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We present a new method for decomposing a social network into an optimal number of hierarchical sub-
groups. With a perfect hierarchical subgroup defined as one in which every member is automorphically
equivalent to each other, the method uses the REGGE algorithm to measure the similarities among nodes
and applies the k-means method to group the nodes that have congruent profiles of dissimilarities with
other nodes into various numbers of hierarchical subgroups. The best number of subgroups is determined
by minimizing the intra-cluster variance of dissimilarity subject to the constraint that the improvement
in going to more subgroups is better than a network whose n nodes are maximally dispersed in the
n-dimensional space would achieve. We also describe a decomposability metric that assesses the devi-
ation of a real network from the ideal one that contains only perfect hierarchical subgroups. Four well
known network data sets are used to demonstrate the method and metric. These demonstrations indi-
cate the utility of our approach and suggest how it can be used in a complementary way to Generalized

Blockmodeling for hierarchical decomposition.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In sociology and anthropology, viewing society as a hierarchical
set of social classes, castes, or strata has a long tradition (Lynd and
Lynd, 1937; Warner and Lunt, 1941). To study people, groups, or
organizations, they are not ranked on a continuous scale of pres-
tige but are often classified into a limited set of discrete ranks,
for example, upper class, middle class, and lower class, and each
class is further subdivided into smaller classes related to occupation
(Saunders, 1990).

The initiation of hierarchy theory is often attributed to Simon
(1962), and some consider his contribution to be in the research
tradition of general systems theory (Bertalanffy, 1950). Since then,
two major views for understanding hierarchy have been developed.
The first takes the ontological position and deals with the “ultimate
reality” of structure (Salthe, 1985). The second takes the stance
that there may be an external reality, but it is not relevant to the
discourse because we only have access to subjective experience
(Ahl and Allen, 1996). In this research, we follow the ontological
approach and study not only a narrowly defined hierarchy, in which
every subordinate reports to only one superior, but also directed
networks in which the relations among subordinates are pervasive
and complex.
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In the social networks literature, two lines of research have been
developed to understand the hierarchical properties of social rela-
tions. These are: (1) the local approach that uses local structure to
infer the overall nature of the network (Johnsen, 1985); and (2) the
global approach that decomposes the network according to a cer-
tain set of pre-specified criteria (Doreian et al., 2000, 2005). The
local approach continuously develops the concept of transitivity
(Holland and Leinhardt, 1971) for explaining social structures, and
the global approach has Generalized Blockmodeling (Doreian et al.,
2005) as its latest development, where the hierarchical structure
of the networks can be described by a variety of blocks in specific
patterns.

In this study, we take the global approach and examine the
notion of hierarchical subgroups within the broader research tradi-
tion of positional and role analysis (White et al., 1976). We propose
a new definition for hierarchical subgroups of a network that uti-
lizes the concept of automorphic equivalence (Everett et al., 1990;
Pattison, 1982, 1988; Winship, 1988; Winship and Mandel, 1983).
Automorphism occurs when a re-labeling of nodes in a network
preserves the network’s structure; thus, two actors are automor-
phically equivalent if and only if there is an automorphism that
maps one of the nodes to the other.! We define a perfect hierar-
chical subgroup as one whose members are all automorphically
equivalent to each other. Moreover, we partition a network into
hierarchical subgroups that place automorphically equivalent or

T More information about automorphic equivalence can be found in Wasserman
and Faust (1994).
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nearly automorphically equivalent nodes in the same subgroup.
Since in reality perfect hierarchical subgroups rarely exist, the
method developed in this study is aimed at finding hierarchical sub-
groups from real directed and acyclic networks,2 whose structures
often deviate with different extent from that of ideal networks.

In, 2008, the authors of this paper proposed a method and a
decomposability metric for partitioning a network into an opti-
mal number of structurally equivalent classes (Hsieh and Magee,
2008). We used the k-means method (Lloyd, 1982; MacQueen,
1967) to determine the best decomposition of the network for var-
ious numbers of subgroups. The best number of subgroups into
which to decompose a network is determined by minimizing the
intra-cluster variance of similarity subject to the constraint that the
improvement in going to more subgroups is better than a random
network would achieve. In this paper, we modified the method and
the decomposability metric to extend its applicability and applied
it to partition a network into hierarchical subgroups.

Our method for finding hierarchical subgroups of a network
is complementary to Generalized Blockmodeling. By using the
approach of Generalized Blockmodeling, the type of blocks for the
subgroups and between subgroups has to be defined, and, most
important of all, the number of subgroups has to be specified in
advance. This requires the use of context information in forming
hypotheses and gives a criterion function (i.e. inconsistencies) that
measures the fit of a specified blockmodel to the actual data. In this
regard, our method has the capability of automatically determining
the best number of subgroups. For the purpose of hypotheses for-
mation, the decomposability metric generated by our method can
be used to evaluate the appropriateness of decomposing a network
into hierarchical subgroups or other choices.

This paper is organized into the following sections. In Section
2, we present the new method for finding hierarchical subgroups
and its application to an ideal network that contains only perfect
hierarchical subgroups. In Section 3, we discuss the use of decom-
posability for assessing the deviation of a network from the ideal
networks that contain only perfect hierarchical subgroups. Appli-
cation of our method including the decomposability metric to four
known social networks is presented in Section 4. Brief concluding
remarks are provided in Section 5.

2. A new method for finding hierarchical subgroups

The method proposed here for analyzing hierarchical subgroups
is based on the broader research tradition of positional and role
analysis (White et al., 1976). In other words, we view the hierarchi-
cal subgroups as one specific type of position within the networks,
and the roles of these hierarchical subgroups are manifested by their
asymmetric relationships with each other.

As an example of potential ambiguity in determining hierar-
chical subgroups, we consider the hierarchical organization of an
artificial national retailer. At the top level of such a hierarchy, there
can be five regional managers and one or more office directors
reporting to the chief operations officer. All direct reports to the
top level can be considered as one hierarchical group. However,
since each of the five regional managers oversees a 500-people
organization in his/her region and the office director supervises
a team of a few special assistants, it can be more logical to group
the regional managers into the same hierarchical subgroup because
these managers are functionally interchangeable with each other.
Therefore, interchangeability can be argued as the key attribute in
determining whether a group of people should belong to the same
hierarchical subgroup.

2 Because finding hierarchical subgroups from a cyclic network is not meaningful,
we restrict our method to deal with only directed and acyclic networks.

Using interchangeability as the criterion for identifying hierar-
chical subgroups leads us to define a perfect hierarchical subgroup
as the one whose members are all automorphically equivalent to
one another. By contrast, the use of rank is less helpful for under-
standing the hierarchical structure of a network because it only
incorporates the information of how many layers a node is from
the source or sink nodes which depends on the scheme of plac-
ing nodes. With this definition of a perfect hierarchical subgroup,
we propose that a hierarchical subgroup should be the one whose
nodes are either automorphically equivalent or nearly automorphi-
cally equivalent to each other.

Although there is no known fast algorithm that guarantees
identification of automorphically equivalent nodes in all graphs
(Everett et al., 1990), it has been pointed out that automorphically
equivalent nodes are identical with respect to all graph theoretic
properties (Borgatti and Everett, 1992). With this important insight,
we propose to use a node’s profile of similarities with all other
nodes as a proxy for its graph theoretic properties, where the nodal
similarities are measured by the REGGE algorithm proposed by
White (1985) and formulated in the paper by Ziberna (2008). The
rationale of our proposal is based on the fact that REGGE algorithm
uses an iterative procedure in which estimates of the similarities
between pairs of nodes are adjusted in light of the similarities of
the nodes adjacent to and from members of the pair. Furthermore,
if a pair of nodes has the same REGGE similarities with every other
node, their in-degree and out-degree must be the same, and there
must be a one-to-one match for every other node with the same
number of hops from each of the pair that has the same in-degree
and out-degree, unless the node is a common node sitting at the
branches of the pair. Since in this case the pair of nodes cannot be
differentiated structurally from each other (i.e. an automorphism),
by definition, they are automorphically equivalent.

It should be noted that, although the REGGE algorithm was orig-
inally designed to measure the extent to which a pair of nodes
is regular equivalent (White and Reitz, 1985), when incorporated
into our method, it is every node’s distribution of REGGE similar-
ities with every other nodes that is used for finding hierarchical
subgroups, not the pair-wise single measure of REGGE similarities.
However, we recognize that a formal proof of whether two nodes
having the same profile of REGGE similarities leads to their being
automorphically equivalent is an outstanding problem that merits
further attention.

Our method for finding hierarchical subgroups starts with the
calculation of pair-wise similarities among nodes using the REGGE
algorithm. The normalized similarity, El.tj“ , for two nodes, i and j, at

iteration t+ 1 is given by the following equation (Ziberna, 2008):
S (mnax(Et Mim) + m%lx(Ef ,AMkm))
Ei+ k=1 \ 1, 21 Tkm ij m=1 = kmji
=

(1)
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where n is the number of nodes, ;M equals min(ry, Tj,) plus
min(ry;, 7rqj ), with rj; being the value of the tie from node i to node j.
In this study, we use the size of network as the number of iterations
so that sufficient differentiation of the similarities among nodes can
be obtained and it would not be too large to drive the similarities
between nodes that are regularly equivalent into zeroes. We note
that the number of iterations used for REGGE in our method is an
important issue and merits further attention in the future.

The REGGE algorithm generates meaningful similarity mea-
sures among nodes when the network follows the basic acyclic
requirement of a hierarchy. However, there are some restrictions on
applying the algorithm to other networks. Generally, the algorithm
does not work for non-directional networks, networks that have
self-ties, and networks in which each node is involved in at least
one reciprocated tie (Wasserman and Faust, 1994). Because find-
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(a) Finding Structural Equivalence Classes
(Hsieh and Magee 2008)

(b) Finding Hierarchical Subgroups

Step 1: Network transformation -
Adjacency matrix — Dissimilarity matrix

the corrected Euclidean-like dissimilarity
(Burt and Minor 1983).

Step 1: Network transformation -
Adjacency matrix — Dissimilarity matrix
the REGE algorithm

(White and Reitz 1985).

Step 2: k-means method -

Treats the n by n dissimilarity matrix as n
data points in the n dimensional space and
partition them into k=2 to k=n clusters.

Step 2: K-means method -

Treats the n by n dissimilarity matrix as n
data points in the n dimensional space and
partition them into k=2 to k=n clusters.

Step 3: Optimal number of partition -
Compares the Intra-cluster

variance of similarity with that of

a sample of pseucdo random networks.

Step 3: Optimal number of partition -
Compares the Intra-cluster

variance of similarity with that of

a maximally dispersed network.

Fig. 1. Flow charts of the algorithms for finding (a) structural equivalence classes (Hsieh and Magee, 2008), and (b) hierarchical subgroups introduced in this study.

ing hierarchical subgroups from a non-directional network is not
meaningful, for a cyclical directed network, we suggest that such
networks be reduced to the level of strong components3 before mea-
suring their nodal similarities with the REGGE algorithm. By doing
so, the reduced network becomes acyclic and the members of the
same condensed strong component are pre-classified into the same
subgroup.*

In a previous study (Hsieh and Magee, 2008), we have presented
an algorithm and a metric for network decomposition from simi-
larity matrices. Fig. 1 shows the flow chart of the algorithm used
in this study to decompose a network into hierarchical subgroups
compared with the one in our previous work that decomposes a
network into structural equivalence classes. While both algorithms
start with transforming the adjacency matrix of a network into nor-
malized dissimilarity matrix (i.e. Step 1 of both Fig. 1(a) and (b)), the
one that finds structural equivalence classes makes the transforma-
tion by the corrected Euclidean-like dissimilarity (Burt and Minor,
1983), and the one introduced in this study makes it by the REGGE
algorithm described previously. Notice that the dissimilarity matrix
of anetwork is obtained by simply subtracting the similarity matrix
(measured by the REGGE algorithm) from a unity matrix.

As shown in Fig. 1(a) as Step 2, for an n-node network, with
its known n by n dissimilarity matrix, our previously developed
algorithm treats the matrix as n data points in the n-dimensional
space and repeatedly applies the method of k-means clustering
(MacQueen, 1967) to partition the n data points into k=2 to k=n
clusters. In this study, our method for finding hierarchical sub-
groups applies the same procedure (i.e. Step 2 in Fig. 1(b)), and
Lloyd’s k-means algorithm (Lloyd, 1982) was used. Lloyd’s algo-
rithm begins with a set of k reference points which are randomly
selected from the data set. All of the data points are partitioned

3 In graph theory, a directed graph is strongly connected if it contains a directed
path from u to v and a directed path from v to u for every pair of vertices u, v. The
maximal strongly connected sub-graphs in a graph are referred to as the strong
components.

4 We realize the use of strong components as a processing step of our method
might compromise the integrity of a network’s structure for identifying automor-
phically equivalent subgroups. However, the method is primarily designed to find
hierarchical subgroups, which is only meaningful when the network is directed
and acyclic. Therefore, we propose to reduce the networks into strong components
whenever they are cyclic and to call attention to possible compromises in these
cases.

into k clusters by assigning each point to the cluster of its closest
reference point. In each following iteration, the centroid for each
clusteris calculated. A partition is then made using the newly calcu-
lated centroids as reference points for all of the data points. Because
the algorithm applied is a heuristic algorithm, different initial ref-
erence points can generate different partitions. We use multiple
sets of initial points to evaluate whether the obtained partition has
approached its global minimum sum of intra-cluster distances.

It should be noted that, compared with, for example, Jancey’s
algorithm (Jancey, 1966) that begins with an initial partition and
then relocates objects among clusters until no further reduction
in the within-cluster points-to-centroid distances is possible, the
solution generated by Lloyd’s algorithm is not locally-optimal with
respect to all possible relocations of any point from its current
cluster to any other cluster. Moreover, although Lloyd’s algorithm
applied by our method does not guarantee a globally optimal solu-
tion, for networks with smaller size, there are exact algorithms that
guarantee a global optimum. These exact methods have been pro-
posed by Koontz et al. (1975), du Merle et al. (2000) and Brusco
(2006).

The readers should not be confused by the fact that we are using
the non-hierarchical procedure of k-means clustering method to
identify hierarchical subgroups. Since the hierarchical relationships
among the subgroups are identified in Step 1, applying the k-means
method in Step 2 contributes only to partitioning the nodes with
the similar hierarchical relationships into the same subgroups.

Finally, as shown in Fig. 1(a) as Step 3, our previously devel-
oped algorithm stops further dividing a network into additional
subgroups if the decrease of its n nodes’ sum of within-cluster
points-to-centroid distances, D, from k to k+ 1 is less than that of a
sample of random networks, D;;a“d"m. Because a sample of random
networks was found to be biased for acyclic directed networks, we
pursued a new and we think in the end more powerful approach in
this work. Since the rationale of using random networks for com-
parison is their lack of structure, we propose to compare the actual
network’s sum of within-cluster points-to-centroid distances with
that of a network whose n nodes are maximally dispersed from
each other in the normalized n-dimensional space.> We require

> A normalized n-dimensional space has the coordinates of all of its dimensions
ranging from zero to one.
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Fig. 2. The 31-node five-layer binary tree.

the n-dimensional space to be a normalized one because the actual
network’s n-dimensional coordinates of its n nodes come from
the normalized dissimilarity matrix. When n nodes are maxi-
mally dispersed in the normalized n-dimensional space, they all
have the same maximum distances from each other and thus are
in-differentiable from one another spatially. In essence, such a net-
work is structureless, and becomes the benchmark for the actual
network that we intend to partition.®

Based on the observable results for two and three dimensional
space, we assume that for n nodes to be maximally dispersed from
each other in the normalized n-dimensional space, every node will
have the same distance, +/2, from each other. One trivial spatial
arrangement of the n nodes in the normalized n-dimensional space
that achieves maximum dispersion is to place each of the n nodes
at n different vertexes adjacent to the origin. For example, for three
nodes in the normalized 3-dimensional space, placing the three
nodes at the coordinates of (1, 0, 0), (0, 1, 0), and (0, 0, 1) respec-
tively could achieve maximum dispersion. For the aforementioned
trivial spatial arrangement of the n nodes divided into k clusters, the
sum of intra-cluster points-to-centroid distance, Dyax-dispersion(n,k)»
is approximated as

Dmax-dispersion(n,k) = {1 — ]/(n/k)}z - . (2)

With Dmax-dispersion(n,k) available in closed form, no sample of
networks is required as is the case of Step 3 in Fig. 1(a), and we
stop further dividing a network into additional subgroups if the
decrease of its n nodes’ sum of within-cluster points-to-centroid
distances, Dy, from k to k+1 is less than that of the structureless
network, Dmax-dispersion(n,k) (1.€. Step 3 in Fig. 1(b)).

To find hierarchical subgroups, with the dissimilarity matrix
generated from using the REGGE algorithm, we can partition a
network into an optimal number of hierarchical subgroups by
proceeding with the procedures just described. We use a simple
example to demonstrate the method of identifying hierarchical
subgroups in a directed network. The artificial network shown in
Fig. 2 is a 31-node five-layer binary tree. Its five hierarchical sub-
groups (i.e. the layers) can easily be identified by observation.

Using the new method proposed here to find the hierarchical
subgroups of this network, we first apply the REGGE algorithm
to the network and obtain the similarity matrix of the nodes. The
dissimilarity matrix of the network is obtained by subtracting the
similarity matrix from a unity matrix. By reading each of the 31
rows of the dissimilarity matrix as a specific data point that has a
31-dimensional coordinates, we repeatedly apply Lloyd’s k-means
algorithm to partition the 31 data points into k=2 to k=31 clus-

6 We note that such a network represents only the theoretical boundary for the
possible configuration of the REGGE dissimilarities but may not have real existence.
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Fig. 3. (a) The sum of intra-cluster point-to-centroid distances of the 31-node five-
layer binary tree network (dark gray bars) and that of the structureless network
whose n nodes are maximally dispersed from each other in the n-dimensional space
(light gray bars) and (b) the fitness index of the tree network as a function of the
number of subgroups.

ters. The sum of intra-cluster points-to-centroid distances, Dy, as a
function of k is obtained and shown in Fig. 3(a) as dark gray bars.
By using Eq. (2), the value of Dyax-dispersion(n k) fOr n equals 31 and k
ranges from 2 to 31 is shown in Fig. 3(a) as light gray bars. Fig. 3(b)
shows the fitness index generated by subtracting Dy of the tree
network from that of the structureless network.

The peak of fitness index is at five subgroups because further
subdivision only reduces D, of the tree network at a rate equal to
or less than a structureless network. The nodes belonging to the
five subgroups form the most appropriate hierarchical subgroups
of the tree network, and they correspond to the five layers of the
network as shown in Fig. 2 marked with gray color blocks.”

3. Hierarchical decomposability

As introduced in our previous study (Hsieh and Magee, 2008),
to differentiate among networks with various levels of deviation
from the networks having ideal structures, the decomposability of
a network divided into k subgroups is defined as

Q=1- Dk/DmaX(n.k)’ %

where Dy, is the sum of intra-cluster points-to-centroid distance
when the network is divided into k subgroups by the k-means
method, and Dy ax(n k) is the maximum sum of intra-cluster points-
to-centroid distance for networks having n nodes and k clusters.
In the previous study, though Dyaxnk) Was mathematically
defined, the significance of the network manifested by it was not
clear. As a consequence, the decomposability thus defined needed
the relationship between a network’s decomposability and its per-
centage of linkage perturbation from ideal networks to calibrate

7 All other simple perfect hierarchical structures can also be derived automatically
by the method described here.
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Fig. 4. Three artificial tree networks decomposed into hierarchical subgroups. The
hierarchical subgroups suggested by our method are marked with gray color blocks.

its meaning. In this study, we propose to remedy this drawback by
redefining the decomposability as

Q=1- Dk/Dmax—dispersion(n,I<)a (4)

where D is the same as defined in Eq. (3), and Dyax-dispersion(n.k)
is defined previously and can be calculated by Eq. (2). The sum
of intra-cluster points-to-centroid distance of zero is achieved
only by ideal networks, and it generates decomposability of one.
Decomposability of zero means that the network has maximum
dispersion, Dpmayx-dispersion(n,k)» and such networks have nodes that
cannot be differentiated from one another spatially. The decom-
posability thus defined is bounded between the ideal networks and
networks that are structureless.

We use the following example to demonstrate the change of
decomposability as a network deviates from the one having only
perfect hierarchical subgroups.® Fig. 4 shows three artificial net-
works that have the same number of 13 nodes. While the network
of Fig. 4(a) is a tree with a branching ratio of three, the network of
Fig. 4(b) has the same tree structure but moves the three leaves in
the middle branch to the left branch, and the network of Fig. 4(c)
follows the same tree structure but has all of the leaves connected
to the left branch.

8 These deviations give rise to the hierarchical ambiguity of human organizations
discussed in Section 2.

By applying our method of finding hierarchical subgroups to
these networks, the results suggests that each of the three networks
should be divided into either two or three subgroups as marked
with gray blocks in the figure. The decomposability of the network
of Fig. 4(a), (b), and (c) are 1.00, 0.72, and 0.94, delineating that the
latter two networks have different levels of deviation from the for-
mer network that has only perfect hierarchical subgroups. For the
network of Fig. 4(b), it can be confirmed with visual inspection that
both identified subgroups are imperfect hierarchical subgroups.
Compared with the network of Fig. 4(b), the network of Fig. 4(c)
has only one imperfect hierarchical subgroup that contains the root
node and the leftmost node in the second layer. With the network
of Fig. 4(a) having the highest decomposability and that of Fig. 4(b)
the lowest, the decomposability confirms what visual inspection
tells us; the network of Fig. 4(c) is closer to the ideal network than
that of Fig. 4(b).

To demonstrate the usefulness of decomposability as an objec-
tive measure to compare the quality of different decompositions,
we use the same three networks as shown in Fig. 4 and decom-
pose them into structural equivalence classes (Lorrain and White,
1971). Two nodes are said to be structurally equivalent if they
link to and are linked by exactly the same set of other nodes in
the network. Compared with automorphic equivalence, structural
equivalence is more stringently defined. Nodes that are structurally
equivalent are also automorphically equivalent, but the reverse is
not necessarily true. To decompose the networks into structural
equivalence classes, we apply the same method introduced in this
study, with the only difference that the similarities among nodes
are now measured by the corrected Euclidean-like dissimilarity
(Burt and Minor, 1983) and normalized between zero and one.
The decomposition results of our method are shown in Fig. 5, in
which different structural equivalence classes are marked with gray
blocks.

As shown in the figure, the 13 node network of Fig. 5(a) is
decomposed into four structural equivalence classes. With visual
inspection, the three identified classes that together form the third
layer of the tree network are structural equivalent classes; our
method partitions the rest of the four nodes into the same class,
where each of the four nodes is a structural equivalence class of its
own. Our method indicates that the network of Fig. 5(b) should be
divided into four structural equivalence classes. With visual inspec-
tion, three of the four classes are structural equivalence classes, and
each of the three nodes in the class that sits at the upper right corner
is a structural equivalence class of its own. Similarly, the network
of Fig. 5(c) is divided into three structural equivalence classes sug-
gested by our method. Visual inspection again tells us that two of
the identified classes are structural equivalence classes, and each of
the three nodes in the upper-right class is a structural equivalence
class of its own.

Calculated with our method, the decomposability for the net-
works of Fig. 5(a), (b) and (c) are 0.51, 0.80 and 0.91. By comparing
the decomposability generated for the structural equivalence
classes with that generated for the hierarchical subgroups, we
can evaluate the quality of the two decompositions for the same
network. For the same network of Figs. 4(a) and 5(a), the higher
decomposability of 1.00 for partitioning the network into three
hierarchical subgroups, compared with that of 0.51 for two struc-
tural equivalence classes, indicates that partitioning the network
into the former structure is much more effective. For the same
network of Figs. 4(b) and 5(b), the decomposability of 0.80 for struc-
tural equivalence classes is higher than that of 0.72 for hierarchical
subgroups, indicating that the network is more similar to the ideal
network having only structural equivalence classes. Finally, for the
same network of Figs. 4(c) and 5(c), the decomposability of 0.94
for hierarchical subgroups is higher than that of 0.91 for structural
equivalence classes, indicating that decomposing the network into
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Fig. 5. Three artificial tree networks decomposed into structural equivalence
classes. The structural equivalence classes suggested by our method are marked
with gray color blocks.

hierarchical subgroups is a slightly better choice for understanding
the structure of the network.

As we have shown, for the same network of
Figs. 4(a) and 5(a) and Figs. 4(c) and 5(c), partitioning the
network into hierarchical subgroups has higher decomposability
than into structural equivalence classes; partitioning the network
of Figs. 4(b) and 5(b) into structural equivalence classes has higher
decomposability than into hierarchical subgroups. These examples
clearly show the merit of using the decomposability as an objective
criterion for choosing the type of decomposition for understanding
the structure of the networks. In the following section, we use
four real examples to further demonstrate our method and the
decomposability metric.

4. Application of the method

In the previous section, we proposed a method for decomposing
a network into hierarchical subgroups and a decomposability met-
ric for measuring a network’s deviation from an ideal network that
contains only perfect hierarchical subgroups. In this section, we test
our method and decomposability metric with four examples of real
networks.

Our first example is the authoritative relationship among the
personnel in an office reported by Thurman (1979). Though the
original data is comprised of the social relationship and the
authoritative relationship among the 15 workers, we analyze only

Cow J oo )} [om J [ oo | [

|Reg||Rose||'ﬁna||Mike‘lManyHAmyHLisa‘

Fig. 6. The authoritative relationship of Thurman (1979) office data.

the authoritative relationship among the workers as shown in
Fig. 6.

By applying our method to the authoritative network, the results
suggest that the network be divided into four subgroups denoted
in Fig. 6 with gray blocks. These hierarchical subgroups are: (1) the
President and Pete, (2) Katy, Bill, Ann, and Andy, (3) Minna, and
Emma, and (4) Peg, Rose, Tina, Mike, Marry, Amy, and Lisa. Though
this partition does not match the nominal four hierarchical layers
of the organization, it does identify the four hierarchical subgroups
as the optimal number of subgroups that deviates least from the
requirement of being automorphic equivalence classes.

It is worth mentioning that, the k-means clustering step of our
method does identify the seven perfect hierarchical subgroups of
the network (i.e. {President}, (Saunders), {Katy, Bill, Ann, Andy},
{Emma}, {Minna}, {Reg, Rose, Tina Mike}, and {Amy, Lisa}). How-
ever, the stopping criterion of our method suggests that further
dividing the network into more than four subgroups contributes
to less decrease of its 15 node’s sum of within-cluster point-
to-centroid distance than that achieved with the structureless
network. With the stopping rule, the only perfect hierarchical sub-
group identified by our method is the one that contains Katy, Bill,
Ann, and Andy.

With the network size equals to 15 and the number of sub-
groups equals to four, we calculate Dyax-dispersion(15,4) from Eq.(2) as
8.07. According to Eq. (4), the decomposability for the authoritative
network is calculated as 0.88. This high value of decomposability
indicates that the authoritative network is fairly similar to an ideal
network in terms of its hierarchical subgroups and thus can reliably
be discussed in terms of this structure.

Our next example is the network of “liking ties” for children in
a classroom studied by Jennings (1948). To present the basic struc-
ture of the liking ties for the children in the classroom, Doreian
et al. (2005) used Generalized Blockmodeling to obtain a three-
subgroup ranked-cluster model as a decomposed representation
of the network. The image matrix of the three-subgroup ranked-
cluster model has symmetric blocks in the diagonal, null blocks in
the upper-triangle, and null or one blocks in the lower-triangle.
Fig. 7 shows the adjacency matrix of the network and the decom-
position results of their analysis marked with the grid lines.

Doreian et al. (2005) used inconsistency to evaluate the qual-
ity of the decomposition, and the partition shown in Fig. 7 has 54
inconsistencies, including 16 in the diagonal blocks that violate the
symmetric requirement and 38 in the lower-triangle blocks that
deviate from the null requirement. The total inconsistencies can be
reduced if the pre-specified blockmodel is a hierarchical structure
where the requirement of the lower-triangle blocks was relaxed
to allow for column or row regular blocks. In this case, the parti-
tion shown in Fig. 7 has 17 inconsistencies, including still 16 in the
diagonal blocks but now only one in the lower-triangle blocks.

We analyze the same network with the method introduced in
this study and decompose it into hierarchical subgroups. Since the
network is directed but not acyclic, we first find the strong com-
ponents of the network and reduce the network into the level of
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Fig. 7. The network of the liking ties for children of a classroom and the partition generated by Doreian et al. (2005).
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Fig. 8. The dichotomized adjacency matrix of the liking ties for children in a classroom reduced into the level of its strong components. The partition result of this network

generated by our method is shown with the grid lines.

strong components.? To reduce a network into the level of strong
components, members of the same strong component are repre-
sented by one node in the network, and their individual arcs to the
same other node in the network are combined into one valued arc

9 As noted, this procedure compromises the decomposition into hierarchical
groups and thus this example is not fully consistent with the procedure not using
strong components.

(with counts of the arcs combined). We dichotomize the reduced
network so that only the presence or absence of the ties among
children and strong components was presented. Fig. 8 shows the
adjacency matrix of the reduced network that is dichotomized and
removed of self-loops; the partition of three hierarchical subgroups
resulted in applying our method is shown in the figure with grid
lines.

As shown in Fig. 8, the “#” signs placed in front of some of
the name labels indicate their being sets of children that form
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Fig. 9. The network of the liking ties for children of a classroom and the partition generated by our method.

strong components in the network. For example, “#23-Jacque”
represents the group of Jacque, Jack, Wolf, and Nero that form a
strong component. It should be noted that, by reducing the net-
work into the level of strong component, we have already assigned
members of the same strong components to the same hierarchical
subgroups. This “pre-decomposition” would later be expanded into
the optimal partition of hierarchical subgroups generated by our
method.

By populating the hierarchical subgroups identified from the
reduced network with the nodes of their strong components, Fig. 9
shows the partition of the children in the classroom generated by
our method. This result and that of Doreian et al. (2005) both have
three subgroups, but in other ways are very different. However, if
we fit our partition result with the three-subgroup ranked-clusters
model used by Doreian et al. (2005) mentioned previously, our par-
tition has the same 54 inconsistencies, among which 13 are in the
diagonal blocks that violate the symmetric requirement (where
Doreian et al. had 16 inconsistencies) and 41 are in the lower-
triangle blocks that deviate from the null requirement (where
Doreian et al. had 38).

If we again relax the null or one requirement for the lower-
triangle blocks of the ranked-cluster model and allow for column
or row regular blocks, the total inconsistencies of our partition can
be reduced to 16, including 13 in the diagonal blocks (where Dor-
eian et al. had 16) and three in the lower-triangle blocks (where
Doreian et al. had one). The 16 inconsistencies generated by fit-
ting our partition result with the relaxed ranked-clusters model
compared with the 17 inconsistencies generated by Doreian et
al. (2005) does not indicate superiority of our method. It should
be emphasized that our partition can easily be obtained by the
approach of Generalized Blockmodeling with other search or opti-
mization algorithms since the underlying blockmodel is the same.
However, it does indicate our method can generate an effective
result that is comparable with those found through Generalized
Blockmodeling while automatically identifying the best number of
subgroups.

The Ragusan family marriage network presented by Krivosi¢
(1990) is our third example. Two matrices that describe the mar-
riage networks of the Ragusan noble families in the 16th century
and in the 18th century and the beginning of the 19th century were
constructed by KrivoSi¢. Batagelj (1996) analyzed the marriage
networks of both periods and used conventional blockmodel-
ing to obtain a two-cluster partition of the families that follows
the core-periphery model. Doreian et al. (2000) used the mar-
riage network of the second period to demonstrate the method
of symmetric-acyclic decomposition and Generalized Blockmodel-
ing. In this study, we use the marriage networks of both periods to
demonstrate the usefulness of our method for finding hierarchical
subgroups in the networks.

Fig. 10 shows adjacency matrices of the Ragusan family mar-
riage networks in the 16th century and in the 18th and early 19th
century, where the rows represent the families of the groom and
the columns represent the houses of the bride. While the original
networks were valued (with counts of marriages between fami-
lies), we dichotomized the networks so that only the presence or
absence of marriage ties between families were presented.

Since both networks are directed but not acyclic, to apply
our method, we first have to find the strong components of the
networks and reduce them into a single pseudo-node. We then
dichotomize the reduced networks and apply our method to find
hierarchical subgroups. The results indicate that both networks
should be divided into three hierarchical subgroups.

Fig. 11 shows the Ragusan family marriage networks reduced
into the level of strong components, where Fig. 11(a) is the net-
work of the 16th century, and Fig. 11(b) is that of the 18th and
early 19th century. The three hierarchical subgroups for each net-
work identified by our method are marked by gray blocks. As shown
in the figure, the “#” sign placed in front of the family label indi-
cates its being the set of families that form a strong component
in the network. The members of the strong component sets are
shown in the figure. As mentioned previously, by reducing the net-
work into the level of strong components, we have already assigned
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Fig. 10. The adjacency matrices of the Ragusan family marriage networks in (a)
the 16th century and (b) the 18th and early 19th century. The rows represent the
families of the groom and the columns represent the houses of the bride.
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Fig. 11. The Ragusan family marriage networks in (a) 16th century and (b) 18th and
early 19th century reduced into the level of its strong components. The hierarchical
subgroups identified by our method are marked with the gray blocks.

members of the same strong components to the same hierarchical
subgroups.

For both reduced networks, the three identified hierarchical
subgroups clearly have their own distinct characteristics. They are
the families that provide only grooms, families that provide only
brides, and families that provide both grooms and brides and often
have marriage bonds with each other. Since it can be verified with
visual observation that the identified subgroups in both reduced
networks are all automorphic equivalence classes, both reduced
networks are ideal networks that contain only perfect hierarchi-
cal subgroups. Therefore, the decomposability for each reduced
network is 1.0.

By assigning the members of strong components to their cor-
responding hierarchical subgroups identified from the reduced
network, we obtain the partition of families shown in Fig. 10 with
grid lines. In fact, our method generates the same hierarchical sub-
groups as the clusters generated by Doreian et al. (2000) for the 18th
and early 19th century network. The result again demonstrates
that our method for finding hierarchical subgroups is equally
effective as compared with either the symmetric-acyclic decom-
position or Generalized Blockmodeling. It is perhaps interesting
that a case containing perfect automorphic groups (in the reduced
matrix) is the only one leading to the same solution by the two
methods.

Our fourth example is the dominance hierarchies in Leptothorax
ants reported by Cole (1981). In the social organization of Lep-
tothorax allardycei, the workers form linear dominance hierarchies
characterized by routine displays of dominance, avoidance behav-
ior, and even fighting. By observing interactions among ants over
an extended period of time, Cole constructed two sets of dom-
inance hierarchies, one for the queenright colony with 16 ants
and the other for the queenless colony with 13 ants. While the
original data were valued (with the number of times an inter-
action occurred between two ants), they were dichotomized so
that only the presence or absence of interactions between ants is
analyzed.

Fig. 12 shows the dominance relation between ants for the two
colonies, where the rows represent the subordinate ants and the
columns represent the dominant ants. For demonstration purpose,
we permute the original network of the queenright colony to place
the ant labeled by “da” next to the ant labeled by “oe”.

By applying our method to find the hierarchical subgroups of
the two networks, maximization of the fitness index indicates that
the best decomposition for the queenright colony has four hierar-
chical subgroups and that for the queenless colony has two. The
partitions of the two networks are shown in Fig. 12 by the grid
lines.

If we fit our partition results to the blockmodel of hierarchical
structure whose image matrix has regular, complete, or null blocks
in diagonal, null blocks in the upper-triangle, and column or row
regular blocks in the lower-triangle, the four-subgroup partition
of the queenright colony has three inconsistencies, with two in the
diagonal blocks and one in the lower-triangle blocks that all deviate
from the regular requirement. Similarly, the two-subgroup parti-
tion of the queenless colony has one inconsistency in the diagonal
blocks that deviates from the regular requirement. Since the two
colonies are decomposed into a different number of hierarchical
subgroups, it is less meaningful to compare the effectiveness of
their decompositions using the criterion of blockmodel inconsis-
tency.

To deal with this situation, we compare the decomposability of
the two partitions to make an objective evaluation. In this case, the
decomposability of the queenright colony’s network partitioned
into four hierarchical subgroups is 0.88, and that of the queen-
less colony’s network partitioned into two hierarchical subgroups
is 0.78. With the queenright colony’s decomposability higher than
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Fig. 12. Dominance hierarchy of Leptothorax ants in (a) queenright colony and (b)
queenless colony. The rows represent the subordinate ants and the columns repre-
sent the dominant ants.

that of the queenless colony, we conclude that the four-subgroup
partition of the queenright colony has better quality than the
two-subgroup partition of the queenless colony in terms of their
conformity to the ideal networks having only perfect hierarchical
subgroups. In other words, the queenright colony’s network is more
hierarchical than the queenless colony’s network. This result may
provide useful information for researchers who study the social
organization of Leptothorax allardycei and is a clear demonstration
that our method can be use for objectively comparing the quality
of decompositions among different networks.

5. Conclusion and discussion

In this study, we developed a new method for finding hierar-
chical subgroups in directed networks. By defining the hierarchical
subgroups as subsets of nodes that are automorphically or nearly-
automorphically equivalent, the partition found by our method
matches very well with that obtained by the ranked-clusters model
proposed by (Doreian et al., 2005). One important advantage of our
method is that we do not have to specify the number of hierarchical
subgroups in advance. The stopping criterion of our method yields
the best number of subgroups for the particular network.

The approach developed in this study can be used in a comple-
mentary way to Generalized Blockmodeling. When studying a new
set of network data, one could first apply our approach to find the
possible decomposition inductively. Refinement of the decompo-
sition can then be achieved by studying the context of the data so
that new blockmodels can be developed for hypothesis testing. As
shown in this paper, applying both methods seem to be appropriate
in all cases because the results in Section 4 indicate that sometimes
they can deliver slightly different and yet interesting decomposi-
tions. Moreover, the examples also show the usefulness of using
the decomposability metric to objectively assess the quality of the
decompositions.

We would like to point out some computational issues of the
method presented in this paper for finding hierarchical subgroups.

Because the method applies the REGGE algorithm to transform
the adjacency matrix of the network into the dissimilarity matrix
among nodes, the computational complexity of O(n°) of the REGGE
algorithm is a serious bottleneck that prevents the method from
being applicable for large-scale networks. One possible alternative
is to use the CATREGE algorithm (Borgatti and Everett, 1993), which
has a computational complexity of O(n3) but works only for binary
or nominal data. Future research can focus on finding more efficient
algorithms to measure the nodal similarities that form the basis of
our method for identifying automorphically equivalent nodes. As
to the k-means method that forms the backbone of our method,
though few meaningful theoretical bounds on the worst-case run-
ning time are known, the method is well known for its observed
speed (Arthur and Vassilvitskii, 2006). In fact, many experimental
studies have been conducted on the running time of k-means algo-
rithm. For example, Har-Peled and Sadri (2005) use experimental
data to show that the k-means algorithm terminates quickly even
on large datasets. Thus, we are confident that the method presented
in this study is capable of handling very large problems without
being limited by its use of the k-means algorithm.

Although the method as demonstrated in this paper is for finding
the hierarchical subgroups of a network, the new algorithm out-
lined in Fig. 1(b) can be used as a general approach for exploring the
structure of networks. While Generalized Blockmodeling requires
the pre-specification of different blockmodels, with any definition
that can transform the selected type of network structure into the
dissimilarity among nodes, our method can be applied to obtain
an optimal number of subgroups or classes that best represent the
appropriate decomposition of the network. Moreover, even for a
set of elements without an adjacency matrix but only the dissimi-
larity measured among the elements, we can still apply our general
approach to find an optimal partition for the set of elements. In this
case, the discovered subgroups or classes can be examined with
the context of the system (i.e. the collection of elements) so that
the significance of the dissimilarity measurement can be mapped
to a specified type of structure.

In the network analysis literature, other than seeking equiva-
lence classes in a network, the other important line of research for
finding meaningful subgroups is to identify cohesive subgroups.
The well-known method by Newman and Girvan (2004) and meth-
ods by others (Blondel et al., 2008) have established approaches for
finding cohesive classes without a priori specification of numbers
of communities. These kinds of algorithms have become popular
enough that some apparently think that cohesion is the only mean-
ingful basis for describing structure in networks. As has long been
known in the social networks literature, such thinking is far too
limited. With this paper and the previous one (Hsieh and Magee,
2008), we now also have methods for finding equivalence and hier-
archical groupings without a priori specification of numbers of
communities. Thus, a given network can be analyzed by all of the
approaches to identify the different interesting structures inherent
init.

It would be valuable to have a means to compare the appro-
priateness of the two major types of decompositions for specific
networks by the use of decomposability metrics. This is currently
not possible because the methods are different enough not to have
congruent decomposability metrics. In this regard, we feel our
general approach of decomposing a network from a pre-defined
similarity matrix stands a very good chance to bridge the two lines
of research. The crucial breakthrough would come if researchers
can transform the structural requirements of “cohesiveness” into
a similarity measure among nodes of a network. With the valid
transformations, the effectiveness of decomposing a network into
either cohesive subgroups or various kinds of equivalence classes
can objectively be compared to each other, and thus benefit the
empirical study of social networks.
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