mass). Thus. the observation
veetor i may be writlen

g:[l 00 (1]1;

where »! = [ ry oary Iy I ] A gain L that satisfies (11} was found

using the convex feasibility code described in [9. 117,

Lo ] 683 —1262 —23.33 35.19}

i

and a corresponding P that proves it is

8067 115 —9.84 430
s L15 747 =875 —2.92
! 981 —875 1745 6.94

189 292 691 179

Thus. by virtue of Theorem 3.1. the observer-based controller (12) stabilizes
the svsteny. For the same random initial conditions. we have plotted in
Fignre 3 the positions of the first and second mass. along with the esthmated
positions as a function of time. The initial estimated positions and speed
have beew arbitrarily set to 0.

As far as convergence rate to 018 concerned. the responses for outpuat-
feedback contral do not significantly differ from the responses generated
using full-state feedback control. This can be attributed ro the dynamices
of the observer. which are significantly faster than the ones of the control
svsten. Tt may be noted that control by switching between two modes
for this mechanical svstem does not offer much bandwidth freedom: it is
essentially Ihnited by the stiffiess ratio between extreme configurations. In
our case. this stiffness ratio was 1 For lower stiffness ratios. a smaller decay
rate in the responses should be expected (with the linit case when this ratio
is 1. where switching control does not bring anvthing to the svstem).

5 Conclusion

hort note, we have extended results on quadratic stabilizability
of a switched system to deseribe the whole family of quadratic Lyapunov
functions that prove it. This familv is nonewpty if and only if some linear
combination of the two switching matrices is asymptotically stable.  We
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Figure 3: Response to random initial conditions with output feedback. Top:
first mass (2;). Bottom: second mass (2). Continuons: true position.

Dashed: estimated position
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[image: image12.jpg]have also shown a shnple set of sufficient conditions for stabilizing the same
system via output feedback. The additional condition is a linear matrix
mequality which may be casily be checked on a computer. We have shown
on a mechanical example how the presented theory may apply.

11
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