
Vision Research xxx (2015) xxx–xxx
Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres
Intrinsic and extrinsic effects on image memorability
http://dx.doi.org/10.1016/j.visres.2015.03.005
0042-6989/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: 32-D542, 32 Vassar St., Cambridge, MA 02141, USA.
E-mail address: zoya@mit.edu (Z. Bylinskii).

1 We are publicly releasing the full FIGRIM dataset with popular image
precomputed for all 9K images of the dataset, as well as memorability scores
of the 1754 target images. For the target images, we provide separate mem
scores for the image presented in the context of its own scene category and
scene categories. Available at: <http://figrim.mit.edu/>.

Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effects on image memorability. Vision Research (2015), http://dx.doi.org/1
j.visres.2015.03.005
Zoya Bylinskii a,b,⇑, Phillip Isola b,c, Constance Bainbridge b, Antonio Torralba a,b, Aude Oliva b

a Department of Electrical Engineering and Computer Science, MIT, Cambridge 02141, USA
b Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge 02141, USA
c Department of Brain and Cognitive Sciences, MIT, Cambridge 02141, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 August 2014
Received in revised form 3 March 2015
Available online xxxx

Keywords:
Image memorability
Eye movements
Scene dataset
Fine-grained categories
Visual distinctiveness
Context
Previous studies have identified that images carry the attribute of memorability, a predictive value of
whether a novel image will be later remembered or forgotten. Here we investigate the interplay between
intrinsic and extrinsic factors that affect image memorability. First, we find that intrinsic differences in
memorability exist at a finer-grained scale than previously documented. Second, we test two extrinsic
factors: image context and observer behavior. Building on prior findings that images that are distinct
with respect to their context are better remembered, we propose an information-theoretic model of
image distinctiveness. Our model can automatically predict how changes in context change the mem-
orability of natural images. In addition to context, we study a second extrinsic factor: where an observer
looks while memorizing an image. It turns out that eye movements provide additional information that
can predict whether or not an image will be remembered, on a trial-by-trial basis. Together, by con-
sidering both intrinsic and extrinsic effects on memorability, we arrive at a more complete and fine-
grained model of image memorability than previously available.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recent work on image memorability has shown that indepen-
dent of observer, certain images are consistently remembered
and others forgotten (Bainbridge, Isola, & Oliva, 2013; Borkin
et al., 2013; Isola, Parikh, et al., 2011; Isola, Xiao, et al., 2011;
Isola et al., 2014), indicating that memorability is an intrinsic
property of images that can be estimated with computer vision
features (Isola, Parikh, et al., 2011; Isola, Xiao, et al., 2011;
Isola et al., 2014; Khosla, Xiao, Torralba, et al., 2012, Khosla et al.,
2013). These previous image memorability studies raise a number
of questions, including: does the consistency of human memory
generalize? How might extrinsic effects such as context and
observer differences affect image memorability?

In this paper, we report that: (1) human consistency at remem-
bering and forgetting images holds at a within-category level, and
(2) extrinsic effects predictably affect whether an image will be
later remembered or forgotten. Here we consider the effects of
the context in which images are seen, as well as the observer’s
eye movement patterns on a trial-by-trial basis.

Previous work on image memorability has not computationally
addressed either image context or trial-by-trial observer behavior.
Moreover, although many decades of prior research on memory
have considered context and the effects of item/image distinctive-
ness of memorability (Hunt & Worthen, 2006; Konkle et al., 2010;
Nairne, 2006; Standing, 1973), these effects have not been rigor-
ously quantified on large datasets of natural scenes. Prior work
has relied on subjective human judgments of distinctiveness
(Bainbridge et al., 2013; Konkle et al., 2010). In contrast, we
provide an objective, automatic measure: we model distinctive-
ness as an information-theoretic property computable from raw
visual data.

For our studies, we collected the FIne-GRained Image
Memorability (FIGRIM) dataset1 composed of over 9K images, which
we used to test human memory performance on 21 different scene
categories, each containing hundreds of images. We used this data-
set to collect memorability scores for 1754 target images, whereby
we systematically varied the image context. In this paper we refer
to the set of images from which the experimental sequence is sam-
pled as image context. We present an information-theoretic frame-
work to quantify context differences and image distinctiveness using
state-of-the-art computer vision features, and we show correlations
features
for each
orability
different
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with image memorability scores. We discuss which images are most
affected by context to gain a better understanding of the interplay
between intrinsic and extrinsic factors on image memorability.

To account for additional extrinsic effects caused by the
variation in observer behavior from trial to trial, we collected
eyetracking data for over 2.7 K of the FIGRIM images. For 630
target images and using eye movements alone we can predict, on
a trial-to-trial basis, which images will be remembered and which
forgotten with 66% accuracy. Thus, we demonstrate how eye
movements have predictive power on a trial-by-trial basis for
image memorability.
2. Background

2.1. Image memorability

Recent work in image memorability (Bainbridge et al., 2013;
Borkin et al., 2013; Isola, Parikh, et al., 2011; Isola, Xiao, et al.,
2011; Isola et al., 2014) has reported high consistency rates among
participants in terms of which images are remembered and which
forgotten, indicating that memorability is a property that is intrin-
sic to the image, despite individual differences between observers.
The high consistency was first demonstrated for a database of
images from hundreds of scene categories (Isola, Xiao, et al.,
2011), and later extended to narrower classes of images – faces
(Bainbridge et al., 2013) and visualizations (Borkin et al., 2013).
In this paper, we show that this consistency is not a special prop-
erty of the stimuli considered, and that it can not be explained
away by a simple distinction between images (e.g. indoor scenes
tend to be memorable, outdoor scenes forgettable). We demon-
strate that the high consistencies hold within 21 different indoor
and outdoor scene categories, each consisting of hundreds of
instances. This is the first image memorability study to consider
fine-grained scene categories. Previous studies have shown that
image memorability can be computationally predicted from image
features (Isola, Xiao, et al., 2011) which opens up applications such
as automatically generating memorability maps for images
(Khosla, Xiao, Torralba, et al., 2012), modifying image memorabil-
ity (Khosla et al., 2013; Khosla, Xiao, Isola, 2012), and designing
better data visualizations (Borkin et al., 2013). In this paper, we
additionally model extrinsic effects on memorability, which have
not yet been explored in the image memorability literature, and
can open up new application areas.
2.2. Distinctiveness in visual long-term memory

Previous studies have suggested that items that stand out from
(and thus do not compete with) their context are better remem-
bered (Attneave, 1959; Eysenck, 1979; Hunt & Worthen, 2006;
Konkle et al., 2010; Rawsona & Overscheldeb, 2008; Schmidt,
1985; Standing, 1973; Wiseman & Neisser, 1974; Vogt &
Magnussen, 2007; von Restorff, 1933). For instance, Standing
observed a large long-term memory capacity for images that depict
oddities (Standing, 1973). Konkle et al. demonstrated that object
categories with conceptually distinctive exemplars showed less
interference in memory as the number of exemplars increased
(Konkle et al., 2010). Additionally, for the specific categories of face
images, studies have reported that a distinctive or atypical face
(i.e., a face distant from the average) is more likely to be remem-
bered (Bartlett, Hurry, & Thorley, 1984; Bruce, Burton, & Dench,
1994; Valentine, 1991). In the domain of data visualizations,
Borkin et al. noticed that unique visualization types had signifi-
cantly higher memorability scores than common graphs and that
novel and unexpected visualizations were better remembered
(Borkin et al., 2013). In this paper, we quantify the intuitions that
distinctive images are more memorable using an information
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theoretic framework, and we compute the distinctiveness of
images with reference to their image context (the set of images
from which the experimental sequence is sampled). We steer away
from subjective human ratings, and instead compute statistics over
automatically-extracted image features. By systematically varying
the image context across experiments, we are able to computation-
ally model the change in context at the feature level, and predict
corresponding changes in image memorability.

2.3. Memorability and visual attention

Little work has considered the intersection between image
memorability and visual attention (Bulling & Roggen, 2011;
Foulsham & Underwood, 2008; Mancas & Le Meur, 2013; Noton
& Stark, 1971). Mancas and Le Meur (2013) used saliency features
to show a slight improvement over the automatic image
memorability predictions in Isola, Xiao, et al. (2011). We refer to
image memorability as a population predictor because it ignores
trial-by-trial variability, effectively averaging over a population of
participants or experiments. Thus, Mancas et al. used saliency to
improve a population predictor. We, instead, use eye-movements
to improve the trial-by-trial predictions of memory for specific
individuals (an individual trial predictor). Bulling and Roggen
(2011) used eye movement features to predict image familiarity,
classifying whether images have been seen before or not. They
assumed that all images seen again are remembered, particularly
due to the long exposure times (10 s) used per image, and by test-
ing on a small dataset of 20 faces. They also used eye movement
analysis as a population predictor to decide whether an image
was previously seen, while we use eye movement analysis as an
individual trial predictor, taking into account individual differences
in making predictions of whether an image will be later
remembered.

2.4. Decoding task using eye movements

Our work is also related to recent studies on the use of eye
movements for decoding an observer’s task (Borji & Itti, 2014;
Greene, Liu, & Wolfe, 2012). These studies considered features
extracted from the eye movements of individual participants to
determine the task they are performing (e.g., what question they
are answering about an image), modeled on the original Yarbus
experiment (Yarbus, 1967). These studies utilized a very small
set of images (ranging from 15 to 64) with a very constrained
theme (grayscale photographs taken between 1930 and 1979 with
at least two people (Greene et al., 2012); paintings depicting ‘‘an
unexpected visitor’’ (Borji & Itti, 2014)). In our study, we measured
the eye movements of participants on 630 target images sampled
from 21 different indoor and outdoor scene categories. We
extracted features from eye movements to determine whether or
not an image is correctly encoded (measured by whether it is
correctly recognized on a successive exposure). We were able to
solve our decoding task using only 2 s of viewing time per image,
whereas the previous studies worked with durations of 10 s
(Bulling & Roggen, 2011; Greene et al., 2012), 30 s (Borji & Itti,
2014), 50 s (Tatler et al., 2010), and 60 s (Borji & Itti, 2014). For this
purpose, we learned image-specific classifiers to distinguish
fixations on one image versus fixations on other images.
3. Memorability experiments

3.1. FIGRIM dataset

We created a novel dataset by sampling high-resolution (at
least 700� 700 px) images from 21 different indoor and outdoor
s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 1. An example AMT experimental sequence. During image presentation, the participant presses a key if the image has already appeared in the sequence, and receives
feedback at the end of the image presentation. A false alarm occurs when on first presentation, the participant indicates that the image has repeated. No key press during first
presentation is a correct rejection. A hit occurs when a repeated image is correctly remembered, and otherwise, the response is recorded as a miss.

Z. Bylinskii et al. / Vision Research xxx (2015) xxx–xxx 3
scene categories2 from the SUN Database (Xiao et al., 2010). Image
duplicates and near-duplicates were manually removed.3 The
images were downsampled and cropped to 700� 700 px.4 From
each scene category, 25% of the images were randomly chosen to
be targets and the rest of the images became fillers (Table 1 in the
appendix lists the number of targets and fillers per scene category).
The targets are the images for which we obtained memorability
scores.

3.2. AMT 1: within-category experiment

We ran Amazon Mechanical Turk (AMT) studies following the
protocol of Isola, Xiao, et al. (2011) to collect memorability scores
(i.e. performance on a recognition memory task) for each of the
scene categories, separately. We set up memory games on AMT5

where sequences of 120 images (a mix of target and filler images
sampled from a single scene category) were presented for 1 s each,
with a distance of 91–109 images between an image and its repeat,
and consecutive images separated by a fixation cross lasting 1.4 s.6

Some filler images repeated at much shorter intervals of 1–7 images
and were used as vigilance tests to recognize when a participant was
not paying attention to the game. Participants were instructed to
press a key when they detected an image repeat, at which point they
received feedback (a red or green cross). No image repeated more
than once. Participants could complete multiple memory games,
since we ensured that a different set of images was presented each
time. Fig. 1 depicts an example experimental sequence.

On average, 80 participants saw each target image and its
repeat, providing us with enough data points per image to collect
reliable statistics about the memorability of each image.7 We
define a hit to be a correct response to an image presented for the
second time. A miss is when an image was repeated, but not recog-
nized. False alarms and correct rejections are incorrect and correct
responses (respectively) to target images shown for the first time.
We define hit rate (HR) and false alarm rate (FAR):

HRðIÞ ¼ hitsðIÞ
hitsðIÞ þmissesðIÞ � 100% ð1Þ

FARðIÞ ¼ false alarmsðIÞ
false alarmsðIÞ þ correct rejectionsðIÞ � 100% ð2Þ
2 We chose all SUN scene categories with at least 300 images of the required
dimensions.

3 We calculated the Gist descriptor (Oliva & Torralba, 2001) of each image,
displayed its 5 nearest neighbors, and removed identical copies and near-duplicates.
Some remaining duplicates were removed after post-processing the experimental
data.

4 Images were later resized to 512� 512 px for the online AMT experiments (to fit
comfortably in browser windows), and to 1000� 1000 px for the eyetracking
experiments.

5 Compliance with the Declaration of Helsinki is acknowledged in Section 8.
6 Images and repeats occurred on average 4.5 min apart, thus allowing us to

capture memory processes well beyond short-term and working memory.
7 AMT participant demographics are discussed in Ross et al. (2010).
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We also define HR and FAR to be category averages – computed
over all images belonging to a single category. The HR scores vary
from 49.5% to 64.2% (M ¼ 56:0%; SD ¼ 4:2%).8 FAR scores vary
between 10.2% and 18.9% (M ¼ 14:6%; SD ¼ 2:0%), following a par-
tial mirror effect (Glanzer & Adams, 2010; Vokey & Read, 1992),
where high HR are often accompanied by low FAR. The Spearman
rank correlation between the HR and FAR scores is �0.66
(p < 0:01). Note that this is to be expected by signal detection theory
as sensitivity increases: targets and distractors become more dis-
criminable, leading simultaneously to high HR and low FAR.
Memorability scores for all the categories can be found in Table 1,
and for comparison, memorability scores from other experiments
are included in Table 3 (in the appendix). For instance, a previous
experiment that combined images from hundreds of scene cate-
gories (Isola, Xiao, et al., 2011) reported average HR and FAR scores
of 67.5% and 10.7%, respectively.

Fig. 2 includes a sample of some of the most memorable and
forgettable images from a few FIGRIM categories. The most memo-
rable categories are amusement parks and playgrounds, scenes con-
sisting of a large variety of objects in different configurations, and
often containing people. Interestingly, 8/9 of the indoor categories
are in the top 13 most memorable scene categories (the last indoor
category, cockpits is the least memorable category overall).
Qualitatively, the most memorable instances across categories
tend to contain people, animals, text, and objects like cars and
flags. Overall, memorable images tend to be distinct from the other
images in their category – they may have unusual objects, layouts,
or perspectives. This latter point will be quantified in Section 5.
3.3. AMT 2: across-category experiment

We ran another AMT study on the combined target and filler
images across all the scene categories, and collected a new set of
memorability scores, following the same protocol as before (see
dataset statistics in Table 2, appendix). The average memorability
scores for this experiment are: HR: M ¼ 66:0%; SD ¼ 13:9%, FAR:
M ¼ 11:1%; SD ¼ 9:5%.
3.4. In-lab control experiment

We replicated the AMT experiments in the lab using a subset of
630 target images. In a single experimental session, the targets
consisted of 30 images taken from each of 7 randomly-selected
scene categories, making up a total of 210 targets. The filler images
were chosen in equal proportions from the same set of scene cate-
gories as the targets. The exact experimental set-up can be found in
the appendix. The memorability scores for the in-lab experiment
are HR: M ¼ 64:9%; SD ¼ 21:3%, FAR: M ¼ 6:0%; SD ¼ 8:9%.

Note that by changing the number of scene categories in an
experiment (from 1 in AMT 1, to 7 in this in-lab experiment, to
8 Throughout the rest of the paper, M will refer to ‘mean’ and SD to ‘standard
deviation’.

s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 2. A sample of the most memorable and forgettable images from 9 of the 21 categories in the FIGRIM dataset, sorted from most to least memorable category, with the HR
per category reported. Inset are the HR scores of the individual images.

4 Z. Bylinskii et al. / Vision Research xxx (2015) xxx–xxx
21 in AMT 2), we increase the variability of the experimental image
context. To demonstrate the effect of number of scene categories
on memorability, we sorted the HR scores of the overlapping
targets in all 3 experiments by the scores of AMT 2 and binned
them into high, middle, and low memorability. In Fig. 3, as the
number of scene categories increases, the overall memorability
scores of all the images in the experiment also increase (even for
the least memorable images). At the same time, the difference
between the (high, middle, low) memorability bins remains
statistically significant, indicating that some images are intrinsi-
cally more memorable and others forgettable.
Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effect
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4. Intrinsic effects on memorability

4.1. Some images are intrinsically more memorable, even at the
category level

Previous studies have demonstrated that memorability is con-
sistent across participant populations for a general set of scene
images (HR: q ¼ 0:75, FAR: q ¼ 0:66) (Isola, Xiao, et al., 2011)
and for the specific classes of faces (HR: q ¼ 0:68, FAR: q ¼ 0:69)
(Bainbridge et al., 2013) and data visualizations (HR: q ¼ 0:83,
FAR: q ¼ 0:78) (Borkin et al., 2013). Here these results are
s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 3. Memorability scores for images in the context of 21 scenes (AMT 2) are
higher than in the context of 7 scenes (in-lab), and higher still than in the context of
1 scene (AMT 1). At the same time, the most memorable images remained the most
memorable, and the most forgettable remained the most forgettable. Standard error
bars have been plotted.
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extended to the fine-grained category level for a variety of scene
categories.

The consistencies of the image memorability scores were mea-
sured separately for each of the scene categories (see Table 1 in the
appendix for all the values). This was done by splitting the partici-
pants of AMT 1 into two independent groups, computing the
memorability scores of images based on the participants in each
group separately, ranking the images according to the memorabil-
ity scores, and computing the Spearman rank correlation between
the two possible rankings. Results were averaged over 25 such
half-splits of the participant data. For all of the scene categories,
consistency of HR scores ranged from 0.69 to 0.86 and from 0.79
to 0.90 for FAR scores. These high correlations demonstrate that
memorability is a consistent measure across participant pop-
ulations, indicating real differences in memorability across images.
4.2. Some scene categories are intrinsically more memorable

How consistent is the relative ranking (the ordering in Table 1)
of the scene categories? For instance, if we selected a different sub-
set of images, would the average memorability of the amusement
park images still be at the top? We took half the images from each
category, and computed the HR scores for all the categories. We
also computed the HR scores for the other half of the images in
all the categories. Over 25 such half-splits of images, the rank
correlation between these 2 sets of HR scores was 0.68 (with sig-
nificant p-values). Thus, the relative memorability of the scene
categories is stable, and some scene categories are intrinsically
more memorable than others.
9 Bandwidth selection was performed just once on all the images across all the
scene categories, and this same bandwidth was used for estimating the distributions
for each category.

10 Some visualizations of these features can be found in Zhou et al. (2014, 2015).
11 In information theory, this is alternatively termed self-information and surprisal.
4.3. Image memorability is consistent across experiments

Per-image memorability scores measured in AMT 2 also corre-
lated strongly with those measured in the within-category experi-
ment AMT 1 (Spearman q ¼ 0:60 for HR and q ¼ 0:75 for FAR),
demonstrating that the intrinsic memorability of images holds
across different image contexts.

The rank correlation of the HR scores for the 630 target images
used in the in-lab experiment with the scores for the same images
in AMT 1 is 0.75, and with AMT 2 is 0.77. Thus, across all 3 of the
experiments (two online, one in-lab), the relative ranking of these
target images are highly consistent, providing further evidence
that image memorability is to a large extent an intrinsic property
of images that holds across different populations of human partici-
pants, different image contexts, and different experimental
settings.
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5. Context effects on memorability

A large body of literature suggests that items that stand out
from their context are better remembered (Attneave, 1959;
Eysenck, 1979; Hunt & Worthen, 2006; Konkle et al., 2010;
Rawsona & Overscheldeb, 2008; Schmidt, 1985; Standing, 1973;
Vogt & Magnussen, 2007; von Restorff, 1933; Wiseman &
Neisser, 1974). However, recent work on predicting image mem-
orability (Isola, Xiao, et al., 2011; Isola, Parikh, et al., 2011;
Khosla, Xiao, Torralba, et al., 2012) has largely ignored the effects
of image context on memory performance.

By systematically varying the context for our target images
between AMT 1 and AMT 2, we directly measure context effects
on image memorability. We use state-of-the-art computer vision
features within an information-theoretic framework to quantify
context differences and image distinctiveness. We are able to rigor-
ously quantify, using our large-scale natural scene database, the
observation that images that are unique or distinct with respect
to their image context are better remembered.
5.1. Contextually distinct images are more memorable

We call images contextually distinct if they are distinct with
respect to their image context (the set of images from which the
experimental sequence is sampled). To model context effects, we
first estimated the probability distribution over the images in an
image’s context (in some feature space). The distinctiveness of an
image is its negative log likelihood under this distribution. We
considered two different contexts: (a) within-category context
composed of images from a single category (AMT 1), and (b)
across-category context composed of images from all categories
(AMT 2). To estimate the probability distribution of a given con-
text, we used kernel density estimation (Ihler & Mandel, 2014).

For each image I, we computed a feature vector f i ¼ FðIÞ, where
F can be any feature mapping. We modeled the probability of
features f i appearing in image context C as:

Pcðf iÞ ¼
1
kCk

X

j2C

Kðf i � f jÞ ð3Þ

where K can be any kernel function, and kCk indicates the size of the
context, measured in number of images. We used an Epanechnikov
kernel and leave-one-out-cross-validation to select the kernel
bandwidth.9 The features come from a convolutional neural network
(CNN), a popular feature space recently shown to outperform other
features in computer vision (Krizhevsky, Sutskever, & Hinton,
2012; Razavian et al., 2014). Specifically, we used the Places-CNN
from Zhou et al. (2014) trained to classify scene categories. We used
the 4096-dimensional features from the response of the Fully-
Connected Layer 7 (fc7) of the CNN, which is the final fully-
connected layer before producing class predictions. We reduced this
feature vector to 10 dimensions using PCA to prevent overfitting and
increase efficiency in estimating the kernel densities.

Our results are not restricted to this feature space, and hold
more generally. In particular, we obtained similar (though weaker)
trends when using the simpler Gist descriptor (Oliva & Torralba,
2001), for which we provide results in the Supplemental
Material. In contrast to simple visual descriptors like Gist, the deep
features are trained to predict image semantics.10 This is supported
by research showing that conceptual (semantic) similarity is more
s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 4. The effects of context on memorability. In figures (a) and (c), each dot is a single target image from the FIGRIM dataset, for a total of 1754 images. Brighter coloring
represents a greater density of points. In figures (b) and (d), all images in a given category are collapsed into a single summary number. The trends we see are: (a) images are
more memorable if they are less likely (more contextually distinct) relative to the other images in the same image context; (b) image contexts that are more varied (have
larger entropy) lead to higher memorability rates overall; (c) images that become more distinct relative to a new context become more memorable; (d) scene categories that
are more distinct relative to other categories become more memorable in the context of those other categories.
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predictive of long term visual memory performance than perceptual
similarity (Brady, Konkle, & Alvarez, 2011; Konkle et al., 2010).

In Fig. 4a, the memorability score of an image, HRðIÞ, is corre-
lated with its distinctiveness with respect to the image context,
DðI; CÞ. Mathematically, we define11:

DðI; CÞ ¼ � log Pcðf iÞ ð4Þ

Furthermore, we denote C2 as the across-category context of
AMT 2, and C1 as the within-category context of AMT 1. We found
that DðI; C2Þ is positively correlated with HRðIÞ (Pearson
r ¼ 0:24; p < 0:01), as plotted in 4a. The correlation also holds
when images are compared to images within the same category
(correlation between DðI; C1Þ and HRðIÞ is r ¼ 0:26; p < 0:01).
Thus, more contextually distinct images are more likely to be
memorable.

The Supplemental Material contains the same analyses on
alternative measurements of memorability: d-prime, mutual
information, and accuracy. DðI; CÞ, the distinctiveness of an image
I with respect to its context C, remains positively correlated with
these alternative measurements of memorability.

5.2. More varied image contexts are more memorable overall

We also measured the context entropy by averaging DðI; CÞ
over all the images in a given image context. This is just the
information-theoretic entropy:
11 In information theory, this is alternatively termed self-information and surprisal.
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HðCÞ ¼ Ec½DðI; CÞ�
¼ Ec½� log Pcðf iÞ�

ð5Þ

Here, Ec is expectation over image context C. As in Fig. 4b, the
Pearson correlation between HðCÞ and HR ¼ Ec½HRðIÞ�, is r ¼ 0:52
(p ¼ 0:01). Thus, categories that contain many contextually distinct
images are more memorable overall. For instance, the mountain
category, which has one of the lowest HðCÞ values, contains a rela-
tively stable collection and configuration of scene elements: moun-
tains and sky. On the other hand, the amusement park category,
which has the highest HðCÞ value, consists of a much larger variabil-
ity of images: images of roller-coasters, concession stands, and
rides. Thus entropy in feature space can explain some of the
differences in average HR we observe across categories in AMT 1.
5.3. Changing image context can change image memorability

AMT experiments 1 and 2 systematically varied the context for
images, while keeping the images constant. This allowed us to iso-
late the effects of context from other possible confounds.12 To
model the change in context, we computed the difference in the dis-
tinctiveness of an image relative to its own scene category versus all
scene categories. In Fig. 4c we see that changing the context of an
Spurious correlations are possible when both contextual distinctiveness and
memorability correlate with a third causal factor, but when we systematically change
the context while keeping everything else fixed (particularly, the experimental
images), we can isolate the effects of context alone.

s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 5. The average memorability of the images in each scene category went up when images were presented in the context of images from other scene categories (AMT 2)
compared to when they were presented only in the context of images from the same category (AMT 1).
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image to make it more distinct relative to the context increases its
memorability. The Pearson correlation between DðI; C2Þ � DðI; C1Þ
and HRC2 ðIÞ �HRC1 ðIÞ is 0.35 (p < 0:01).

We also considered differences in memorability at the category
level. In Fig. 5 we see that across all categories, HR for each cate-
gory goes up in the context of images from other categories.
However, how much change there is in image memorability when
we switch contexts depends on the scene category.

How does a scene category’s memorability change when the
category is combined with other categories? We measured this
change in context as the Kullback–Leibler divergence between the
density functions computed over contexts C1 and C2 as:

KLðPc1 jjPc2 Þ ¼ Ec1 ½� log Pc2 ðf Þ� � Ec1 ½� log Pc1 ðf Þ� ð6Þ

The first term is the probability of the images in a category under
the context of AMT 2, and the second term is the probability of
the images under its own category in AMT 1. Intuitively, this mea-
sures how much more (or less) likely a category’s images are under
the context of AMT 2 compared to AMT 1. In Fig. 4d, the Pearson
correlation between the change in context entropy and change in
memorability is r ¼ 0:74 (p < 0:01). Consider the cockpit category,
with the greatest KLðPc1kPc2 Þ value: many of the cockpit images look
alike. However, when mixed with images from other scenes, they
become very distinct: there is no other scene category with similar
images. Compare this with dining rooms, with one of the lowest
KLðPc1kPc2 Þ values, that often look like living rooms and kitchens,
and thus are not as visually distinct when combined with images
from these other scene categories.
5.4. Atypical category exemplars are most affected by context

Another way of looking at the distinctiveness story is through a
discriminative lens (as an alternative to the generative information
theoretic framework presented in the previous sections). Consider
the images that were memorable with respect to their own cat-
egory, but became more forgettable when combined with other
Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effect
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categories. In Fig. 6, we can see that these images tend to look more
like other categories than their own category.

To quantify this intuition, we mapped the Places-CNN deep
features to category labels by training a linear multi-class SVM
on the filler images of the FIGRIM dataset with labels of 21 scene
categories. We then evaluated our classifier on the target images
of the FIGRIM dataset to automatically predict the most likely
scene category for each image (the overall scene classification
accuracy was 91.56%). These predicted category labels are
included with each image in Fig. 6. Notice that for the images that
decreased in memorability when combined with other categories,
the predicted labels are more likely to be incorrect. Compare this
to the images that increased in memorability when combined
with other categories – they are more likely to be correctly
classified.

We also consider the probability, under the scene classifier, of
the correct category label. These probabilities are included with
each image in Fig. 6. Images with a higher probability value are
more typical examples of their scene category. Across all 1754
target images, the Pearson correlation between the probability of
the correct category label and the change in memorability due to
context (from AMT 1 to AMT 2) is r ¼ 0:30 (p < 0:01). In other
words, the images least likely to belong to their own category
experience the greatest drop in memorability when they are
combined with images of other categories.

Which images have memorability scores that are least affected
by context? Images that are distinct with respect to many contexts
– in this case, those that are distinct from their own category, but
do not look like images from other categories either. For example,
the images in the top right quadrant in Fig. 7 are memorable across
contexts. Take for example the bridge in front of the red sky. It is
clearly an image of a bridge, but it also looks like no other bridge
(the red sky is unique). Compare this to the bridge in the bottom
right, which looks more like a pasture. Among bridges, it is memo-
rable, but among pastures it is not. Thus, for applications where
one intends an image to be robustly memorable, one must consider
the different contexts in which this image is likely to occur and
ensure the image will stand out from all these contexts.
s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 6. We evaluated a scene classifier on the images whose memorability changed when combined with other categories. We show 3 categories (the rest are in the
Supplemental Material). For each image, we include the classifier’s predicted category label and the probability of the correct category label (where ⁄ is replaced with the
correct category). Images more likely to be confused with other categories were the ones that dropped most in memorability.

13 Although we do not explicitly use the data from the third repetition, we note here
that 78% of the time participants forgot the image on the second repetition, they
remembered it on the third repetition. Thus in an application setting, if we can
automatically predict when a participant will forget an image, we can show the image
again to improve memorability performance.
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6. Eyetracking experiments

We used a similar set-up to the in-lab experiment from
Section 3.4, but with important differences to collect eye-move-
ments in an un-biased manner.5 Images were presented to partici-
pants at 1000� 1000 px. We used the same set of 630 targets as in
the in-lab experiment, but split the images over 4 separate experi-
mental sessions (of 157–158 target images, randomly sampled
Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effect
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from all categories). Target images were repeated 3 times in the
sequence, spaced 50–60 images apart.13 Images remained on the
s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 7. Memorability scores of images in the top right quadrant of each plot are least affected by context whereas the scores of images in the bottom right quadrant are most
affected by context. Images in the top right are distinct with respect to both contexts, while images in the bottom right are distinct only with respect to their own category.

14 We processed the raw eye movement data using standard settings of the EyeLink
Data Viewer to obtain discrete fixation locations, removed all fixations shorter than
100 ms or longer than 1500 ms, and kept all others that occurred within the 2000 ms
recording segment (from image onset to image offset).
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screen for 2 s, and participants gave a forced-choice response at the
end of each image presentation to indicate whether the image
appeared previously or not. After a keypress response and verbal
feedback, a fixation cross came on the screen for 0.4 s, followed by
the next image. See Fig. 8 for an example experimental sequence.

Eyetracking was performed on an SR Research EyeLink1000
desktop system at a sampling rate of 500Hz, on a 19 inch CRT
monitor with a resolution of 1280� 1024 pixels, 22 inches from
the chinrest mount. The image stimuli subtended 30 degrees of
visual angle. The experiments started with a randomized 9-point
calibration and validation procedure, and at regular intervals
throughout the experiment drift checks were performed, and if
necessary, recalibration. Each experiment lasted 75–90 min, and
participants could take regular breaks throughout. All participant
eye-fixations and keypresses were recorded. We recruited a total
of 40 participants for our study (M ¼ 14:1; SD ¼ 1:2 participants
per image), 24 of which were female, with overall mean age 21.2
years (SD ¼ 3:3). The memorability scores for this experiment
were: HR: M ¼ 75:8%; SD ¼ 14:4%, FAR: M ¼ 5:2%; SD ¼ 7:4%.

7. Observer effects on memorability

Can the experience, behavior, or other characteristics of a speci-
fic individual on a specific trial be used to make more accurate pre-
dictions about memory performance than by using population
estimates? Here our goal is to make predictions on a trial-by-trial
Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effect
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basis, using an individual’s eye-movements to determine if an
image will be later remembered.

7.1. Model

Given a set of fixations on an image, we want to know: will the
viewer remember this image at a later point in time? The key idea
is that if a viewer’s fixations differ from the fixations expected on
an image, the viewer may not have encoded the image correctly.
Thus, when evaluating a novel set of fixations, we want the proba-
bility that these fixations came from this image – as opposed to
some other image. If the probability is high, we label the fixations
as successful encoding fixations, since we believe they will lead to
a correct recognition of the image later. Otherwise, we assume the
image was not properly encoded, and will be forgotten. To provide
some further intuition, a few examples are provided in Fig. 9. We
constructed a computational model by training a separate classifier
for each image, differentiating fixations that belong to this image
from fixations on all other images.

After preprocessing,14 we converted an observer’s fixations on an
image into a fixation map by binning the fixations into a
s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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? correct + ? incorrect ? correct

2.0 s until keypress 0.3 s

... ...

0.2 s 0.4 s
time

false alarmcorrect rejection hit

repeat

Fig. 8. An example eyetracking experimental sequence. Differences from the AMT experiment in Fig. 1 include the slightly longer image presentation times, the collection of
key presses after image presentation at the prompt, and the forced-choice response.

Fig. 9. Examples of individual viewers’ fixation maps (at encoding) overlaid on top of the images viewed. For each of these 5 example images, we include the 3 highest-
confidence and 3 lowest-confidence instances under the image’s classifier (trained to differentiate fixations on this image from fixations on other images). Fixations that later
led to a correct recognition of the image are outlined in green, and those where the image was unsuccessfully remembered are in red. This depicts some of the successes and
failure modes of our model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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20� 20 grid, normalizing the binned map, and smoothing it by
convolution with a Gaussian with r ¼ 2 grid cells. Coarse sampling
and smoothing was necessary to regularize the data.

For each image, we trained an ensemble classifier Gi ¼ gðIÞ to
differentiate fixation maps on this image (positive examples) from
fixation maps on all other images (negative examples). For train-
ing, we only considered successful encoding fixations – the fixa-
tions made on an image the first time it appeared in the image
sequence, and led to a correct recognition later in the sequence.

We used a RUSBoost classifier (Seiffert et al., 2010), which
handles the class imbalance problem,15 and balanced accuracy as
a metric of performance because it avoids inflated performance
estimates on datasets with unequal numbers of positives and
negatives (Brodersen et al., 2010). It is calculated as:

balanced accuracy ¼ 0:5� true positives
true positivesþ false negatives

þ 0:5� true negatives
true negativesþ false positives

ð7Þ
15 N being the total number of images, we have order N � 1 negatives, since those
come from all other images while the positives come from a single image.

Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effect
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Over 5 train-test splits, the balanced accuracy of our classifier on
determining whether a set of fixations comes from a specific image
vs some other image is 79:7% (SD: 13.9%), where chance is at 50%.
This high performance indicates that we are able to successfully
learn diagnostic fixation patterns for an image to distinguish it from
all other images. However, not all images produce diagnostic
fixation patterns, and thus predictive power varies by image (see
Section 7.4).
7.2. Eye movements are predictive of whether an image will be
remembered

As demonstrated in the AMT memorability studies, people are
highly consistent in which images they remember and forget.
Thus as a baseline we use an image’s memorability score (i.e. HR
from AMT 2) to make trial-by-trial predictions for whether a par-
ticular individual will remember a particular image. We refer to
this as a population predictor because these memorability scores
are obtained by averaging over participants. This predictor
achieves an accuracy of 60.09% (SD: 1.55%) at making trial-by-trial
predictions, significantly above chance (50%). However, this pre-
dictor will not be robust across all images (see Section 7.3), and
s on image memorability. Vision Research (2015), http://dx.doi.org/10.1016/
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Fig. 10. (a) When we prune images at the memorability extremes, memorability
scores fall to chance as a predictor of per-trial memory performance, while eye
movements remain important for making trial-by-trial predictions. (b) Our
classifier makes more accurate predictions when it has higher expected confidence.
Standard error bars are included for both plots.
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thus we use the model developed in the previous section to con-
struct a better predictor that takes into account the individual trial.

Our individual trial predictor uses a viewer’s eye movements to
predict whether an image will be remembered. During the training
phase, we first learn a classifier Gi to differentiate fixations on
image I from fixations on other images (as discussed in
Section 7.1). Next, we evaluate both successful and unsuccessful
fixations on image I under the classifier Gi to obtain confidence val-
ues for each set of fixations. We perform a grid search over 200 val-
ues to pick a threshold on the confidence values that maximizes
balanced accuracy on differentiating successful from unsuccessful
fixations.16 At test time, for a held-out set of participants, we
16 Note that this two-step learning process was chosen to alleviate the problems of
overfitting to insufficient data. Separating successful fixations on an image from
fixations on all other images produces a much more robust decision boundary than
when directly separating successful from unsuccessful fixations. However, since the
final task is to separate successful from unsuccessful fixations on a single image, we
add an additional step to adjust only a single scalar parameter to make the final
prediction.
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evaluate a participant’s encoding fixations under the classifier Gi to
obtain a confidence value. We threshold this confidence value with
the threshold chosen during training to produce the final prediction:
whether the participant’s fixations are successful or unsuccessful.

Over 15 different splits of participant data, we obtain a balanced
accuracy of 66:02% (SD: 0.83%) at determining whether a set of
encoding fixations is successful and will lead to a correct recogni-
tion of the image at a later point in time. Compare this to the
60:09% (SD: 1.55%) when using the memorability score of an image
– our population predictor which does not take into account the
trial-to-trial variability. Additional baselines that we considered
were the similarity of the fixation map to a center prior, achieving
an accuracy of 56.35% (SD: 0.60%), and the coverage of the fixation
map (proportion of image fixated), achieving an accuracy of 55.89%
(SD: 0.58%). Thus, neither of the baselines could explain away the
predictive power of our model.17
7.3. Individual differences are key when population predictors fall to
chance

Consider the cases where images are not consistently memo-
rable or forgettable across individuals. We sorted images by their
AMT 2 scores, and progressively removed images at the mem-
orability extremes. The resulting prediction performance is plotted
in Fig. 10a. Memorability scores fell to chance at predicting individ-
ual trials precisely because the images at the memorability
extremes were most predictive. Meanwhile, our eye movement
features retained predictive power, indicating that individual dif-
ferences become most relevant for the middle memorability
images. These are the images that may not be memorable
at-a-glance, and may require the viewer to be more ‘‘attentive’’.
7.4. Not all images are equally predictable

An image with all of the important content in the center might
not require the viewers to move their eyes very much and this
makes prediction particularly difficult because successful and
unsuccessful fixations may not be that different. Thus, we may
want to separate images into those on which confident predictions
can be made from those on which prediction will be difficult. Our
model construction allows us to easily estimate the expected
confidence of our classifier on an image. For a given image I, we
compute the expected confidence of classifier Gi as the average
confidence value over its positive training examples (the successful
fixation maps).

Sorting the images by this expected confidence measure (see
Fig. 11), we obtain the results in Fig. 10b. Our classifier makes
the best predictions on the images for which the training data
was easily separable (corresponding to high expected confidence),
achieving a balanced accuracy of almost 70% on the test data – i.e.
new participants.

Thus, it is possible to automatically select images that our clas-
sifier is expected to do well on. This becomes an important feature
for applications where we have a choice over the images that can
be used, and need to have a system to robustly predict from eye
fixations, whether an image will be later remembered.
17 Successful fixations tend to be alike; every unsuccessful set of fixations is unsuccessful
in its own way: the fixations may be center-biased (the viewer does not look around),
they may be off-center or even off-the-image (the viewer is distracted), or they may
be randomly distributed over the image (the viewer is not concentrated on the task),
etc. Thus baseline models that try to separate successful from unsuccessful fixations
using simple principles, like coverage or center bias, will not have full predictive
power.
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images sorted by expected classifier confidence

...

Fig. 11. Images sorted by expected classifier confidence (from least to most). A classifier with high confidence on its positive training examples will do better at
differentiating successful from unsuccessful fixations on an image. Overlaid on top of each image is the average fixation map computed over all successful encodings of the
image.
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Fig. 12. Average memorability scores for scene contexts composed of different
numbers of scene categories: 1 (AMT 1), 7 (in-lab), 21 (AMT 2). It is interesting to
note as an additional data point that in the memorability experiment by Isola, Xiao
et al. (2011) with hundreds of scene categories, the average HR is 67.5%. Thus, as the
variability of images in a given image context increases, the memorability scores go
up (more images can be remembered). However, memory performance is not likely
to increase indefinitely, eventually reaching a plateau.
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7.5. Future applications

The types of investigations presented in this paper have poten-
tial applications for education as they provide us with (1) tools to
understand the settings in which images can be best remembered
(and how memory can change across contexts), and (2) tools to
predict an individual’s memory for images, thus opening up
avenues for customization and intervention. Memorability
experiments on information visualizations (Borkin et al., 2013)
demonstrate generalization of findings to non-scene stimuli –
specifically, data presentation. Imagine an automatic system that
monitors the eye movements of a student on a set of lecture slides
or data presentations and uses this information to determine
whether or not the student is ‘‘paying attention’’. If not, the system
may either alert the student to increase attentiveness at this point
in time, or else the system may continue to re-present the material
again until it has acquired some confidence that the student has
properly encoded the content.
8. Conclusion

In this paper we have replicated and extended previous findings
that memorability scores are highly consistent across participants,
which suggests there is a component of image memory intrinsic to
the images themselves. We have shown that this consistency holds
at the within-category level, for a total of 21 different indoor and
outdoor scene categories. Additionally, high consistency exists
across experiments, with varying contexts, experimental set-ups,
and participant populations (online and in-lab).

Nevertheless, we have also demonstrated how (and in which
cases) extrinsic effects can alter the memorability of images. We
have presented an information-theoretic framework for predicting
the effect of context on memorability. Images that are most
distinct from their image context are the most memorable, and
image contexts with the highest entropy have the highest overall
memorability scores. Thus as one increases the variety or distinc-
tiveness of the images in a collection, one can increase the number
of images that can be remembered. Does this mean that perfor-
mance on image recognition tasks can increase indefinitely as long
as the images being presented together (in the same context)
are sufficiently different? This is probably not the case due to a
possible saturation effect – see Fig. 12.

We have also considered cases where memorability scores may
not be sufficient for predicting trial-by-trial memory performance.
Specifically for images that are not at the memorability extremes,
we can provide better predictions by taking into account the
extrinsic effects of the observer. We introduced a model for using
the eye movements of a viewer when first presented with an image
to predict whether the image will be later remembered. Thus we
offer an application of memorability decoding from eye move-
ments. Apart from the extrinsic effects we have discussed in this
paper, other ones can affect the memorability of individual images,
including the observer’s expertise (Curby, Glazek, & Gauthier,
2009; Herzmann & Curran, 2011; Vicente & Wang, 1998), temporal
effects (Isola et al., 2014; McGaugh, 1966), attentional and task
Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effect
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biases (Chun & Turk-Browne, 2007; Tuckey & Brewer, 2003;
Walker, Vogl, & Thompson, 1997), etc. How memorable something
is may additionally depend on its familiarity and utility. Note that
familiarity, which involves multiple repetitions of an item, has
not been considered in our studies but is an important factor in
natural environments. The effect of familiarity on memory has a
long history in psychology (Bartlett et al., 1984; Busey, 2001;
Jacoby, 1991; Mandler, 2008; Vokey & Read, 1992). Utility would
correspond to how important a given item is to the observer, and
is related to expertise. For instance, faces have high utility, and
images with faces have been found to be more memorable (Isola,
Xiao, et al., 2011; Isola et al., 2014). It remains to be understood
how exactly all these factors combine to make an image more or
less memorable.

We can thus consider intrinsic image memorability as a starting
point (base level), and all the extrinsic effects as modifiers that
finally determine whether or not a particular image will be
remembered on a particular trial. Considered from another
perspective, intrinsic image memorability is an average across
contexts, observers, and settings, where these extrinsic effects
are effectively marginalized out.

Understanding and modeling all the effects on memory are
necessary to build computational models that will more accurately
predict image memorability for specific settings or users. With
high prediction accuracies, many interesting applications become
possible, including customizable user interfaces and educational
tools.

Compliance with the declaration of Helsinki

All studies have been conducted in accordance with the Code of
Ethics of the World Medical Association (Declaration of Helsinki).
MIT IRB was attained. Participants read about the experiment
before giving written consent to participate, and could opt out at
any time. They were compensated for their time. AMT anonymized
all participant data, including names.
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Table 1
FIGRIM dataset statistics for AMT 1 (within-category), with a total of 1754 target and 7674 filler images. The HR and FAR scores are computed over the targets, for which we have
an average of 85 experimental datapoints per image. The average HR across all the scene categories is 56:0% (SD: 4.2%), and the average FAR is 14:6% (SD: 2.0%).

Category Targets Fillers HR (%) FAR (%) HR cons. (q) FAR cons. (q) Datapoints/Target

Amusement park 68 296 64.2 (SD: 15.5) 10.2 (SD: 9.7) 0.85 (SD: 0.3) 0.80 (SD: 0.3) 84.8 (SD: 3.2)
Playground 74 330 63.3 (SD: 14.4) 14.7 (SD: 12.7) 0.78 (SD: 0.4) 0.84 (SD: 0.3) 86.4 (SD: 2.7)
Bridge 60 260 61.2 (SD: 13.2) 13.2 (SD: 12.0) 0.77 (SD: 0.4) 0.84 (SD: 0.2) 90.2 (SD: 4.4)
Pasture 60 264 59.2 (SD: 17.5) 11.5 (SD: 9.5) 0.86 (SD: 0.3) 0.83 (SD: 0.4) 86.2 (SD: 3.7)
Bedroom 157 652 58.9 (SD: 14.7) 13.5 (SD: 10.9) 0.77 (SD: 0.2) 0.81 (SD: 0.2) 84.5 (SD: 3.9)
House 101 426 58.0 (SD: 13.3) 14.4 (SD: 10.3) 0.73 (SD: 0.3) 0.80 (SD: 0.3) 82.7 (SD: 3.7)
Dining room 97 410 57.8 (SD: 13.6) 14.1 (SD: 10.8) 0.77 (SD: 0.4) 0.79 (SD: 0.3) 83.8 (SD: 2.8)
Conference room 68 348 57.1 (SD: 13.7) 12.5 (SD: 8.8) 0.77 (SD: 0.4) 0.80 (SD: 0.3) 85.2 (SD: 3.3)
Bathroom 94 398 57.1 (SD: 12.8) 16.3 (SD: 13.9) 0.73 (SD: 0.4) 0.82 (SD: 0.3) 86.6 (SD: 3.4)
Living room 138 573 56.9 (SD: 14.1) 14.4 (SD: 9.6) 0.77 (SD: 0.3) 0.73 (SD: 0.3) 81.2 (SD: 2.7)
Castle 83 389 56.4 (SD: 17.2) 12.8 (SD: 8.9) 0.87 (SD: 0.2) 0.77 (SD: 0.4) 91.5 (SD: 3.3)
Kitchen 120 509 56.2 (SD: 14.0) 16.8 (SD: 10.7) 0.74 (SD: 0.3) 0.80 (SD: 0.2) 80.5 (SD: 3.5)
Airport terminal 75 323 55.6 (SD: 13.6) 14.9 (SD: 10.8) 0.76 (SD: 0.3) 0.86 (SD: 0.2) 95.9 (SD: 3.7)
Badlands 59 257 52.9 (SD: 20.3) 15.6 (SD: 15.1) 0.82 (SD: 0.3) 0.90 (SD: 0.2) 80.1 (SD: 7.0)
Golf course 88 375 52.9 (SD: 17.6) 15.2 (SD: 9.9) 0.84 (SD: 0.3) 0.77 (SD: 0.2) 80.2 (SD: 3.9)
Skyscraper 62 271 52.8 (SD: 17.0) 13.5 (SD: 10.6) 0.85 (SD: 0.3) 0.76 (SD: 0.3) 84.4 (SD: 4.3)
Tower 86 376 52.7 (SD: 14.3) 18.9 (SD: 13.0) 0.75 (SD: 0.4) 0.83 (SD: 0.3) 82.2 (SD: 3.0)
Lighthouse 56 247 52.1 (SD: 15.2) 15.2 (SD: 12.4) 0.78 (SD: 0.4) 0.88 (SD: 0.2) 90.3 (SD: 4.3)
Mountain 69 302 50.2 (SD: 21.7) 14.9 (SD: 11.7) 0.87 (SD: 0.2) 0.83 (SD: 0.2) 79.3 (SD: 2.9)
Highway 71 348 50.0 (SD: 12.9) 15.0 (SD: 10.4) 0.69 (SD: 0.5) 0.85 (SD: 0.3) 85.9 (SD: 4.6)
Cockpit 68 320 49.5 (SD: 17.2) 18.2 (SD: 14.7) 0.70 (SD: 0.5) 0.88 (SD: 0.2) 80.6 (SD: 3.5)

Table 2
FIGRIM dataset statistics for AMT 2 (across-category). The targets are the same for AMT 1 and AMT 2. The difference in the number of fillers between AMT 1 and AMT 2 is
accounted for by demo images that were presented to participants at the beginning of each experiment, and are included with the fillers. Each category in AMT 1 had 20 demo
images, while AMT 2 had a total of 42 demo images, sampled from all the categories.

Category Targets Fillers Datapoints/target HR (%) FAR (%) HR cons. (q) FAR cons. (q)

21 scenes 1754 7296 74.3 (SD: 7.5) 66.0 (SD: 13.9) 11.1 (SD: 9.5) 0.74 (SD: 0.2) 0.72 (SD: 0.1)

Table 3
A comparison of the memorability scores across different datasets, showing consistency in results and stability of memory performance. Additionally note that for the FIGRIM
dataset, when each category was separately tested, the average memorability scores over 21 categories were: 55.9% (SD: 4.2%) for HR and 14.6% (SD: 2.0%) for FAR, showing
consistency with the instance-based databases of faces (Bainbridge et al., 2013) and visualizations (Borkin et al., 2013).

Dataset Targets Fillers Datapoints/target Mean HR (%) Mean FAR (%) HR cons. (q) FAR cons. (q)

FIGRIM 1754 7296 74 66.0 (SD: 13.9) 11.1 (SD: 9.5) 0.74 0.72
Isola (Isola, Xiao, et al., 2011) 2222 8220 78 67.5 (SD: 13.6) 10.7 (SD: 7.6) 0.75 0.66
Faces (Bainbridge et al., 2013) 2222 6468 82 51.6 (SD: 12.6) 14.4 (SD: 8.7) 0.68 0.69
Visualizations (Borkin et al., 2013) 410 1660 87 55.4 (SD: 16.5) 13.2 (SD: 10.7) 0.83 0.78
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Appendix

Procedure for in-lab experiment

From each scene category from AMT 1 we obtained the 15 tar-
get images with the highest and 15 with the lowest memorability
scores. This was done to capture the range of memorabilities of
images in each of the scene categories. These 630 images became
the targets for our in-lab experiments.5 We recruited a total of
Please cite this article in press as: Bylinskii, Z., et al. Intrinsic and extrinsic effect
j.visres.2015.03.005
29 participants for our study (M ¼ 14:8; SD ¼ 2:4 participants
per image), 16 of which were female, with overall mean age 24.9
years (SD ¼ 3:8). In a single session, a participant would see a
sequence of about 1000 images, of which 210 were targets that
repeated exactly once in the sequence, spaced apart by 91–109
images. Images in the test sequence were presented for 2 s each,
separated by a fixation cross lasting 0.5 s. Participants were
instructed to respond (by pressing the spacebar) anytime they
noticed an image repeat in the sequence, at which point they
would receive feedback. In a single experimental session, the tar-
gets consisted of 30 images taken from each of 7 randomly selected
scene categories, making up a total of 210 targets. The filler images
were chosen in equal proportions from the same set of scene cate-
gories as the targets. Images were presented on a 19 inch CRT
monitor with a resolution of 1280� 1024 pixels, 22 inches from
the chinrest mount. Images subtended 30� of visual angle.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.visres.2015.03.
005.
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