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Abstract  
Patents represent one of the most complete sources of information related to technological change and 
they also contain much detailed information not available anywhere else. Thus, patents are the “big data” 
source most closely related to Future-oriented Technology Analysis (FTA). Not surprisingly, therefore, 
there is very significant practical and academic use of the patent database for understanding past 
technical change and attempting to forecast future change. This paper summarizes several new methods 
and demonstrates their combined effectiveness in establishing a cutting-edge capability for patent study 
not previously available. This capability can be stated as a link between the information in patents and the 
dynamics of technological change.  

The demonstrated capability relies upon the use of a database containing the rates of improvement for 
various technologies. We also specify the term we use for the analyzed units of technology: a 
technological domain is a set of artifacts that meets a specific generic function while utilizing a specific set 
of engineering and scientific knowledge. This definition is unambiguous enough so technological domains 
can be linked with progress rates and is sufficiently flexible to accommodate the large scale and 
complexity of the patent database. The existence of an improvement rates database and its quality are a 
critical foundation for this paper.  

Establishing the overall capability also involves relating the rate of improvement of a technological domain 
to the patents in that domain. We show that a recently developed method called the classification overlap 
method (COM) provides a reliable and largely automated way to break the patent database into 
understandable technological domains where progress can be measured. In this paper, we show how this 
method overcomes the third limitation of the patent database.  

The major conclusion of the paper is that there is now an overall objective method named Patent 
Technology Rate Indicator (PTRI) for using just patent data to reliably estimate the rate of technological 
progress in a technological domain. Thus, the first link between the patent database information and the 
dynamics of technological change is now firmly established; robustness and back-casting tests have 
shown that the assertion of reliability is meaningful and that the estimate has predictive value. 

We demonstrate the usefulness of this method by estimating technological improvement rates for a set of 
15 technologies that may be important in the future including 3D-printing, neural networks, food 
engineering and water purification. 

 

Keywords: Patent Analysis, Future-oriented technology analysis, Big Data, Nuclear, Water Purification 

 

Introduction  
This paper introduces the results of a new forecasting method called the Patent Technology 
Rate Indicator (PTRI) method that uses patent data to better predict time-based performance 
improvement rates of technologies whose performance trend is otherwise unknown. While the 
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focus of the research is on quantitative performance trends, we do not want to suggest that such 
results will be all one desires for technological forecasting. Haegerman et al (2013) explain the 
various focuses of several different disciplines within the FTA community: 

‘It is acknowledged that, within the FTA community (which comprises Foresight, Forecasting and 
Technology Assessment),1 foresight practitioners have traditionally concentrated on participatory 
methods based on qualitative data, on the grounds that quantitative extrapolation from past data 
is not sufficient to address the uncertainties of the future and that emerging changes in the 
socio-economic and technological landscapes need to be taken into account. Another part of the 
FTA community, constituted by Forecasting and Technology Assessment practitioners, holds an 
opposite standpoint, considering qualitative and participatory approaches as a second best 
option, to which we are somehow compelled to refer until adequate quantitative methods arise. ‘ 
(Haegerman et al, 2013) 

Our viewpoint is that both qualitative and quantitative approaches are needed for this complex 
issue and improvement of both is needed. Rosenberg’s analysis done more than 20 years ago 
(Rosenberg, 1982) categorized four areas of difficulty in any technological forecasting which 
includes the socio-economic aspect; these are:  

1) At emergence, the focal (or new technology) is not very capable;  

2) Vital complementary technologies are potentially underdeveloped;  

3) System design/evolution that may be necessary for large impact has not occurred; 

4) The human user ingenuity that will greatly impact the technology and its impact has great 
diversity and is unknown at the early stages.  

While we believe that a focus on quantitative performance improvement prediction can 
contribute to items 1) and 2) in Rosenberg’s analysis, we believe that qualitative approaches will 
also be valuable not only in items 3) and 4) but also in 1) and 2). 

Gao et al (2013) introduced an important aspect of the quantitative approach by exploring 
technological performance over time using FTA techniques.  In our analysis we predict time-
based technological improvements rates similar to the type made famous by Moore’s law, where 
a specific technical metric (transistors/die) is measured over a period of time and is found to 
improve at a relatively constant percentage per year.  This is not the first attempt at using 
technological improvement rates as part of forecasting but most predecessors have done so by 
attempting to utilize learning rates, which compare the improvement of a technical metric with 
production (Nemet, 2006) rather than with time.  In particular we are interested in estimating the 
yearly technical improvement rate of a technology, represented by the variable ‘k’ in equation 1. 

q = q0 exp(k(t − t0 )) 	
  	
  Equation	
  1	
  

While Sahal (1979) and Nagy et al (2013) showed that the actual practical implications of the 
time-based and production-based improvement rates are very similar, this paper will focus solely 
on the time-based rates due to the evidence that they are more fundamental (Magee et al, 
2014).  Additionally, in performing this analysis we are building off of the strongly established 
results that show long-term time-based technical improvement rate stability (Magee et al, 2014), 
that is, that the improvement rate of a technology does not change considerably over time or at 
the very least changes considerably less between times than the rates change between 
technologies.  This same argument is appropriate for the different complete technical metrics 
that can be used to measure the performance of a technology (i.e. Wp/$ or kWhr/$ for measuring 
solar PV output) (Benson and Magee, 2014a).  Thus, we will focus almost entirely on the rate 
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differences between technologies and not the differences within a technological domain between 
metrics. 

The PTRI can estimate nearly any time-based technological improvement rate using a set of 
patents that represents each technological domain. The use of patents in FTA is given 
precedence by (Gao et al, 2014) when they used patent indicators to estimate the level of 
technological maturity for a given domain.  In a very similar way, the PTRI uses patent indicators 
as correlation factors for forecasting technological improvement rates of a domain and is based 
upon an extensive study reported in Benson and Magee (2014c). The results of the PTRI 
method can project relative improvement rates of technologies – which may be useful for 
investment decisions by private parties or governments.  Additionally, the data can be used to 
aid in uncertainty analyses for future technological capabilities of a specific domain, which is 
often used in long term product planning by large companies and the military.  Both of these 
uses can aid in influencing both private and public policies, which has been the outcome of 
several FTA techniques in the past (Schaper-Rinkel, 2013). 

 

Methodology 
The PTRI is based upon the finding by Benson and Magee (2014c) that the information 
contained in patents is sufficient for understanding differences in technical improvement rates 
between different domains. A number of patent metrics were studied by (Benson and Magee, 
2014c) and were combined with multivariate regression tools to create a model for forecasting 
technological improvement rates. The resulting regression was found to be accurate for 12 years 
into the future. The PTRI method is summarized in figure 1 below: 

 

  
Figure 1: PTRI Method 

The PTRI method begins with the identification of a technology of interest, then a technology 
needs to be converted to an appropriate technological domain. In order to convert from a 
technology to a technological domain, it is useful to think not just about the embodiment of an 
invention, but rather the use it fulfils and the underlying scientific principles that it makes use of. 
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The intention behind this is to specifically clarify the unit of analysis by using a standardized 
definition of technological domain:  

A technological domain can be defined as: The set of artifacts that fulfill a specific generic 
function utilizing a particular, recognizable body of knowledge. 

 Once a technological domain has been defined, the next step is the selection of a set of patents 
that represent the domain, this step is very important because the set of patents that are 
selected will be the input data source for the method.  The sets of patents can be selected by 
using a methodology called the classification overlap method (COM) that relies upon the 
different types of patent classification systems used by the US and International patent offices 
(UPC and IPC) (Benson and Magee, 2013, 2014b).  The input to the COM is a set of keywords 
related to the technological domain as well as potentially some supporting information such as 
key companies or inventors in the domain.  These inputs can then be used to select a set of 
patents contained within the overlap between the most appropriate UPC and IPC based upon 
the COM. All of the patent set searches for this paper were done using Patsnap 
(www.patsnap.com) and included only issues US patents from January 1st, 1976 to July 1st, 
2013, these dates were chosen so they could be compared with prior results from Benson and 
Magee (2014c). 

Due to the importance of the patent sets for the PTRI method, it is important to ensure that the 
patents in the data set accurately represent the technological domain of interest.  This is done 
manually by reading representative sampling of the data sets and qualitatively assigning each 
read patent a value of ‘1’ for ‘relevant or ‘0’ for ‘not relevant’ to the domain of interest.  The 
average relevancy score can then be added by summing the total relevant determinations and 
dividing by the number of total patents in the data set. In general an acceptable value for 
relevance is greater than 0.65, however a good patent set will have relevancy above 0.8. 

Once the data set has been verified for relevancy, the patent indicators can be calculated using 
the meta-data included in the patents.  The PTRI uses two indicators for calculating the 
estimated technological improvement rate: average publication data and average number of 
forward citations within 3 years of publication as described in Benson and Magee (2014c). 

The Average number of Forward Citations within 3 years of publication is the average number of 
forward citations that each patent received within 3 years of publication for patents in a 
technological domain.  The metric is calculated using Equation 2 where SPC is the simple patent 
count,  is the number of Forward citations for patent i, tipub   is the publication year of patent i, 

tijpub   is the publication date of forward citation j of patent i, and the function IF(arg) only counts 

the values if the argument is satisfied.   

  (Equation 2) 

The Average Publication Year for the patents in a domain includes patents that were published 
between January 1st, 1976 and July 1st, 2013. This measure is calculated using Equation 3 
where SPC is the simple patent count and ti pub   is the publication year of patent i. 
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 (Equation 3) 

After these two values are calculated for the domain of interest, they can be plugged into the 
regression model developed in Benson and Magee (2014c): 

k = −31.1285 + 0.0155*AvePubYear + 0.1406*Cite3  (Equation 4) 

The result is a simple number that represents the time-based technological improvement rate for 
the domain of interest. 

 

Results, discussion and implications 
The aim of this paper is to explore results of the PTRI methodology applied to a number of 
potentially important technologies in the future.  To act as a basis of what technologies would be 
important in the future, we used a pre-made list of the ’10 breakthrough technologies of 2014’ as 
noted by the MIT Technology Review (2014) as a basis for a list of potential transformational 
technologies that would be of interest to know an estimated technological improvement rate. 

Following the PTRI Methodology described in the previous section, this section will build upon 
the 10 technologies listed in the MIT technology review and add five others, all 15 technologies 
will be translated into technological domains, then representative patent sets will be selected, 
patent indicators calculated and technological improvement rates determined.  The end result 
will be estimated technological improvement rates for 15 technological domains. 

 

Defining the domains 
The first step is to translate the list of ten technologies into a list of technological domains.  Table 
1 shows the list of 10 technologies from the MIT Technology Review along with the 10 domains 
and a short description of the domain.  The final 4 rows are additional technologies that the 
authors decided to include based upon their subjective potential importance in the upcoming 
near future and the academic and media interest paid to the domains. 

 

Technology Candidate 
(from MIT Technology 
Review) 

Derived Technological 
Domain 

Description of Domain 

Agricultural Drones Remote flight control 
technologies 

Controlling flying vehicles from afar, 
including drones and advanced flight 
controls. 

Ultraprivate smartphones Information Security Information security across all form 
factors. 

Brain Mapping Brain Scanning Determining brain features and 
structure using a number of tools (CT, 
MRI…) 
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Neuromorphic chips Artificial Neural Network 
Computing 

Computing architectures that 
resemble that of the human brain. 

Genome Editing Genome Sequencing Determining the genomes of specific 
strands of DNA. 

Microscale 3D printing SLA 3D Printing Additive manufacturing using light to 
cure resins. 

Mobile Collaboration Online Learning Education in digital classrooms. 

Oculus Rift Digital Representation Digital modelling of reality (Includes 
virtual reality as well as less 
immersive forms of digital 
representation of the physical world.) 

Agile Robots Robotics Performance of physical functions by 
Automatic mechanical devices  

Smart Wind and Solar 
Power 

Wind Turbines Energy generation from moving air. 

Solar PV Energy generation using the 
photoelectric effect. 

- Nuclear Fusion Energy generation relying directly on 
atomic fusion. 

- Water Purification Removing salt from water using 
reverse osmosis. 

- Food Engineering Chemical and genetic modifications 
for enhanced food production  

- Gaseous Purification More broad term for one enabling 
technology behind climate geo-
engineering 

Table 1: Technical Domains as Inputs into PTRI 
 

As an example, the technology ‘Agricultural Drones’ from the MIT Technology Review list was 
determined to be slightly narrow in its scope as it was only focusing on one potential use for the 
automated air vehicles that they were intended to represent.  Focusing first on the broad 
function, we arrive at remote flight control. Following this path further, while ‘drones’ themselves 
are a rather broad category, they do not represent a particularly specific technological domain in 
that the term drone could be interpreted in a number of ways (Wikipedia lists 11 possible 
interpretations for the term ‘drone’ not including the entertainment or music categories (Star 
Wars: Attack of the Drones).  Thus we added further clarity to the definition by referring to the 
technological domain as remote flight control technologies.  With the specific generic purpose 
being remote flight control, and the underlying set of knowledge being a unique overlap of 
aeronautics, control theory, and signal transmission methods.  Note that this new domain does 
not necessarily preclude manned aircraft, as there are plenty of reasons to control a vehicle 
remotely even when a pilot is sitting in the cockpit. 

Other domains of interest are the transformation from ultra-private smartphone to information 
security – as the smartphone form factor seems a wholly unnecessary constraint for the analysis 
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of the improvement rate of information security technologies.   Admittedly, the most liberty was 
taken in translating mobile collaboration to online learning – this was done partially due to the 
lack of clarity over what exactly constitutes mobile collaboration and the recent intense 
emphasis on online learning and MOOCs, therefore this ‘translation’ could be more appropriately 
termed a ‘substitution’ of near neighbour technologies. 

 

Patent sets selected using the COM  
The next step in the PTRI (figure 1) is to find relevant patent sets for each of the technological 
domains using the COM, as described at the top of page 4.   Columns 2 of Table 3 show the 
patent classes that were used to define each domain, Column 3 the size of the overall patent set 
and column 4 the relevancy as determined by subjective reading of a sampling of 200 patents 
from each domain. 

Domain Patent sets 

Number 
of 

Patents 
Relevance 

Ratio 

Average date of 
publication of 

patents 
Cite 

3 
Predicte

d K 

Artificial Neural 
Network Computing 

706/15 AND G06F 361 0.71 2007.3 3.49 0.407 

Brain Scanning (600 AND 382) AND 
A61B AND "brain" 

284 0.93 2009.3 3.14 0.390 

Water Purification C02F1/44 AND 210 1033 0.63 2003.6 3.80 0.393 

Digital 
Representation 

345/419 AND 
G06F3 

486 0.655 2004.9 5.85 0.702 

Food Engineering 426 AND C12N 1865 0.96 1992.2 1.50 -0.107 

Genome 
Sequencing 

(435/6.11 OR 
435/6.12) AND 

C12Q 

3990 0.74 2006.7 2.15 0.209 

Gaseous 
Purification 

(95 AND 423) AND 
B01D 

1683 0.72 1993.1 2.40 0.034 

Information Security 726 AND H04L 13607 0.985 2010.1 3.52 0.454 

Nuclear Fusion (G21B OR H05H) 
AND 376 

508 0.95 1992.4 1.52 -0.102 

Online Learning G06Q50 AND 434 197 0.78 2001.8 6.62 0.76 

Remote flight 
control technologies 

(701/2 OR 701/3) 
AND B64C 

328 0.855 2003.1 3.18 0.299 

Robotics B25J AND 901 4122 0.935 1994.6 3.74 0.245 

SLA 3D Printing 264/401 AND 
B29C35/08 

251 0.93 2001.4 3.98 0.385 

Solar Photovoltaic 
Energy Generation 

136 AND H01L 5203 0.85 1998.6 2.73 0.165 

Wind Turbine 
Energy Generation 

(416 OR 290) AND 
F03D 

2498 0.94 2002.8 2.17 0.152 

Table 2: PTRI Input and Output 
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As noted earlier, each technological domain is represented by a set of patents that are defined 
by a combination of overlapping US and international patent codes. As an example, the ‘remote 
flight control technologies’ domain is defined by the overlap of either of the US codes 701/2 or 
701/3 (Data Processing: vehicles, navigation, and relative location /2 Remote Control system /3 
Aeronautical Vehicle) and the international patent code B64C (Airplanes, Helicopters).  This 
overlap results in 328 patents that were qualitatively determined to be ~85% relevant.  This 
same process was repeated for all 15 technological domains and the results are in Table 2. 

 

Calculating the Patent Indicators and Using the PTRI Regression Model to Estimate 
Technological Improvement Rates  
The next step from figure 1 is digesting the patent information in order to calculate the patent 
indicators required by PTRI regression model: average year of publication and number of 
citations received within 3 years of publication (Cite 3).  These values for each of the domains 
are shown in columns 5 and 6 of Table 3.  It is interesting to note the extremes of each patent 
indicator.  In this study, the oldest average date of publication is 1992 (food engineering and 
nuclear fusion) while the newest average publication date is 2010 for information security.  The 
large size of the information security patent set (13,607) and the very high relevance ratio 
(0.985) give credibility to this very recent average publication date and indicate that this is likely 
a very dynamic domain and that the recency is unlikely an artefact of the data. These numbers 
are in line with the oldest and newest average publication date of the 29 technological sets used 
to construct the PTRI regression model with 1992 and 2006 respectively (Benson and Magee, 
2014c).   

The smallest Cite 3 technological domain had just 1.5 forward citations within the first 3 years of 
publication on average (food engineering), while the largest belongs to digital representation 
with 5.85 citations within 3 years, which is a higher value than any of the original 29 domains 
used to create the PTRI (4.62-MRI).   

These patent indicators can now be plugged into equation 4 to calculate the estimated 
technological improvement rates for each of the 15 domains as shown in the final column of 
Table 3.   

Discussion And Conclusions 
 One note to point out is that some of the values end up negative, which would seem to indicate 
that the particular technological domain is getting worse with time.  Obviously this explanation is 
logically inconsistent, and the more correct interpretation is that the PTRI model does a poor job 
of distinguishing among very slowly improving technologies, and that any technology that is 
estimated as a negative improvement rate is simply a very slowly improving domain (< 5%).  
Additionally, the PTRI model as shown in Benson and Magee (2014c) tends to give estimates 
that fall within ±0.10 of the measured technological improvement rates.  In the future, more 
accurate confidence intervals should be developed to accompany the estimated k.  To 
demonstrate this further, some of the technologies that were predicted in this study have been 
measured before and the comparison between the empirically measured values and the 
estimated values is shown in Table 3. 

Technical Domain Technical Measure Estimated Empirically 
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k Measured 
 k 

Genome Sequencing  (basepairs/$) 0.209 0.29 

SLA 3D Printing  (1/sec*$(including build 
volume/machine size))) 0.385 0.38 

Solar Photovoltaic Energy 
Generation 

(Wp/$) 
0.165 0.09 

Wind Turbine Energy 
Generation 

(Wp/$) 
0.152 0.09 

Table 3: Estimated and Measured ks 
 

The close results between the predicted values and the empirically measured values lend 
credibility to the predicted values shown above and are consistent with the relatively close 
correlation between the PTIR model and previously measured empirical values.  

 

The highest technological improvement rate is digital representation with an estimated k of 0.7, 
which would indicate that its capabilities would more than double every year.  The interesting 
part of the PTIR method is that it seems rather difficult to imagine a way to objectively measure 
the improvement rate of the how well the digital world represents the real world, however this 
high rate is not inconsistent with the subjective experiences of the rapidly changing digital world 
and the ever-increasing ways that people spend on a digital version of what used to be physical 
(i.e. social networking, talking, banking, watching entertainment, etc…).  Thus the PTIR allows 
us to map technological improvement rates to technologies that may be improving but are hard 
to measure due to lack of metrics or data or other reasons. 

These improvement rate estimates should be used, however, in conjunction with increased 
knowledge about the measures by which the technical domains improve.  Table 3 shows a few 
examples of technical measures by which the domains improved, including more simple 
measures like Wp/$ for solar PV and wind turbines and more complex measures for 3D printing, 
which includes metrics for speed of printing (mm/sec), resolution(1/mm) of the machine, cost ($, 
machine size), and flexibility (build volume), which when combined result in the “highly 
complete” measure in Table 3 for 3d printing.  

When evaluating technologies using the PTIR model, the measures can be estimated and can 
be somewhat more abstract, but must always include a benefit and a cost.  For example, when 
considering water purification, the benefit of the process is clean water and the cost is energy or 
price.  Thus an appropriate measure for the improvement rate of water purification could be 
gallons of clean water per kWhr or per dollar.   

The second highest k-values are grouped into a clump around 0.4 with Information Security, 
Brain Mapping, Artificial Neural Networks, 3D-Printing and Purification all within 0.06 of one 
another.  These rather disparate technologies are predicted to improve at relatively rapid rates 
similar to those of Moore’s law (k = 0.36).  While some may not be surprised to see information 
security and neural networks improving at this rate due to their relation to information 
technology, the estimated rapid rate of growth for Brain Mapping, 3D-Printing and Purification 
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have less to do with the rapid rate of improvement of information technology yet are still 
estimated to be improving at a high rate. 

Remote Flight control, Robotics, Genome Sequencing, Solar PV and Wind Turbines make up 
the next grouping of technologies that have estimated improvement rates between 0.15 and 0.3, 
corresponding with a doubling of capability every 2.5-5 years.  These technologies also seem to 
be rather disparate yet all seem to have less of a pure reliance on information technology than 
does the top group. 

The bottom dwellers, with estimated rates ranging from -0.1 to 0.03 include gaseous 
engineering, nuclear fusion and food engineering.  As was mentioned previously it is unlikely 
that these particular domains are decreasing in capability over time, and it is much more likely 
that all three of these domains have been improving at a very slow rate.  

While the topic was touched upon briefly in the results section, the intent of this paper is not to 
look at commonalities between domains with high (or low) estimated technological improvement 
rates, as that topic is covered in depth in Benson and Magee (2014c); rather the goal of this 
paper is to introduce the PTRI methodology into the FTA world as a tool that can be used to 
combine qualitative and quantitative data to provide numeric estimates of technological potential 
for the future.  This tool can be especially useful for technical domains which are hard to 
measure or have scarce data such as may become more common as technology improves 
accelerates.   

While this paper is mainly focused on demonstrating the potential of the PTRI for estimating 
quantitative technological growth rates, it will be important in practical use to include qualitative 
analysis to complement the quantitative estimates.  For example, information security is 
estimated to be a fast growing technological domain with a k-value of 0.45, likewise, purification 
is estimated to improve at a k-value of 0.39.  These two values fall well within the rough 
confidence interval of +/- 0.1 and therefore it is reasonable to assume that they will improve at 
similar rates.  Despite this fact, however, the results of the improvements could well be rather 
different.   

Information security, while it may be improving quickly is constantly having to compete with other 
people who are looking to break through that security, which relies on similar principles and may 
improve at a similar rate, leading to an arms race in information protection, therefore while we 
would expect the capabilities of information security to increase drastically, we might not expect 
the number of information security breaches to decrease at the same rate due to the concurrent 
increasing capabilities of hackers and electronic thieves. 

A different story can be told about water purification, as was mentioned earlier, increases in 
purification capabilities should rapidly increase the capability to create drinking water using 
fewer resources.  Thus, the high k for purification could indicate that the problem of water 
scarcity should not be a high risk if the purification technologies continue to improve at their 
estimated rates, which is a relatively safe bet considering the long-term stability of k for most 
technological domains. 

The PTRI method, when combined with appropriate qualitative analysis can be a powerful tool 
for policymakers, technological strategists and investors of many kinds.  The development of 
more powerful patent analysis techniques to produce quantitative estimates of technological 
change can help decrease technological uncertainty for current and future technologies. 
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