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Abstract
In this study we investigate the utility of using mouse
clicks as an alternative for eye fixations in the context of
understanding data visualizations. We developed a
crowdsourced study online in which participants were
presented with a series of images containing graphs and
diagrams and asked to describe them. Each image was
blurred so that the participant needed to click to reveal
bubbles - small, circular areas of the image at normal
resolution. This is similar to having a confined area of
focus like the human eye fovea. We compared the bubble
click data with the fixation data from a complementary
eye-tracking experiment by calculating the similarity
between the resulting heatmaps. A high similarity score
suggests that our methodology may be a viable
crowdsourced alternative to eye-tracking experiments,
especially when little to no eye-tracking data is available.
This methodology can also be used to complement
eye-tracking studies with an additional behavioral
measurement, since it is specifically designed to measure
which information people consciously choose to examine
for understanding visualizations.
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Introduction
Eye-tracking is a technique to measure an individual’s
visual attention, focus, and eye movements. This
experimental methodology has proven useful both for
human-computer interaction research and for studying the
cognitive processes involved in visual information
processing, including which visual elements people look at
first and spend the most time on [6]. However, collecting
accurate eye-tracking data is often expensive and tedious,
as quality eye-tracking equipment is costly and requires
sophisticated calibrations.

Figure 1: Bubbles experiment
user interface.

Figure 2: The evaluation user
interface displays bubbles, mouse
movements, and timestamps over
an image stimulus.

Previous research has investigated how to develop cheaper
alternatives for tracking visual attention. Johansen and
Hansen compared predicted eye movements based on
users’ recall as well as designers’ guesses to actual eye
movements [8]. Masciocchi and Still used a
computational saliency model to predict eye fixations on
web interfaces [10]. Another popular methodology is the
use of a viewing window to track visual attention and
visual information acquisition. The Restricted Focus
Viewer (RFV) uses this methodology by displaying visual
stimuli in a blurred form and revealing a clear focus area
(“window”) that can be moved around the image in a
continuous manner using a mouse [7]. Researchers have
employed the RFV to investigate cognitive behaviors of
users in diverse contexts such as diagrammatic reasoning
and program debugging, and to study the usability of web
sites [7, 1, 11]. Similarly, other researchers have explored
the relationship between users’ mouse movements and eye
movements on web pages [3, 9]. Our approach is different
from the viewing window approach in that we explicitly

collect discretized click data, as each click represents a
conscious choice made by the user to reveal a portion of
the image. Since the clicks correspond to individual
locations of attention, we can directly compare them to
eye fixations.

Our approach was specifically inspired by the work of
Deng et al. [4] in the computer vision community, in
which the bubble paradigm of [5] was used to discover
the object/image regions people explicitly choose to use
when performing fine-grained object recognition.

This work-in-progress addresses the question of whether
we can use the bubble paradigm to discover the regions of
a visualization that people examine while trying to gain
understanding. In other words, can mouse clicks
approximate human fixations in the context of data
visualization understanding? We developed a
crowdsourced study whereby a user visually scans a
blurred visualization, and clicks to reveal small circular
areas of the image (“bubbles”) in order to describe the
visualization in sufficient detail. In order to compare the
mouse clicks to the fixation data from a complementary
eye-tracking experiment, we calculated the similarity
between their respective heatmaps. We find that our
methodology allows click data to coarsely approximate
fixation data, while our task set-up is designed to
explicitly measure which information a user requires for
understanding a visualization.

Eye-tracking Experiment
We subsampled 51 visualizations from [2] drawing evenly
from infographic, news media, and government publication
sources. The visualizations are also all distributed across
data encoding type (e.g., bar graph, pie chart, diagram,
etc.), topic, and design aesthetic. The visualizations were



all resized to be 1000 pixels on one side, and were shown
to participants for 10 seconds at a time, separated by a
0.5 second fixation cross. Participants were told to pay
attention to the visualizations because they would later be
asked to recall and describe them. Eye-tracking was
performed using an SR Research EyeLink1000 with a
chin-rest mount 22 inches from a 19 inch CRT monitor
with a resolution of 1280x1024 pixels. An average of 16.8
(SD=2.4) participants viewed each of the visualizations.
We preprocessed the resulting fixation data by removing
the first 2 fixations on each visualization to reduce any
viewing biases caused by the experimental set-up.

Bubble Experiment
We conducted our bubble experiments with the same
visualizations as the eye-tracking experiments.

Figure 3: An example stimulus:
(top) original image, (middle) eye
fixations, (bottom) mouse clicks.

The experiments were deployed on Amazon’s Mechanical
Turk (AMT). Each worker was presented with a sequence
of blurred visualization images, and had to describe them
in turn (Fig. 1). We used Gaussian blur with a 40-pixel
sigma, which we found to be enough to distort the text
beyond legibility. The worker could, however, click to
reveal full details of small, circular regions (“bubbles”).
The images were scaled to have a maximum dimension of
500 pixels per side while maintaining aspect-ratios in order
to consistently fit within the AMT task window. We
chose the bubble size (16 pixels) to be equivalent to one
degree of visual angle in the original eye-tracking
experiments (32 pixels in images with twice the
resolution). This is to mimic the amount of visual
information available in the human fovea.

We posted 17 HITs, each consisting of 3 images randomly
selected from the 51 images. To accept one of our HITs, a
participant had to have an approval rate of over 95% and

live in the United States. A participant was paid $0.05 for
each successfully-completed HIT. We had 22 assignments
for each HIT, resulting in 22 user data points per image.
We also required the text description of an image to be at
least 150 characters to ensure that participants completed
the task with enough thoroughness.

Requiring workers to write text descriptions was
specifically designed to determine if they could accurately
report what a visualization depicted (i.e., the main data
trends). A good text description indicated that the worker
had performed the task correctly and had clicked on the
areas of the image necessary for understanding the
visualization. Thus we excluded any HITs with
poor-quality text descriptions from further analysis. The
quality of the text descriptions were evaluated manually
by a visualization expert using the evaluation interface
(Fig. 2). This procedure resulted in the exclusion of
approximately 9% of the data points. We also filtered out
HITs whose number of clicks were not within 3
interquartile ranges from the median, resulting in the
exclusion of less than 2% of the data points.

Results
To compare the bubble experiment results to the
eye-tracking results, we first visually compared heatmaps
of bubble clicks and fixation data. Overall, the
distributions of clicks overlapped substantially with the
eye-movement data (e.g., Fig. 3). This phenomenon was
consistent across all image stimuli. Similar to the
eye-tracking experiment results, when a participant was
asked to describe an image they tended to click on textual
elements such as the title, caption, and legend. Workers
rarely clicked on non-data elements such as images of
humans or human-recognizable objects. Similarly, data
elements such as bars, pie chart wedges, or lines did not



receive many clicks either. By looking at the textual
descriptions, we observe that participants were able to see
the trend of data in a blurred image without revealing
many details. A worker often clicked on a visually
distinctive element surrounded by non-distinctive
backgrounds - which aligns with “pop-out” theory. The
mouse movement patterns reflect reading patterns (i.e.,
clicks from top to bottom and left to right). The click
patterns also demonstrate that some workers moved back
and forth from an image to a text box, likely integrating
and progressively gaining understanding of the
visualization.

Figure 4: (above) An average
taken over all fixation maps and
all visualizations. (below) An
average taken over all bubble
click maps and all visualizations,
resized to 500× 500.

Next, we quantitatively compare the two methodologies.
We observe a mean click count of 109.20 (SD=77.75),
while eye fixations have a mean count of 40.83
(SD=5.57) across visualizations and participants. As
observed in previous research [7], additional human motor
control and the blurring of the image are likely the causes
of more mouse clicks. Further studies are required to
establish a mapping between clicks and fixations (i.e., how
many clicks are equivalent to a single fixation?).

To quantify the similarity between the two methodologies,
we first computed heatmaps from clicks and fixations
using Gaussian blurring. We computed a separate fixation
map for each participant in the eye-tracking experiments
as well as a separate click map for each participant in the
bubble experiments. This allows us to pairwise-compare
the fixation and click maps across participants. We use a
similarity function based on histogram intersection,
yielding a score between 0 and 1. We observe an average
pairwise-similarity of 0.58 between fixation maps. This is
a measure of the consistency between participants in the
eye-tracking experiments. We can compare this to the
average similarity between fixation maps and click maps

to see how well clicks of participants approximate fixations
of other participants. The pairwise-similarity between
fixation and click maps is 0.54. The difference between
these two modalities (similarity between fixation maps
versus similarity between fixation and click maps) is
statistically significant (t(50) = 7.72, p<0.01), pointing to
some small, but systematic differences. We also compute
a chance baseline called a “permutation control” by using
the fixation map from another image to predict the
fixations on the current image (a stronger baseline than
just random fixations, as it maintains statistical properties
of human fixations). The similarity score between fixation
maps and permutation controls is 0.33, demonstrating
that our click methodology (with a similarity score of
0.54) is significantly above chance at predicting fixations.

Interestingly, if we consider the pairwise-similarity between
click maps, we see that the score is 0.64, demonstrating
significantly higher consistency between bubble
participants in where they click, than between
eye-tracking participants in where they look (t(50) =
8.549, p<0.01). In fact, for 48 of the 51 visualizations,
similarity between click maps is higher than similarity
between fixation maps, possibly due to click behavior
being driven by slower, more conscious choices.

Next, we computed an average fixation map for each
visualization, by aggregating and Gaussian blurring all of
the eye-tracking participants’ fixations on each
visualization. We did the same for the click data of the
bubble experiment participants to obtain an average click
map. Similar to [11], we found high similarities between
the average fixation and click maps (AVG=0.71,
SD=0.06), indicating that although systematic differences
might exist between participants in both modalities,
overall, the major trends (averaged over many



participants) of the fixation data are well captured by the
click data. See Fig. 6 for some examples.

Consider the average overall fixation map across all
visualizations in comparison to the average overall click
map in Fig. 4. This allows us to visualize the systematic
differences between the two modalities, e.g., the fixation
maps contain a center bias, a natural tendency of
observers when free-viewing images [12].

Figure 5: When there is little or
no human eye-tracking data
available, bubble clicks can help
predict ground-truth fixations on
visualizations (as compared to a
chance baseline with a similarity
score of 0.33, see text). However,
we also observe systematic
differences between the two
modalities.

To more carefully examine where the similarities and
differences may exist, we consider how much participant
data (eye-tracking versus clicks) is required to closely
model the fixation patterns of a fixed set of participants.
We split the eye-tracking participants in half, and use one
half to compute “ground-truth fixation maps” by
aggregating the fixations of these participants on each
visualization. Next we can measure how well different
numbers of eye-tracking participants or bubble
participants can approximate the ground-truth fixation
maps. We aggregate the fixations (correspondingly clicks)
of an increasing number of participants into fixation
(click) maps and measure the similarity with the
ground-truth fixation maps.

From Fig. 5, we see that one bubble participant does just
as well at predicting ground-truth fixation maps as one
eye-tracking participant, and that 3-4 bubble participants
are as good predictors as 2 eye-tracking participants, after
which there is a divergence in predictive power. This
divergence is likely the result of the systematic differences
between the bubble and eye-tracking modalities.
Nevertheless, we see that if human fixation data is
unavailable or lacking, then the bubble click data can be
used as an alternative measure of attentional patterns.

Discussion
The preliminary analyses presented in this study
demonstrate that when averaged over many participants,
the clicks generated by our bubble experiments offer
coarse approximations to fixation maps on visualizations.
Additionally, when very little eye-tracking data is
available, the click data can be used for predicting
ground-truth fixation patterns on visualizations. All of this
provides evidence that our bubble experiments can provide
a feasible crowdsourced alternative to eye-tracking.

Nevertheless, eye movements and conscious clicks are
behaviors that are driven by different factors, and thus
further analyses and experiments are needed to quantify
the systematic differences that we observe between the
two methodologies. Interestingly, in the task where
participants consciously choose what information to
examine before clicking, they are more consistent. In the
case of raw fixation data, bottom-up features and
observer biases might exert a greater influence on what
people pay attention to. The higher consistency among
participants in the bubble modality is a positive
experimental result, indicating that the behavior we
measure is more predictable. The task given to
participants is to understand visualizations, and we
control for this by filtering participant responses. Thus,
the click data we obtain highlights the main elements of
visualizations that participants explicitly choose to pay
attention to in order to understand the visualizations.

Conclusions
This paper provides promising results and insight to justify
further research and future improvements of the bubble
experiment methodology. Tracking clicks is cheap,
non-intrusive, and affords larger-scale experimentation
compared to eye-tracking laboratory experiments. Thus,



in some cases, click data may serve as a replacement for
eye-tracking data, and in others, it may provide a
complementary measurement for human attentional
patterns. The preliminary results presented here also point
to the possibility that click data might measure a more
predictable aspect of human behavior. As we observed,
the conscious choices people make when clicking leads to
greater consistency across participants. In the study
presented here, we use these conscious clicks from the
bubble experiments to measure what information people
explicitly choose to attend to for understanding
visualizations. Not only will this lead to a better
understanding in the future of what features make a
visualization more comprehensible, but will also pave the
way for cheaper, easier alternatives to eye-tracking studies.

Figure 6: Two example
visualizations: (above) with high
consistency and (below) with low
consistency between fixation data
and click data.
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