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bstract

We present an algorithm for decomposing a social network into an optimal number of structurally equivalent classes. The k-means method is
sed to determine the best decomposition of the social network for various numbers of subgroups. The best number of subgroups into which to
ecompose a network is determined by minimizing the intra-cluster variance of similarity subject to the constraint that the improvement in going to
ore subgroups is better than a random network would achieve. We also describe a decomposability metric that assesses how closely the derived
ecomposition approaches an ideal network having only structurally equivalent classes.
Three well-known network data sets were used to demonstrate the algorithm and decomposability metric. These demonstrations indicate the

tility of the approach and suggest how it can be used in a complementary way to Generalized Blockmodeling.
2007 Elsevier B.V. All rights reserved.
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. Introduction

In the network analysis literature, two lines of research have
een pursued to develop methods of decomposing networks into
eaningful subgroups (Wasserman and Faust, 1994). These are

1) research that seeks to identify cohesive subgroups (Frank,
995); and (2) research that seeks equivalence classes in a net-
ork (Breiger et al., 1975; Lorrain and White, 1971). While
umerous methods have been proposed to conceptualize the
dea of cohesive subgroups (including the algorithm recently
roposed by Newman and Girvan (2004)), the recent efforts in
ocial networks research have been on developing methods that
dentify equivalence classes.

The initial concept of the equivalence class was proposed by
orrain and White (1971) in the form of structural equivalence.
y conceiving nodes in a network as equivalence classes or

positions” that relate in a similar way to other positions, a net-
ork can be transformed into a simplified model where nodes

re combined into positions and the relations between nodes

∗ Corresponding author. Tel.: +1 617 577 5843; fax: +1 617 258 0485.
E-mail address: mohan76@mit.edu (M.-H. Hsieh).
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ecome relations between positions. For example, if two nodes
ink to and are linked by exactly the same set of other nodes,
hey are structurally equivalent to each other. Many definitions
f equivalence have been proposed, see (Wasserman and Faust,
994) for further discussion.

Among the methods that identify structural equivalence
lasses, Batagelj et al. (1992b) proposed to divide them into
irect and indirect methods. While the direct method involves
ptimizing a pre-specified block model with the network data, an
ndirect method typically composes two major parts: (1) a defini-
ion of dissimilarity for the selected type of equivalence (e.g. the
orrected Euclidean-like dissimilarity (Burt and Minor, 1983))
nd (2) an algorithm that produces good clustering solutions
e.g. hierarchical clustering). The indirect method is indirect
n the sense that the relational information among vertices is
rst used to create a partition, and the partition is then evalu-
ted with an explicit criterion function (Batagelj et al., 1992b).
he evaluation of the partition with a criterion function is not

mperative for the indirect method; one example of the criterion

unction is the specified goodness-of-fit measure proposed by
atagelj et al. (1992a) originally designed for the use of their
ptimization approach in finding equivalence classes. While
ost of these indirect methods generate dissimilarity measures

mailto:mohan76@mit.edu
dx.doi.org/10.1016/j.socnet.2007.11.002
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hat are compatible1 with structural equivalence, the decompo-
itions based on these dissimilarity measures are generally not
atisfying.

The often used method, CONCOR (Breiger et al., 1975), is
onsidered as having the aspects of both the indirect and direct
ethod (Batagelj et al., 1992b). However, the CONCOR pro-

edure always splits a set of vertices into exactly two subsets.
epeated application of CONCOR results in a series of subdi-
ided bi-partitions of the original network. Thus, the partition
utcome is at least partially determined by the procedure, not by
he actual structure of the network (Schwartz, 1977).

The most recently developed approach in identifying equiva-
ence classes is Generalized Blockmodeling (GBM) (Doreian
t al., 2005). The method considers ideal blockmodels and
ses optimization methods to fit them to empirical data. This
irect method allows for use of context information in forming
ypotheses and gives a criterion function (i.e. inconsistencies)
hat measures the fit of a specified blockmodel or decomposition
tructure to the actual data. GBM has been shown to give “better”
ecompositions of social network data based upon comparing
nconsistencies (Batagelj et al., 1992b; Doreian et al., 2005).
BM finds better decompositions by a clear procedure, but as
oted in (Doreian et al., 2005) hypotheses with a greater vari-
ty of block types can always be found to lower the number of
nconsistencies towards zero. In the case of using BGM to find
he structural equivalence partition of a network, though it is
ossible to identify the most appropriate number of subgroups
y observing the jump of inconsistencies, to some extent it still
nvolves subjective judgment and thus lacks a fully objective
riterion for stopping decomposition.

Another approach to decomposition of networks is based
pon network models (Fienberg and Wasserman, 1981; Snijders
nd Nowicki, 1997; Tallberg, 2005; Wasserman and Anderson,
987). Recently, the development of stochastic models in the
eld of cluster analysis has lead to its application to social net-
orks (Handcock et al., 2007; Hoff et al., 2002). The attractive

eatures of using these approaches to find structural equiva-
ence classes include, for example, statistical inferences with
ull models and statistical criteria for determining the number of
lasses. However, the potential disadvantages of this approach
re the difficulty of model selection and the potentially large
umber of parameters to be estimated. Both of these disadvan-
ages make theoretical interpretation of positions and blocks for
ocial networks problematic.

The recent survey by Schaeffer (2007) indicates that select-
ng the best number of clusters (and other “parameter selection”
ssues) is one of the major open problems of graph clustering. In
his paper, we propose a new indirect method for partitioning a
etwork into structural equivalence classes and for this domain

evelop a method that also addresses the issue of clustering num-
er selection. Overall, the method consists of (1) an unsupervised
lustering method, in which vertices are assigned to clusters

1 A dissimilarity measure is compatible to structural equivalence if it satisfies
he condition that the dissimilarity of a pair of nodes is zero if and only if the
wo nodes are structurally equivalent (Doreian et al., 2005, p. 181).
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o minimize the intra-cluster variance of dissimilarity; (2) an
pproach that takes into consideration not only the dissimilarity
etween the pair of vertices but also the pair’s dissimilarities
ith all other vertices; (3) a quantitative stopping criteria for
etermining the number of subgroups that a network should be
ivided into to better represent its underlying structural equiv-
lence structure. The method is seen as a companion to GBM
ffering additional insight in certain kinds of studies (where
nductive learning is useful) and having a similar limitation.

The paper presents the new method for finding structural
quivalence classes and its application to ideal structural equiv-
lence networks in Section 2. In Section 3, we develop a
ormalized decomposability metric for assessing how close non-
deal networks are to the ideal networks found by our (or any)
ecomposition methodology. Application of our method includ-
ng the decomposability metric to three known social networks
s presented in Section 4. Brief concluding remarks are given in
ection 5.

. A new method for finding structural equivalence
lasses

The method starts with any dissimilarity measure of vertices
hat is compatible with structural equivalence. For an n-node
etwork, the dissimilarity measures can be arranged in an n
y n matrix, whose entries give the dissimilarity between the
ow vertices i and the column vertices j. Hierarchical clustering
enerates the hierarchy of vertices by using these measures and
ifferent definitions of dissimilarity between the new clusters.
ur method treats the n by n dissimilarity matrix as n data points

n the n-dimensional space that we wish to partition. That is,
e read row i of the dissimilarity matrix as the n-dimensional

oordinates of the ith data point. Since the dissimilarity matrix
s symmetric, the coordinates can also be read as the column
lements.

With n data points in the n-dimensional space, we then repeat-
dly apply the k-means method (Hartigan and Wong, 1978;
acQueen, 1967) to partition the n data points into k = 2 to k = n

lusters. Information about the k-means method and its many
ariations can be found in (Kaufman and Rousseeuw, 2005). In
his study, Lloyd’s k-means algorithm (Lloyd, 1982) was used.
loyd’s algorithm begins with a set of k reference points which
re randomly selected from the data set. All of the data points
re partitioned into k clusters by assigning each point to the clus-
er of its closest reference point. In each iteration, the centroid
or each cluster is calculated. A partition is then made using
he newly calculated centroids as reference points for all of the
ata points. It has been proven (Bottou and Bengio, 1995) that
he iterative process will eventually converge to a configuration
here each data point is closer to the reference point of its cluster

han to any other reference point and each reference point is the
entroid of its cluster. Since different initial reference points can
enerate different partitions, multiple sets of initial points are

sed to evaluate whether the obtained partition has approached
ts minimum sum of intra-cluster distances.

For each round of the k-means method that partitions the n
ata points into k clusters, we have the sum of the within cluster
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oints-to-centroid distances as

k =
∑k

i=1

∑
j ∈ Si

∥∥xj−ci
∥∥2

(1)

here Si (i = 1,2,. . .,k) is the cluster and ci is the centroid or
ean point of all of the data points xj in cluster Si.
In the process of decomposing the network into more sub-

roups (i.e. as k increases), Dk gradually decreases as more
entroids are generated. A smaller Dk is desirable because we
ant a partition that has a smaller intra-cluster variance. Dk is

ero when all of the equivalence classes (including singletons)
ave been identified by at least one centroid. We define ideal
etworks as those having only structural equivalence classes
i.e. zero discrepancies for GBM), and for such networks an
lgorithm that stops further partitioning the network when Dk is
ero would be appropriate. However, for most real networks, the
onotonically decreasing Dk goes to zero only after numerous

ingletons have been individually identified as unique equiva-
ence classes. In the case of k = n, Dk is always zero because
very node is identified as itself an equivalence class. The result
f identifying a great number of singletons is relatively meaning-
ess since it does not inform us about the underlying structure of
he network. To avoid generating an excessive number of classes
or real networks, a quantitative criterion must be designed to
ppropriately stop further decomposition of the network.

For any assigned number of subgroups, the k-means method
eeks to minimize Dk with the same number of centroids.
ecause nodes of the same equivalence class have the same
oordinates, a lower Dk can be obtained by first grouping them
ith centroids. Therefore, if a network has equivalence classes

hat have more than one node, Dk decreases significantly with
ewly added centroids until every such equivalence class has
een identified by at least one centroid. The decrease of Dk slows
own with larger k when singletons start to appear as classes.

These singletons, with their unique linkage patterns, are sim-
lar to randomly wired nodes in a network. We found that the
radual decrease of Dk during the generation of singletons is
imilar to that of the random networks with the same size and
inkage density.2 We stop further dividing a network into addi-
ional subgroups if the decrease of Dk (form k to k + 1) is smaller
r equal to the average decrease of Dk obtained from a sample
f these random networks.3 We thus define a fitness index as
imply:

k = Drandom
k − Dreal

k (2)
here Drandom
k is the sum of intra-cluster point-to-centroid dis-

ances obtained by averaging over the results of a sample of
andom networks and Dreal

k is that of the real network. We find

2 We use the Erdős-Rényi model to generate random networks. The model
onsiders all pairs of nodes in a graph and puts an edge between the nodes with
fixed probability (which in our case equals to the linkage density). Since a

andom network with larger size and density has larger step decrease of Dk, the
etwork’s decrease of Dk (from k to k + 1) should be compared with that of the
andom networks with the same size and density.
3 These random networks can be viewed as null models for cluster validation

n the sense discussed by Gordon (1999).

v
w
o

t
e
i
w
n
m
i
f

etworks 30 (2008) 146–158

he maximum of Fk as a function of k, and the corresponding
represents the most appropriate subdivision of the network

ecause further subdivision is only reducing Dreal
k at random (or

ess than random) rates. The nodes belonging to the k different
lusters then form the equivalence classes of the network.

To obtain an appropriate estimate of Drandom
k in Eq. (2), a

ertain number of random networks have to be sampled. The
umber of random networks sampled is determined by the stan-
ard deviation of Drandom

k relative to the decrease of Dreal
k . Since

he simulation indicate that Drandom
k is normally distributed, our

rocedure is to sample 30 random networks and then determine
he appropriate sample size, N, according to

≥
[

zα/2sk

�Fk/2

]2

(3)

here z is the ordinate on the normal curve corresponding to the
esired probability α (.05 in our case), sk the sampled standard
eviation of Drandom

k , and �Fk is the difference between Fk and
ither Fk−1 or Fk+1. We iteratively increase sample size until the
epeatedly recalculated N satisfies Eq. (3).

In theory, our method should work for ideal networks having
nly structural equivalence classes because nodes of the same
quivalence class cause a larger decrease of the sum of intra-
luster point-to-centroid distances than nodes that belong to no
quivalence class (i.e. nodes of random networks). It should be
oted that, if an ideal network has a singular node as a structural
quivalence class, it is possible that our algorithm will not iden-
ify this node as an equivalence class. This is due to the difficulty
f differentiating the linkage pattern of a meaningful node from
hat of a randomly placed node. In this case, our fitness index as
hown in Eq. (2) can fail to indicate the most appropriate number
f structural equivalence classes and thus the most appropriate
ecomposition. Nevertheless, our method works for ideal net-
orks with all of their structural equivalence classes having at

east two nodes.
Our method works in practice as we have tried the algorithm

or a variety of ideal networks, and the algorithm identifies the
orrect subgroups for all of them. However, there are easy and
ifficult cases of using the fitness index to identify the right
umber of classes that the network has.

The difficult cases are the networks whose decrease of the
um of intra-cluster point-to-centroid distances is only slightly
igher than that of a random network. Fig. 1 shows two sets of
omparison between these difficult and easy cases. Each fitness
alue in the figure is normalized between zero and one so that
e can compare their relative easiness of identifying the peak
f fitness index.

Fig. 1(a) shows the fitness index for two ideal networks with
he same minimum equivalence class size (i.e. C = 5) but differ-
nt network size (i.e. n = 25 and 100). As shown in the figure,
t is easier to identify the peak of fitness index for the network
ith smaller size. Fig. 1(b) shows the fitness index for two ideal

etworks with the same network size (i.e. n = 50) but different
inimum equivalence class size (i.e. C = 2 and 10). As shown

n the figure, identifying the peak of fitness index is now easier
or the network with larger minimum equivalence class size.
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ig. 1. (a) Fitness index for ideal networks with the same minimum equivalent
ndex for two ideal networks with the same network size (i.e. n = 50) but differe

In general, the ideal networks having only small equiva-
ence classes and larger network sizes are the difficult cases
or use of the fitness index to identify the right number of
lasses. Nonetheless, the method identifies the correct equiva-
ence classes of these ideal networks. The more important issue
s how to assess its value in the less-than-ideal networks that are
ypically observed for social networks. The next two sections of
he paper address this topic.

. Measuring the decomposability of a network

By applying our class finding algorithm, networks are divided
nto subgroups that correspond to their underlying structural
quivalence structures. However, we want to differentiate among

etworks whose subgroups are not all ideal equivalence classes.
n this case, we define perfect decomposability of a network as
hat achieved when a network is composed of only equivalence
lasses.

w
c
t
(

size (i.e. C = 5) but different network size (i.e. n = 25 and 100) and (b) fitness
nimum equivalent class size (i.e. C = 2 and 10).

Having a normalized objective measurement of decompos-
bility is useful. For example, we can compare two networks
nd determine which network is more similar to an ideal net-
ork having only equivalence classes. Lower decomposability

an be used to infer that the suggested decomposition is more
orced and thus should be cautiously utilized in further analy-
is. Moreover, if other variables (or time series data) are known,
he change of the decomposability metric with the variables (or
ith time) affecting the network can be found. This can allow
ne to find how various variables influence the structural roles in
given network or a variety of different networks. To be able to
ompare the decomposability of networks of different size and
ensity, it is necessary to normalize the metric for these effects.

To determine the normalized decomposability of a network,

e construct a metric that places networks with only equivalence

lasses at one end and those without any equivalence class at
he other. We use the sum of intra-cluster distance, Dk, of Eq.
1), to quantify the similarity between a real network and an
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Table 1
Dmax for network with different sizes and number of clusters

Number of clusters (k) Size of network (n)

6 7 8 9 10 11 12 13 14 15

2 21.3 32.2 44.6 60.3 76.7 96.4 120 146 168 196
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and 60 were sampled. Furthermore, we sample ideal networks
with the assumption that the number of classes for each net-
work is normally distributed and the size of each class within a
14.3 23.2 33.5 46.8
8.39 16.4 26.5 36.8
4.51 10.5 17.8 27.6

deal network. For an ideal network having only equivalence
lasses, its sum of intra-cluster distance, Dideal, equals zero. This
s because every member of the same equivalence class, when
iewed as a node in the multidimensional space, has the same
oordinates. Therefore, their intra-cluster distances are zeros and
he sum of these distances, Dideal, is zero.

In addition to the value of Dideal, we want the upper bound of
he sum of intra-cluster distance, Dmax(n,k), for networks having

nodes and k clusters. With the lower bound, Dideal = 0, and
he upper bound, Dmax(n,k), we can thus obtain the normalized
ecomposability metric, Q, for the network as

= 1 − Dk − Dideal

Dmax(n,k) − Dideal
= 1 − Dk

Dmax(n,k)
(4)

hich defines Q as 1 for perfect decomposability and 0 for
k = Dmax(n,k) which is equivalent to no decomposability. To
btain the upper bound, Dmax(n,k), we are seeking a network that
as the maximum possible value of Dk while having the same
ize and is divided into the same number of clusters as that of the
deal network. To obtain the upper bound of Dk, various Monte
arlo methods can be applied to obtain an approximate solu-

ion for the network with size, n, and number of clusters, k. In
his study, we used a genetic algorithm (GA) as the optimization

ethod to search for Dmax(n,k). To apply the GA, the solution
omain was represented by rearranging the adjacency matrix of
network into an array of bits, the fitness function was Dk, and

he two-point crossover was used to generate a new generation
f solutions. For more information and implementation details
bout GA, see (Mitchell, 1996).

By using the corrected Euclidean-like dissimilarity (Burt
nd Minor, 1983) as the dissimilarity measure for structural
quivalence. Table 1 shows some examples of Dmax(n,k) (with
hree significant figures) for network with different sizes and
umber of classes. In Table 1, the maximum possible Dk for
9-node network, for example, divided into three classes is
max(n,k) = Dmax(9,3) = 46.8. With this information, we consider

hree 9-node networks as shown in Fig. 2.
Note that the only difference between network 1 and network

is the directed link from node 7 to node 1. network 3 differs
rom network 2 by its additional links from node 2 to node
and from node 4 to node 8. The result of applying our class

nding algorithm to network 1 and network 2 shows that the two

etworks are divided into the same k = 3 subgroups (i.e. node 1,
, and 3, node 4, 5, and 6, and node 7, 8, and 9). Moreover,
ollowing Eq. (4), with k = 3, we have Dk = D3 for network 1 as
.71 and for network 2 as 11.2. Therefore, the decomposability

n

a

61.7 77.4 97.2 121 144 168
49.5 65.1 82.8 102 125 146
41.4 54.6 68.8 86.9 106 131

etric for network 1 is

1 = 1 − D3

Dmax(9,3)
= 1 − 8.71

46.8
= 0.81

nd the decomposability metric for network 2 is

2 = 1 − 11.2

46.8
= 0.76

Similarly, our class finding algorithm tells us that network
should be divided into still the same k = 3 classes. With its

um of intra-cluster distance, D3, equal to 16.2, we obtain its
ecomposability metric as

3 = 1 − 16.2

46.8
= 0.65

With network 1 having the highest decomposability and net-
ork 3 having the lowest, the decomposability metric confirms
hat visual inspection tells us; network 2 is closer to the ideal
etwork than is network 3 but is further from ideal than is net-
ork 1.
It should be noted that, the decomposability metric can be

alculated only after we know the number of subgroups that
he network should be divided into. Since the decomposabil-
ty metric monotonically increases as the number of subgroups
ncreases (and equals to unity as every node of the network is
tself a subgroup), it cannot be used to determine the appro-
riate number of subgroups in a network. To do so, we still
ave to use the fitness index as introduced in Eq. (2). The
tness index compares the decrease of Dreal

k resulting from
ncreases in the number of subgroups to that of Drandam

k and thus
an be used for determining the most appropriate number of
ubgroups.

Since the decomposability can be viewed as a measure of
eviation of real networks from ideal networks that contain only
quivalence classes, we explored the relationship between a net-
ork’s decomposability and its deviation from an ideal network.
o do this, we examine the decomposability of 10,000 pseudo
eal networks generated from randomly perturbing4 all possible
inkages of ideal networks (i.e. adding or removing links) with
ix different percentages. Ideal networks with sizes between 30
etwork is also normally distributed. Since real networks typi-

4 The perturbation can be viewed as arising from an error in observation or
rising because real social relationships are more complex than the ideal.
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Fig. 2. Networks 1, 2, and

ally have very low density, we only sample ideal networks with
ensity lower than 0.2.

Fig. 3 shows the average decomposability metric of the
seudo real networks (with one standard deviation also plot-
ed) versus their percentage of linkage perturbation from ideal
etworks. Although, the linear relationship between the two
as an R-square value of 0.99, the results also show some
lear non-linearity. However, if we limit the applicability of the
ecomposability metric to networks with decomposability of 0.4
nd higher, the linear equation gives a reasonable estimate of the
inkage perturbation.

With this result, we can calculate the deviation of our pre-
ious three networks. Referring to Fig. 3, the decomposability
f networks 1, 2, and 3 (calculated above) are equivalent to
.8, 6.1, and 8.9% linkage perturbation of their underlying ideal

etwork. We note that the lower the decomposability the more
uestionable the ideal network that we associate with the decom-
osition is. Other networks with slightly more deviations might
lso describe the network in these cases.

s
k
o
p

their adjacency matrixes.

. Application of the method

In the previous sections, we propose a method for cluster-
ng nodes of networks into structural equivalence classes and
decomposability metric to quantify a network’s level of link-

ge perturbation from a hypothetical underlying ideal network.
ecause our method can identify the number of classes for any

deal network having only structural equivalence classes (with
t least two nodes in each class), in this section we test our
ethod and the decomposability metric with three examples of

eal networks.
The social network of the 15 office workers reported by

hurman (1979) is used as the first example to evaluate our
ethod. The network is shown in Fig. 4. By applying our method

o partition the social network into k = 2 to k = 15 subgroups, the

um of intra-cluster point-to-centroid distances as a function of
is obtained and is shown in Fig. 5(a) as dark gray bars. To

btain the fitness index, we need the comparable sum of a sam-
le of random networks that have the same size and density as
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Fig. 3. Decomposability versus linka

he social network. This sum of intra-cluster point-to-centroid
istances as a function of k is shown in Fig. 5(a) as light gray
ars. The fitness index generated by subtracting the one of the
ocial network from that of the random networks is shown in
ig. 5(b).

As shown in Fig. 5(b), the fitness index has its maximum at
= 6, which by our method indicates that the most appropriate
ecomposition of the network is into six equivalence classes.
ig. 6 shows these six classes and the block model as revealed
y using our method.
As shown in Fig. 6, the first class includes Amy, Katy, and
ina, and the second class includes Ann, Pete, and Lisa. There

s strong interaction within and between the two classes. What
ifferentiates them is that the second class has strong interaction

g
i
(

Fig. 4. The social network of t
rturbation of various ideal networks.

ith the President. According to Thurman (1979), Pete is char-
cterized as the center of a social circle that included Lisa, Katy
nd Amy. Ann arrived under the sponsorship of Pete, and Lisa
as the ear of the President (Thurman, 1979). It is worth noticing
hat the fourth class comprises only Emma, who has strong inter-
ction with the President, the members of the second class, and
he members of the fifth class. According to Thurman (1979),
he plays a special role in the social network and thus identifying
er as a unique class seems appropriate considering the context
nformation.
With the network size equal to 15 and the number of sub-
roups equal to six, we have the upper bound of the sum of
ntra-cluster distances, Dmax(15,6), equal to 113.07. By using Eq.
4), the decomposability metrics for the social network is 0.65.

he Thurman office data.
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Fig. 5. (a) The sum of intra-cluster point-to-centroid distances of Thurman’s office social network (dark gray bars) and that of the random networks with the same
size and density (light gray bars) and (b) the fitness index of Thurman’s office social network as a function of the number of subgroups.

Fig. 6. Class members, block density, and image graph of the Thurman social network found by the algorithm presented in this paper.



154 M.-H. Hsieh, C.L. Magee / Social Networks 30 (2008) 146–158

Table 2
Kansas SAR inter-organizational network

A B C D E F G H I J K L M N O P Q R S T

Osage County Sheriff’s Department A 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1
Osage County Civil Defense Office B 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0
Osage County Coroner’s Office C 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0
Osage County Attorney’s Office D 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
Kansas State Highway Patrol E 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1
Kansas State Parks and Resources Authority F 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0
Kansas State Game and Fish Commission G 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0
Kansas State Department of Transportation H 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
U.S. Army Corps of Engineers I 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0
U.S. Army Reserve J 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Crable Ambulance K 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Franklin County Ambulance L 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
Lee’s Summit Underwater Rescue Team M 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shawney County Underwater Rescue Team N 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1
Burlingame Police Department O 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1
Lyndon Police Department P 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0
American Red Cross Q 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0
Topeka Fire Department Rescue #1 R 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
C 1
T 0
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5. {H, J, L, M, R, S, T}.

This partition breaks the third class of our four-class par-
tition into two classes as {B, N, O} and {D, K, P, Q} thus
arbondale Fire Department S 1 1 0 0 1
opeka Radiator and Body Works T 1 0 0 0 1

oreover, by using the relationship between the decomposabil-
ty and the linkage perturbation of the ideal network shown in
ig. 3, we can infer that the social network is about 8.9% linkage
erturbation from the ideal network. This result indicates that
he inferred equivalence structure of the social network might
e substituted for easily with more observation or slight changes
n interaction patterns.

The inter-organizational Search and Rescue (SAR) network
reated after a disaster in Kansas (Drabek, 1981) is used as the
econd example to demonstrate the use of the new method. The
AR network has 20 organizations. The dichotomized commu-
ication data among these organizations are shown in Table 2.

To present the basic structure of the network, Drabek used
ONCOR to partition the network into five clusters as:

. Authority position: {A, E}.

. Primary support: {C, F, G, I, K}.

. Critical resources: {D, L, N}.

. Secondary support, 1: {M, O, P, Q, R, T}.

. Secondary support, 2: {B, H, J, S}.

While these five subgroups are potentially useful in under-
tanding this network, Doreian et al. (2005) showed that this
artition has 79 inconsistencies when examined with their GBM
riterion function for structural equivalence. They found a five-
luster alternative that has only 57 inconsistencies (indicating
he weakness of CONCOR discussed in Section 1 to this paper):

. Authority: {A, E}.
. Bodies and survivors: {C, F, G, I}.

. Infrastructure: {B, D, K, N, P, Q}.

. Primary rescue operators: {H, J, L, M, R, S, T}.

. Secondary rescue operators: {O}.
e
f

1 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0

Applying the method presented in this paper to find the struc-
ural equivalence classes of the SAR network, we again partition
he network into k = 2 to k = 20 subgroups. The sum of intra-
luster point-to-centroid distances of the SAR network and that
f the random network with the same size and density is shown
n Fig. 7(a). The fitness index is shown in Fig. 7(b).

The fitness index shown in Fig. 7(b) has its maximum at k = 4,
ndicating that the most appropriate decomposition is into four
quivalence classes. Fig. 8 shows these four classes and the block
odel as revealed by using our method.
As shown in Fig. 8, our partition differs from that of Doreian

t al. (2005) only in that ours combines their two classes, {B, D,
, N, P, Q} and {O}, into one class thus including “secondary

escue operators” with “infrastructure”. By using the criterion
unction for structural equivalence proposed by Doreian et al.,
ur partition has 64 inconsistencies, which is considerably better
han the 79 for the five subgroups suggested by CONCOR but
even more than the five subgroup partition proposed by Dor-
ian et al using their direct method. Since more subgroups will
ecrease the inconsistencies, we examine the five-class decom-
osition of our method5:

. {A, E},

. {C, F, G, I},

. {B, N, O},

. {D, K, P, Q},
5 Our stopping algorithm indicates that four groups are appropriate but we
xamine what the k-means method would yield if allowed for five groups only
or comparative purposes.
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ig. 7. (a) The sum of intra-cluster point-to-centroid distances of the SAR netw
f the SAR network.

ecomposing “infrastructure” but differently than Doreian et al.
his decomposition has the same number of inconsistencies (i.e.

7) as that of the different five-class partition of Doreian et al.
hen examined with their criterion function. Thus, our method

ppears more effective than CONCOR and relative to GBM is
apable of finding interesting decompositions that are worthy of

g
p
d

Fig. 8. Class members, block density, and image graph of th
d the random networks with the same size and density and (b) the fitness index

onsideration along with various hypotheses arrived at by other
nformation.
With the network size equal to 20 and the number of sub-
roups equals to four for our first partition and five for the other
artition, we have the upper bound of the sum of intra-cluster
istance, Dmax(20,4) = 298.51 and Dmax(20,5) = 271.56. With these

e SAR network found by the algorithm in this paper.
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Fig. 9. Political actor network with 32 i

pper bounds, our first partition has a decomposability metric of
.42, which is greater than the five subgroup partition of Drabek
t al. (i.e. 0.41) and slightly lower than that of the partition of
oreian et al. (i.e. 0.44) and that of our five subgroup parti-

ion (i.e. 0.45). We feel it is more important to notice that the
ecomposability metric of 0.42 is about 15% perturbation from
he ideal network. With this high percentage of linkage pertur-
ation, we should be cautious when using any of the inferred
quivalence structures of the SAR network. Conversely, we can
se the low decomposability of the SAR network data and the
ack of clarity about structure derived from that data to support

he contention that communication structures were weak in this
nstance (Drabek, 1981).

Our third example is the political actor network reported by
oreian and Albert (1989). In this network, the nodes are the

c
e
a
o

Fig. 10. Political actor network with 26 incon
istencies and decomposability of 0.42.

rominent political actors in a local community and the links rep-
esent “strong political ally” among the actors. Fig. 9 shows the
hree-class partition obtained by using CONCOR in the original
nalysis.

According to Doreian et al. (2005), this partition has 32 incon-
istencies when examined with the GBM criterion function for
tructural equivalence. They proposed a three-cluster alternative
hown in Fig. 10 that has only 26 inconsistencies.

By applying our method to find the structural equivalence
lasses of the network, maximization of the fitness index indi-
ates that the network is best decomposed into four equivalence

lasses. The four-class partition is shown in Fig. 11. When
xamined with the criterion function proposed by Doreian et
l. (2005), it has 25 inconsistencies, which is one less than that
f the partition shown in Fig. 10.

sistencies and decomposability of 0.37.
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Fig. 11. Political actor network with 25

Since reduced inconsistency is expected with more sub-
roups, we also explore the three subgroup solution from the
nductive method. In this case, our method suggests the same
artition as derived by CONCOR (i.e. the partition in Fig. 9).
hough it has more inconsistencies than that of the partition
hown in Fig. 10, the former has a decomposability metric of
.42 that is higher than 0.37 of the latter. This result clearly
hows that our four-class partition, with 25 inconsistencies and
decomposability metric of 0.49, has the best quality in terms of
oth the criterion function and the decomposability. However,
he relatively low decomposability of this network indicates that
ny of these interpretations is open to change if more or slightly
odified data was obtained about these networks. Alternatively,

he relatively low decomposability indicates that the structure is
ignificantly deviated from any ideal model and thus the political
ctor network is relatively weakly structured.

. Conclusion and discussion

The algorithm described in this paper appears to bring
dditional theoretical utility to existing methodology for
ecomposing networks into structural equivalence classes. The
heoretical advantage is its ability to find all ideal structural
quivalence classes but yet has an objective stopping criterion for
ontinuing decomposition of non-ideal networks. The algorithm
lso appears to bring additional practical utility to existing tools
uch as the Generalized Blockmodeling by suggesting different
ecompositions of clear comparative merit to even well-studied
xamples as shown in Section 4.

When the algorithm is used in combination with Generalized
lockmodeling, one might obtain the advantages of combin-

ng inductive and deductive approaches. For example, with new

ata sets, one could start with finding the decompositions induc-
ively (best and near best) and by in-context study of these
ossibly arrive at a new hypothesis to test by various criteria.
n general, applying both methods seems to be appropriate in all

B

sistencies and decomposability of 0.49.

ases because the results in Section 4 indicate they can deliver
lightly different and yet interesting decompositions. In addi-
ion, the examples show the potential merit of using our metric
or decomposability. The metric provides an objective assess-
ent of the normalized decomposability of various networks

and for various decompositions).
The algorithm can be used in combination with the widely

pplied hierarchical clustering. For structural equivalence the
ethod described here can quickly suggest a more appropriate

ecomposition into a specific set of block models. This can be
ompared with the suggested hierarchy and provide additional
tructural information of interest. Interesting future research
ould include (1) application of the algorithm in biological, eco-
omic and engineering system classification problems and (2)
omparison of the results of this algorithm with the one devel-
ped by Newman and Girvan based upon cohesive subgroups in
wide variety of network types.
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