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An important issue in various domains of renewable energy is the use of technological improvement
trends to project future capabilities of energy technologies. This paper analyzes two pairs of renewable
energy technologies and finds that the annual improvement rate of cost/investment is quite different for
the four technological domains: namely, solar photovoltaics (PV) (9.0% per year), wind turbines (2.9%),
batteries (3.1%) and capacitors (21.1%). While these trends have been reasonably consistent over long
time frames, projecting these trends into the future without a better understanding of the underlying
causes of the improvements is not at all reliable. This paper establishes theoretical fundamentals for
explaining the differences in such rates and a framework for empirically probing such explanations using
patent data. Employing this framework, this study collects and analyzes a set of highly representative
patents for each of the four domains, allowing measurement of: patenting rates, reliance on scientific
literature and other characteristics of the different fields. Our study of the inventions, while not estab-
lishing an indisputable causal relationship for the differing rates, establishes a broader theoretical basis
for why such rates differ so greatly and why they might be stable over time. Among many possible ef-
fects, this study indicates that the age of knowledge utilized in the patents and the percentage of very
important inventions in the field are the most likely significant contributors to higher rates of advance.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Technological forecasting to understand how each of the
renewable energy domains will improve in the future is used to
anticipate potential contribution to climate change, to guide policy
and to guide private investment decisions. Such methods have been
used to forecast decreases in cost for energy generation technolo-
gies such as solar PV [1] and wind turbines [2]. Although the
improvement in many of these technologies has been shown to be
exponential with time [3—5] and relatively stable over long periods
[6] it is important to note that ‘past performance does not indicate
future returns’.

While examining these rates in individual domains is important,
this paper addresses the relative rate of cost reduction in groups of
competing technologies. Among competitive approaches, those
improving faster than the alternatives that are available are likely to
be most economically viable and thus most highly used in the
longer term. However, projection without an adequate explanatory
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base is still not very reliable. Indeed, variability among compo-
nents, natural resource depletion and other possible saturation
effects have been pointed out as reasons for weak extrapolation [7].
Strong explanations in the form of predictive theories would be
extremely valuable for technology developers, research policy
(funding and other aspects) and energy policy (R&D vs. demand
subsidies and how to deal with questions of technological choice
[2]). Additionally, reliable explanations are useful to potential
adopters of renewable energy technologies, as they help reduce the
uncertainty of the correct timing to install a certain technology [8—
10]. This paper provides a foundation for building such reliable
explanations in the future.

There are two well-known ways of quantifying cost reductions
and performance increases: 1) a generalization of Moore’s law
[11,12] which treats time as the independent variable, 2) general-
izations of Wright’s law [13—15] which treats cumulative produc-
tion as the independent variable. A recent paper has shown that
these different treatments are approximately equivalent (with a
slight advantage to Wright’s law) in the ability to predict future
performance from existing data [16] and it is clear that both
frameworks are independently describing the same phenomenon
— namely an improvement in performance of a given technology
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over time or usage. In this paper, we choose to use the general-
ization of Moore’s law partly because of data availability (lack of
reliable production data for batteries and capacitors but it does
exist for solar and wind), partly because of fundamental difficulties
with decoupling changes in demand (and thus production) from
changes in performance [17] and partly because the connections in
either case may well be through other variables such as R&D
spending [18]. The most important point is that our use of patent
information for potential explanations of differences in rates apply
in either formalism because of the almost full equivalence of the
two frameworks — Moore based on annual improvement rate and
Wright based upon learning rate [16].

This paper contributes to our understanding in two ways. First,
we examine the literature on technological change and derive from
it possible theoretical explanations for differences in rates of
improvement for different technological domains. Secondly, we
develop an approach to utilize patent information from groups of
patents in the domains to examine aspects of the hypothesized
explanations for rate differences. Similar to technological
improvement trends, the sources of the change in technological
capabilities have been studied for individual domains [19,20].
While these studies provide useful specific information on each
domain, they do not attempt to explore why the rates of
improvement differ between the domains. Thus, our study exam-
ines characteristics of the inventions in the different domains that
may account for the important differences in rates of improvement.
Our focus is on delineating possible explanations for differences in
rates of advance of different renewable energy domains. Overall,
our contribution is to call attention to the importance of differences
in rates of improvement and to establish both a theoretical begin-
ning to understanding the reasons for the difference and an
empirical method of using patent data to probe the theoretical
ideas.

2. Research framework and methods
2.1. Domains, performance and patents

The first step in our research was to select four renewable en-
ergy domains for comparative analysis. We selected two leading
energy generation domains (solar PVs and wind turbines) and
because of growing evidence for the need to consider electrical
storage in renewable energy systems [21], we also chose batteries
(the leading candidate) and electrical capacitors — some see the
latter as an important emerging storage technology [22].

The second step in our research was to examine the historical
performance of these four technological domains. This involves
careful analysis of various data sources resulting in a time depen-
dent set of performance parameters. In the cases studied here, we
examined only the most economically significant performance
metric-energy produced per unit cost. It is problematic to estimate
the overall costs of electrical energy generation [23], therefore we
measured device peak watts per dollar as it is the ‘most funda-
mental metric for considering the costs of PV’ [24] and we used the
same metric for wind. We note that these metrics do not reflect
important costs for these two technologies such as maintenance,
installation, and operation (load factors) so cannot be considered
total economic metrics. The metric we used for energy storage is
similar watt-hours per dollar. We chose the storage metrics for
consistency with the generation technologies where the only
available performance data are cost based. In energy storage,
similar improvement rates are found with watt-hours per kg or
watt-hours per liter as for watt-hours per dollar [4]. The data was
collected from a variety of sources that we judged reliable enough
to use and can be found in Appendix A.

The next step in our research was to obtain a relevant and nearly
complete set of patents from 1971 to the present (retrieved on
5.15.12) for each technological domain. Patents were selected as the
means for the comparative invention study because ‘Patent Data is
the single most dominant indicator in invention studies’ [25]. The
method we used to select the patent set and the makeup of the
patent sets used for analysis in this paper has been described in a
recent paper by the authors [26]. Indeed, the study reported here
could not have been done reliably without the search method
developed in that earlier work.

In this method we use a keyword search of the domain (ex: solar
PV) to find a pre-search set of U. S. patents. The pre-search set is
then analyzed for the most representative United States and in-
ternational patent classes for the desired set of patents, this is done
using a measure of precision and recall of the patent classes within
the pre-search set of patents. Finally, the individual patents that are
classified in both the most representative U.S. and international
patent classes are used as the data set for the study. The classifi-
cation overlap is the key conceptual difference between this
method and others so now we refer to it as the classification
overlap method (COM). Fig. 1 (modified from Ref. [26]) shows the
method in a process flow. The last step shown is important for the
current study. A sample of 300 patents from each of the data sets is
then read to estimate the relevance of the final data set as repre-
sentative of the technological domain. A judgment is made for each
patent read whether the knowledge embedded in the patent is in
fact knowledge directly related to the domain (for example, solar—
thermal patents are not judged relevant for the solar PV class).

The COM is superior to other Boolean or classification tech-
niques used previously for a variety of domains; it is repeatable by
different researchers and is generalizable across domains [26].
When performing a search for organic solar PV patents, Lizin et al.
[5] selected the international patent class HO1L-031; HO1L is the
same high-level international patent class that the COM method
uses (HO1L), but the COM removes many imaging sensor (camera)
patents present in the HO1L-031 IPC and allows us to focus on other
types of solar PV that are not organic solar PV. Table 1 shows the
specific patent classes used to define each domain as well as the
size and relevancy of each patent set. Please note that the wind
turbine and battery patent sets used emendations [26] to the
standard classification-overlap methodology to increase the rele-
vancy and completeness of the patent sets.

Input Search Term

I Pre-Search US issued patent titles and
abstracts for the search term

N o e e o o o o

I Rankthe IPC and UPC patent classes
| that are most representative of the

I
J
tT T T T T T T TTTA
|
|
/

— user directed
technology
\ —— o = = o o= o= = === can be partially automated
r __________ N
I Select the overlap of the most 1
representative IPC and UPC classes )
N o e o o oo o o o -

Test the resulting patent set for
relevancy

Fig. 1. Overview of the COM method (from Ref. [26]): most of the method can be
automated via a computer, with only the selection of the search query and the testing
of the final results left to the user.
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Table 1
Summary of patent data sets for renewable energy (adapted from Ref. [23]).
Field of interest UPC/IPC classification Size of Percent
codes patent set relevant
patents
Photovoltaic electricity 136/HO1L 5101 85%
Wind turbine (416 or 290)/FO3D 2078 94%
Electric capacitor 361/HO1G 6173 84%
Electrochemical battery 429/HO01M not ‘fuel cell’ 16,466 83%

We analyzed these four sets of patents by a number of quanti-
tative and qualitative approaches in order to test for possible causal
factors as suggested by a review of the technical change literature
(see Section 2.2). Since we only tested four domains there is not a
focus on statistical tests but rather whether given concepts
appeared from these four domains to be capable of an explanation
for the differences.

2.2. Theories of technological change

Although there is no existing theory to explain performance
improvement (or cost reduction) rate differences between techno-
logical domains, there are a large number of useful theoretical
writings on technological change. This section of the paper uses this
prior work to establish a foundation for explaining improvement
rate differences as well as to develop some preliminary hypotheses
that are testable from the patent data. To organize this analysis, we
first look at larger socio-technical aspects of technological change
and then at more specific technical aspects of the inventions that
underlie technological change. We note the general consensus that
innovation refers to the economic and business aspects of the
technical change whereas invention is — as the patent database
confirms — limited to improved technical characteristics [27].

2.2.1. Innovation, socio-technical aspects and resulting hypotheses

The scholarly debate in the 1970s and early 1980s on the relative
importance of two broad sources of innovation — technology push
vs. demand pull — settled into a general consensus that both were
important. In particular, the agreement was that most technical
innovations were driven by science and technology but that the
role of demand and more broadly market and social forces were
complementary. Dosi’s important paper [28], while agreeing with
Mowery and Rosenberg [29] that the demand-pull researchers had
failed “to provide evidence that needs expressed through market
signaling (a claim of proponents) are the prime movers of inno-
vative activity”, also noted that in selecting a specific technological
trajectory, “the role of economic, institutional and social factors
must be considered in greater detail”. In this regard, the relative
performance of specific technical approaches (our concern in this
paper) might be assumed to depend more upon the invention
characteristics discussed in the following sub-section of the paper.
However, there are several aspects where the demand or usage
could play an important role in the relative rate of improvement in
a technological domain. More highly used technologies would
potentially benefit from more user input whose value in improve-
ment has been shown [30], would enable more opportunity to
learn by doing in production [31] and as shown in the detailed case
by Sinclair et al. [18], directly benefit from more R&D because of a
profit motive of a private firm. Our study using patents can possibly
test this final possibility since the number of patents accruing in a
field should relate fairly well to the amount of R&D spending [32].
Thus, our first hypothesis is:

Hypothesis 1. The performance improvement or cost reduction
rate in a technological domain should increase with the average

annual rate of patenting in that domain (simply calculated by
dividing the total number of patents in the set by the number of
years over which the particular patent set was issued). The total
number of years was 41 for each of the domains as the searches
were performed from 1970—2011.

2.2.2. Invention characteristics and resulting hypotheses

The importance of radical or breakthrough inventions to tech-
nological progress has been widely discussed [33—36]. Thus, it
might be reasonable to suspect that technological domains with
enhanced radical invention would improve in performance faster
than those with less of such breakthroughs. Despite the extensive
conjectures about the role of radical inventions, only little has been
done to objectively characterize such inventions. However a recent
paper [25] has performed a study using patents to try to objectively
identify the characteristics of radical inventions. Their research was
carried out on a random sample of 150,000 European patents from
1989 to 1993, taking those with greater than 20 citations in the first
five years after their issuance as radical and then comparing these
96 patents to a control set of 96 with less than 20 citations. While
one may legitimately argue that patent citations is only one aspect
of an invention and may not fully capture the concept of radical, it
has been fairly clearly established that citation counts of patents do
reflect technical importance [37] and at least in one case also
correlate with economic significance [38]. Thus, this prior research
suggests that domains with more patents of higher citations will
progress more rapidly; specifically.

Hypothesis 2. Technological domains with a greater percentage
of patents with citations >20 should have higher rates of
improvement of performance or cost reduction.

As an example, Fig. 2 shows a log—log plot of the citations for the
capacitor domain and indicates that patent citations roughly follow
the well established power law for scientific paper citations [39,40].
The vertical axis of Fig. 2 shows the number of citations that each
particular patent received, and the horizontal axis shows the
ranking of that patent within all of the patents within that domain
for number of citations, for example the most cited patent in the
capacitor data set was cited 361 times and is ranked first in the 6173
patents. The 987 patents that are cited at least 20 times for the
capacitor patents are also highlighted on this log—log plot. It is
important to note that there were 6173 patents in the capacitor set,
with 1242 patents being cited zero times and therefore not shown
on the logarithmic scale.

There have been several suggestions [41—43] that inventions
that are more important (or radical/breakthrough) are more reliant

1000
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1 10 100 1000 10000

Importance Ranking

Fig. 2. A log—log plot of the importance distribution of capacitor patents with the
patents that received more than 20 citations highlighted. These are 16% of the total
patents in the domain.
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on recent science than less important inventions. For this reason
and from the general possibility that greater progress is possible in
domains more solidly connected to recent science, there appears
good justification for presuming domains that are more closely
connected to science will progress more rapidly. Since the use of
the citations in a patent that are to non-patent literature (NPL) —
usually scientific journals — are available, the NPL citation fraction
has been used to ascertain the scientific connection of specific
patents [44]. For understanding differences in rates between do-
mains, this theory suggests that domains whose patents cite more
scientific articles will improve more rapidly than those who cite
less such articles; the resulting hypothesis is:

Hypothesis 3. Technological domains with a higher frequency of
citations to the scientific literature should have higher rates of
improvement in performance or cost.

The non-patent literature citation rate for a single patent is
simply the number of non-patent citations divided by the total ci-
tations and is averaged over all of the patents in a particular
technological domain in order to test hypothesis 3.

The literature on the nature of breakthrough inventions has
conjectured that breakthrough patents rely more on recent (or
emerging) inventions [44,45]. The logic of this conjecture is that if
more recent patents are the most important ones to current pat-
ents, acceleration of performance is more likely than for a field that
is still relying on older foundations; the resulting hypothesis is:

Hypothesis 4. Technological domains whose patents cite more
recent patents should have higher rates of improvement in per-
formance or cost.

In order to test hypothesis 4, we created a distribution of the
patents that were cited by a particular domain over the last several
hundred years. The results for each domain are similar to the
capacitor example shown in Fig. 3 with a long ‘tail’ of years with
few patents that are cited by the domain followed by a ‘peak’ set of
years when most of the cited patents were published.

Using this distribution we can find the average date of publi-
cation of the patents cited by a particular domain and subtract it
from the average date of issuance of the patents within the same
technical domain. This particular metric is similar to the ‘citation
lag’ metric introduced by Nemet and Johnson [46] and to the price
index introduced much earlier [39]. For the case of capacitors, the
average date was 1990.1, and the average date of publication for
patents within that domain was 1996.4, making the average age of a
cited patent 6.3 years.

Theories of technological progress have also been advanced that
emphasize the importance of the breadth of knowledge utilized in
developing a given invention [47—50]. Studies have been made of
the ratio of citations made by a patent to fields outside of the
domain of interest expecting to find more highly cited patents
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Fig. 3. Temporal distribution of patents that are cited by the set of capacitor patents
from 1970 to 2011 (the foundation of knowledge for the domain).

having more citations outside of their primary domain [46]. How-
ever, results indicate that more important patents tend to cite more
often within their field than outside it [46,51]. Thus our final hy-
pothesis is:

Hypothesis 5. Technological domains that cite higher internal
fractions of patents from their domain will have higher rates of
improvement.

Hypothesis 5 can be tested using the inter-field citation rate.
This metric is a ratio of the number of patents that are cited outside
of the domain of interest to the total number of cited patents. Thus
we would expect a lower interfield citation rate to correlate with
high improvement rates.

The preceding hypotheses in this sub-section all arise from work
done on the idea of important, breakthrough or radical patents.
There are several other concepts in the literature that might be part
of a more general theoretical foundation for explaining differences
in improvement rates. One idea — that domains that are more
decomposable or where elements of the technological artifact do
not interact as strongly with one another will improve more rapidly
than domains whose elements do interact strongly — was first
conjectured to explain large differences in rates of improvements
between performance in energy and information technologies [4].
A model has been developed [52] that in fact shows a higher rate of
learning and cost reduction (Wright formulation but applicable to a
Moore framework) for technologies with fewer interactions among
components of the technologies. As of yet, there has not been found
a way to quantitatively test this theory. Other ideas such as that
scale effects are important [53] or materials innovations are
important [54] have also not been tested. We do not yet have a way
to test these potentially important hypotheses objectively with
patent data. However, we pursue a qualitative study of the most
important patents in each of our four domains to explore these
ideas.

3. Results

In Section 3.1 we present the different rates of improvement
between the four renewable energy domains. In Section 3.2 we
discuss the quantitative measures that we tested and how they relate
to the improvement rates. Finally, in Section 3.3 we will examine 12
of the most highly cited patents within each domain and discuss
some qualitative differences between the domains of interest.

3.1. Rates of improvement

We constructed performance/cost improvement curves for each
of the four domains of interest. We used semi-log plots of perfor-
mance with time (similar to Moore’s law) for the reasons given in
Section 1. In this section we will compare the technological
improvement rates between the two dominant energy generation
technologies (solar PV and wind turbines), as well as two energy
storage technologies (batteries and capacitors).

As mentioned in Section 2, the fundamental unit of measure-
ment for the energy generation technologies is peak watts per
dollar. Fig. 4 shows the results as a function of time for solar PV and
wind turbine technologies.

Along with the plotted data points for each of the domains, we
fitted each domain with an exponential regression to estimate a
continuous exponential improvement rate. The domains that
perform similar functions were grouped together for comparison
(i.e. solar PV and wind turbines for energy generation). For solar PV,
the exponential fit gives an improvement rate of 9.0% per year, with
an R? value of 0.93 using 35 data points. The improvement rate for
wind turbines is only 2.9% with an R? of 0.66 using 23 data points.
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Fig. 4. Output per unit cost (in constant 2012$ adjusted by the consumer price
deflator). Improvement of solar PV and wind turbines (1947—2011).

The wind turbine data is noisy due to the price fluctuations within
the wind turbine market over the decade spanning 2000—2010, as
is described in detail by Bolinger and Wiser [20]. In fact, if we had to
rely only on recent data, the reliability of wind turbine performance
trends would be very low. However, we were able to find data from
two early commercial wind turbines that were used to produce
electricity (as opposed to directly powering machinery). Without
the two earlier points included, the improvement rate only changes
slightly to 3.4%, which is still significantly lower than that of the
solar PV domain. It appears that wind turbine and solar PV data
may be distorted by recent data perhaps related to demand sub-
sidies in these markets. Due to these factors and also due to un-
reliability in extrapolation without adequate theory, extrapolations
of the curves is only of nominal interest; nonetheless the inter-
section of the two fitted curves is in 2021.

Similar to the energy generating technologies shown in Fig. 4,
Fig. 5 shows the technological improvement with time in the two
energy storage domains. The differences in improvement rates
between batteries and capacitors are even more striking than that
between solar PV and wind turbines. The improvement rate for
batteries is 3.1% (R®> = 0.77, n = 9), and the improvement rate of
capacitors is 21.1% (R> = 0.97, n = 6). With the caveats expressed
above, we note that the two fitted curves in this case intersect in
2034,

There are significant differences in rates between the selected
sets of technologies, and if indicative of the future could determine
which domains end up dominating their respective function (en-
ergy generation, energy storage). For the chief purpose of this pa-
per, the large differences between the improvement rates
sufficiently differentiate the domains to empirically examine the
hypotheses that were discussed in Section 2.2 of this paper.
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Fig. 5. Energy storage per unit cost (in constant 2012$ adjusted by the consumer price
deflator). Improvement of batteries and capacitors (1950—2005).

3.2. Quantitative patent results

In this sub-section, we explore the five hypotheses derived from
theories of technological change in Section 2.2 for the four
renewable energy domains whose rate of progress was given in
Section 3.1. Table 2 shows the summary of the results for the
applicable measure for each hypothesis.

It is informative to compare the results by looking at the four
domains as two independent sets (one for energy generation and
one for energy storage). There are only two hypotheses that are
consistent with the empirical results for both pairs in this type of
comparison. The proportion of highly cited patents is higher for the
two technologies with higher improvement rates (solar PV and
capacitors) in accord with hypothesis 2. This may lend credence to
the idea that radical or breakthrough inventions tend to move
technologies forward, although the difference between batteries
and capacitors is very small for this metric, which weakens the
argument since the battery domain progresses much more slowly
than the capacitor domain. Perhaps the strongest signal in this
comparison is that from the average ages of cited patents which is
significantly smaller for solar and capacitors as suggested by
hypothesis 4. Wind turbine patents cite patents over twice the age
of those cited by solar PV, and batteries cite patents 1.5 times older
on average than those of capacitors. These results support the idea
that domains that rely on more recent technology tend to develop
more quickly.

In order to analyze the four data points as a whole, we per-
formed a correlation analysis on this data, as has been done by
similar studies in the past [55]. Not surprisingly, the limited num-
ber of data points in the study (four) assures that there were no
statistically significant correlations (see Appendix B). In fact, the
qualitative review agrees with the statistical test in showing no
reliable explanation for the difference in rates; the strongest hy-
pothesis after this review remains the age of patents cited in the
domain.

3.3. Qualitative patent results

While the quantitative data can bring objectivity to the com-
parison between domains, we also performed a thorough reading
of some of the most important patents in each of the domains. In
order to select these patents, we picked the three most cited pat-
ents from each of the four decades that were represented (1970s,
1980s, 1990s, 2000+ ). A list of the titles of all 48 patents is given in
Appendix C along with their dates of issue.

After reading the sets of patents, an apparent distinction can be
drawn between the more rapidly improving domains of solar PV
and capacitors and the slower domains of wind turbines and bat-
teries. An in depth look at the 12 most cited wind patents shows
that most of the inventions tend to be at the macrolevel, of a higher
technological hierarchy [54]. Titles such as ‘Wind Turbine’ and
‘Horizontal Windmill' indicate the fact that the more in-depth

Table 2
Summary of quantitative hypotheses results.
Domain Solar PV Wind Capacitors Batteries
Improvement rate 9.0% 2.9% 21.1% 3.1%
H1 — patenting rate 124.4 32.8 150.6 401.6
H2 — % of patents cited 21% 15% 16% 14%
over 20 times
H3 — NPL citation % 28% 9% 11% 21%
H4 — average age of cited 12.2 26.6 6.3 9.2
patents (years)
H5 — % of cites to other 69% 80% 71% 67%
domains
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review confirms: in this domain, a many inventions represent the
changing of the system as a whole — rather than a single
component.

The opposite case can be made for batteries, with many of the
improvements in the battery patents being mostly at the material
level, with very few changing the entire system. This is indicated in
titles such as ‘lon Conductor Material’ and ‘Protective Coatings for
negative electrodes’.

The two domains with higher technological improvement rates
show patents from both high and low level technical hierarchy
levels in their set of top patents. The solar PV list includes ‘Amor-
phous Silicon as a UV filter’, as well as ‘Photoelectric Conversion
Device and photocell’. Patents that top the capacitor domain
include patents like ‘Columbium powder and method of making
the same’ as well as ‘Supercapacitor structure’: in-depth review
confirms the mixed hierarchy in this patent set.

While these qualitative results are only suggestive, they indicate
that technologies may improve more rapidly when there are both
important system level and important component level improve-
ments being developed in the domain.

4. Discussion and conclusions

This paper examines quantitative technology improvement
rates in the form of cost and investment in four important
renewable energy domains. Technological improvement rates,
learning rates, and other frameworks are commonly used in single
domains throughout the research community but are not often
used to compare different domains against each other. In addition,
predictive uses of these tools should and will continue to be
questioned until further understanding is available of the under-
lying factors that cause these improvements. This paper developed
a theoretical basis for an approach that compares domains and
derived possible reasons for different rates of advance. This is
complementary to frameworks that view technological progress
one domain at a time.

Significant and sizeable differences between the improvement
rates of solar PV, wind turbines, capacitors and batteries were
found in this study. A framework for empirically studying the fac-
tors that can cause such substantial differences between these rates
was developed based upon a new method for obtaining patent sets
differentiated by domain. Our empirical study of the four renew-
able energy domains led to some findings that are consistent with
prior theories of technological change. Most notably, we found that
patents from the domains with higher improvement rates cited
more recent patents and had a higher percentage of important
patents with over 20 citations. While these findings are potentially
important, the limitations inherent with only having results for
four domains should not be forgotten. In the same way, the inter-
esting indications that neither the number of patents in a domain
nor the scientific connections are important in rate differences —
while potentially significant from a policy perspective — must be
tempered by the same caution.

As with all studies using patents as a data source, there are
limitations to the data source. Of potential relevance to this study
are the differences in patenting strategies between domains, and
between geographic areas [56]. Most significant is that some con-
tributions to cost reduction such as production worker learning and
production capacity effects may well not be reflected in the patent
database. This could introduce some systematic bias to any corre-
lation between improvement rate (especially of cost) and patent
characteristics. Additionally, while our patent selection method has
proven to be superior to previous methods, there is no way to
ensure that we were able to select all of the patents that represent a
field, and there are a number of patents within each data set that

may not properly belong to that domain — see Table 1 and [26].
Nevertheless, the patent data provides the most detailed, objective,
and accessible information on technical inventions and the most
viable way to empirically examine theories related to differences in
rates of improvement in different domains.

Further studies should look to other technical domains that
possess differing rates of progress while attempting to test the full
range of theories for the difference in improvement rates that were
derived in this paper from broader theories of technological
change. At the completion of those two objectives, it will be
possible to more fully develop a predictive understanding of the
improvement rate differences and to complete a robust statistical
analysis of these theories. Communicating the importance of reli-
able theory for rate of advance differences and a way forward to
such a theory is the end objective of this paper.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.renene.2014.03.002.
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