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Many important technical and policy decisions 
are made by small groups, especially by delib-
erative committees of technical experts. Such 
committees are charged with fairly combin-
ing information from multiple perspectives to 

reach a decision that one person could not make alone. 
Committees are social entities and are therefore affected by any 
number of mechanisms recorded in the social sciences. Our 
challenge is to determine which of these mechanisms are likely 
to be encountered in the deliberative process and to evaluate 
how they might impact upon decision outcomes. In particular, 
we examine the role of committee deliberations on the U.S. 
Food and Drug Administration’s (FDA’s) advisory panels. 

Although the research on group decision making is vast, the 
empirical and quantitative analysis of committees of experts in a 
real-world setting has been relatively scarce. This may largely be 
ascribed to difficulty in gathering data (e.g., because it might be 
proprietary or simply not recorded) and the absence of a corre-
sponding methodology. The advent of the Internet has made text 
data abundantly available. Furthermore, regulations such as the 
U.S. Federal Advisory Committee Act (FACA) of 1997 ensure that 
transcripts of real-world expert committee meetings are available 
online or upon request (e.g., through a Freedom of Information 
Act request). Finally, recent innovations in machine learning and 
computational linguistics have enabled the analysis of large sourc-
es of text data in a repeatable and consistent fashion. These meth-
ods have yet to be applied to the analysis of social data, and in 
particular, transcript data on a large scale. There is therefore an 
opportunity to apply some of these methods to enable a deeper 
empirical understanding of committee deliberation processes, a 
major component of decision making by committees of technical 
experts. Many of these methods use signal processing techniques, 
such as approaches to dimensionality reduction. Ultimately, these 
methods may help to generate quantitative insight into committee 
deliberation processes, perhaps enabling better decision outcomes. 

This article provides a short tutorial of approaches in the litera-
ture that can be applied to the quantitative analysis of text data. 
We begin by reviewing selected literatures in the social sciences 
that are relevant to our inquiry. Next, we review existing attempts 
to extract social networks from text data. Limitations of these 
approaches are examined and addressed, culminating in an auto-
mated method for extracting social networks from transcripts of 
expert committee meetings based upon Bayesian clustering. This 
method also uses cross-correlation techniques to generate direct-
ed social networks illustrative of the flow of influence within these 
meetings. Throughout, we use data from the U.S. FDA’s 
Circulatory Systems Devices Advisory Panel, with the goal of dem-
onstrating the application of the method to real-world data. 
Findings include insights into the impact of professional specialty 
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upon deliberation, identification 
of different leadership styles on 
these committees, and possible 
indications of panels in which vot-
ing members may have learned 
from one another to reach a con-
sensus decision. 

SOCIAL SCIENCE APPROACHES 
TO THE ANALYSIS OF EXPERT GROUPS
Work within sociology motivates approaches to the analysis of 
text data as a signal of social phenomena. Conversation analy-
sis is perhaps most relevant to our inquiry. This tradition 
traces its roots to the ethnomethodology of Garfinkel (e.g., 
[1]), the observations of Goffman (e.g., [2]), and the work of 
Sacks, Schegloff, and Jefferson (e.g., [3]) and is focused on 
generating a qualitative understanding of how the unspoken 
rules of conversation signal social relations. Maynard [4] iden-
tifies topics as a key feature of conversations, arguing that 
changes in topic are nonrandom occurrences that can be 
related to the structure of the group that is discussing them. 
Gibson [5] notes that because only one person can generally 
speak at a time, external status characteristics manifest in 
conversation as participation-shifts and, often, as topic shifts. 
These results suggest that an analysis of the speech of com-
mittee member participants might provide insight into the 
dynamics of group decision making, including among com-
mittees of experts. Work within the anthropology and science, 
technology, and society (STS) literatures extends this notion 
to the realms of professional and institutional cultures. For 
example, Douglas emphasizes the extent to which group 
membership influences patterns of thought, and therefore 
affects perception of data [6]. Furthermore, each specialty 
possesses its own unique language and jargon, which carries 
with it an implicit scheme for categorizing perceived phe-
nomena [7]. This is particularly true in technical disciplines, 
where conceptual precision is required. The STS literature 
extends this notion by noting that language is used as a cog-
nitive mechanism to delineate professional boundaries, 
directing the attention of experts within a specialty toward a 
given interpretation of a problem that is consistent with that 
expert’s training, while simultaneously directing that atten-
tion away from other possible interpretations (e.g., [8]). 
Formalizing these qualitative insights requires the use of sig-
nal processing techniques on text data.

QUANTITATIVE APPROACHES 
TO STUDYING TRANSCRIPTS
This section reviews empirical quantitative methodologies based 
upon a computational linguistic analysis of text data. For example, 
Sack uses conversation maps [9] to construct social network rep-
resentations of very large-scale conversations over email. These 
visualizations are based on linguistic content as well as email 
characteristics (e.g., who sends/receives information), and require 
access to large-scale, annotated data. 

NETWORK TEXT ANALYSIS
Perhaps most relevant is network 
text analysis (NTA) [10], a set of 
methodologies that attempts to 
extract social or cognitive struc-
tures from transcripts based 
upon conceptual linkages. One 
prominent example in this tradi-

tion is cognitive mapping [11]—a noncomputational approach 
for identifying key concepts and generating a network of causal 
relations from meeting transcripts. In this approach, an analyst 
identifies and handcodes major concepts and their interrela-
tions. AutoMap (e.g., [12]) is a second, automated approach. 
AutoMap provides a general computational suite that performs 
word-frequency analysis, generates concept networks, and clas-
sifies these concepts into a preestablished ontology (e.g., entities 
and interconnections). Sentiment analyses are also performed. 
A third major approach, centering resonance analysis [13], is 
designed to identify and link important word phrases within a 
discourse. The resulting network is then analyzed to determine 
which of these word-phrases are most important. Each of these 
methods has been used to analyze group dynamics, where the 
dominant paradigm is the representation of relations among 
concepts (i.e., words) embedded within a text. The networks 
generated aggregate information from across multiple individu-
als and focus on relationships between concepts, as represented 
by word phrases. Consequently, these networks have not been 
used to analyze dyadic relationships between group members. 
In what follows, we describe a series of methods designed to 
measure the theoretical constructs outlined in the social sci-
ence literature reviewed above. This series of methods builds 
toward an automated approach that does not require aggrega-
tion across individuals. 

LATENT SEMANTIC ANALYSIS
Approaches to text analysis used by social scientists typically 
utilize “latent coding” schemes of varying complexity [14]. 
These tend to be labor intensive and resist unsupervised auto-
mation, with the exception of frequency counts of preidenti-
fied key words—an approach that does not capture the 
complexity of real-world group interactions. As suggested by 
the sociolinguistics literature, analyzing relations between 
systems of concepts (i.e., topics) is crucial. We therefore use 
latent semantic analysis (LSA) as a baseline for comparison 
against the methods reviewed in this article. LSA is a state-of-
the-art natural language processing tool, which was developed 
for purposes of information retrieval and topic grouping [15]. 
In presenting LSA, we begin by considering a corpus of docu-
ments, D, containing n documents d1 . . . dn. Consider, as well, 
the union of all words over all documents, W. Suppose there 
are m . n words, w1 . . . wm. We construct an m 3 n “word-
document matrix,” X, where each element in the matrix, xjk, 
consists of a frequency count of the number of times each 
word (j) appears in each document (k). LSA performs a singu-
lar value decomposition on X 5 W S DT, where W is an m 3 l 
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matrix of singular unit vectors 
of length l, each corresponding 
to a word. Similarly, D is an n 
3 l matrix of mutually orthogo-
nal singular unit vectors each 
corresponding to a document. 
Finally, S is an l 3 l diagonal matrix of decreasing, nonnega-
tive singular values, with each element corresponding to a 
linear combination of weights associated with each singular 
vector. LSA truncates S to generate S9, a reduced number of 
putative latent “semantic dimensions” within D. The resulting 
matrix, X9 = W S9 DT, may be thought of as a Euclidean space, 
such that the normalized inner product of two word-vectors 
(represented as rows of the matrix W S9) can be thought of as 
the projection of each word upon a set of axes, each of which 
corresponds to a latent concept. Two speakers who share sim-
ilar concepts might therefore be related. Dong [16] used this 
approach to study group decision making in design team con-
texts. Broniatowski et al. then applied Dong’s method in a 
pilot study, with the goal of exploring the applicability of LSA 
to the transcript data from the FDA’s Circulatory Systems 
Devices Panel meetings [17]. Five limitations of LSA were 
identified and must be addressed:

1) LSA assumes the existence of a set of latent, mutually 
orthogonal, dimensions underlying a Euclidean semantic 
space. Furthermore, each word’s location in the Euclidean 
space is linearly distributed, an assumption that introduces 
increasingly more distortion into the analysis as a given 
speaker uses fewer words. These limitations make it diffi-
cult to resolve the linguistic attributes of individual speak-
ers, particularly in the absence of extensive speaker data 
within a given meeting [18]. 

2) LSA was unable to account 
for polysemy—the existence 
of words with multiple mean-
ings (e.g., a baseball bat ver-
sus the flying mammal called 
a bat).

3) LSA was unable to distinguish procedural language from jar-
gon in FDA panel meetings.
4) LSA defines relationships between speakers in terms of 
dimensions in a Euclidean feature space. These dimensions 
nominally correspond to latent concepts within a discourse, but 
often lack an intuitive interpretation. As a result, relationships 
between speakers are correspondingly difficult to interpret.
5) LSA was unable to account for additional dimensions, espe-
cially the passage of time, within a meeting. 
LSA is widely used, and later variants of the technique have 

addressed some of the issues raised above. For example, tensor 
representations might be used to account for the passage of time 
[19]–[21]. Nevertheless, they are still sensitive to the Euclidean 
space assumptions underlying all LSA-based approaches and 
therefore introduce significant noise into the analysis. In general, 
none of these approaches have addressed all of the issues outlined 
above. We therefore use these five limitations to guide the remain-
der of our review.

BAYESIAN TOPIC MODELS 
The leading alternative to LSA is latent Dirichlet allocation (LDA), 
a Bayesian “topic model” [22]. Griffiths et al. provide an excellent 
comparison of LSA to Bayesian models of text analysis [23]. 
Consistent with the literature on sociolingusitics, topic models 
aim to extract a set of general topics from specific texts. 
Approaches based on Bayesian inference, such as LDA, provide a 
platform that may be used to avoid many of the limitations noted 
above. Of particular interest are topic-modeling approaches to 
studying social phenomena in various contexts, including studies 
of the evolution of specialized corpora [24], analysis of structure in 
scientific journals [25], finding author trends over time in scientif-
ic journals [26], topic and role discovery in e-mail and other text 
networks [27], analysis of agenda-setting in the U.S. Congress 
[28], and group discovery in sociometric data [29]. 

TOPIC MODELS ADDRESS THE LIMITATIONS OF LSA
Unlike LSA, which assumes a continuous Euclidean metric 
“semantic space” representation of a corpus, LDA assumes proba-
bilistic assignment of each word to a discrete topic. Rather than 
modeling a word as an average between two locations in a latent 
Euclidean space, a word is instead modeled as having been drawn 
from a discrete probability distribution over topics. This provides a 
natural solution to the polysemy problem outlined above [23]. The 
basic structure of an LDA model is shown in Figure 1. 

Like LSA, LDA stores corpus data in a word-document matrix, 
X. Each word (w) is assumed to be drawn from a topic (z). A topic 
is accordingly defined as a multinomial distribution (f) over 
words (i.e., a word is chosen at random by rolling a weighted 
w-sided die, where w is the total number of words in the corpus). 
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w = Words
D = Number of DocumentsNd = Number of Words

        in Document d

w|z ~ Multinomial (φ )
z|d ~ Multinomial (θ )

φ ~ Dirichlet (β )
θ ~ Dirichlet (α )
z = Topics 

[F IG1] A plate-notation representation of the LDA algorithm 
[22].
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Each document is similarly mod-
eled as a multinomial distribution 
(u) over topics. The parameters 
(i.e., the die-weights) for each 
multinomial distribution are 
drawn from a symmetric Dirichlet 
prior distribution—a multivariate distribution that is the 
 conjugate prior to the multinomial distribution. Each Dirichlet 
distribution has a number of “hyperparameters” equal to the 
number of parameters of its corresponding multinomial distribu-
tion. Nevertheless, early LDA models all assume that the Dirichlet 
priors are symmetric, i.e., all of the hyperparameter values are the 
same. The effectiveness of nonsymmetric Dirichlet priors has only 
recently been tested [30]. 

Gibbs sampling, a Markov-chain Monte Carlo (MCMC) method 
adopted from statistical physics, although potentially slower than 
other approaches, is currently in widespread use as an inference 
tool among topic modelers [25]. Evaluating Markov chain conver-
gence is an open area of research. It is therefore standard practice 
for a Markov chain to be run for multiple iterations to ensure con-
vergence. These initial iterations are known as a “burn-in” period. 
Throughout this article, burn-in length is set to 1,000 iterations—
a value used in the topic modeling literature because it ensures 
sufficient empirical evidence of convergence without undue com-
putational cost [25]. 

The ability to fit the probability distribution underlying the 
LDA model to a specific corpus neatly solves the problem inherent 
in the statistical distribution assumptions resulting from the 
Euclidean space formulation of LSA. Once the LDA model has 
been defined, variants may be utilized, given the nature of the 
problem being solved. In particular, the LDA model as outlined 
above is still sensitive to the arbitrary document boundaries 
imposed by the court recorder. Furthermore, documents vary sig-
nificantly in length—some might only be two words (e.g., “thank 
you”) whereas others might be significant monologues. 

ADDRESSING SPEAKER IDENTITY: 
THE AUTHOR-TOPIC MODEL
The LDA model possesses significant flexibility in that addition-
al independent variables may be added to guide probabilistic 
inference. Given that the literature suggests that each speaker 
possesses an experiential, educational, institutional, and/or 
role-based signature in his or her word choice, we would like to 
have the identity of the speaker inform the selection of topics. 
We therefore use a variant of LDA, known as the author-topic 
(AT) model [26], which adds probabilistic pressure to assign 
each author to a specific topic. Shared topics are therefore 
more likely to represent common jargon. The AT model pro-
vides an analysis that is guided by the authorship data of the 
documents in the corpus, in addition to the word cooccurrence 
data used by LSA and LDA. Each author (in this case, a speaker 
in the discourse) is modeled as a multinomial distribution over 
a fixed number of topics that is preset by the modeler. Each 
topic is, in turn, modeled as a multinomial distribution over 
words. A plate-notation representation of the generative process 

underlying the AT model is 
shown in Figure 2. 

As in LDA, the hyperparame-
ters defining each Dirichlet prior 
(a and b) are chosen by the mod-
eler and are the primary means, 

along with choosing the number of topics, by which the form of 
the model might be controlled. Therefore, two authors’ likelihoods 
of discussing the same topic will depend on the hyperparameters 
chosen. In general, larger values of a will lead to more topic over-
lap for any given corpus, motivating the use of a consistent hyper-
parameter selection algorithm across all corpora analyzed. All 
hyperparameter settings used for the analyses presented in this 
article follow the guidelines derived empirically by Griffiths and 
Steyvers [25]. In particular, a 5 50/(# topics), inducing topics that 
are mildly smoothed across authors, and b 5 200/(# words), 
inducing topics that are specific to small numbers of words. 

Like LDA, the AT model is fit using an MCMC approach. 
Information about individual authors is included in the Bayesian 
inference mechanism, such that each word is assigned to a topic 
in proportion to the number of words by that author already in 
that topic, and in proportion to the number of times that specific 
word appears in that topic. Thus, if two authors use the same word 
in two different senses, the AT model will account for this polyse-
my. Details of the MCMC algorithm derivation are given in the 
paper by Rosen-Zvi et al. [26]. 

FILTERING PROCEDURAL LANGUAGE
The AT model was initially developed to analyze corpora of aca-
demic papers, each of which may have had multiple authors. 
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Legend

[FI G2] A plate-notation representation of the AT model from 
[26]. Authors are represented by a multinomial distribution over 
topics, which are in turn represented by a multinomial 
distribution over all words in the corpus. 
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Conversely, when applying the AT 
model to committee transcripts, 
each utterance has only one speaker. 
In such a situation it is often difficult 
to differentiate between panel mem-
bers. This is especially true since the 
majority of the speech during an 
FDA panel meeting is occupied by 
presentations from the device spon-
sor and the FDA. A given voting member might speak relatively 
rarely. Furthermore, panel members share certain language in 
common including procedural words and domain-specific words 
that are sufficiently frequent to prevent good topic identification. 
As a result, a large proportion of the words spoken by each com-
mittee member may be assigned to the same topic, preventing the 
AT model from identifying important differences between speak-
ers. Ideally, we would be able to separate the unique language used 
by committee members from that language that they all use as a 
matter of course. The AT model provides a natural mechanism to 
perform this separation. Rosen-Zvi et al. [32] used the AT model to 
create one “fictitious author” for each document in a corpus to 
remove document-specific words. We use the inverse of this 
approach by creating one fictitious author named “committee”  
that is assigned to all utterances spoken by a committee voting 
members (the authors would like to thank Dr. Mark Dredze for 
suggesting this approach). Prior to running the AT model’s algo-
rithm, all committee voting members’ statements are labeled with 
two possible authors—the actual speaker and “committee.” Since 
the AT model’s MCMC algorithm randomizes over all possible 
authors, words that are held in common to all committee mem-
bers are assigned to “committee,” whereas words that are unique 
to each speaker are assigned to that speaker. In practice, this 
allows individual committee members’ unique language to be 
identified. In the limiting case where all committee members’ lan-
guage is common, half of all words would be assigned to “commit-
tee” and the other half would be assigned at random to the 
individual speakers in such a way as to preserve the initial 

 distribution of that author’s 
words over topics. Sample 
 topics generated using this 
approach are presented in 
Table 1.

CONSTRUCTING 
NETWORKS FROM TOPICS
Consistent with the NTA tradi-

tion, Broniatowski and Magee [32] developed a method for extract-
ing social networks from meeting transcripts that is based on the 
AT model. When applied to a transcript, each utterance is treated 
as a document. Thus, the meeting transcript may be viewed as a 
corpus. When the AT model is applied to this corpus, words within 
each utterance are grouped into topics with probability propor-
tional to the number of times that word has been previously used 
in that topic, and the number of times that word’s “author” (i.e., 
speaker) has previously used that topic. As discussed above, hyper-
parameter selection dictates the extent to which topics might 
overlap. This emphasizes the need for a consistent approach to 
topic selection that is nevertheless tailored to a specific transcript. 

The number of topics for each model is chosen in an automat-
ed fashion, using a method developed by Broniatowski and Magee 
[32]. Briefly, the number of topics is chosen by fitting 35 AT mod-
els to the transcript for T 5 1 c35 topics, a range that was 
established empirically. Twenty samples were generated from each 
of these models, defining a distribution. Each sample’s goodness-
of-fit is evaluated using a cross-entropy metric based on the AT 
model structure. The smallest number of topics, t0, was assigned 
such that the 95th percentile of the cross-entropy distribution for 
all larger values of T is greater than the fifth percentile of the 
cross-entropy distribution associated with t0. A value of T 5 t0 1 1 
is used to ensure that the model fit is no worse than any defined by 
a smaller number of topics. Once the number of topics has been 
chosen, a T-topic AT Model is again fit to the transcript. Ten sam-
ples are taken from 20 randomly initialized Markov chains, such 
that there are 200 samples in total, forming the basis for subse-
quent analysis. Once a topic model has been fit, constructing 
social networks requires developing principles regarding what 
constitutes a link within a given model iteration. As noted above, 
one would like to link together speakers who commonly use the 
same topics of discourse. This is accomplished by examining each 
author-pair’s joint probability of speaking about the same topic 

 P 1X1 d X2 2 5 aT
i

P 1Z 5 zi 0X1 2* P 1Z 5 zi 0X2 2 .
Speakers who frequently shared the same topics, i.e., their joint 
probability exceeded 1/T, were considered to be linked. A square 
author-author matrix with entries equal to one for each linked 
author pair, and entries equal to zero otherwise, was constructed. 
This procedure was then repeated several times for each transcript 
to average across whatever probabilistic noise might exist in the 
AT model fit. Speakers who linked across multiple AT model fits 
more often than would be expected due to chance (i.e., more than 
125 times out of 200 samples, conservatively assuming a binomial 

[TABLE 1] THE TOP FIVE WORD STEMS FOR ONE TEN-TOPIC 
RUN OF THE AT MODEL WITH A FICTITIOUS AUTHOR. THE 
DATA SOURCE IS THE TRANSCRIPT  OF THE FDA  CIRCULATORY 
SYSTEMS DEVICES ADVISORY PANEL MEETING HELD ON 
4 MARCH 2002. THESE RESULTS WERE GENERATED USING 
THE FILTERING METHOD OUTLINED ABOVE.

TOPIC NUMBER TOP FIVE WORD STEMS

1 “CLINIC ENDPOINT EFFICACI COMMENT BASE”

2 “TRIAL INSYNC ICD STUDI WAS”

3 “WAS WERE SPONSOR JUST QUESTION”

4 “PATIENT HEART GROUP WERE FAILUR”

5 “DEVIC PANEL PLEAS APPROV RECOMMEND”

6 “THINK WOULD PATIENT QUESTION DON”

7 “DR CONDIT VOTE DATA PANEL’

8 “EFFECT JUST TRIAL LOOK WOULD”

9 “LEAD IMPLANT COMPLIC VENTRICULAR EVENT”

10 “PATIENT PACE LEAD WERE DEVIC”

THE AT MODEL PROVIDES AN 
ANALYSIS THAT IS GUIDED BY THE 

AUTHORSHIP DATA OF THE DOCUMENTS 
IN THE CORPUS, IN ADDITION TO 

THE WORD COOCCURRENCE DATA 
USED BY LSA AND LDA. 
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distribution with ~15 voting members and applying a Bonferroni 
correction for a family-wise error-rate of 5%) were considered to 
be linked in the social network associated with that transcript. 
Although the structure of these networks is insensitive to small 
fluctuations in hyperparameter values (e.g., those of the same 
rough order of magnitude), large changes in hyperparameter val-
ues have a strong effect. This is because topic overlap is more like-
ly for larger hyperparameter values, underscoring the importance 
of using a consistent scheme across meeting transcripts. Indeed, 
one may interpret hyperparameter values as calibration settings; 
one must choose hyperparameter values that are likely to provide 
meaningful results in the same way that one must appropriately 
focus a microscope to see a clear picture. The steps for construct-
ing this network are found in “Steps Required to Generate Social 
Networks from Meeting Transcripts,” whereas full details of the 
methodology used to generate these social networks may be found 
in the article by Broniatowski and Magee [32]. 

A sample network is presented in Figure 3. 
In general, application of this method to the set of 37 FDA 

advisory panel meetings tested found that voting members tend to 
link to members of the same medical specialty more often than 
one would expect due to chance (one-sided Kolmogorov-Smirnov 
test; p 5 0.0045; n 5 37). Furthermore, results for the subset of 
meetings in which there was a voting minority of at least two 

members provide support for the notion that panel members who 
vote similarly tend to be linked (one-sided Kolmogorov-Smirnov 
test; p 5 0.02; n 5 11). These findings are consistent with the 
 literatures reviewed above, suggesting that the method is 

Red = Voted Against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistician

Voting Member 8Voting Member 7

Voting Member 5
Voting Member 1

Voting Member 4 Voting Member 3

Voting Member 6

Voting Member 2

Committee Chair

Legend

[FI G3] A sample social network generated from the transcript of the FDA Circulatory Systems Advisory Panel meeting held on 27 
October 1998. Node shape represents medical specialty, node size is proportional to number of words spoken, and node color 
represents vote (blue is approval, red is nonapproval, and black is abstention). A directed version of this social network is shown in 
Figure 8. 

1)  Remove noncontent-bearing words from transcript 
 using standard “stoplist.”
2)  Use stemming algorithm to reduce words to their word 
stems (e.g., “actually” to “actual”).
3)  Reduce transcript to “word-utterance matrix.”
4)  Using hyperparameter values of a = 50/(# topics), and 
b = 200/(# words), fit AT model to data for 1–35 topics 
and select number of topics using described perplexity 
criterion.
5)  Fit AT model to data for selected number of topics. 
Generate 200 samples.
6)  For each sample, determine joint probability that each 
speaker pair is linked (has higher joint probability than 
would be expected under uniform distribution).
7)  Generate final social network. An edge indicates that 
a given speaker pair is linked at least 125 times out of 200 
samples. 

STEPS REQUIRED TO GENERATE SOCIAL NETWORKS 
FROM MEETING TRANSCRIPTS
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 generating valid results. In addition, meetings in which members 
of the same medical specialty were tightly linked were the same 
meetings in which members who voted the same way were tightly 
linked (Spearman rho 5 0.79, p 5 0.0061; n 5 11). This sug-
gests that medical specialty may have served to guide voting 
behavior in meetings where there was no consensus. 

Whereas communication within a specialty should be relatively 
easy because of shared ways of interpreting data, communication 
across specialties requires learning and translation, and would 
consequently be more difficult. Consensus meetings might there-
fore suggest the possibility of communication across medical spe-

cialty boundaries, e.g., due to panel 
members learning to see the same data 
from multiple, potentially convergent, per-
spectives. In-depth analyses of these phe-
nomena in terms of psychological and 
sociological theories of group decision 
making are left to future work.

DIRECTED GRAPHS 
The final limitation of LSA concerns the 
incorporation of temporal information 
into the analysis. The conversation analysis 
literature in sociology (e.g., [5]) notes that, 
within small groups, influence is often 
linked to capacity to affect a topic shift. 
Broniatowski and Magee [33] examined 
topic overlap among speakers to take 
advantage of the temporal aspect of our 
data to develop insights about topic chang-
ing. The method, outlined below, consid-
ers a sample, s, from the posterior 
distribution of the AT model. Within this 

sample, choose a pair of speakers, x1 and x2, and a topic z. Given 
that utterances are temporally ordered, this defines two separate 
time series (see Figure 4). If x1 tends to speak about topic z before 
x2 does, we can say that x1 leads x2. These time series can be com-
pared to generate the topic-specific cross-correlation for speakers 
x1 and x2, in topic z 

 1 f s
i,z  *  fj,z

s 2 3d 45 a`
d52`

fi,z
s  * 3d 4 fj, z

s 3d 1 d 4,
where fi,t

s 1d 2  is the number of words spoken by author i and 
assigned to topic z in document d, in sample s (see Figure 5). 

For each sample, s, from the AT 
Model’s posterior distribution, we exam-
ine the cross-correlation function for 
each author pair, {xi, xj}, in topic z. Let 
there be K peaks in the cross-correlation 
function described by the expression 
mk 5 arg max d 1 fi, z

s  
* fj, z

s 2 3d 4,  w h e r e 
k [ 1 cK. For each peak, k, if mk . 0, 
we say that author i lags author j in topic z, 
at point mk (i.e., li, j, z, mk

s 5 1). Similarly, we 
say that author i leads author j in topic z at 
point mk (i.e., li, j, z, mk

s 5 21) if mk , 0. 
Otherwise, li, j, z, mk

s 5 0. For each sample, s, 
we define the polarity of authors i and j in 
topic z to be: pi, j, t

s 5 median 1 li, j, z
s 2 . If most 

of the peaks in the cross-correlation func-
tion are greater than zero, then the polarity 
5 1; if most of the peaks are less than zero, 
then the polarity 5 21; otherwise, the 
polarity 5 0.

Of particular interest are the topic 
polarities for author-pairs who are linked 
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January 2005.

–2,000 –1,500 –1,000 –500 0 500 1,000 1,500 2,000
–200

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Number of Utterances by Which Dr. x1 Lags Dr. x2

C
ro

ss
-C

or
re

la
tio

n 
of

 x
1 

an
d 

x 2
 in

 T
op

ic
 1

8

[FI G5] Cro ss-correlation of the time series shown in Figure 4. Here, the maximum 
value of the cross-correlation function is less than zero. This is a quantitative 
indication that x2 lags x1. 



IE
EE P

ROOF

IEEE SIGNAL PROCESSING MAGAZINE   [29]   MARCH 2012

in the graph methodology outlined above. Using the polarity 
values defined above, it is useful to determine directionality for 
each link. For each sample, s, we define the direction of ei,j in 
sample s as 

 d s 1ei, j 2 5 aT
t51
1 pi, j, t

s    
*

 P s 1Z 5 zi | xi 2  * P s 1Z 5 zi | xj 2 2 .
This expression weights each topic polarity by its importance in 
the joint probability distribution between xi and xj, and is con-
strained to be between 21 and 1 by definition. The set of 200 
ds(ei,j) defines a distribution. Next, the net edge direction, d(ei,j) 
is determined by partition of the unit interval into three equal 
segments. In particular, we examine the proportion of the 
ds(ei,j) that are greater than zero. If more than 66% of the 
ds(ei,j) > 0 then d(ei,j) 5 1 (the arrow points from j to i). If less 
than 33% of ds(ei,j) . 0 then d(ei,j) 5 21 (the arrow points 
from i to j). Otherwise, d(ei,j) 5 0 (the arrow is bidirectional). 
The result is a directed network, examples of which are seen in 
Figures 6–8. Although we did not conduct rigorous tests of sen-
sitivity to these thresholds, the results of preliminary sensitivity 
testing are qualitatively similar; indeed, with few exceptions, 
most topic polarity distributions are either sharply skewed 
toward one end of the distribution or largely symmetric. 

SAMPLE DIRECTED GRAPH RESULTS: THE EFFECTS OF 
PANEL MEMBER SPEAKING ORDER 
A sample application of this approach to the same FDA advisory 
committees studied by Broniatowski and Magee [32], [33] 
shows that influential panel members, who initiate topics that 

others follow, are more likely to be near the “top” of the graph 
(i.e., a low indegree) whereas panel members who are not fol-
lowed tend to be near the “bottom” (i.e., a low outdegree). 
Broniatowski and Magee [34] found a tendency for members of 
the voting minority to speak later in the meeting, compared to 
members of the voting majority. Consistent with this finding, 
members of the voting minority tend to have a lower graph 
outdegree than do members of the voting majority (Mann 
Whitney U; p 5 0.045; n 5 17). In addition, as meetings get 
longer, the maximum outdegree of a member of the voting 
minority increases, i.e., a voting minority member is more 
likely to reach the “top” of the graph (Spearman rho 5 0.50; p 
5 0.04). Under such conditions, voting minorities also become 
larger—indeed, the maximum outdegree of a voting minority 
member is strongly associated with the proportion of voting 
members in the minority (Spearman rho 5 0.62, p 5 0.0082). 

LEADERSHIP DYNAMICS ON FDA PANELS
Broniatowski and Magee [27] also explored how these graphs may 
change their topology on the basis of which nodes are included. In 
particular, inclusion of the committee chair may or may not “flat-
ten” the graph by connecting the sink nodes (i.e., nodes on the 
bottom of the graph) to higher nodes. In other meetings, the 
chair may act to connect otherwise disparate groups of voters or 
serve to pass information from one set of nodes to another. Using 
a metric of the hierarchy in the graph [35], one may quantify the 
impact that the committee chair has upon the meeting. To do so, 
we first determine, for each graph, which proportion of edges is 
part of a cycle
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[FI G6] Directed graph representation of meeting held on 23 June 2005 [33]. Hierarchy metric = 0.35 [35]. Node shape represents medical 
specialty and node color represents vote (yellow is approval, grey is nonapproval, black is abstention). (Figure used with permission.)
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[links_in_cycle
[total_links

.

We then add the node represent-
ing the committee chair to the 
graph and calculate the hierarchy 
for this updated graph.

The difference in this hierar-
chy metric between graphs with and without the chair therefore 
quantifies impact of the chair on the meeting

 Chair Impact 5  a[links_in_cycle
[total_links

b
no_chair

 2 a[links_in_cycle
[total_links

b
chair

.

For example, in a directed acyclic graph, the value of this 
metric would be zero. If, upon including the committee chair, 
50% of the links in the graph take part in a cycle, then the 
value of this metric would increase to 0.5. We display this 
metric for the graph without the chair (Figure 6) and with 
the chair (Figure 7). For the meeting held on 23 June 2005 
(Figures 6 and 7), this value is 0.7820.35 5 0.43. This sug-
gests that the chair is significantly changing the topology of 
the meeting structure – in particular, it seems that the chair 
is serving a mediation role by connecting members at the 
“bottom” of the graph to those at the “top.” Among the many 
roles of the committee chair is to serve as a facilitator, ensur-
ing that all of the panel members present are able to express 
their views. Other meetings display different behavior by the 

chair. Consider the meeting 
held on 27 October 1998 (in 
Figure 8). 

In this meeting, the commit-
tee chair combined the view-
points of two disparate clusters 
on the panel. When the chair 
does not act to significantly 

change the graph structure, he or she may be taking on the role 
of a synthesizer—a hands-off approach that allows panel mem-
bers more freedom to respond to FDA questions, perhaps 
because additional mediation is deemed unnecessary. 

DISCUSSION
The initial findings presented here provide an empirical for-
malization of, and insight into, the impact of social structure 
on committee deliberation and voting. The effects of medical 
specialty on voting behavior have been mentioned above. 
Additionally, the results of the directed graph analysis are par-
ticularly suggestive in that they provide an empirical verifica-
tion and visualization of paths of influence within a 
committee meeting. Additionally, these graphs offer quantifi-
able insights into how different committee chairs might 
approach running meetings. In our view, the methods out-
lined in this article hold significant promise for application 
across a range of social phenomena. Although a full social-sci-
entific treatment of the findings presented here is outside of 
the scope of this article, these methods provide an emerging 
toolkit that may be used to analyze group decision making in 
committees of experts. 
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[FI G7]  Directed graph representation of meeting held on 23 June 2005, with the committee chair included [33]. Hierarchy metric = 0.78 
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METHODOLOGICAL 
LIMITATIONS 
The method outlined in this 
article relies on meeting tran-
scripts to generate empirical 
findings regarding committee 
decision making. It is seemingly 
sensitive to the limitation that 
not all committee members 
might express their views truth-
fully. Nevertheless, it is very difficult for individuals to avoid 
using jargon with which they are familiar. A more significant 
challenge to the use of linguistic data for the analysis of social 
behavior on expert committees stems from the assumption 
that such dynamics are entirely reflected in language. Another 
similar concern is absence of data that might result if a partic-
ular voting member of the committee remains silent, says lit-
tle, or strategically uses speech to hide preferences. Indeed, 
work by Pentland [36] has shown that much social signaling 
occurs through body language and vocal dynamics that are 
not able to be captured in a transcript. In addition, procedural 
elements of decision making, including the impact of commit-

tee member preferences, order-
ing of alternatives, and voting 
rule, are important [37]. For a 
more detailed analysis of these 
factors in the FDA context, see 
the article by Broniatowski and 
Magee [34]. It should therefore 
be clarified that this article does 
not claim that all social dynam-
ics are manifest in language, 

rather, word choice provides one source of insight into a com-
plex, multimodal process.

CONCLUSIONS
Many of the approaches presented in this article use signal pro-
cessing techniques to analyze text data. In particular, we ana-
lyze the flow of information between individuals on technical 
expert committees using words as representative of the signals 
in question. Dimensionality-reduction methods, such as LSA 
and LDA, are common to signal processing literature but have 
only just started to be applied to the social sciences. A cross-
correlation analysis of the resulting topics allows the further 
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WE BELIEVE THAT METHODOLOGICAL 
INNOVATIONS WILL ENABLE THE 

FURTHER APPLICATION OF SIGNAL 
PROCESSING TECHNIQUES TO TEXT, 
PARTICULARLY AS TEXT DATA FROM 
REAL-WORLD SETTINGS BECOMES 

INCREASINGLY AVAILABLE.
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incorporation of temporal information. In general, we believe 
that methodological innovations will enable the further 
 application of signal processing techniques to text, particularly 
as text data from real-world settings becomes increasingly 
available. Policy-relevant findings are sure to follow, enabling 
the creation of new theory, and opening an exciting new quan-
titative frontier in computational social science.
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