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Technological improvement trends such as Moore's law and experience curves have been widely used to under-
stand how technologies change over time and to forecast the future through extrapolation. Such studies can also
potentially provide a deeper understanding of R&D management and strategic issues associated with technical
change. However, such uses of technical performance trends require further consideration of the relationships
among possible independent variables— in particular between time and possible effort variables such as cumu-
lative production, R&D spending, and patent production. The paper addresses this issue by analyzing perfor-
mance trends and patent output over time for 28 technological domains. In addition to patent output,
production and revenue data are analyzed for the integrated circuits domain. The key findings are:

1. Sahal's equation is verified for additional effort variables (for patents and revenue in addition to cumulative
production where it was first developed).

2. Sahal's equation is quite accuratewhen all three relationships— (a) an exponential betweenperformance and
time, (b) an exponential between effort and time, (c) a power law between performance and the effort vari-
able — have good data fits (r2 N 0.7).

3. The power law and effort exponents determined are dependent upon the choice of effort variable but the time
dependent exponent is not.

4. All 28 domains have high quality fits (r2 N 0.7) between the log of performance and time whereas 9 domains
have very low quality (r2 b 0.5) for power law fits with patents as the effort variable.

5. Even with the highest quality fits (r2 N 0.9), the exponential relationship is not perfect and it is thus best to
consider these relationships as the foundation upon which more complex (but nearly exponential) relation-
ships are based.

Overall, the results are interpreted as indicating that Moore's law is a better description of longer-term techno-
logical change when the performance data come from various designs whereas experience curves may be
more relevant when a singular design in a given factory is considered.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

An essential element of many approaches to research on technical
change is an understanding of the overall societal impacts of specific
technologies. The key methodology for many such studies is essentially
historical involving detailed examination of the various interacting so-
cial and technical aspects of specific technological changes. Excellent ex-
amples of such studies include time keeping (Landes, 1983/2000),
electric power (Hughes, 1983), the transistor (Riordan & Hoddeson,
1997), railroad economic impact (Fogel, 1964) and diverse technologies
(Rosenberg, 1982). In almost all of these cases, numerous interacting

social changes were identified, but as with all historical studies, the
lack of a counterfactual (what happened if a specific technology did
not occur) renders precise knowledge unobtainable. The topic of this
paper is a complementaryway of studying technical change— quantita-
tive empirical performance trends— and the aim of this paper is to im-
prove the utility of this second approach. However, the link between
performance trends and overall social impact is not simple.

Even with a narrow focus, for example, on the economic impact of a
specific technical change (railroads in America in the late 19th century),
there have been significantly different estimates of the actual impact of
railroads (vs. a no railroad case) (Fogel, 1964; Fishlow, 1965). This is
partly due to the fact that other technologies (for example canals) can
be presumed to fulfill very different roles in the counterfactual case
and partly due to the fact that the full impact of one technology on
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others is highly complex — for example railroads and coal mining
(Rosenberg, 1979). More recent work has made progress in decoupling
the effects— for example relative to the role of computers in the economy
(Brynjolfsson &McAfee, 2014)— but the complications are yet severe for
quantitative estimation.Nonetheless there iswide agreement that techni-
cal change has enormous impact on society. Improvements in the cost
and performance of new technologies enable technological discontinu-
ities (Christenson, 1997) and large improvements in productivity
(Solow, 1957)which in turn drive companies out of business, lift the eco-
nomic level of many and generally transform society in profound ways.
While it would be foolish to postulate that quantification will answer all
of the important questions about technical change, this paper is based
upon the belief that improvement of our theories of technical change
will be aided by more dependable quantitative data about improvement
of technologies. Indeed, many theories of technical change (Christenson,
1997; Abernathy & Utterback, 1978; Abernathy, 1978; Foster, 1985;
Rosenbloom & Christensen, 1994; Tushman & Anderson, 1986;
Utterback, 1994; Romanelli & Tushman, 1994) involve assumptions and
hypotheses about such trends over the life cycle of a technology.

This paper attempts tomake technical performance trends amore re-
liable part of the empirical arsenal for those studying technical change by
clarifying an important issue. In particular, the research question of using
an effort variable (such as patent activity, R&D spending, production, or
revenue) or time as the independent variable is at the heart of this
paper. Section 2 states the research question and analyzes past research
concerning effort variables and time as the independent variable while
Section 3 presents the data and methods used in our research. Section 4
presents performance trend results for 28 technological domains empir-
ically comparing use of time and patents as effort variables: the section
first analytically generalizes study of effort variables. Section 5 interprets
the results and discusses their implications in terms of the quantitative
technical performance trend of technologies.

2. Multiplicity of independent variables

An issue that must be addressed if one is to improve the utility of
quantitative trend description is to determine the most appropriate
independent variable. Thus, the first of our two coupled research ques-
tions: Is a framework that assumes an exponential relationship between
performance and time better, worse or equivalent for quantitative em-
pirical description than a framework that assumes a power–law rela-
tionship between performance and an effort-variable? The second
research question is how one might empirically answer the first
question.

The existing literature has multiple views on the better independent
variable. For example, MacDonald and Schrattenholzer (2001) make a
strong argument against using time as the independent variable:

“For most products and services, however, it is not the passage of time
that leads to cost reductions, but the accumulation of experience. Unlike
a fine wine, a technology design that is left on the shelf does not become
better the longer it sits unused.”

One counterbalance to this apparent drawback of using time is the
fact thatmeasurement of effort introducesmore needed data searching.
More importantly,measurement of time is unambiguouswhereas effort
is ambiguous since it can be assessed according to several distinct con-
cepts. The original research by Wright (1936) and further extensions
(Alchian, 1963; Arrow, 1962; Argote & Epple, 1990; Benkard, 2000;
Thompson, 2012; Dutton & Thomas, 1984) use cumulative production
as the independent variable (the equation used will be discussed
below). Although Wright treated learning as within a single plant
(and for specific airplane designs), the same independent variable is
now sometimes used more widely raising significant unit of analysis is-
sues. In particular, researchers often (Argote & Epple, 1990; Dutton &
Thomas, 1984; Ayres, 1992) treat cumulative production of an entire

(usually global) industry as the independent variable. However, this re-
quires more careful definition of “industry” than is usually offered. In
addition, this broad approach almost always introduces ambiguity
about the initial values of output needed for cumulative production
and thus also introduces data manipulation issues. To put it simply, de-
termining how many and when unrecorded early units were produced
is very problematic.

Another issue involves defining effort since R&D and new designs—
not just production — are important in overall technical change. The
quotation above (MacDonald & Schrattenholzer, 2001) implies that
the unit of analysis is a “technology design” but technical change does
not proceed simply by continuing to accumulate experience on existing
designs but also through invention and creation of new designs. Recog-
nizing this, somewho take the broader view argue that cumulative pro-
duction is not then “learning by doing” but instead an indirect — more
or less total—measure of relevant effort (Ayres, 1992).More directmea-
sures of such broader relevant effort include number of patents, R&D
spending, and sales revenue: all of these as well as cumulative produc-
tion have issues in initial values and are more difficult to obtain. For
these aswell as historical reasons, much of the practice for independent
variables for effort remains cumulative production— despite identifica-
tion of significant issues in interpreting such studies (Benkard, 2000;
Thompson, 2012; Dutton & Thomas, 1984).

In addition to its passive nature, time as the independent variable
conceptually seems to assume technology development is fully exoge-
nous to what is happening in the economy. Since the consensus is that
there are strong endogenous aspects of technology development, a
fully exogenous assumption is counter-intuitive to those thinking pri-
marily about causes. However, time indirectly contains the endogenous
drivers as well as any exogenous drivers. For example, if the production
rate of an artifact is constant, then cumulative production and time are
proportional (with the proportionality constant the rate of produc-
tion) so learning by doing for factory workers is also implicitly
contained within the time variable. Similar arguments apply to
R&D spending, revenue and numbers of patents with a direct rela-
tionship realized if the rates of each are constant over time. The ob-
vious weakness of these indirect entailments for time is that the
effort-variable (patent production, revenue or R&D spending) is
not necessarily constant over time. A similar issue arises for cumula-
tive production because other suggested effort variables (profits,
R&D spending, patents, etc.) are not directly proportional to cumula-
tive production. Indeed, cost or revenue per unit is the usual depen-
dent variable so revenue per unit decreases with time: R&D spending
and patents are proportional to revenue— not to units. An additional
practical and theoretical obstacle to the use of cumulative produc-
tion as the independent variable is the recent work showing that
large performance improvements are often found before any com-
mercial production occurs (Funk & Magee, 2015).

A preliminary conclusion could be that time casts “toowide a net” to
give adequate emphasis to the endogenous affects in technological
progress but that any specific effort variable “casts too narrow a net”
to adequately capture all the endogenous efforts and captures none of
the broader effects including “spillover” from efforts outside the implicit
unit of analysis.

Perhaps surprisingly, given this qualitative story of differences in the
approaches, in a very importantway the two approaches are equivalent.
Important steps in showing this equivalence have been taken by Sahal
(1979), Nordhaus (2009), Nagy et al. (2013). The mathematical rela-
tionships (and the inter-relationship among them) specify this equiva-
lence. A generalization of Moore's Law1 that includes only performance
q is

q ¼ q0 exp k t−t0ð Þf g ð1Þ

1 q in the original or actual Moore’s Law is the number of transistors on a wafer.
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where q0 = q at t = t0 and k is a constant; generalizing to an equation
that includes cost as well as performance gives

q=c ¼ q0=c0 exp k t−t0ð Þf g ð2Þ

where c is price/cost and c = c0 at t = t0.
Wright's equation is usually formulated as describing only cost and

relates it to cumulative production (p) as a power law:

c ¼ B p−w ð3Þ

where B is the cost for the first unit of production and w is a constant.
A generalization of Wright's Law consistent with Eq. (3) is

q=c ¼ q=cð Þ0 pw ð4Þ

where (q/c)0 is the value of q / c at 1 unit of production.
Sahal (1979) showed that that if the cumulative production, p, (or

production) also follows an exponential relationship with time, namely

p ¼ p0 exp g t−t0ð Þf g ð5Þ

where g is a constant and p = p0 at t = t0, then eliminating time be-
tween Eqs. (2) and (5) yields Eq. (4) with

k ¼ w $ g: ð6Þ

Thus, Sahal showed that the Wright and Moore formulations were
equivalent when production follows an exponential (Eq. (5)): the key
parameters are then simply related as shown in Eq. (6). An important
issue is why one might expect Eq. (5) to hold. Nordhaus pointed out
(Nordhaus, 2009) that as user-based performance increases or cost de-
creases according to Eq. (2), basic economics (demand elasticity) would
result in demand (hence production) increases. Since Eq. (2) is expo-
nential, demand and hence production would “automatically” (if de-
mand elasticity is constant) follow the exponential relationship in
Eq. (5). Thus, if either the Moore or Wright equation holds, Nordhaus'
research indicates the other is likely to be followed as well.

Beyond these theoretical considerations, Nagy et al. (2013) carried
out an important and relatively extensive empirical investigation of
these relationships. For 62 cases (but where only price of the artifacts
was considered), they found for most cases that production followed
exponentials with time and that Eq. (6) showed minimal deviation in
all 62 cases. The research by Sahal, Nordhaus and Nagy et al. shows
that attempting to use fits to Eqs. (1) through (4) to distinguish
among the intuitively different interpretations of technological progress
is not easily done.

As an answer to the second research question in the first paragraph
in this section, we consider other effort variables as a further test of
what has been donewith production. In particular, we pursue invention
as a driver of technical change and utilize the number of patents in a do-
main as an effort-variable in 28 different domains. Since patents are a
relatively direct measure of technologically novel designs, using them
as an effort variable will allow a more direct test of whether time or ef-
fort is a more appropriate independent variable to use in describing
quantitative technological trends. In addition, annual patent output in
a technological domain may not continue to follow an exponential
with time. If this occurs, we will learn whether Eqs. (2), (5), neither or
both is followed, which will significantly illuminate our first research
question.

3. Data and methods

3.1. Overview

The research objective in this paper is to compare the reliability of
describing quantitative performance trends using a power law as a

function of the annual number of patents (the effort-variable as
discussed in Section 2) vs. as an exponential function of time. Testing
this with a single technological domain is obviously not adequate to ad-
dress the overall reliability of either approach. Thus, the data and
methods described here involve finding patent numbers as a function
of time and performance data as a function of time for a substantial
number of technological domains. In this case, substantial is the 28 do-
mains for which we have done this. Prior papers have described the
methods developed forfinding highly relevant and complete sets of pat-
ents (Benson&Magee, 2013, 2015) for these 28 domains so thematerial
below is only a summary of that work. However, the performance data
for the 28 domains is first reported here so themethods used in gather-
ing that data are described inmore detail. The basic tests performed are
to look at goodness of fit of performance both for the power-law as a
function of the annual output of patents and for an exponential function
of time in each domain. The reliability of the two frameworks is then
assessed based on all 28 domains.

3.2. Patent data

The Supplementary Information file (see Section 9 for overview and
a link) contains annual patent counts from 1976 to 2013 for each do-
main; the quantity of patents is used as an effort variable for each do-
main to compare with time dependence in Section 4.4. The patents
are all extracted from the PATSNAP database for US patents (Patsnap,
2013). We obtained these highly relevant patent sets by use of a classi-
fication overlap method (COM) developed earlier (Benson & Magee,
2013, 2015; Benson, 2014). The COM starts by searching for keywords
that are selected as potentially important in the technological domain
of interest. Each of the patent sets retrieved with the keyword search
are then analyzed by quantitative metrics to assess the patent classes
containing the patents in each set. The patents that are in both the
most likely US patent class (UPC) as well as themost likely International
patent class (IPC) are then taken as the patents in the domain. The basic
intuition behind this classification overlapmethod is that the patent ex-
aminers differentially utilize— at least implicitly— the two systems be-
yond the sub-classifications in each system. Thus, additional confirming
evidence of the nature of the technology in a patent is obtained by re-
quiring that the patent be in both the top IPC and top UPC classes. The
fact that each patent is classified in several IPC and UPC classes allows
this dual classification to not be over-restrictive thus resulting in
reasonably good completeness as well as higher relevancy than
known alternative techniques (Benson &Magee, 2013, 2015). Each pos-
sible set is assessed by reading of patents in the potential set by two dif-
ferent technically-knowledgeable people who independently judge the
relevancy of the individual patents to the technological domain of
interest.2 The application of the method for the 28 domains is more
fully described in (Benson & Magee, 2015; Benson, 2014).

3.3. Performance data

3.3.1. Overview
In addition to the issue addressed in this paper (the dependent var-

iable chosen), there are two other issues concerning reliable description
of quantitative empirical performance trends. The methods used in this
research for addressing each of these two issues are covered in the fol-
lowing sub-sections.

2 In the 2 cases where the two raters differed bymore than 7% in the relevancy rating, a
third rater was used and in both cases, a different overlap was used. Thus, in all cases, the
relevancy rating given is the average of the two (closely agreeing) raters. 300 patents are
assessed for each set which results in an overall relevancy assessment for the patent set
that is+/−5.7%. This percentage follows from a standard sampling test for very large data
sets that states that the uncertainty range at 95% confidence is determined by 1/(N)1/2

where N is the sampling population size, for N = 300, the uncertainty range is no larger
than+/−5.7%. 5.7% represents theupper limit of the uncertainty range, and the small pat-
ent sets have smaller ranges.
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3.3.2. Unit of analysis
There are a lot of different approaches to decomposition of technol-

ogy to specific technologies but the broadest attempts by highly experi-
enced and motivated experts is clearly the US (UPC) and International
patent classes (IPC). The UPC has about 400 “top level” classes and
about 135,000 subclasses and the IPC (is structured with 628 4-digit
classes and 71,437 subgroups at themost granular level of the hierarchy
(Patsnap, 2013).Most technological progress researchers find these cat-
egories “too detailed” and in some sense not a good match to reality of
the technological enterprise (Hall & Jaffe, 2001; Larkey, 1998). The real-
ity of this logical issue is supported by the fact that an average US patent
is listed in 4.6 UPCs and 2.4 IPCs indicating impact on multiple streams
of technology.

A secondway to differentiate among technologies is using Dosi's no-
tions (Dosi, 1982) of “trajectories and paradigms” for technological
progress. Dosi uses the idea of a paradigm as normal technology prog-
ress (analogous to Kuhn's interpretation of scientific progress) and tra-
jectory as the economic focus of the technological problem solving
process inherent in a paradigm. Much more recently, Martinelli
(2012) utilized Dosi's concepts in a study of the telecommunication
switching industry and in doing so, developed the ideas further.

A third way to differentiate technologies starts with generic func-
tional categories (Koh & Magee, 2006). A refined version of this ap-
proach defines a technological domain as within a functional category:
specifically, a technological domain is defined here as “artifacts3 that
fulfill a specific generic function utilizing a particular, recognizable
body of scientific knowledge”. This definition essentially decomposes
generic functions along the lines of established bodies of knowledge.
This approach is in the same spirit as the Dosi/Martenelli framework
and with Arthur's later approach (Arthur, 2007) with the generic func-
tion connecting the domains to the economy and the body of scientific
knowledge connecting the domain to science and other technical
knowledge. Its advantage is that both generic function and domain are
less ambiguous than the trajectory and paradigm concepts. The 28 do-
mains studied in this paper are shown in this framework in Fig. 1.

3.3.3. Performance metric selection
Having defined the technological domain, how should one measure

performance to quantify improvements in performance? The answer
depends on the purpose of the study.

One purpose for studying trends of metrics is to indicate the signifi-
cance of usage of a technology to the economy and society over time.
Themetrics used in such studies (and there is a large body of “diffusion”
studies) include the amount consumed (Fisher & Pry, 1971), fraction of
potential users who become users (Mansfield, 1961), market penetra-
tion of the artifact (Griliches, 1957), and units produced (Grubler,
1991). While this research is very important, it does not clarify trends
in technical performance: the metrics used are not measures of techni-
cal performance and are not the metrics utilized in this research.

A second purpose is to help one anticipate future engineering prob-
lems or future design directions. The metrics used in such work (they
are numerous and usually as part of more comprehensive design
trend studies) include pressure ratio (Alexander & Nelson, 1973), tem-
perature achieved in an artifact (Alexander & Nelson, 1973), energy ef-
ficiency (Koff, 1991), mass balance (Koff, 1991) and others. Although
such technical metrics are also unquestionably important, effective
analysis of technical change and its social and cultural impact requires
that technical performance metrics must go beyond these technical
metrics. Indeed, our interest in technical performance — the purpose
of the current work — resides in its broader impact. As a consequence,
the definition for the metrics we utilize is — technical performance met-
rics are the properties of artifacts that are coupled to economic usage but
are independent of amount of usage, number of possible users, competitive

offerings, or the scarcity or depletion of resources that are used in building
the artifacts.

The “ideal” metric for assessing technical performance is one that
would assess the economic value of an artifact independently of purely
economic variables such as scarcity and strength of demand. An ideal
metric would combine (in the “correct”weight) all performance factors
that have a role in a purchase/use decision. Thus, these “techno-econom-
ic”metricswouldmeasure the performance of an artifact as viewed by a
user and not design variables as viewed by an engineer (the technical
metrics) and also not the number of users or depletion effects as present
in metrics focused more on marketing or economic impact. The desire
for such ideal metrics has also been discussed as part of hedonic pricing
research (Alexander & Nelson, 1973; Bresnahan, 1986; Willig, 1978).

Themetrics we use are thus user focused, avoid incorporation of de-
pletion effects, avoidmeasuring the amount of use, increasewhen use is
enhanced and are intensive-not extensive or size dependent-metrics.
For the 28 domains, we examined trends in 71 metrics and all of these
are reported in the supplemental information. We chose the most reli-
able and meaningful metrics (these are given for all 28 domains in
Fig. 1) but none of the conclusions we arrive at are substantially
changed if different choices among the 71 are examined.

One can often obtain technical performance data from a variety of
sources combining them into metrics that vary with time and other in-
dependent variables. Although the entire data set thus obtained can be
of interest, for determining the trend, only non-dominated observations
are typically used. Non-dominated observations are those for which
the metric is not surpassed in magnitude by the value achieved by the
metric at lower values of effort variables (smaller number of patents,
smaller cumulative production, etc.) or earlier time — they are “record
setters”. Although this reduces the amount of data available for analysis,
it is the usual preferred practice because of concern that dominated
pointsmay be exceedingly high on amissing variable introducing noise.

4. Results

4.1. Summary of results

Section 4.2 presents the mathematical basis for generalization of
Sahal's equation to effort-variables other than production. In
Section 4.3, we examine a diversity of effort-variables for the integrated
circuits domain attempting a preliminary and wider test of Sahal's rela-
tionship than can be done by any singular effort-variable. Section 4.4
presents the results that explicitly focus on the first research question
concerning time vs. effort-variables as the independent variable for a
technical performance trend. In that section, the goodness of fit accord-
ing to the two frameworks is compared for the 28domains using the an-
nual patent output in a domain as the effort-variable.

4.2. Mathematical generalization of effort-variables

In Section 2, we reviewed Sahal's work showing a simple relation-
ship (Eq. (6)) between the power law exponent (w) for production
and the exponential (k) with time. The relationship is followed as long
as the production (and thus also cumulative production) follows an ex-
ponential with time. We demonstrate in this section that Sahal's rela-
tionship is expected if any effort-variable follows an exponential
relationship with time. In particular, if we simply use the chain rule to
decompose the derivative of the log of performance4 vs. time defining
E as any effort variable, we obtain:

d log q=dt ¼ d log q=d log E $ d log E=dt ð7Þ

The left hand side of Eq. (7) is the familiar slope of the log perfor-
mance vs. time plot, which is k (Eq. 2 exponent). The first term on the

3 Artifacts include systems, products, subsystems, processes, software and components. 4 Log as used in this paper represents the natural logarithm.
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right hand side of Eq. (7) is the power law exponent (w in Eqs. 3 and 4)
and the second term is the slope of the exponential fit of the effort-
variable with time, g in Eq. (5). Thus, for any effort variable, Sahal's rela-
tionship (Eq. (6)) holds, k = w · g, where g is now the exponent of
Eq. (5) for any effort variable and w is the exponent of a power law
(Eq. (4)) or the slope of a log performance vs. log effort plot. Of course,
for the relationship to hold the effort variablemust be the same for both
terms on the right hand side of Eq. (7). Aswewill see in the next section,
each of these quantities can depend upon the effort variable selected.
Note that Eq. (7) holds for cumulative or annual versions of the effort
variables as long as Eq. (5) holds.

4.3. Comparison of diverse effort-variables for the IC domain

An empirical examination of Eq. (7) usingmultiple effort variables is
possible by examination of one of our 28 domains— namely integrated
circuits. In particular, detailed production and revenue data for the IC
domain were obtained from (Moore, 2006) to complement the patent
output data we have for all domains. The performance data for the IC
domain is the Moore's Law dependent variable, transistors/die. Table 1
shows empirical estimates of g and w for ICs for all three effort-
variables along with r2 for each estimate. g describes the exponential
between the effort-variable and time (Eq. (5)) whereas w is the

Fig. 1. The 28 technological domains defined for this study (shown in Bold Type) in the generic functional format used in (Koh & Magee, 2006). The italicized phrase is the scientific
knowledge base for the domain. The primary metric reported for each domain (Section 3.3.3) is in normal type after the scientific knowledge base. The generic functional category is
the intersection of the operands (across the top) and the operations (down the side). As a specific illustration, the generic functional category energy storage contains three of the 28
domains— namely electrochemical batteries, capacitors and flywheels.
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power law fit for performance vs. the effort variable (Eq. (4)). These re-
sults indicate acceptable power-law (w) fit quality for the performance
variable (transistors/die) as a function of each of the three effort-
variables—production, revenue andpatents for this domain. The results
in Table 1 also indicate acceptable fit to the exponential with time
(g) for each of these effort-variables.

It is first worth noting that the estimates for w and g are dependent
upon the particular effort-variable; g is much higher andwmuch lower
for production as opposed to revenue. This striking result is a natural
outcome of the fact that this domain has improved rapidly so that the
revenue per transistor has greatly diminished over time. As a result,
the exponential increase with time (g) is much lower for revenue
than for production. Similarly, the increase in log performance with
increase in log effort (w) is understandably much larger for revenue
than for production again because of the much more rapid increase in
production compared to revenue with the same performance increase.
In a given domain, the amount of R&D spending is approximately
proportional to revenue and the number of patents is approximately

proportional to R&D spending (Margolis & Kammen, 1999); thus, g
and w for revenue and patents are expected to be similar. Table 1 con-
firms empirically that g and w are much more similar for patents and
revenue than for production/demand but also shows that patents
have increased slightly more rapidly (11.4% per year) compared to rev-
enue (9.5% per year) due to increases in the R&D/revenue ratio in this
domain over time (Mowery, 2009).

Despite the systemic change inw and g for the three effort-variables,
the last column in Table 1 shows good agreement between direct deter-
mination of k and the value of k calculated from Sahal's Equation for all
three effort-variables. The estimates are definitely within the confi-
dence interval for k for the IC processors. The agreement with all three
effort-variables for IC processors is a strong confirmation of the useful-
ness of Sahal's relationship and of the generalization derived in
Section 4.2. The results also show that patents can potentially be used
as an effort variable which is particularly useful since it has been argued
(Foster, 1985) that use of an invention-oriented effort-variable is supe-
rior to time or production. We now turn to results for using patents as
an effort-variable for all 28 of our domains. We first show some plots
of actual data to calibrate the reader to different levels of fit found in
the data for Eqs. (2), (4) and (5).

4.4. Performance vs. time and patent output 28 technological domains

Fig. 2a shows log-linear plots of performance with time (Eq. (2)) for
four domains (optical telecom, LEDs, batteries and 3D printing) using
four relevant performance metrics (we call each of these domains

Table 1
Empirical values of g and w for IC processors: g from data fit to Eq. (5); w from data fit to
Eq. (4); ks, determined by Sahal's relationship, Eq. (6); k from data fit to Eq. (2)

Independent-effort-variable g (r2) w (r2) ks; {k}

Production/demand 0.59 (.97) 0.6 (.99) 0.35; {0.36}
Revenue 0.095 (.91) 3.4 (.88) 0.32; {0.36}
Number of patents 0.114 (.76) 3.0 (.86) 0.34; {0.36}

Fig. 2. A: Technological performance (log) against time for four domains (optical telecommunications, LED lighting, electro-chemical batteries, and 3D printing). The performance metric
for each domain is shownabove the graph. B: Power law fit for four domains (optical telecommunications, LED lighting, electrochemical batteries and 3DSLA printing). Themetric for each
is above the graph. C: Annual patents against time for four domains (optical telecommunications, LED lighting, electro-chemical batteries, and 3D printing). The performance metric for
each domain is above the graph.
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with a specific metric, a domain-metric-pair). Fig. 2b shows the log per-
formance vs. log patents5 (Eq. (4)) for the same four-domain-metric-
pairs and Fig. 2c plots log patents vs. time (Eq. (5)) for the same four
pairs. These four domain-metric-pairs are chosen because they repre-
sent the full range of quality of fits in our larger data set. In particular,
the LED and optical telecom plots show good r2 values and subjectively
good fits for all three plots. However, 3D printing and batteries show
poorer subjective fits and r2 values in Fig. 2b and c (but are still fit
well in 2a). It is important to note that Sahal's relationship is not expect-
ed to be accurate in cases with such poor fit since the parameters on the
right hand side of Eq. (7) are not constant. In fact, the k estimated from
Eq. (7) for 3Dprinting and batteries are off from the directly determined
value by factors greater than 1.5 (much greater for 3D printing) but are
within a factor of 1.2 for optical telecom and LEDs. These results indicate
that Sahal's relationship is accurate for cases where good fits (r2 N 0.75)
exist for k, w and g. The expected reduction in accuracy of the relation-
ship occurs as the fits deteriorate. This finding does not depend upon
the nature of the effort-variable but instead upon whether an exponen-
tial describeswell the relationship between the effort-variable and time.

Fig. 3 is a distribution of r2 for all 28 domains for the three key fit pa-
rameters (k, g andw). Over all domains, the fits are clearly better for an
exponential relationship between performance and time than they are
for an exponential relationship of patent output with time or than
they are for a power law of performance and annual patent output.

Only 2 of the 28 r2 values are less than 0.8 for k but that the majority
of the r2 are less than 0.8 forw and for g. This demonstrates thatMoore's
Law is followed even when a relevant effort-variable does not increase
exponentially with time.

This is an important finding because Sahal's equation can be
interpreted to say that one needs to have exponential increases with
time for effort-variables to get exponential relationships of performance
with time. The results in Fig. 3 show that such a conclusion is clearly not
true sincemany cases of very poor exponentials are found for the effort-
variable (12 values of r2 for g are less than 0.5) and yet none are found
for exponentials with time. This interpretation of Sahal's equation as-
sumes that a power law between performance and an effort-variable
is fundamental and the exponential with time only arises because of a
simultaneous exponential of effort with time. However, this suggested
interpretation is reversed by the results in Fig. 3. Although the general-
ization of Moore's Law is followed in all cases, the many instance with
low r2 for w shows that the power law is not followed for this effort-
variable when patent numbers do not increase exponentially with
time. Thus, Moore's Law (the exponential increase of performance
with time) appears fundamental and the power law only applies
when a simultaneous exponential of effort as a function of time exists:
Eq. (7) then shows that w is also constant (a good power law fit).

5. Discussion

The results that were just presented indicate that the first research
question stated in Section 2 about themost effective framework for de-
scribing quantitative empirical performance trends is answered in favor
of the approach first used by Gordon Moore (1965) fifty years ago. Our
second research question was answered by empirical analysis of 28

5 We also tested cumulative patents and got similar results. An additional issue in use of
cumulative patents (aswith any cumulative variable) is that one does not have actual data
for many years (in our patents, we cannot apply COM before 1976) and estimation tech-
niques do not actually add any information. Since Eq. (7) works for cumulative or annual
effort variables, and the exponents g and w are the same for annual or cumulative vari-
ables, we use the actual data rather than an arbitrary reworking of it.

Fig. 2 (continued).
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domains where the performance and annual patent output were ob-
tained for the period 1976–2013. Since the patent output as a function
of timewas often not exponential, these data allowed one to seewheth-
er performance then followed a power law function of the patent output
or an exponential with time. This decoupling of time and effort made it
possible to break away from Sahal's relationship and thus differentiate
between two usually coupled approaches. The results show that when
patent output does not follow an exponential increase with time, one
usually also does not find good fits for power laws between perfor-
mance and patents (the effort-variable) despite having a good fit for
an exponential between performance and time.

This paper also shows theoretically and empirically that Sahal's
relationship is followed for diverse effort-variables when the effort-
variable increases exponentially with time. In particular, we identify
production— the most popular choice in the literature— but also reve-
nue, R&D spending and quantity of patents issued as potentially useful
“effort-variables”. Our results demonstrate that Sahal's equation is
valid for integrated circuits using revenue, patents or production as
the effort-variable.

While there is no logical basis for concluding that other effort-
variables would lead to a different answer to our first research question
(the time dependence appears fundamentally correct and choice of alter-
native effort-variableswouldnot change this),wedonote that our empir-
ical results are only for patent output as ameasure of effort in a domain. In
the 62 cases studied by Nagy et al. (2013), the most popular effort-
variable (cumulative production) was fit adequately by an exponential
relationwith time and Sahal's relationship (with price as the performance
metric) was followed for all 62 cases. From this extensive test, it appears
that no differentiation of the two frameworks is possible when one uses
only cumulative production as the effort-variable. This could support a
conjecture that cumulative production rather than time is the appropriate
independent variable but such a conjecture is somewhatweakened by re-
search that has shown rapid improvements in performance before any
commercial production occurs (Funk &Magee, 2015). To our knowledge,
no-one has obtained effort-variable data for an extensive set of domains
beyond these two studies so it is not clear what findings would result
from use of effort variables like revenue or R& D spending.

Thus, for examining quantitative trends in performance, time should
always be reported since it is always available, requires no more work
and appears to be fundamentally important. In caseswhere newdesigns

Fig. 2 (continued).

Fig. 3. Distribution of r2 for all 28 domains for k, g and w.
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and inventions occur during the trend studied, fitting the exponential
with time in addition to the power law with an effort-variable (if suffi-
cient effort-variable data exists) also appears sensible. Our findings
show that the generalized Moore's Law formulation of technical trends
is the most accurate over a wide range of technological domains where
new designs occur. We also recommend explicit discussion of the spe-
cific algorithm for estimating missing data when using cumulative
effort-variables. This is unfortunately rarely done now and seriously
limits the utility of such work since the importance of unknown as-
sumptions cannot be checked. It is preferable to simply use the effort
variable (annual or some other fixed period) directly rather than cumu-
lative versions that are undocumented.

One practical implication of the results reported in this paper is for
technological forecasting. Our major concern in this paper is to arrive at
the best framework for describing the past; the clear value of this is for
deeper understanding of what has occurred. However, future values of
technical performance and cost are critical to such issues as potential dif-
fusion and firm profitability. Thus, accurate projection of future perfor-
mance is a potentially important element in forecasting potential larger
scale change. Evenwith high r2, the graphs in Fig. 2 show far from perfect
exponentials warning us that extrapolation will not lead to perfect fore-
casts. Nonetheless, back-casting research (Nagy et al., 2013; Farmer &
Lafond, 2015) has demonstrated that extrapolation of past trends is useful
in estimating future values and thus overall establish some reality for
technological forecasting based upon extrapolation. It is our viewpoint
that significantly better forecastingwill be enabled by improvedquantita-
tive, explanatory theories and the next paragraph argues that the current
results and other recent research are important steps towards this goal.

Having themost fundamental framework for describing quantitative
technical performance trends for a wide variety of technological do-
mains opens up a number of research questions of significance to un-
derstanding technological change and thus improving our foundation
for technological forecasting. The 28 domains reported here show vari-
ation in improvement rate from 3.1% per year (electric motors) to 65.1%
per year (optical telecommunication): such variation is more than suffi-
cient for quantitative empirical and theoretical investigation. Indeed, re-
cent research by two of the authors of this paper (Benson & Magee,
2015) found very strong correlations with patent metadata in a domain
and the exponential rate of improvement for that domain. The findings
(Benson &Magee, 2015) also support reliable forecasting of rates of im-
provement for at least 12 years into the future. Moreover, the correla-
tions support a conceptual basis (Benson & Magee, 2014, 2015) for
why some domains improve more rapidly than others based upon im-
portance, immediacy and recency of patents in a domain. Thesefindings
alongwith enhanced back-casting research (Farmer & Lafond, 2015) and
first-principle modeling (Basnet, 2015) are all enhancing our ability to
forecast technological change and further research on hybrid approaches
may be of particular utility. This work is enabled by knowledge that per-
formance as an exponential function of time is the best framework for
these efforts as established by the research reported here. Nonetheless,
even with such results significant further research will be needed to de-
lineate what aspects of technological change can then be forecast: this
is not likely to include overall societal change because of our current
level of understanding of the complex interaction of technologies and
the economy as outlined in the introduction to this paper.

Two other topics involve hypotheses about describing the trends, and
we have not fully identified meaningful analytical procedures to address
them. S curves are hypothesized to be the usual trend for technical perfor-
mancewhenplotted linearly against time or effort (Foster, 1985; Schilling
& Esmundo, 2009). Visual inspection of linear plots for all 71 domainmet-
ric pairs found that none unequivocally appeared to be S curves as a func-
tion of time or effort; however, a desire for amore clearly objectiveway of
determining the reality of S curves is needed. Unfortunately, statistical
tools are limited by the fact that logistic (and other equation forms giving
S curves) contain additional variables: there are cases (Keyes, 1977)when
these curves have been fit to data predicting emerging S curves that have

not yet (even 30 years later) appeared. A secondhypothesis about techni-
cal performance trends is that they showmajor discontinuities (Tushman
&Anderson, 1986). Testing this hypothesis is not straightforward because
increases in technical performancemust in reality be discontinuous since
advances are typically made by introduction of discretely different de-
signs (inventions and products). Moreover, the level of discontinuity is
dependent upon the time between new products and it is not known
how many new product observations are missed. One might want to
only note discontinuities that in fact are breaks froman existing exponen-
tial or power law fit. Objective means for deciding what constitutes a
major technological break is also needed to address these questions.
Overall, the results reported here give no support to S curves, quantitative
discontinuities or life cycle hypotheses in regard to technical change but
instead support a generalization of Moore's law as the foundation upon
which change occurs. The noise apparent even with good fits (see
Fig. 2) does clearly allow room for much variation due to social and eco-
nomic complexity but such complexity is apparently built upon the regu-
larity of exponential improvement.

Our final important topic for future research (that may well greatly
extend work on dependent variable metrics) is the linking of technical
performance change with productivity changes with time. Although it
is widely agreed that technological change is amajor source of econom-
ic growth (Solow, 1957; Arthur, 2007; Romer, 1990), there are no
economic theories that use quantitative trends in technological perfor-
mance as input and obtain as output the productivity change over
time in an industrial sector. This is at least partly due to the difficulty
of the problem of connecting technologies with industrial sectors but
the lack of attempts is disappointing. A simpler beginning issue in this
regard might be linking technical performance trends with innovation
and diffusion. It is widely intuitively understood that the metrics
studied here attempt tomeasurewhat is “better” and thatwhat is better
is generally what diffuses (Griliches, 1957; Mansfield, 1961) but formal
treatment has not been attempted. In fact, most diffusion models
implicitly consider the relative performance and cost of a diffusing arti-
fact to be constant so a doable first step might be to eliminate this
assumption.

6. Conclusions

Twenty-eight technologies (technological domains) are studied in
this paper exploring their performance improvement as a function of
time and effort: the annual number of patents published in the techno-
logical domain is used to measure effort. A total of 71 different perfor-
mance metrics were studied for these 28 domains.

Themajor finding is that the results indicate that Moore's exponential
law appears to be more fundamental than Wright's power law for these
28 domains (where performance data are record breakers from numer-
ous designs and different factories). This conclusion is supported by:

• The performance metrics in all 28 technological domains have strong
exponential correlations with time (Moore's law generalization).

• In contrast, most of these same performance metrics in the 28 do-
mains have much weaker log-log correlations with patents (Wright's
law generalization).

• Wright's law is followed only in those domains where published pat-
ents in the domain show a strong exponential correlation with time.
For these domains, Sahal's relationship is followed: k = w · g,
where k is the Moore's law exponent, w the Wright power law expo-
nent and g the patent growth exponent. This indicates that the
power–law relationship in these cases is not fundamental but instead
a shadow of Moore's Law.
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Appendix A. Supplementary information

In addition to the information presented in this paper, we have com-
piled key data used into aMicrosoft Excel file that can be easily obtained
by copying the following link into a web browser where it can be
viewed and/or downloaded: http://bit.ly/mageeetalSIMay2014.

This document contains three worksheets which are accessible by
clicking the tabs at the bottom of the excel window.

• 28 domains with k, g and w— this worksheet contains the k, g, and w
values along with the r2 values for each of the regressions for the 28
technological domains.

• 71 domain-metric-pairs with Statistical information— this worksheet
includes the 71 domain-metric-pairs for the 28 technological domains
(sixteen havemore than onemetric for which trends are determined)
along with the relevant statistical information.

• Domain Annual Patenting Rates — this worksheet shows the annual
number of patents for each of the 28 domains.
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