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“Process modeling is the single 
technology that has had the biggest impact 

on our business in the last decade” 
 

Frank Popoff 
 former CEO, Dow Chemical 

April 1996 



APPLICATIONS OF DYNAMIC SIMULATION 
 

Dynamic simulation is useful throughout the entire 
lifetime of a plant: from conception to decommissioning. 
 
Plant design: 

a) a priori assessment of intrinsic operability and 
controllability of a plant - especially for highly 
integrated plants. 

b) design and testing of regulatory control systems - 
selection of control structures, control algorithms, 
and initial tuning of loops. 

c) design and testing of operating procedures - start-
up, shut-down, feed stock changeover, etc. 

d) hazard/safety studies - answer important questions 
raised by HAZOP study. 

e) design and testing of protective and relief devices - 
study plant behaviour and performance of protective 
system during major deviations from steady-state 
(need good models!) 

f) environmental studies - predict emissions generated 
during plant upsets/failures. 

g) analysis of intrinsically dynamic processes: 
batch/semi-continuous processes, periodic processes 
(e.g., pressure swing adsorption) 



APPLICATIONS OF DYNAMIC SIMULATION 
 
 
Plant operation: typically a dynamic simulation is linked 
to the plant's real time control and monitoring software: 

(a) computer based operator training: 
 

 
 

• dynamic simulation runs in real time and mimics 
behaviour of real plant. 

• operator interfaces to control system (not 
simulator) — more realistic. 

• instructor monitors and creates scenarios (e.g., 
disturbances, failures) 

(b) validation of operating and safety procedures — test 
control software by dynamic simulation before 
implementing on the real plant! 

Plant Operator

Real Time
Control System

Dynamic Simulation

Instructor



APPLICATIONS OF DYNAMIC SIMULATION 
 

(c) on-line operator decision support tool (simulation 
runs in parallel with real plant): 

 

 
 

• update current state (initial condition) directly from 
measurements. 

• dynamic predictor — run simulation faster than real 
time to predict hazards or problems (so that early 
corrective or preventative action can be taken). 

• experimental tool — predict consequences of proposed 
actions. 

Plant Operators

Real Time Control System

Plant
Dynamic

Simulation



CONTROLLABILITY STUDY OF BAYER 
DISTILLATION PROCESS 

(Zitney et al., 1995) 
 
BACKGROUND 
 
• system of eight coupled and heat integrated distillation 

columns (nearly 1200 trays)  
• separates eight crude silanes from a mixture of 40 

components 
• operation characterized by large holdup and time 

varying feed composition with no virtually no buffering 
between columns and upstream process 

  
OBJECTIVES 
 
Study performance of control system in order to: 
 
• increase plant capacity 
• and at same time improve quality and reduce energy 

consumption 
 
APPROACH 
 
• develop dynamic model of the overall system 
• use dynamic model for identification and controllability 

experiments - avoid disrupting production 



THE DYNAMIC MODEL 
 
• detailed SPEEDUP (Aspen Technology, 1993) model 

developed of eight coupled columns 
 
• one year effort for 2-3 engineers: process modeled in 

stages, so results available throughout this period 
 
• tray/reboiler/condenser mass and energy balances, 

phase equilibrium modeled by Wilson equation 
 
• differential-algebraic system of 75,000 coupled 

equations - largest known industrial SPEEDUP 
application at the time 

 
• simulations performed on CRAY C90 supercomputer - 

solution speed increased upto 50-fold by exploiting 
vector parallelization of supercomputer 

 
• simulation runs approx. 10 times faster than real time 



APPLICATIONS OF THE MODEL 
 
• steady-state simulation: 

• steady-state is just one initial condition for a 
dynamic model: always get steady-state model for 
free in dynamic study! 

• optimize plant for different feed concentrations and 
loads 

• identify which equipment must be revamped to 
increase capacity 

 
• plant must be regulated at new optimal operating 

points - use dynamic model for identification and 
controllability studies: 
• sensitivity studies to identify necessary process 

measurements 
• sensitivity studies to define appropriate control 

structure (matching of sensors to control elements) 
and tuning of control parameters 

• validation of control system by predicting plant 
response to a variety of load and setpoint changes 



MEASUREMENT SELECTION 
 
• study sensitivity of process outputs to range of common 

disturbances (see figure) 
• with dynamic model can observe all the plant states 

 
• many existing sensors in inappropriate positions 
 
• why use dynamic simulation? - necessary information 

in steady-state gain matrix 
• much easier to get steady-state gain matrix from 

SPEEDUP (compared to ASPEN PLUS) 
• think before applying dynamic simulation: effort 
must be justified 



SENSITIVITY ANALYSIS FOR HEAT INTEGRATED 
COLUMN 

 
 

from Zitney et al., “Plantwide Dynamic Simulation on Supercomputers: Modeling a 
Bayer Distillation Process”, AIChE Symposium Series, 91(304), pp. 313-316, 1995. 

Reproduced with permission. Copyright  American Institute of Chemical Engineers 
and Computers Aids for Chemical Engineering Education. All rights reserved. 



CONTROLLER DESIGN AND VALIDATION 
 

Given new measurement, completely new control system 
was designed. 
 
Use dynamic simulations (rather than experiments with 
real plant) for: 
 
• identification experiments to determine transfer 

function models for controller design 
 
• controller design: major goal was disturbance rejection: 

• match outputs and controls to minimize interaction 
• tune PID constants using dynamic model 

 
• controller validation: test controllers in wide variety of 

scenarios before implementation in plant 



CONTROLLABILITY STUDY OF BAYER 
DISTILLATION PROCESS 

 
BENEFITS 
 
• doubling capacity only required revamping half the 

plant 
 
• one third of the sensors were no longer necessary, and 

outputs more sensitive to disturbances identified 
 
• decision made to design completely new control system 
 
• controller testing by simulation saved much 

troubleshooting in plant, and faster and more successful 
startup of new control system 

 
• certain time constants so large that operator never sees 

consequences of manual operations during their shift 
(see figure): 
• operators instructed to leave process in automatic 

operation as much as possible 
 

• the act/discipline of developing a dynamic model can 
lead to significant new knowledge and insights 
concerning the process 



EFFECTS OF A DISTURBANCE MAY BE FELT OVER 
SEVERAL SHIFTS 

(VERY LARGE TIME CONSTANTS) 

 
from Zitney et al., “Plantwide Dynamic Simulation on Supercomputers: Modeling a 

Bayer Distillation Process”, AIChE Symposium Series, 91(304), pp. 313-316, 1995. 
Reproduced with permission. Copyright  American Institute of Chemical Engineers 

and Computers Aids for Chemical Engineering Education. All rights reserved. 



RETROFIT OF NORSK HYDRO TOPSIDE OFFSHORE 
OIL PRODUCTION PROCESS 

(Naess et al., 1993)1 
 
 
BACKGROUND 
 
• introduction of flow from Tarbert pipeline may expose 

the Osberg topside process to slug regimes 
 
• necessary to study process response to slugs without 

disrupting production 
• more sophisticated approach than “let’s just try it 

and see what happens”! 
 
• is insertion of slugcatcher in front of separation train 

necessary? 
 
 
APPROACH 
 
• use simulations with dynamic model to avoid 

disrupting production 
 
• predict performance of slugcatcher designs 
 

                                 
1 this paper is instructive because it applies dynamic simulation to four different processes at four 
different stages of their lifetimes. It also compares two dynamic simulators. 



 



THE DYNAMIC MODEL 
 
• dynamic model absolutely necessary as topside process 

cannot cope during the transients 
• the steady-states may be fine, but the path between 

them may lead to a plant trip 
 
• SPEEDUP (Aspen Technology, 1993) used 
 
• rigorous equilibrium models of two- and three-phase 

separators with seven components 
 
• models of PI-controllers with real life tuning parameters 
 
• models identified for control valves including time lag 
 
• dynamics of piping neglected 
 
• interfaced to in-house physical properties package via 
procedures 
• same physical properties as steady-state simulation 
• model validated against steady-state model used by 

engineering division 



CASE STUDY 
 

• use model to predict system response to seven “typical” 
slugs: 
• production start 
• maximum gas production 
• maximum water production 

 
• worries about pressure trips unwarranted 
 
• gas valve on second stage separator has too little 

capacity due to back pressure from the gas train 
 
• in worst case (maximum water production) fourth stage 

separator will trip due to high-high level after 30 
minutes 



TYPICAL SLUG THROUGH TARBERT PIPELINE TO 
OSBERG 

 
Reprinted from Computers Chem. Engng. 17, Naess et al., "Using Dynamic Process 
Simulation from Conception to Normal Operation of Process Plants," pp. 585-600, 
Copyright 1993, with kind permission from Elsevier Science Ltd, The Boulevard, 

Langford Lane, Kidlington OX5 1GB, UK. 



PRESSURE TRANSIENT IN FIRST SEPARATOR IN 
RESPONSE TO SLUG 

 

Reprinted from Computers Chem. Engng. 17, Naess et al., "Using Dynamic Process 
Simulation from Conception to Normal Operation of Process Plants," pp. 585-600, 
Copyright 1993, with kind permission from Elsevier Science Ltd, The Boulevard, 

Langford Lane, Kidlington OX5 1GB, UK. 



VALVE STEM POSITION TRANSIENTS IN 
RESPONSE  TO SLUG 

 

Reprinted from Computers Chem. Engng. 17, Naess et al., "Using Dynamic Process 
Simulation from Conception to Normal Operation of Process Plants," pp. 585-600, 
Copyright 1993, with kind permission from Elsevier Science Ltd, The Boulevard, 

Langford Lane, Kidlington OX5 1GB, UK. 



RETROFIT OF NORSK HYDRO TOPSIDE OFFSHORE 
OIL PRODUCTION PROCESS 

 
 
BENEFITS 
 
• problems lay elsewhere to what was anticipated: real 

value added from simulation! 
 
• produce less from Osberg wells during startup of 

Tarbert pipeline to avoid level trip 
 
• slugcatcher not required due to slow dynamics of slug 



DESIGN OF PRODUCT GRADE TRANSITIONS FOR 
POLYOLEFIN PROCESSES 

 (Debling et al., 1994) 
 
BACKGROUND 
 
• wide variety of polyolefin products: 

• polypropylene 
• low and high density polyethylene 
• ethylene-propylene rubber 

 
• number of catalytic processes 

• slurry 
• solution 
• gas-phase 

...each has particular advantages 
 
• but, each will be required to produce range of product 

grades to meet demand (typical product campaign 
varies from less than one day to several weeks) 

 
 
OBJECTIVE 
 
Design changeover policies that: 
 
• conduct grade transitions as swiftly as possible 
• minimize amount of off-spec product 
...market conditions may favour one over the other. 



DESIGN OF PRODUCT GRADE TRANSITIONS FOR 
POLYOLEFIN PROCESSES 

 
APPROACH 
 
• design changeover policy to move process between two 

steady-states: a “path” between these points in the time 
domain 

 
• use dynamic simulation to predict response of the 

processes to a particular changeover policy, and 
experiment with improved changeover policies 

 
Alternative: experiment with a real plant or pilot plant 
 
ADVANTAGES (OF SIMULATION) 
 
• safety: path taken by process must satisfy constraints to 

avoid, for example, temperature or pressure runaway: 
• optimal changeover policy subject to path constraints 
• constraints can be violated by a simulation without 

dire consequences: experiment with policies close 
to runaway 

 
• environment: off-spec or vented material not created by 

a simulation! 
 
• economic: process not taken out of production for 

experiments, can explore more alternatives in hope 
finding a better policy, potentially faster (opportunity 
cost), etc.  



DESIGN OF PRODUCT GRADE TRANSITIONS FOR 
POLYOLEFIN PROCESSES 

 
 
CASE STUDY1 
 
• grade transitions in polypropylene homopolymer (PP) 

and impact copolymer (IPP) studied 
 
• processes studied: 
 

• gas-phase fluidized bed (Union Carbide/Shell) 
• gas-phase vertical stirred bed (BASF/ICI) 
• gas-phase horizontal stirred bed (AMOCO/Chisso) 
• liquid pool loop (Himont) 

 
• grade transition: increase number average molecular 

weight from 55,000 to 65,000 (stiffer product) 
 
• use POLYRED - simulator specifically designed for 

polymer processes developed at the University of 
Wisconsin 

 

                                 
1 the original paper (Delbing et al., 1994) contains several case studies of different products and processes 



DESIGN OF PRODUCT GRADE TRANSITIONS FOR 
POLYOLEFIN PROCESSES 

 
 
ALTERNATIVE CHANGEOVER POLICIES 
 
In both cases, try to reduce accumulated hydrogen in the 
reactor as quickly as possible. 
 
• strategies for gas-phase reactors 
 

A:  i) step change in hydrogen feed rate 
 
B:  i) step change in hydrogen feed rate 
 ii) open gas vent for first ten minutes to change 
  gas phase composition quickly 

  
  ...mitigate large hydrogen residence time in gas phase 

reactors 
 
• strategies for loop reactor 
 

A:  i) step change in hydrogen feed rate 
 
H:  i) step change in hydrogen feed rate 
 ii) reduce recycle rate in loop to narrow residence 
 time distribution 

  
 ...narrow residence time distribution for hydrogen. 



GAS-PHASE FLUIDIZED BED PROCESS 
 

 
 

from Debling et al., “Dynamic Modeling of Product Grade Transitions for Olefin 
Polymerization Processes”, AIChE Journal, 40(3), pp.506-520, 1994. Reproduced with 

permission of the American Institution of Chemical Engineers. Copyright  1994 
AIChE. All rights reserved. 



GAS-PHASE VERTICAL STIRRED BED 
 

 
 

from Debling et al., “Dynamic Modeling of Product Grade Transitions for Olefin 
Polymerization Processes”, AIChE Journal, 40(3), pp.506-520, 1994. Reproduced with 

permission of the American Institution of Chemical Engineers. Copyright  1994 
AIChE. All rights reserved. 



GAS-PHASE HORIZONTAL STIRRED BED 
 

 
 

from Debling et al., “Dynamic Modeling of Product Grade Transitions for Olefin 
Polymerization Processes”, AIChE Journal, 40(3), pp.506-520, 1994. Reproduced with 

permission of the American Institution of Chemical Engineers. Copyright  1994 
AIChE. All rights reserved. 



LIQUID POOL LOOP 

 
from Debling et al., “Dynamic Modeling of Product Grade Transitions for Olefin 

Polymerization Processes”, AIChE Journal, 40(3), pp.506-520, 1994. Reproduced with 
permission of the American Institution of Chemical Engineers. Copyright  1994 

AIChE. All rights reserved. 



NUMBER AVERAGE MOLECULAR WEIGHT 
DURING TRANSITION  
BASE CASE POLICY (A)  

 

 
 

from Debling et al., “Dynamic Modeling of Product Grade Transitions for Olefin 
Polymerization Processes”, AIChE Journal, 40(3), pp.506-520, 1994. Reproduced with 

permission of the American Institution of Chemical Engineers. Copyright  1994 
AIChE. All rights reserved. 



NUMBER AVERAGE MOLECULAR WEIGHT 
DURING TRANSITION  

ALTERNATIVE POLICY (B or H) 
 

 
 

from Debling et al., “Dynamic Modeling of Product Grade Transitions for Olefin 
Polymerization Processes”, AIChE Journal, 40(3), pp.506-520, 1994. Reproduced with 

permission of the American Institution of Chemical Engineers. Copyright  1994 
AIChE. All rights reserved. 



PERCENT OFF-SPEC PRODUCT DURING TYPICAL 
CAMPAIGN 

 

 
 

from Debling et al., “Dynamic Modeling of Product Grade Transitions for Olefin 
Polymerization Processes”, AIChE Journal, 40(3), pp.506-520, 1994. Reproduced with 

permission of the American Institution of Chemical Engineers. Copyright  1994 
AIChE. All rights reserved. 



DESIGN OF PRODUCT GRADE TRANSITIONS FOR 
POLYOLEFIN PROCESSES  

 
 
CONCLUSIONS 
 
• for gas phase reactors, blow down to reduce hydrogen 

accumulation can greatly reduce changeover time 
(holdup/accumulation of hydrogen dominates speed of 
changeover) 

 
• careful design of operating policies can change relative 

rankings of processes 
 

• gas phase reactors now exhibit “natural” residence 
times 

 
• these conclusions reached in the comfort and safety of 

the office! 



BATCH PROCESS DEVELOPMENT: SILOXANE 
MONOMER PROCESS  

(Allgor et al., 1996; Ahmad and Barton, 1994) 
 
BACKGROUND 
 
• effective process development critical to success of a 

new specialty chemical or synthetic pharmaceutical. 
• develop efficient process rapidly 
• environmental problems: use and disposal of 

organic solvents 
 
• can detailed modeling technology help? 
 
• batch processes  dynamic simulation 
 
• siloxane monomer process (Allgor et al., 1996): 

• products A and D required in arbitrary ratio: A 
formed in first reaction, byproduct C further 
reacted to D. 

• allyl alcohol (R1 in figure), toluene, methanol and 
water used as solvents and reagents 

• complex reaction kinetics, highly nonideal mixtures 
 
OBJECTIVE 
Can detailed dynamic models of a batch process help in 
the design of a process with better environmental 
performance?2 

                                 
2 for more lengthy discussion see Ahmad and Barton (1994) 
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BASE CASE DESIGN: PROBLEMS 
 
• process developed in pilot plant simulated in ABACUSS 

to quantify all process streams (on a batch size basis) 
 
• organic waste stream: overhead from Rectifier I. 

Analyze solvent recovery possible using theory of 
simple distillation residue curve maps: 

 

 
 

Conclusions:  
• only toluene can be recovered in pure form for recycle 
• 30% of stream disposed of by incineration. 

 
• aqueous waste stream: solvent recovery complicated by 

presence of toluene (heterogeneous mixture, azeotropes) 
 
• don’t let toluene get downstream from Reactor I? 
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IS PROCESS ALTERNATIVE FEASIBLE?  
 
• analyze separation alternatives for mixture leaving 

Reactor I: is recovery of pure C feasible? 

 
 

Conclusions: 
• if mixture created by Reaction I lies in regions I or V 

then process is feasible 
• some C will also be recycled in azeotropes with 

solvent and/or reagent to next batch 
 
• recycle of C will lead to build up of C in the reactor to a 

cyclic steady-state3 concentration: 
R1+ R2 I1 (Pt catalyzed)

R1+ I1 A

I1 C + H2

C + I1 I2

Pt Pt*

 

 
...encourages formation of undesired oligmer I2. 

                                 
3 a cyclic dynamic system is said to have reached cyclic steady-state when the variation of the variables 
(profiles) over a cycle is the same from one cycle to the next 

        Cut 1: C 
RI:   Cut 2: C-R1-Toluene 
        Cut 3: C-R1 
 
         Cut 2: C 
RV:  Cut 2: C-R1-Toluene 
         Cut 3: Toluene 
 
 



DESIGN OPERATING POLICY FOR COUPLED 
REACTOR AND COLUMN  

 

 
 
DESIGN OBJECTIVES 
 
At cyclic steady-state: 
• mixture at the end of Reaction I must be in either batch 

distillation region I or V 
• formation of undesired oligmer I2 must be minimized 
 
KEY DESIGN VARIABLES 
 
• charge and temperature policy for reactor (amount of 

solvent and reagent at end, control conc. of I1) 
• reflux policy for column (recycled cuts do not need to be 

sharp) 



ROLE OF DYNAMIC SIMULATION  
 
• rigorous dynamic model of coupled reactor and column 

can: 
• predict cyclic steady-state for given operating 

policy 
• allow experimentation with operating policy to 

meet design objectives 
• cheaper, safer, quicker, better (more alternatives 

explored) than pilot plant 
 
• complex dynamic model of reactor and column must 

reflect: 
• nonideal thermodynamics: azeotropic mixtures 
• complex reaction kinetics 
• sequential operating policies for reactor and 

column, and intermediate storage and recycle of 
solvent/reagent 

• physico-chemical discontinuities: reaction mass 
boiling, intensive quantities not defined in empty 
vessel, etc. 

 
• need state-of-the-art combined discrete/continuous 

dynamic simulator: ABACUSS 
• 2657 equations (including physical properties) 
• design of suitable operating policy achieved 



MOLE HOLDUPS IN REACTOR I: APPROACH TO 
CYCLIC STEADY-STATE 

 

 



OPTIMAL CYCLIC STEADY-STATE 
DYNAMIC OPTIMIZATION 

 
 

 
Waste

Product

A

time

time



BATCH PROCESS DEVELOPMENT: SILOXANE 
MONOMER PROCESS 

 
BENEFITS 
 
• total organic waste reduced by 88% compared to the 

base case (with central solvent recovery facility) - only 
waste as unavoidable consequence of stoichiometry left 
• in process recycling of solvent more effective! 

 
• reduced load on downstream unit operations: only C 

passed to rest of process, selectivity optimized with 
respect to A 

 
• raw material saved (solvent/reagent) 
 
• aqueous waste easier to treat 
 
• throughput in same equipment similar 
 
• targeted use of dynamic simulation in conjunction with 

pilot trials and simpler models (e.g. residue curve maps) 
leads to effective problem solving strategy 



SECTION I 
 

DYNAMIC MODELLING 
 
 
 
 
 

Paul I. Barton 
Department of Chemical Engineering 
Massachusetts Institute of Technology 

Cambridge, MA 
 
 
 
 
 
 
 
 
 

 copyright Paul I. Barton, July 1997 



MODELLING DYNAMIC BEHAVIOUR OF PROCESS 
SYSTEMS 

 
Three key ideas: 
 
(a) model system dynamics  
 
 System  complex artifact composed of connected and 

interacting components.   
  

For example, an entire chemical process: 

 
...or, a complex unit operation - e.g., a batch distillation 
column: 

     



MODELLING DYNAMIC BEHAVIOUR OF 
PROCESS SYSTEMS 

 
(b) focus on deterministic first principle based 
 (mathematical) models 

•  emphasis on lumped parameter systems 

• model will always rely to a certain extent on 
empirically derived parameters (e.g. reaction 
kinetic parameters) and correlations (e.g. 
distillation tray hydrodynamics). 

(c) goal is to predict the evolution of the system 
 behaviour with respect to time. For example, 
 dynamic simulation results are typically presented as 
 time trajectories: 

  

L
e
v
e
l
,
 
h
 
[
m
]

Time, t [s]  
Note that there is more to a transient than the steady-
states..... 



MODELLING – CAVEATS 
 

Any mathematical model (by definition) is an abstraction 
of the true system behaviour.1  
 

 does the model exactly mimic the true behaviour? 
 

 does the model predict the aspects of system  
 behaviour (phenomena) of interest with sufficient 
 accuracy for the current application? 
 
This implies: 
 

 a model is only valid within the context and 
 assumptions it was developed. 
 

 extrapolation of the model beyond this context and 
 assumptions is extremely dangerous - critical 
 reappraisal of the model required (hence need to 
 document the model) 
 

 verify a model against the real system behaviour 
 whenever possible. 
 

 there are many models for a single system — each 
 represents a different level of abstraction. Key task is 
 to select the appropriate level of abstraction. 

                                 
1 in fact, any "perfect model" would exhibit such complexity that it would be 
indistinguishable from the real system.  



PRELUDE TO MODELLING 
 

Because of this fundamental nature of models, before and 
during any modelling activity it is important to clarify and 
document the following information: 
 
(a) identify the system for which a model is required 
 

THE ENVIRONMENT

SYSTEM

State(t)
Inputs(t)

•controls
•disturbances

Outputs(t)

 
Identify: 

• boundaries (function of system) - a system is defined 
by its boundary 

• constraints 

• quantities describing system behaviour: inputs, states, 
outputs 

• assume:  inputs  ƒ(outputs) 



PRELUDE TO MODELLING 
 
Notes: 

• we are developing a model for the system. Everything 
else is the environment. 

• inputs define the influence of the environment on the 
system. 

• while in real life the inputs will be further subdivided 
into: 

(a) controls — those inputs that can be manipulated in 
order to control the system behaviour. 

(b) disturbances — those inputs over which we have 
no control. 

 . . . from the point of view of modelling we can play 
God:  we must define the time variation of all the 
inputs in order to pose a fully determined simulation 
problem. 

• inputs  ƒ(outputs): 

— more precisely: we can sufficiently decouple the     
influence of the outputs on the inputs (feedback via 
the environment) for the purposes of the current 
exercise. 

— pragmatic view: can only model so much at a given 
level of detail. 



PRELUDE TO MODELLING 

(b) what is the intended application of the model?   

What questions will be asked about the system?  
Begin to identify: 

• what phenomena are of interest? 

• what quantities describe the system behaviour?   

• how detailed should the model be? 

• what assumptions can be made? 

(c) what data concerning the system is available?  

or can be obtained . . . imposes constraints on the 
phenomena that can be modelled and the accuracy of 
the simulation results.  

Typically relates to parameters and empirical 
correlations: 

• what is available? 

• in what range of process conditions are the 
predictions valid? 

• how much uncertainty is there in the predictions? 

Examples: non-equilibrium distillation tray models, 
reaction kinetics for novel synthesis. 



PRELUDE TO MODELLING 
 

In conclusion: modelling is a fundamental engineering 
activity. We must trade the need to obtain an answer 
against the accuracy (or even validity) of this answer, and 
the resources required to obtain it (time, manpower, skills, 
computing resources, data, etc. . . .) 
 
 principle of optimum sloppiness — make as many  
=> simplifying assumptions as reasonable without 
 throwing out the baby with the bath water (Luyben, 
 1990) 
 
...modelling is still very much an art (but research 
continues). 



STEP 1 — HIERARCHICAL DECOMPOSITION 
 

No engineer can grasp simultaneously all the relevant 
details of a complex system: e.g., how do we construct a 
mathematical model composed of thousands of 
simultaneous equations? 
 
Two approaches to manage system complexity in model 
building: 
 
A:  Top Down Approach 
 

(a) identify a series of components from which the 
system is composed, and the connections 
between these components (e.g., a flowsheet, an 
electrical circuit, organs in the human body, etc.). 

 
(b) once identified, concentrate on modelling and 

testing each individual component in isolation as 
a separate task. 

 
B:  Bottom Up Approach 
 

(a) identify a series of standard primitive components 
required to describe a class of systems. Develop 
and validate models for these primitive 
components (archive in library). 

 
(b) develop models of more complex systems by 

connecting these components together to form 
structures (systems). 



STEP 1 — HIERARCHICAL DECOMPOSITION 
 

In my experience, a hybrid of the top down and bottom up 
approaches is used: 

• system structure is invariably unraveled in a top 
down manner, but . . .  

• model libraries are usually available, and these are 
kept in mind when selecting a decomposition. 

Hierarchical Submodel Decomposition (Elmquist, 1978) 
introduces the notion of recursion into these approaches 
— a component model can either be: 
 
 (a) primitive — e.g., it is entirely described in terms  
 of equations and is not decomposed further. 
 
 (b) composite — e.g., it is treated as a system itself,  
 and can be therefore described in terms of a set of  
 interconnected components. 
 
. . . the introduction of recursion allows the decomposition 
of composite models to continue into as many levels as is 
necessary - hierarchies of arbitrary depth can evolve. 
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STEP 2 — MODELLING THE COMPONENTS 
 

Each component model is itself a system (recursion): 

(a) identify the boundaries. 

• the model may represent a physical artifact —  e.g., 
a plant section, a unit operation, a vessel, or a 
section of a vessel. 

• the model may represent some phenomenological 
abstraction — e.g., the set of equations defining a 
mixture enthalpy, or a set of reaction rate 
expressions. 

(b) identify the connections of the model to its 
environment - this will enable us to connect the 
model to others in a larger structure. 

Connections will typically represent either: 

(i) fluxes of extensive properties, such as: 

• a diffusive flux - e.g., heat transfer through a 
vessel wall 

• a convective flux - e.g., a pipe connecting two 
vessels (ignoring the holdup of material in the 
pipe) 

 Note fluxes will have a direction implied. 

(ii) information transfer - e.g., pressure and/or 
voltage signals for control instruments, or 
intensive properties (e.g., temperature, pressure) 
to determine driving forces for fluxes  



STEP 2 — MODELLING THE COMPONENTS 
 

Structures are defined by establishing equivalence 
(merging) between the connection of one component 
model and the connection of another component 
model (obviously, the two connections must be 
compatible - e.g., must represent a convective flux) 

(c) define the internal behaviour of the component 
model - what describes the "state" of this system, and 
how is it related to both the inputs and the outputs. 



INTERNAL BEHAVIOUR 
 

Ultimately internal behaviour is represented by a set of:   

       Inputs 
 VARIABLES - e.g.  States 
       Outputs 

...and these variables are related by a set of: 

       Mass Balances  
         Energy Balances 
 EQUATIONS - e.g.   Physical Constraints 
          Thermodynamic Models 
       etc. 

However, there are several options as to how these two 
sets can be defined: 

(a) the model is primitive — e.g., just define a set of 
variables and a set of equations 

(b) decompose the model further — e.g., define a set  
components and their connections.  The set of 
variables is then the union of the sets of variables in 
the sub models, and similarly the set of equations is 
the union of the sets of equations in the sub models 
and the equations implied by the connections  

(c) a hybrid of (a) and (b) — e.g., both variables and sub 
models 



DERIVING THE EQUATIONS 
 

Once a suitable decomposition has been established, it is 
necessary to develop all the primitive models - e.g., derive 
a set of variables and equations that describe the dynamic 
behaviour of that section of the overall system. 
 
Basically, we must utilize our knowledge of chemical 
engineering science at this point - control volume analysis, 
mass conservation, energy conservation, etc.   
 
Experience with teaching this material suggests that it is 
worthwhile to review the principles frequently used in 
dynamic modelling - but this discussion is by no means 
exhaustive (nor is my experience!). The approach is 
relatively systematic and will allow derivation of 
component models for a system that are consistent.  



DERIVING THE EQUATIONS 
 

The following information should be developed at this 
stage: 

1. define the control volume(s) for balance equations 
(again. . .identify the boundaries)  

2. list the assumptions employed — under what 
conditions is the model valid? 

 Example: phase transitions 

3. list the set of variables required to describe the 
system — e.g., symbol, verbal description, units 
(always try to use a consistent set of units). 

4. derive the set of equations — always check that the 
units of each term in an equation are consistent. 

5. perform a degree of freedom analysis: 

(a) identify the natural set of input variables to the 
system. 

(b) given values for this subset of the variables it 
should be possible to calculate values for all the 
other variables — e.g. it is necessary that the 
number of equations equal the number of 
remaining unknown variables (ignore time 
derivatives of variables in this analysis). 



DERIVING THE EQUATIONS 
 
We will be applying one or more conservation principles 
to a macroscopic control volume of definite size and shape 
containing a fluid. 
 
Further, we will assume that the contents of the control 
volume are well mixed, so intensive properties are 
uniform throughout the control volume and do not vary 
with spatial position (or with another independent 
variables such as polymer chain length). 
 
=> one or more ordinary differential equations   
 (ODEs) with time as the independent variable. 
 
These ODEs will be augmented with algebraic equations 
(e.g., equations not involving time derivatives) that relate 
variables or model phenomena that take place on a much 
faster time scale than that of interest, for example: 
 

• a pseudo steady-state assumption 
•  see discussion of phase equilibrium models later on 
 

Note that in the absence of a vacuum, material will 
expand (possibly with phase change) to completely fill the 
control volume. 



MASS CONSERVATION 

Mass is always conserved2: 

 
Mass balance: 

        Rate of 

accumulation of

 mass in control 

       volume

=

     Flow of 

    mass into 

control volume

     Flow of 

   mass out of 

control volume

kg s-1 kg s-1 kg s-1
 

. . . what comes in must come out (eventually).   
 
Notes: 

(a) units of each term must be consistent 

(b) terms in balance equations are always extensive 
quantities. 

                                 
2 barring nuclear reactions and relativistic effects 

F M(t) FOUT

CONTROL 
VOLUME

BOUNDARY

IN



MASS CONSERVATION — EXAMPLE 
 

Buffer tank open to the atmosphere: 

 
 

Control volume: liquid in tank — e.g., boundary is not 
rigid, so size and shape of control volume will change as 
the level rises and sinks 
 
Assumptions: 

• isothermal system => no need for energy balance 

• single chemical species => fluid density constant 

• inlet flow defined as an input (or by an upstream 
model) — e.g., FIN (t) known.   

• vessel has uniform cross sectional area 

• model valid for interval     0 h hMAX  

F
IN

F
OUT

P1

h
M(t) h

MAX

P
0



MASS CONSERVATION — EXAMPLE 
 

Variables (what quantities are we interested in?): 
 

M*  mass of fluid in vessel    [kg] 
   density of fluid in vessel   [kg m-3] 

V*  volume of fluid in vessel   [m3] 
FIN  volumetric flow of inlet stream  [m3s-1] 
FOUT  volumetric flow of outlet stream [m3s-1] 
P0   atmospheric pressure    [Nm-2] 
P1   pressure at bottom of vessel  [Nm-2] 
A   cross sectional area of vessel  [m2] 
h*   liquid level in vessel    [m] 

 
Note (*): in steady-state models we do not usually worry 
about quantities describing the "state" of the control 
volume — we are only concerned with the quantities 
crossing the boundary and the fact that they must balance 
at steady-state. This is a major reason why dynamic 
models are more complex — we now have to relate how 
this state changes to the quantities crossing the boundary.  
Clearly, the whole point of doing dynamic simulation is to 
determine how this state changes with time. 



MASS CONSERVATION — EXAMPLE 
 
Equations: 
 
Mass Conservation 
 

 
dM

dt
= FIN FOUT        (1) 

 
Relate volume and mass 
 
 V = M           (2) 
 
Relate volume and liquid level (constant cross sectional 
area) 
 
 hA = V           (3) 
 
Hydrostatic pressure 
 
 P1 = P0 + gh         (4) 
 
g  gravitational acceleration (9.81ms-2) 
 
Flow pressure relationship — flow out driven by 
hydrostatic pressure in vessel 
 
 FOUT = k P1 P0         (5) 
 
k  loss coefficient (value known) 



MASS CONSERVATION — EXAMPLE 
 
Degree of freedom analysis: 
 
Total number of quantities = 11 
 
Time invariant quantities (model parameters): 

A, ,k,g (= 4)  

Natural input set: 

FIN (t), P0 (t)  (= 2)  

Note: these functions are defined by the "environment" 
which could be either other models, or the engineer.   
 
Remaining variables: 

M, V, h, P1, FOUT  (= 5) 

Equations = 5 
 
 => degrees of freedom are satisfied given    
  specification of input set above. 
 
Note:  due to the assumptions made above, equation (2) 
could be substituted into (1) to eliminate M - leading to a 
"volume balance."  This is an error that is frequently made 
- volume is not a conserved quantity (e.g., consider a non 
isothermal and/or multi-component system) whereas 
mass is. 



MASS CONSERVATION — EXERCISE 
 
Develop a model for the following system: 
 

FIN FOUT

P1

h M(t)

P0

UP DOWN
P P

 
 
Note: 

(a)  the inlet pipe has moved to a different physical 
location — consider how this changes the model. 

(b) the control valves can be modelled by the following 
equation (see later): 

 

  F = Cv x
PIN POUT

w
 



MASS CONSERVATION — EXERCISE 
 
Variables: 

  F   = flow through valve 
  Cv   = valve sizing coefficient 
  x   = valve stem position (control) 
  PIN  = inlet pressure to valve 
  POUT  = outlet pressure from valve 
    = density of fluid 
  w   = density of water at reference 
        temperature 



SPECIES BALANCES 
 

Unlike mass, chemical species are not conserved:  if a 
reaction takes place inside a control volume, reactants will 
be consumed and products generated. 
 

 
 
A species balance can be written for each chemical species 
in the system (note we are now using moles rather than 
mass): 
 

  
     Rate of 

accumulation

of species i in

     system

=

Flow of 

species i

into the

 system

Flow of 

species i

out of the

  system

+

  Rate of

generation

of species i

by reaction

    [mol s-1]           [mol s-1]      [mol s-1]         [mol s-1] 

 

i = 1...NC 

F N  (t) F
OUT,iIN,i i



SPECIES BALANCES 
 

Further, we can sum these NC3 species balances to derive a 
total mole balance.   
 

    Rate of

accumulation

 of moles in 

    system

=

  Flow of

  moles 

    into

the system

  Flow of

moles out

    of the

   system

+

    Net rate

of generation

 of moles by

     reaction

mol s-1 mol s-1 mol s-1 mol s-1

 

 
Therefore, we can derive three different balance equations: 

(a) NC species balances 

(b) a total mole balance 

(c) a mass balance 

. . . clearly these are not independent — the total number 
of moles and the mass in the system can be related 
algebraically to the number of moles of each species, e.g.: 

  

NT = Ni
i=1

NC

M = miNi
i=1

NC
 

mi = molecular weight of species i [kg mol-1] 
 

                                 
3 NC will be used to denote the number of chemical species in a system. 



SPECIES BALANCES 
 

In general, it is best to derive a model in terms of the 
minimal number of independent species balances (usually 
NC) and derive other quantities via algebraic equations.  
The rationale behind this statement should become clearer 
when we discuss numerical solution of dynamic 
simulation problems. 



SPECIES BALANCES — EXAMPLE 
 

Consider the same tank as before, but the following liquid 
phase first order irreversible isomerization reaction takes 
place (i.e. isothermal CSTR): 

A
kR
    B 

Species A and B are present in dilute solution (i.e. NC = 3; 
A, B, and the solvent). 

 
 
Assumptions: 

• vessel contents well mixed 

• isothermal, species A and B present in dilute solution 
=> fluid density constant (e.g., neglect density changes 
due to presence of A and B) 

• model valid for interval     0 < h hMAX  (note difference) 

• otherwise, same as above  

F
IN

F
OUT

P1

V(t)

P
0

A
kR    BC

C

A,IN

B,IN

A

B

C

C

AC BC(t) (t)



SPECIES BALANCES — EXAMPLE 
 
Variables: 
 
V volume of fluid in vessel [m3] 

 density of fluid in vessel [kg m-3] 
FIN volumetric flow of inlet stream [m3 s-1] 
FOUT volumetric flow of outlet stream [m3 s-1] 
P0 atmospheric pressure [N m-2] 
P1 pressure at bottom of vessel [N m-2] 
A cross sectional area of vessel [m2] 
h liquid level in vessel [m] 
CA concentration of species A in  

vessel 
[mol m-3] 

CB concentration of species B in  
vessel 

[mol m-3] 

CA,IN concentration of species A in inlet 
stream 

[mol m-3] 

CB,IN concentration of species B in inlet 
stream 

[mol m-3] 

g gravitational acceleration [m s-2] 
k loss coefficient  
kR reaction rate constant [s-1] 
r reaction rate [mol m-3 s-1] 



SPECIES BALANCES — EXAMPLE 
 

Equations: 
 
Mass Conservation 
 

 
dV

dt
= FIN FOUT            (1) 

 
Species balances for A and B 
 

 
d VCA( )

dt
= CA

dV

dt
+V

dCA

dt
= FINCA ,IN FOUTCA Vr   (2) 

 

 
d VCB( )

dt
= CB

dV

dt
+V

dCB

dt
= FINCB ,IN FOUTCB +Vr     (3) 

 
Notes: 

• use of volume in mass balance is only valid for the 
assumptions above 

• concentrations in outlet stream equal to bulk 
concentration because vessel contents well mixed 

• we have derived NC (=3) mass and species balances 
— this is sufficient to define the state of the system: all 
other quantities can be related to {V, CA,CB} via 
algebraic relationships. Note that an alternative 
would have been to derive a species balance for the 
solvent instead of the mass balance. 



SPECIES BALANCES — EXAMPLE 
 
Relate volume and liquid level 
 
 hA = V           (4) 
 
Hydrostatic pressure 
 
 P1 = P0 + gh         (5) 
 
Flow pressure relationship 
 
 FOUT = k P1 P0         (6) 
 
Reaction rate 
 
 r = kRCA           (7) 
 
. . . and additional equations to define NA  (= CAV ), 
NB (= CBV), M (= V)  if desired. 
 
Note: if significant density changes occur due to reaction 
(e.g., not sufficiently dilute) then it is better to derive NC 
species balances and derive the volume from the molar 
volumes in solution. 



SPECIES BALANCES — EXAMPLE 
 
Degree of freedom analysis: 
 
Total number of quantities = 16 
 
Time invariant parameters: 

A, ,g, k, kR   (= 5) 

Natural input set: 

FIN (t),CA, IN (t),CB, IN (t ),P0 (t) (=4) 

Remaining variables: 

V,FOUT ,P1,h,CA ,CB ,r   (=7) 
 
Equations = 7 
 
 => degrees of freedom satisfied given specification  
  of input set above 



ENERGY CONSERVATION 
 

According to the First Law of Thermodynamics, energy is a 
conserved quantity. For an open system, this can be 
expressed as: 

rate of 

accumulation

 of energy in 

system

 

 

 

 

 

 

 

 

 

 

 

 

=

 rate of addition

of heat from the

  environment

 

 

 

 

 

 

 

 

 

 

+

rate of work

done on the 

system by the

environment

 

 

 

 

 

 

 

 

 

 

 

 

+

[J s-1] [J s-1] [J s-1]

 

   rate of energy

addition to system

 by material flow 

     into system

 

 

 

 

 

 

 

 

 

 

 

 

rate of energy discharge

   from the system by 

 material flow out of the

              system

 

 

 

 

 

 

 

 

 

 

 

 

[J s-1] [J s-1]

 

 
Warning: always start from the First Law when deriving 
energy balances!! 
 
Here, energy is the summation of internal energy (e.g., 
that associated with translation, rotation and vibration of 
molecules), kinetic energy, and potential energy. 
 
In most process simulation applications, it is usually 
reasonable to neglect kinetic and potential energy (or to 
perform separate balances for internal energy and these 
other forms of energy) — but always check this 
assumption. 



ENERGY CONSERVATION 
 
Given this assumption, the differential form of the First 
Law of Thermodynamics for the following "general" open 
system (see Modell and Reid (1983); pp. 39-41 for a 
complete derivation) reduces to: 

 
dU

dt
= ˙ Q + ˙ W + Fehe

e

Flhl
l

 

...where we have introduced time as the independent 
variable. 

Note that the conserved quantity is the internal energy of 
the control volume contents (not the enthalpy!). The work 
term is composed of two contributions: 

 ˙ W = ˙ W s P
dV

dt
 

U(t)

F

 .
Q

  .
WFe

e
hh l

l



...the summation of the shaft work done on the system 
(e.g., an impeller to keep the contents well mixed) and the 
PV work due to changes in volume of the system. 



ENERGY CONSERVATION 

Variables: 
 

 internal energy of control volume 
contents 

[J] 

˙ Q  rate of heat addition to control volume 
from environment 

[J s-1] 

˙ W  rate of work done on the control volume 
by the environment 

[J s-1] 

Fi rate of material addition/discharge [kg s-1] or 
[mol s-1] 

hi  specific enthalpy of material stream [J kg-1] or 
[J mol-1] 

U



ENERGY CONSERVATION 

The energy balance can therefore be expressed in two 
equivalent forms: 

 
dU

dt
= ˙ Q + ˙ W s P

dV

dt
+ Fehe

e

Flhl
l

    (E1) 

or dU dt  can be eliminated by substitution of the diff-
erential form of the definition of enthalpy (H =U + PV ): 

 
dH

dt
=
dU

dt
+ P

dV

dt
+V

dP

dt
 

which leads to: 

 
dH

dt
= ˙ Q + ˙ W s +V

dP

dt
+ Fehe

e

Flhl
l

   (E2) 

where, 

 H  enthalpy of the control volume contents [J] 

Each form is convenient under certain assumptions. If the 
volume of the system is constant, energy balance (E1) 
reduces to: 

 
dU

dt
= ˙ Q + ˙ W s + Fehe Flhl  

and if the pressure of the system is constant, energy 
balance (E2) reduces to: 

 
dH

dt
= ˙ Q + ˙ W s + Fehe

e

Flhl
l

 



ENERGY CONSERVATION 
 
Of course, there are many situations in which neither the 
volume or the pressure remains constant over the time 
horizon of interest. In this case, we must be able to express 
the rate of change of the volume or pressure explicitly, or 
have this implied by the algebraic equations (which leads 
to difficulties - see discussion of "high index" problems 
later). 



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 

 
Consider the CSTR again — the reaction is now 
exothermic and heat is removed by a jacket containing a 
vaporizing medium, so an energy balance is necessary. 

 
Assumptions: 

• vessel contents well mixed 

• species A and B present in dilute solution  

• atmospheric pressure is constant (e.g., P0 f (t)) 

• neglect shaft work of impeller 

• neglect heat interaction with atmosphere 

• otherwise, same as above. 

FIN

FOUT

P1

M(t)

P0
A

kR
    B

C
C
A,IN

B,IN

A

B

C
C

AN BN(t) (t)

H(t)

Q

h
T

T
h
OUT

OUT

IN

IN



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 

 
Variables: 
 
M mass of fluid in vessel [kg] 
V volume of fluid in vessel [m3] 
NA number of moles of species A in 

vessel 
[mol] 

NB number of moles of species B in 
vessel 

[mol] 

CA concentration of species A in 
vessel 

[mol m-3] 

CB concentration of species B in 
vessel 

[mol m-3] 

 density of fluid in vessel [kg m-3] 
A cross sectional area of vessel [m2] 
AJ heat transfer area of jacket [m2] 
UJ overall heat transfer coefficient 

for jacket 
[J m-2 K-1 s-1] 

H enthalpy of vessel contents [J] 
CA,IN concentration of species A in 

inlet stream 
[mol m-3] 

CB,IN concentration of species B in 
inlet stream 

[mol m-3] 

FIN volumetric flow of inlet stream [m3 s-1] 
FOUT volumetric flow of outlet stream [m3 s-1] 
TIN temperature of inlet stream [K] 
TOUT temperature of outlet stream [K] 
P0 atmospheric pressure [Nm-2] 
P1 pressure at bottom of vessel [Nm-2] 



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 

 
 
g gravitational acceleration [m s-1] 
k loss co-efficient  
kR reaction rate constant [s-1] 
r reaction rate [mol m-3 s-1] 

IN density of inlet stream [kg m-3] 
OUT density of outlet stream [kg m-3] 
˙ Q  heat transfer to fluid in vessel 

from jacket 
[J s-1] 

hIN specific enthalpy of inlet stream [J kg-1] 
hOUT specific enthalpy of outlet 

stream 
[J kg-1] 

ER  activation energy [J mol-1] 
R universal gas constant [J mol-1 K-1] 
h liquid level in vessel [m] 
T temperature of vessel contents [K] 
TJ temperature of vaporizing 

medium 
[K] 



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 

 
Equations: 
 
Mass  conservation 
 

 
dM

dt
= INFIN OUTFOUT       (1) 

 
...note we are unable to assume  is constant 
 
Species balances for A and B 
 

 
dNA

dt
= FINCA, IN FOUTCA Vr      (2) 

 

 
dNB

dt
= FINCB, IN FOUTCB +Vr      (3) 

 
Energy balance (constant pressure formulation — e.g., it is 
most convenient to use enthalpy in the accumulation 
term) 
 

   
dH

dt
= ˙ Q + FIN IN hIN FOUT OUT hOUT    (4) 

 
Reaction rate 
 
 r = kRe

ER /RTCA         (5) 



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 

 
Relate volume and mass 
 
 V = M           (6) 
 
Relate volume and liquid level 
 
 hA = V           (7) 
 
Relate mole numbers and concentration 
 
 NA = VCA          (8) 
 NB = VCB         (9) 
 
Hydrostatic pressure 
 
 P1 = P0 + gh         (10) 
 
Flow pressure relationship 
 
 FOUT = k P1 P0         (11) 
 
Contents well mixed 
 
 = OUT           (12) 
 T = TOUT           (13) 



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 

 
Define enthalpy holdup (implies temperature of contents) 
 
 H = MhOUT          (14) 
 
Physical Properties (abstract functions) 
 
 = (T)           (15) 
 IN = (TIN )          (16) 
 hIN = h(TIN ,CA, IN ,CB, IN )      (17) 
 hOUT = h(T,CA ,CB )       (18) 
 
Heat transfer 
 
 ˙ Q = UJ AJ (TJ T)         (19) 
 
A commonly asked question is: how is the temperature in 
the reactor determined? In fact, the temperature is 
determined by the simultaneous solution of the complete 
set of implicit relationships above. One can view equation 
(4) as determining the extensive enthalpy H of the vessel 
contents, equation (14) determining the intensive enthalpy 
hOUT, and equation (18) implicitly determining T given hOUT.



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 
 
Degree of freedom analysis: 
 
Total number quantities = 33 
  
Time invariant parameters: 

A, AJ ,UJ ,g,K ,kR , ERR,P0   (=9) 

Natural input set: 

FIN (t ),CA, IN (t),CB, IN (t ),TIN (t ),TJ (t ) (=5) 

Remaining variables: 

M,V ,NA ,NB ,CA ,CB , ,H,FOUT ,TOUT ,

P1,r, IN , OUT , ˙ Q ,hIN ,hOUT ,h,T  (=19) 

 
Equations = 19 
 
 => degrees of freedom satisfied given specification  
  of input set above. 



ENERGY BALANCE — CONSTANT PRESSURE 
EXAMPLE 

Note: in many textbooks it is common practice to include a 
reaction term in the energy balance.  The control volume 
approach (equation (E1) or (E2)) clearly shows that no 
energy crosses the system boundary due to a reaction 
taking place, so a reaction term should not appear in the 
energy balance. 

If a reaction is taking place in an isolated system, the total 
energy of the system remains unchanged, but the 
distribution of energy between "heat of formation" energy 
and "sensible heat" energy changes as the reaction 
progresses (e.g., the temperature will rise or drop if the 
reaction is exothermic or endothermic). 

To reflect this, the constitutive equation defining the 
specific enthalpy (18) must include the contribution of 
both the heat of formation and the sensible heat of each 
species to the total system energy. So, the zero energy 
reference state for equation (18) must be defined as the 
elements making up the chemical species in their standard 
states at some temperature and pressure. 

If heats of formation are not included in equation (18), a 
heat of reaction term must be added to the energy balance, 
and the heat of reaction must be calculated as a function of 
temperature.  

Overall, I consider it clearer and simpler to work with the 
first law and include heats of formation in species 
enthalpies (obviously, none of this is necessary if no 
chemical reactions occur in the system of interest). 



ENERGY BALANCE — EXAMPLE OF SYSTEM IN 
WHICH PRESSURE AND VOLUME VARY 

 
Consider a system in which an inert gas at high pressure is 
employed to charge liquid rapidly to another vessel: 

 
 
System decomposition: system is composed of two 
components: 
 

(a) the storage vessel 
(b) the control valve 

 
... we must develop models for each. 

LIQUID

INERT
   GAS

     TO 
OTHER
VESSEL



MODEL OF CONTROL VALVE 
 

For a more complete discussion see Luyben (1990), pp. 
213-222: 

 
 

Assumptions: 

• fluid density constant 

• irreversible adiabatic expansion 

• rate of accumulation of material and energy in piping 
negligible in comparison to material and energy flows 
=> static (pseudo steady-state) mass and energy 
balances 

• value has linear inherent characteristic 

• non flashing liquid phase. 

• no significant time lag of stem position in response to 
changes in the control signal 

 
Control valve dynamics are particularly important in 
control related studies (see Norsk Hydro example). 

F
IN

TIN
PIN
h IN

FOUT
TOUT
POUT
hOUT



MODEL OF CONTROL VALVE 
 

Variables: 
 
FIN   volumetric flow into valve   [m3s-1] 
CV   valve sizing coefficient    

  density of liquid     [kg m-3] 
w   density of water at reference 

  temperature      [kg m-3] 
x   valve stem position     
FOUT  volumetric flow out of valve  [m3s-1] 
TIN   temperature of inlet stream  [K] 
TOUT  temperature of outlet stream  [K] 
hIN   specific enthalpy of inlet stream [J kg-1] 
hOUT  specific enthalpy of outlet stream [J kg-1] 
PIN   pressure of inlet stream   [N m-2] 
POUT  pressure of inlet stream   [N m-2] 



MODEL OF CONTROL VALVE 
 

Equations: 
 
Mass conservation (static - constant fluid density) 
 
   FIN = FOUT          (V1) 
 
Energy conservation (static - irreversible adiabatic 
expansion) 
 
 FIN hIN = FOUT hOUT        (V2) 
 
Flow pressure relationship (linear characteristic) 
 

 FIN = CVx
PIN POUT

/ w
      (V3) 

 
Physical properties (assume hIN ,TIN  calculated from 
equations in upstream unit) 
 
 hOUT = h(TOUT )        (V4) 



MODEL OF CONTROL VALVE 
 

Degree of freedom analysis: 
 
Total number of quantities = 12 
 
Time invariant parameters: 

CV , , w  (=3) 
 
Natural input set: 

x(t ),TIN (t), hIN (t ),PIN (t ),POUT (t) (=5) 

Remaining variables: 

FIN ,FOUT ,TOUT ,hOUT   (=4) 

Equations = 4 

 
 =>  degrees of freedom satisfied for input set  
 above. 



MODEL OF STORAGE VESSEL 
 

 
 
Control Volumes: control volume for gas phase, and 
control volume for liquid phase. Both will vary in size and 
shape as liquid is ejected. 
 
Assumptions: 

• liquid density constant 
• ideal gas equation of state 
• adiabatic vessel (in time horizon of interest) 
• negligible heat and mass transfer between liquid and 

inert gas (in time horizon of interest) 
• uniform cross sectional area 
• liquid phase well mixed and gas phase well mixed 
• valid in interval 0 < h < hmax  

LIQUID

INERT
   GAS

FOUT

TOUT

POUT

hOUT



MODEL OF STORAGE VESSEL 
 

Variables: 
 
MV   mass of gas in vessel    [kg] 
ML  mass of liquid in vessel   [kg] 

  density of liquid in vessel   [kg m-3] 
FOUT  volumetric flow of liquid from  
  vessel       [m3s-1] 
UV   internal energy of gas phase  [J] 
UL  internal energy of liquid phase  [J] 
P  pressure of gas     [Nm-2] 
VV   volume of gas phase    [m3] 
V L  volume of liquid phase   [m3] 
hOUT  specific enthalpy of outlet stream [J kg-1] 
MW   molecular weight of gas   [kg mol-1] 
R  universal gas constant    [J mol-1k-1] 
TV   temperature of gas    [K] 
h   liquid level in vessel    [m] 
A  cross sectional area of vessel  [m2] 
POUT  pressure of outlet stream   [Nm-2] 
g   gravitational acceleration   [ms-2] 
VTOT  vessel volume     [m3] 
T L   temperature of liquid    [K] 
TOUT  temperature of outlet stream  [K] 
hL  specific enthalpy of liquid phase [J kg-1] 
hV   specific enthalpy of gas phase  [J kg-1] 



MODEL OF STORAGE VESSEL 
 

Equations 
 
Mass balance on gas phase (mass of gas remains constant) 

 
dMV

dt
= 0           (S1) 

Mass balance on liquid phase 

 
dM L

dt
= FOUT         (S2) 

Energy balance on gas phase (neither pressure or volume 
constant) 

 
dUV

dt
= P

dVV

dt
        (S3) 

Energy balance on liquid phase 

 
dU L

dt
= P

dV L

dt
FOUT hOUT      (S4) 

Relate mass and volumes of each phase 

 V L
= ML          (S5) 

Ideal gas equation of state 

 PVV =
MV

MW
RT V         (S6) 



MODEL OF STORAGE VESSEL 
 
Relate liquid volume and liquid level 
 
 hA = V L           (S7) 
 
Hydrostatic pressure 
 
 POUT = P + gh         (S8) 
 
Volume constraint 
 
 VTOT = V L

+VV         (S9) 
 
Well mixed liquid 
 
 TOUT = T L                (S10) 
 
 hOUT = hL               (S11) 
 
Define internal energy holdups (implies temperatures of 
phases) 
 
 UV

+ PVV = MVhV             (S12) 
 UL

+ PV L
= MLhL              (S13) 

 
Physical properties (abstract functions) 
 
 hV = hV (TV ,P)             (S14) 
 hL = hL (T L,P)              (S15) 



MODEL OF STORAGE VESSEL 
 
Degree of freedom analysis: 
 
Total number of quantities = 22 
 
Time invariant parameters: 

,MW,R,A,g,VTOT  (=6) 

Natural input set: 

FOUT (t)  (=1) 

Remaining variables: 

MV ,ML ,UV ,UL,P,VV ,V L,hOUT ,

TV ,T L,h,POUT ,TOUT ,h
L,hV

 (=15) 

 
Equations = 15 
 
 => degrees of freedom satisfied for input set above. 



PUTTING IT ALL TOGETHER — 
FORMULATING A SYSTEM MODEL 

 
We now have  models for each component in our system 
— these must be connected to form a system model. 
 
Create instances of the storage vessel and control valve 
models, and connect the outlet stream of the storage vessel 
to the inlet stream of the control valve. This adds the 
following equations to the system model: 
 

   

Vessel.FOUT = Valve.FIN

Vessel.TOUT = Valve.TIN

Vessel.POUT = Valve.PIN

Vessel.hOUT = Valve.hIN

   (C1-4) 

 
Note the use of a pathname mechanism:  

unit_name.variable_name 

to identify uniquely variables in different models (hence 
the same variable name may be used in many different 
models). 
 
Degree of freedom analysis for system model: 
 
Number of Equations = 23  (V1-4, S1-15, C1-4) 
 
Total number of quantities = 34 
 
Number of time invariant parameters = 9 
 

=> Degrees of freedom = 34 - 9 - 23=2 



PUTTING IT ALL TOGETHER — 
FORMULATING A SYSTEM MODEL 

 
So, what simulation could we specify? 

• values for all the time invariant quantities (geometry, 
physical characteristics of system) 

• specify the pressure of the downstream vessel (
Valve.POUT (t)) and the stem position of the control 
valve (Valve. x(t)) 

=> we can solve the system model for the time variation 
 of all the other quantities — e.g., open the valve and 
 determine the system behaviour as liquid is ejected by 
 the high pressure gas. 
 
Notes: 

(a) although the material flow in this system is 
unidirectional from the storage vessel to the valve 
(assuming Vessel.P > Valve.POUT ), the information 
flow in the model is not:  we specify the downstream 
pressure and calculate the upstream flow rate.  This 
means that the models of the valve and the storage 
vessel must be solved simultaneously — in general, 
the decomposition techniques applied to solve 
steady-state simulations cannot be applied to 
dynamic simulations even when material flow in the 
flowsheet is unidirectional.  

(b) the introduction of the PV work terms in the energy 
balances causes problems with consistent 
initialization of this model (see discussion of "high 
index" problems later on). 



PUTTING IT ALL TOGETHER — 
FORMULATING A SYSTEM MODEL 

 
Exercise: what is the qualitative time variation of the 
temperature of the gas phase if the liquid is ejected rapidly 
from the vessel: 

(a) predicted by the model above 

(b) predicted by a model in which we neglect the PV 
work terms in the energy balances. 

...bearing this qualitative behaviour in mind, and the fact 
that the vessel is constructed from carbon steel: 

(i) what safety concerns would you have about this 
operation if we started it with the gas at room 
temperature? 

(ii) in conducting safety studies, which model above ((a) 
or (b)) would you recommend? 



MOMENTUM BALANCE 
 

It is sometimes necessary to model the velocity (or 
momentum) of the contents of a control volume.  As flows 
can in general be three dimensional, velocity is a vector 
quantity with components corresponding to the velocity 
resolved into the coordinate directions of the chosen 
coordinate system. So, in principle we can formulate a 
momentum balance for each co-ordinate direction (three 
balances). 
 
Applying Newton's Second Law to a control volume, we 
obtain: 

Rate of accumulation

of momentum in the 

ith direction in control

           volume

=

Rate at which

momentum in 

  ith direction 

    flows into

control volume

  Rate at which

  momentum in 

the ith direction

  flows out of 

control volume

kg ms 2 kg ms 2 kg ms 2

+

 Sum of forces

    applied to 

control volume

in ith direction

[N]  [kg ms-2 ]

       

. . . for each direction i in which material is flowing. 
 
Note: momentum is defined as the product of mass and 
velocity. Care should be taken if both the mass and the 
velocity of the control volume are changing with respect 
to time. 



MOMENTUM BALANCE EXAMPLE 
 

Consider the buffer tank open to the atmosphere, but now 
the fluid flows out into a long pipeline: 

 
Control volumes: (a) liquid in tank, (b) liquid in pipeline 
 
Assumptions: 

• same as for original buffer tank example 

• one dimensional plug flow in pipeline and 
incompressible liquid => velocity uniform throughout 
pipeline (macroscopic control volume) 



MOMENTUM BALANCE EXAMPLE 
 

Variables: 
 
 M  mass of fluid in vessel     [kg] 
  density of fluid in vessel    [kg m-3] 
 FIN  volumetric flow of inlet stream   [m3s-1] 
 FOUTvolumetric flow of inlet stream  [m3s-1] 
 AP   cross sectional area of pipeline   [m2] 
 L  length of pipeline      [m] 
 v  velocity of fluid in pipeline (uniform) [ms-1] 
FH  hydraulic force on fluid    [N] 
 FF  frictional force resisting flow   [N] 
 g  gravitational acceleration    [ms-2] 
 h  level of liquid in vessel    [m]  
V  volume of liquid in vessel    [m3] 
 kF  constant related to Fanning friction   
  factor 
 A cross sectional area of vessel   [m2] 



MOMENTUM BALANCE EXAMPLE 

 
Equations: 
 
Mass conservation in tank 
 

 
dM

dt
= FIN FOUT        (1) 

 
. . . mass balance on pipeline unnecessary - incompressible 
liquid in fixed volume (Flow in = Flow out) 
 
Momentum conservation on pipeline - axial direction only 
  

 
d(ApL v)

dt
= FOUTv FOUTv + FH FF  

 

 APL
dv

dt
= FH FF         (2) 

 
Relate velocity and volumetric flow 
 
 APv = FOUT          (3) 
 
Hydraulic force 
 
 FH = AP gh         (4) 
 
Frictional force (proportional to the square of the velocity 
and the length of the pipe — large Reynolds numbers) 
 
 FF = kFLv

2         (5) 



MOMENTUM BALANCE EXAMPLE 

 
Relate volume and mass 
 
 V = M           (6) 
 
Relate volume and liquid level 
 
 hA = V           (7) 
 
Degree of freedom analysis: 
 
Total number of quantities = 14 
 
Time invariant parameters: 

,Ap ,L,g, kF , A (=6) 

Natural input set: 

FIN (t) (=1) 

Remaining variables: 

M,FOUT ,v,FH ,FF ,h,V   (=7) 

Equations = 7 
 

=> degrees of freedom satisfied 



MULTI-PHASE SYSTEMS 
 

Many systems encountered in chemical processes can be 
abstracted as multiple phases that exchange material and 
energy, for example: 
 

  System boundary

PHASE 2

PHASE 1

PHASE 3

MASS
FLUX

ENERGY FLUX

MASS
FLUX

ENERGY
FLUX

MASS
FLUX

ENERGY FLUX

 
 
It is normally assumed that intensive properties inside 
each phase are uniform (so macroscopic balances can be 
performed on each phase). 
 
Together, the phases form a simple thermodynamic 
system that may be constrained at a known volume or 
pressure. 



MULTI-PHASE SYSTEMS 
 

Clearly there are two assumptions we can make about the 
conditions in this system: 

(a) the phases are in phase equilibrium with each other 
— leading to "equilibrium" models. 

(b) the phases are not in phase equilibrium — leading 
to "non equilibrium" models. 

 
. . . we will consider both cases. 



EQUILIBRIUM SYSTEMS 
 

When modelling a system composed of multiple phases at 
phase equilibrium, the following general comments can be 
made: 

(a) typically, we are assuming that phase equilibrium is 
reached on a much faster time scale than the other 
transients of interest. 

(b) in general, the conditions for phase equilibrium for 
multi-component (NC species) simple system 
composed of  phases can be expressed as: 

 
T1 = T2 =.. ..= T

P1 = P2 =.. ..= P

μi
1 = μi

2 =. ...= μi i = 1...NC

 

 where: 

  T j  = temperature in phase j 
  Pj  = pressure in phase j 
  μi

j  = chemical potential of species i in phase j 

 In other words, the condition of phase equilibrium 
enforces ( 1)(NC + 2) equations in the system 
model. 

(c) when formulating species and energy balances 
consider a control volume encompassing all the 
phases in equilibrium.  The reasons for this relate to 
the index of the resulting model (see Ponton and 
Gawthrop (1991) for a full explanation), but the 
consequence is that we cannot calculate the mass 
and energy fluxes between the phases explicitly. 



EQUILIBRIUM SYSTEM — FLASH DRUM 
 

Consider a model of a flash drum in which it is assumed 
there are vapour and liquid phases in phase equilibrium 
with each other at all times: 
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Control volume: the entire vessel contents (e.g. 
encompassing both phases). Phases constrained to occupy 
volume of the vessel. 



EQUILIBRIUM SYSTEM — FLASH DRUM 
 

Assumptions: 

• phases at phase equilibrium 

• individual phases well mixed 

• vessel adiabatic (no particular need for this — just 
makes model development easier) 

• both phases present at all times — e.g. model valid 
while TBUBBLE T TDEW  

• bulk flows into and out of vessel specified or 
determined by upstream and downstream models. 

 
Variables: 
 
Ni  number of moles of species i in vessel  [mol] 
F  total molar flow to vessel     [mol s-1] 
L  total liquid flow from vessel    [mol s-1] 
V  total vapour flow from vessel    [mol s-1] 
zi  mole fraction of component i in feed 
 stream 
xi  mole fraction of component i in liquid 
 phase 
yi  mole fraction of component i in vapour  
 phase 
U  internal energy of vessel contents   [J] 
hIN  molar enthalpy of feed stream    [J mol-1] 
hV  molar enthalpy of vapour phase   [J mol-1] 
hL  molar enthalpy of liquid phase    [J mol-1] 
NV total number of moles in vapour phase  [mol] 



EQUILIBRIUM SYSTEM — FLASH DRUM 
 

N L  total number of moles in liquid phase [mol] 
P system pressure (uniform)   [Nm-2] 
T  system temperature (uniform)  [K] 
VTOT  vessel volume      [m3] 
vV  molar volume of vapour phase  [m3mol-1] 
vL molar volume of liquid phase  [m3mol-1] 
PIN  pressure of inlet stream    [Nm-2] 
TIN  temperature of inlet stream   [K] 



EQUILIBRIUM SYSTEM — FLASH DRUM 
 
Equations: 
 
Species balances 
 

 
dNi

dt
= Fzi Lxi Vyi i = 1...NC     (1) 

 
Energy balance (constant volume formulation) 
 

 
dU

dt
= FhIN VhV LhL       (2) 

 
Phase equilibrium (the temperature and pressures of each 
phase have already been eliminated) can be expressed in 
several different ways (each of which is a specialization of 
the general reactions given above): 
 
(a) single chemical species 
 
 P = PSAT(T) 
 
(b) ideal-gas and ideal-solution in liquid phase  
 (Raoult's Law) 
 
 yiP = xiPi

SAT (T ) i =1...NC 
 
 Note this reduces to the relationship above for a 
 single chemical species. 



EQUILIBRIUM SYSTEM — FLASH DRUM 
 
(c) for low pressure gases, non-ideal liquid solutions: 
 
 yiP = i (T, x)xiPi

SAT (T ) i = 1...NC  
 
(d) vapour-liquid equilibrium distribution coefficients 
 (k-values): 
  
 yi = ki (T ,P, x, y)xi i =1...NC    (3) 
 
 ...where the K-values are calculated by any suitable 
 VLE model. 
 
Definition of molar holdups 
 
 Ni = N

Vyi + N
Lxi i =1...NC    (4) 

 
Definition of energy holdup 
 
 U + PVTOT = NVhV + NLhL       (5) 
 
Summation of mole fractions (implicitly define N L and 
NV ) 
 

 xi =1
i=1

NC
          (6) 

 

 yi = 1
i=1

NC
          (7) 



EQUILIBRIUM SYSTEM — FLASH DRUM 
 
Volume constraint 
 
 VTOT = NVvV + N LvL       (8) 
 
Physical Properties (abstract functions) 
 
 hV = hV (T,P,y)         (9) 
 
 hL = hL (T ,P,x )        (10) 
 
 vV = vV (T,P, y)        (11) 
 
 vL = vL (T,P, x)        (12) 
 
Degree of freedom analysis: 
 
Total number of quantities = 4NC + 16 

Time invariant parameters  

VTOT  (= 1) 

Natural input set: 

F(t), zi(t),TIN (t),PIN (t ),hIN (t),V (t),L(t ) (= NC+16) 

Remaining variables: 

Ni , xi, yi,U,h
V ,hL,NV ,N L,P,T,vV ,vL   (= 3NC+9) 

Equations:  3NC+9 

=> degrees of freedom satisfied for this input set.



EQUILIBRIUM SYSTEM — FLASH DRUM 
 
Exercise: derive an alternative model for the equilibrium 
flash vessel in which separate species and energy balances 
are written for both liquid and vapour phases. With 
reference to the discussion of the index of differential-
algebraic equations (see later): 

(a) what are the mathematical properties of this model? 

(b) what additional information does this model 
calculate? 

(c) from a practical point of view, which of the two 
models is appropriate for implementation in 
SpeedUp? 

 
Hint: it is useful to introduce variables in the balance 
equations representing the flow of energy and each 
chemical species between the two phases. 



EQUILIBRIUM SYSTEM — DISTILLATION TRAY 
 

Consider the following abstraction of a distillation tower:
 

 



EQUILIBRIUM SYSTEM — DISTILLATION TRAY 
 
Each stage has the following regions of material and 
energy accumulation: 
 

LIQUID
IN
DOWN
COMER

VAPOUR ABOVE
FROTH

FROTH ON PLATE

VAPOUR FLUX

L

Vi,p

i,p

L i,p+1

LIQUID
FLUX

Vi,p-1  
 
. . . having identified this decomposition, we can focus on 
modelling each region in isolation. 
 
Here, we will derive a model for the froth on the plate, 
which is presumably designed to approach phase 
equilibrium as closely as possible. 
 
Note trays are numbered from the top of the column 
downwards. 



EQUILIBRIUM SYSTEM — DISTILLATION TRAY 
 
Froth on plate: 

LIQUID
PHASE

VAPOUR
PHASE

L i,p i,p+1

MASS
FLUX

ENERGY
FLUX

LD i,p V i,p

V
 

Control volume: the froth on the plate (e.g., encompassing 
both phases) 
 
Assumptions: 

• phases at phase equilibrium 

• individual phases well mixed 

• adiabatic 

• both phases present at all times — e.g., model valid 
while TBUBBLE T TDEW  

• number of moles in vapour phase negligible in 
comparison to liquid phase 

• PV work terms in energy balance negligible 



EQUILIBRIUM SYSTEM — DISTILLATION TRAY 
 
Variables (i= species number, p = stage number): 
 
Np  number of moles in froth on stage p  [mol] 

Lp
D   total molar flow of liquid from  

  down comer of stage p    [mol s-1] 
Vp+1 total molar flow of vapour from  
  stage below       [mol s-1] 
Lp  total molar flow of liquid leaving froth [mol s-1] 
Vp  total molar flow of vapour leaving froth [mol s-1] 
xi, p  mole fraction of component i in  
  liquid phase of froth 
yi,p  mole fraction of component i in 
  vapour phase of froth 
xi, p
D   mole fraction of component i in 

  down comer 
yi,p+1 mole fraction of component i in 
  vapour rising from stage below 
Up  internal energy of froth    [J] 

hp
D   molar enthalpy of liquid in 

  down comer       [J mol-1] 
hp+1
V   molar enthalpy of vapour rising 

  from stage below      [J mol-1] 
hp
L  molar enthalpy of liquid phase 

  of froth        [J mol-1]



EQUILIBRIUM SYSTEM — DISTILLATION TRAY 
 

hp
V   molar enthalpy of vapour phase of 

 froth       [J mol-1] 
Tp  temperature of froth    [K] 
Pp   pressure of froth     [Nm-2] 

vp
L  molar volume of liquid in froth  [m3mol-1] 
Pp+1 pressure on stage below   [Nm-2] 



EQUILIBRIUM SYSTEM — DISTILLATION TRAY 
 

Equations: 
 
Total mole balance 
 

 
dNp

dt
= Lp

D
+Vp+1 Lp Vp       (1) 

 
NC-1 species balances 
 

 

d (xi , pNp )

dt
= xi, p

dNp

dt
+ Np

dxi ,p
dt

=

Lp
Dxi , p

D
+Vp+1yi, p+1 Lpxi, p V pyi, p

  (2) 

i = 1...NC 1 
 
Energy balance (both pressure and volume of froth can 
vary — see assumptions above) 
 

 
dUp

dt
= Lp

Dhp
D
+V p+1hp+1

V Lphp
L V php

V    (3) 

 
Phase equilibrium 
 
 yi ,p = ki , p (T p ,Pp , x p , y p )xi, p i =1...NC  (4) 
 
Definition of energy holdup 
 
 Up + PpNpvp

L
= Nphp

L        (5) 



EQUILIBRIUM SYSTEM — DISTILLATION TRAY 

 
Summation of mole fractions 
 

 xi , p = 1
i=1

NC
         (6) 

 

 yi, p = 1
i=1

NC
         (7) 

 
Flow over weir (e.g., Francis weir formula) 
 
 Lp = f (N p ,vp

L )        (8) 
 
Relate vapour flow into plate to pressure drop across plate 
(e.g., hydrostatic head and dry plate losses) 
 
 Vp+1 = f (Pp ,Pp+1,Np )       (9) 
 
Physical properties 
 
 hp

V
= hV (Tp,Pp , yp )       (10) 

 
 hp

L
= hL (Tp ,Pp, x p )       (11) 

 
 vp

L
= vL (Tp ,Pp x p )       (12) 

 
See Pantelides et. al. (1988) for a more thorough discussion 
of the properties of this model. 



NON EQUILIBRIUM SYSTEMS 
 

(a) still a developing area - active research at the moment 

(b) undoubtedly more appropriate for dynamic models; 
in many cases it is not reasonable to assume that 
phase equilibrium is reached at a much faster rate 
than the time constants of interest. 

(c) when deriving a model for a simple system: 

(i) in a simple system we can assume the pressures 
equilibrate: 

P1 = P2 =....P  

 i.e. ( -1) equations. 

(ii) derive separate species balances for each species 
in each phase — include species flux terms to the 
other phases 

(iii) derive separate energy balances for each phase — 
include energy flux terms to the other phases. 

(d) species and energy fluxes between each phase are 
determined by multi-component heat and mass 
transfer relationships: 

(i) these are extremely difficult to generalize — must 
be derived on a case by case basis considering 
geometry, flow patterns, etc. 

(ii) usually dependent on empirically derived 
correlations which may only be valid in a very 
small operating region — e.g., at or near steady-
state.  If the dynamics take the system outside this 
region,  model assumptions are no longer valid! 



NON EQUILIBRIUM SYSTEMS 
 

(e) the models get larger and more complicated, and 
more detailed information concerning geometry, 
internal features of the vessel, etc., must be 
considered during model development. 

. . . research continues. 



NON EQUILIBRIUM SYSTEM - FLASH DRUM 
 
Consider a model of a flash drum in which it cannot be 
assumed that the vapour and liquid phases are in phase 
equilibrium: 
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The vessel can be abstracted as two well-mixed phases 
constrained within a fixed volume. Material and energy 
fluxes exist between the phases: 

 



NON EQUILIBRIUM SYSTEM - FLASH DRUM 
 

Control volumes: control volume for gas phase and 
control volume for liquid phase. Both will vary in size and 
shape as the liquid level rises and falls. 
 
Assumptions: 

• individual phases are well-mixed. 

• vessel adiabatic 

• liquid feed stream well-mixed with the liquid phase 

• both phases present at all times 

• bulk flows into and out of vessel specified by user or 
determined by upstream and downstream models 

 
These assumptions are the simplest assumptions that can 
be made. It is interesting to note that to assume anything 
else would require a detailed knowledge of the internal 
topology of the vessel and physico-chemical 
discontinuities (e.g. the level of the feed pipe relative to 
that of the liquid level, the area of heating coil/jacket 
immersed in the liquid phase, etc.). 



NON EQUILIBRIUM SYSTEM - FLASH DRUM 
 
Variables: 
 
Ni
L  number of moles of component i  

  in liquid phase       [mol] 
Ni
V   number of moles of component i 

  in vapour phase     [mol] 
F   total molar flow to vessel   [mol s-1] 
zi  mole fraction of component i 
  in feed stream 
A  area of phase boundary   [m2] 
i   molar flux of component i from 

  liquid to vapour phase   [mol m-2s-1] 
L   total liquid flow from vessel  [mol s-1] 
xi   mole fraction of component i 
  in liquid phase      
V   total vapour flow from vessel  [mol s-1] 
yi   mole fraction of component i 
  in vapour phase      
HL   enthalpy of liquid phase   [J] 
hIN   molar enthalpy of feed stream  [J mol-1] 
N L  total number of moles in liquid  [mol] 
  phase  
vL   molar volume of liquid phase  [m3 mol-1] 
P  pressure of vessel contents   [Nm-2] 
H   energy flux from liquid to vapour  

  phase (heat + material flow)  [Jm-2s-1] 
hL  molar enthalpy of liquid   [J mol-1] 
HV   enthalpy of vapour phase   [J] 



NON EQUILIBRIUM SYSTEM - FLASH DRUM 

NV   total number of moles in vapour [mol] 
 phase 

VV   molar volume of vapour phase  [J mol-1] 
hV   molar enthalpy of vapour phase [J mol-1] 
xi
*  mole fraction of component i  

 in liquid phase at phase boundary  
yi
*  mole fraction of component i  

 in vapour phase at phase boundary 
ki
L   mass transfer coefficient for  

 component i in the liquid phase [mol m-2s-1] 
ki
V   mass transfer coefficient for 

 component i in the vapour phase [mol m-2s-1] 
kH
L   heat transfer coefficient in the 

 liquid phase                  [J m-2k-1s-1] 
kH
V   heat transfer coefficient in the 

 vapour phase     [J m-2k-1s-1] 
T L  temperature of liquid phase  [K] 
TV   temperature of vapour phase  [K] 
T *  temperature at phase boundary  [K] 
VTOT  vessel volume     [m3] 



NON EQUILIBRIUM SYSTEM - FLASH DRUM 
 

Equations: 
 
Species balance for each species in the liquid phase: 
 

 
dNi

L

dt
= Fzi A i Lxi    i = 1…NC  (1) 

 
Species balance for each species in the vapour phase: 
 

 
dNi

V

dt
= A i Vyi     i = 1…NC  (2) 

 
Energy balance for the liquid phase (pressure and volume 
can vary) 
 

 
dH L

dt
= FhIN + N LvL

dP

dt
A H LhL    (3) 

 
Energy balance for the vapour phase: 
 

 
dHV

dt
= A H

+ NVvV
dP

dt
VhV     (4) 



NON EQUILIBRIUM SYSTEM - FLASH DRUM 
 
Interphase mass and heat transfer relations: 
 
 i = ki

L xi xi
*( )     i = 1…NC  (5) 

 
 i = ki

V yi
* yi( )     i = 1…NC  (6) 

 

 H= kH
L (TL T*) + hL i

i=1

NC
     (7) 

 

 H= kH
V (T* TV ) + hV i

i=1

NC
     (8) 

 
Assume equilibrium at the phase boundary: 
 
 yi

*
= Ki

* T*,P, x*, y*( )xi*    i = 1…NC  (9) 
 
Definitions of molar holdups 
 
 Ni

L
= NLxi      i = 1…NC  (10) 

 
 Ni

V
= NVyi       i = 1…NC  (11) 

 
Definitions of enthalpy holdups 
 
 HL

= N LhL        (12) 
 
 HV

= NVhV         (13) 



NON EQUILIBRIUM SYSTEM - FLASH DRUM 
 

Volume constraint: 
 
 VTOT = NVvV + N LvL      (14) 
 
Summation of mole fractions 
 

 xi
i=1

NC
=1         (15) 

 

 yi
i=1

NC
= 1         (16) 

 
Physical Properties (abstract functions) 
 
 
 vL = vL T L,P, x( )       (17) 
 
 vV = vV TV ,P, y( )       (18) 
 
 hL = hL T L,P, x( )       (19) 
 
 hV = hV TV ,P, y( )       (20) 



DYNAMIC MODELLING — CONCLUSIONS 
 

Dynamic modelling is a difficult task that must be 
addressed on a case by case basis: 

(i) understand the system under investigation — what 
are details of the internals of the system: 

(a) geometry 

(b) internal topology 

(c) phases present 

(d) when behaviour changes — e.g., buffer tank 
overflows. 

(ii) what are the contributions to the dynamics — 
control volume analysis:  mass, energy, and/or 
momentum dynamics. 

(iii) apply chemical engineering principles to derive a 
complete model. 

(iv) develop and maintain full model documentation — 
never extrapolate model beyond region in which 
assumptions are valid. 



DISTRIBUTED SYSTEMS 
 

All the above discussion is based on the premise that it is reasonable to assume that the 
macroscopic control volumes employed to derive the model equations are well mixed. 
Whether or not this assumption is reasonable, our options are pretty limited by the 
capabilities of current process modelling technology. In this section we will briefly 
discuss the current options when the above assumption breaks down. 
 
Example: isothermal plug flow tubular reactor with axial dispersion: 
 

z

CA
IN

CB
IN

0 L

2A B

CA
OUT

CB
OUT

 
Equations: species balances derived from microscopic control volume analysis: 
 

CA

t
= D

2CA

z2
v
CA

z
2kCA

2

CB

t
= D

2CB

z2
v
CB

dz
+ kCA

2

 

 
Note that these are now partial differential equations (PDEs) rather than ordinary 
differential equations, with the following independent variables: 
 

• time 
• axial position along the reactor (in the domain   z [O,L] ). 

 
The concentrations of the species in the reactor are now a function of both time and 
spatial position in the above domain (i.e.,   CA(z,t)). We need to solve for these functions 
(or fields). 
 
Note that this problem is somewhat more difficult than one in reaction engineering 
where we would explicitly define the boundary conditions as functions and solve the 
reactor model in isolation. Here, we do not know the boundary conditions explicitly 
because the inlet and outlet streams are coupled to upstream and downstream units, 
and the boundary conditions are determined implicitly by numerical solution of these 
other units. As the solution to the reactor model (at least) influences the downstream 
boundary condition (and the upstream one if there is a recycle stream), all the units 
must be solved simultaneously. This gives rise to a process model composed of a mixed 
system of partial differential, ordinary differential, and algebraic equations (PDAEs). 
Further, the PDEs in this system may be distributed on multiple spatial domains, each 



corresponding to the spatial dimensions of different vessels in the flowsheet. Finally, as 
noted above, the boundary conditions of these multiple domains are coupled. 
 
Current technology will not accept a PDE model in the form above. One approach is to 
apply what is called the Method of Lines. Here, the PDE model is reduced to a system of 
ODEs by discretization of the spatial domain. The system of ODEs is then coded into 
the simulation package and the overall process model is solved with general purpose 
ODE/DAE solvers. 
 
In the example above, discretization of the spatial domain yields a set of ODEs at a 
series of interior (or mesh) points in the domain. At these points, the spatial derivatives 
are replaced by a discrete approximation, for example a centered differentiation 
formula on a regular mesh: 
 

    

CA ,i

z

CA,i+1 CA ,i 1

2h
2CA ,i

z 2

CA ,i+1 2CA,i + CA,i 1

h2

   

 
where the subscript i denotes the spatial mesh point, and h the distance between mesh 
points. 
 
Substituting these into the PDE at each mesh point yields the system of ODEs: 
 

      

dCA ,i

dt
= D

(CA ,i+1 2CA,i + CA ,i 1 )
h2 v

(CA ,i+1 CA,i 1 )
2h

kCA ,i
2

i = 1…Nmesh
 

 
Note that in the discretized model we solve for the time variation of the concentrations 
at a series of fixed spatial positions (i.e.,   CA, i(t)). The above equations have to be 
tweaked to take into account the boundary conditions. 
 
The gPROMS simulator (Barton, 1992; Oh, 1995) can now perform this discretization on 
a fixed spatial mesh automatically. Note that only the derivation of the ODEs is 
automated, so all the observations below also apply to gPROMS. 
 
However, this approach should be applied with extreme caution (i.e., these notes are 
not sufficient, study this in more detail). Two important issues are: 
 

• an appropriate discretization formula is very dependent on the physics of the 
system (e.g., the centered difference formula is appropriate for systems with 
dispersion, but not for purely convective systems). 

• the spatial discretization introduces error into the solution. With a fixed regular 
mesh, the number of mesh points must be sufficiently large so that this 
discretization error is below the desired tolerance during all transients of interest. 
This can lead to very big systems of ODEs. 

 
The above approach is called the finite difference method. There also two widely used 
alternatives: finite element methods and spectral methods. Research continues . . . 
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ORDINARY DIFFERENTIAL EQUATIONS 
DEFINITIONS 

 
We will be concerned with explicit first-order systems of 
ordinary differential equations (ODEs) of the form: 
 

 

dx1

dt
= ˙ x 1 = f1(x1 ,x2 ...., xn ,t)

dx2

dt
= ˙ x 2 = f2 (x1 ,x2 ...., xn ,t)

dxn

dt
= ˙ x n = fn(x1 , x2 ...., xn ,t)

 

 
or in vector notation: 
 

 
    

dx
dt

= ˙ x = f(x(t),t)       (ODE) 

 
Note: in general,   f  is a   n vector of nonlinear functions 
involving the dependent (or state) variables     x(t) and the 
independent variable   t (which we will always assume to be 
time).   
 
First-order refers to the fact that only first derivatives of the 
independent variables appear. Explicit refers to the fact 
that each time derivative is expressed individually as an 
explicit function of the variables (therefore the Jacobian 
with respect to     ̇ x  is the identity matrix I ).   



ORDINARY DIFFERENTIAL EQUATIONS 
DEFINITIONS 

 
The more general implicit form is defined in terms of 
general functional relationships between     ̇ x ,   x , and   t, e.g.: 
 
         F( ˙ x ,x,t) = 0    (IODE) 
 
with the condition that the Jacobian (matrix of partial 
derivatives) of these functions with respect to ˙ x  is 
nonsingular everywhere in the time horizon of interest (to 
distinguish from a system of differential-algebraic equations  
— see later). 
 
It is important to realize that system (ODE) is coupled — 
each function can in general depend on all the dependent 
variables.  The consequence of this coupling is that the 
equations cannot be solved independently and thus must 
be solved simultaneously. 
 
(ODE) is also sometimes referred to as a nonlinear state-
space description of a dynamic system. 



ORDINARY DIFFERENTIAL EQUATIONS 
DEFINITIONS 

 
 
The general solution x(t) of the first order system (ODE): 

• involves, in general,   n arbitrary constants. 

• these constants can be fixed by imposing   n side 
conditions => a particular solution satisfying these side 
conditions. 

• if these side conditions fix the values for all the 
elements of   x  at the same initial point in time, the 
combination of the system (ODE) and the side 
conditions constitutes an initial value problem  (IVP): 

 

     

x = f (x,t)

x(t0 ) = x0
t [t0 ,t f ]

    (IVP) 

 
where the notation     x(a) denotes the vector of 
variables at time   a, t0 is used to denote the initial time, 

  tf  the final time. Note the distinction between system 
and problem. 

 
 
Dynamic simulation of chemical processes gives rise to 

initial value problems. 



ORDINARY DIFFERENTIAL EQUATIONS 
DEFINITIONS 

 
In system (ODE), if   f  is independent of   t, the problem 
(and the system) are said to be autonomous and non-
autonomous otherwise.  A non-autonomous system can be 
converted to an autonomous system by defining a new 
variable: 
 

    xn+1 = t ˙ x n+1 = 1 
 
and the autonomous system: 
 

    ̇  X = F(X) 
 
where, 

 
      

X = (x1 ,x2 ,…, xn xn+1 )T

F = ( f1 , f2 ,… , fn 1)T
 

so, there is no loss of generality in assuming a system is 
autonomous. 



ORDINARY DIFFERENTIAL EQUATIONS 
DEFINITIONS 

 
Higher order systems (e.g., those involving the second and 
higher order derivatives of the dependent variables with 
respect to the independent variable) can always be 
transformed into a (larger) equivalent first order system. 
 
Example:  consider the second order system: 
 

  
˙ ̇ x 1 = f1(x1, x2 )

˙ x 2 = f2 (x1, x2 )
 

define a new variable x3 = ˙ x 1: 
 
 => ˙ x 3 = ˙ ̇ x 1 
 
and this leads to the first order autonomous system: 
 

 => 

˙ x 1 = x3
˙ x 2 = f2 (x1, x2 )

˙ x 3 = f1(x1, x2 )

 

 
So, there is again no loss of generality in assuming a 
system is first-order. 



ORDINARY DIFFERENTIAL EQUATIONS 
DEFINITIONS 

 
The first-order system (ODE) is said to be linear (or linear 
time varying) if it takes the form: 

 
x = A(t)x + g(t)  

 
Further if the n n  coefficient matrix A is independent of t
, the system is said to be linear with constant coefficients (or 
linear time invariant): 
 
     x = A(t)x + g(t)     (LTI) 
 
A closed form general solution can be obtained for the 
autonomous linear constant coefficient system:1 
 

 
x = Ax  

 
expressed as: 
 

x(t) = ci exp( it
i=1

n
)si  

 
where i  is an eigenvalue of A, si is the corresponding 
eigenvector, and ci  are the arbitrary constants that 
characterize the general solution (see above).  The ci  can  
be calculated for a particular solution given values for x  at 
some initial time (an initial value problem). 

                                                
1 the result is stated assuming A  has n  distinct eigenvalues - the Jordan form defines 
the solution when this does not hold 



ORDINARY DIFFERENTIAL EQUATIONS 
DEFINITIONS 

 
System (LTI) is sometimes written: 
 

˙ x = Ax + Bu(t) 
 
where u(t) are the known inputs to the systems. This form, 
which is popular with control engineers, is called a linear 
time invariant system. 
 
Linear constant coefficient systems are the only general 
class of systems for which analytical solutions can always 
be found.  Process simulation problems give rise to 
nonlinear systems, so we must resort to numerical 
solution of (IVP) (numerical integration).   
 
Numerical methods generate approximations to particular 
solutions satisfying given initial conditions. Obviously, it 
is desirable if we guarantee that the results of a numerical 
method are within a specified numerical tolerance of the 
"true" particular solution => guarantees an accuracy of the 
dynamic simulation results (e.g., that they are a solution of 
the model equations — this does not guarantee that the 
model itself is an adequate representation of the true 
system behaviour). 



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
DEFINITIONS 

 
A generalization of the explicit linear time invariant ODE 
(LTI) can be expressed as: 
 

          A ˙ x +Bx = g(t)    (LTIDAE) 
 
If the matrix   A is nonsingular, then this system reduces 
trivially to an ODE: 
 

    ̇ x = A 1 Bx + A 1 g(t) =Cx + h(t) 
 
on the other hand, is   A singular (i.e.,     A

1
  does not exist) 

then (LTIDAE) is known as a linear time invariant 
differential-algebraic equation (or DAE).  
 
Example: if   A has a row of all zeroes (making it singular), 
then that row of (LTIDAE) will amount to a completely 
algebraic relationship between the state variables. This is 
the origin of the term differential-algebraic equation. 
 
See (Campbell, 1980; Campbell, 1982; Brenan et al., 1996) 
for detailed discussions of the theory of DAEs. 



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
DEFINITIONS 

 
Necessary and sufficient conditions for solvability of 
(LTIDAE) are that the family of matrices   A +B   defined 
by the scalar variable  is nonsingular for some value of 
  R  (the family  A +B  is known as a matrix pencil). Such 
a matrix pencil is said to be regular. 
 
Example: if   B is nonsingular, then the matrix pencil is 
regular (i.e., at least for = 0,   A +B   is nonsingular). 
 
If the matrix pencil   A +B  is regular then there exist 
nonsingular matrices P  and Q such that: 

 

PAQ =

I 0

0 N
 and PBQ =

C 0

0 I  

 
where   N  is a nilpotent matrix to degree  (i.e.,     N

1 0 
and     N = 0). 
 
Note that  is equivalent to the differential index (see 
definition below) of (LTIDAE). 
 
This property can be used to construct an analytic solution 
for (LTIDAE).  



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
DEFINITIONS 

 
Applying the co-ordinate transformations defined by   P  
and 

  
Q to (LTIDAE) (i.e., multiply through by   P  and define 

  
x = Qy) combined with the above identities yields: 
 

          A ˙ x +Bx = g(t)    (LTIDAE) 
 
      

PAQ ˙ y + PBQy = Pg(t)    
 

˙ y 
1
+Cy

1
= h1(t)

N ˙ y 
2
+ y

2
= h2 (t )

 

 
The first block row of this transformed and uncoupled 
system is just a linear time invariant ODE for which the 
analytic solution is already known. The analytic solution 
of the second block row can be constructed as follows: 
 

 N
d
dt

+ I
 

 

 

 
y
2
(t) = h2 (t) 

 
and using a famous identity yields: 
 

    
y

2
(t) = ( 1)i N

d
dt

 

 

 

 i=0

i

h2 (t) = ( 1)i N i

i=0

1 d(i ) h2

dt( i) (t) 

 
the infinite series being truncated by the nilpotency of   N . 



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
DEFINITIONS 

 
Note that solvability in general will also require sufficient 
differentiability of the right hand sides (or forcing 
functions). This result also implies that the differential 
index must be  2 for time derivatives of the forcing 
functions to appear in the solution. 



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
EXAMPLES 

 
Example 1:  

 
 

    

˙ x 1 + x2 = g1(t)

x2 = g2 (t)
 

 
Hence: 

A =
1 0
0 0

B =
0 1
0 1

P =
1 1
0 1

Q =
1 0
0 1

 

 

PAQ =
1 1
0 1

1 0
0 0

=
1 0
0 0  

 

PBQ =
1 1
0 1

0 1
0 1

=
0 0
0 1  

 
=>    N = 0[ ] C = 0[ ] 



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
EXAMPLES 

 
Hence the system is nilpotent to degree 1 (index 1). Only 
the zero matrix is nilpotent to degree 1, so index 1 system 
does not involve time derivatives of the inputs. 
 
Analytic solution to Example 1: 

 
 

1 1
0 1

g1
g2

=
g1 g2
g2

 

 
x1 = g1(t) g2 (t)

x2 = g2 (t)
 

 
Which is evident from inspection of the original system. 



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
EXAMPLES 

 
Example 2: 

 

    

˙ x 1 + x2 = g1(t)

x1 = g2(t)
 

 
Hence: 

A =
1 0
0 0

B =
0 1
1 0

P =
1 0
0 1

Q =
0 1
1 0

 

 

PAQ =
1 0
0 0

0 1
1 0

=
0 1
0 0  

PBQ =
0 1
1 0

0 1
1 0

=
1 0
0 1  

 

N =
0 1
0 0  



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
EXAMPLES 

 

N 2
=

0 1
0 0

0 1
0 0

=
0 0
0 0  

 
Hence the system is nilpotent to degree 2 (index 2). 
 
Analytic solution to Example 2: 
 

x1
x2

=
0 1
1 0

y1
y2  

 

x1
x2

=
y2
y1

 

 
y1
y2

=
g1
g2

0 1
0 0

g1
g2

 

 
x1 = g2(t)

x2 = g1(t)  g 2(t)
 

 
Which is again evident from inspection of the original 
system. 



DIFFERENTIAL-ALGEBRAIC EQUATIONS 
DEFINITIONS 

 
The analytical solution above reveals several interesting 
properties of DAEs: 

• the solution can involve the first and higher order time 
derivatives of the forcing functions. 

• not all initial conditions will satisfy the solution (i.e., 

    y2
(t0 ) cannot be chosen arbitrarily). 

• the solution must satisfy explicit or implicit algebraic 
constraints. 

 
These properties will also be revealed by our later, more 
physically based, analysis. 
 
As in the ODE case, linear time varying and nonlinear 
DAEs are elusive to general analytical results, so we must 
resort to numerical solutions. 



DYNAMIC SIMULATION 
 

A dynamic model (or system of equations) encapsulates a 
representation of the time dependent behaviour of a 
system in the real world. 
 
Dynamic simulation is one2 activity (or calculation) which 
utilizes dynamic models. Specifically, to formulate a 
dynamic simulation we must: 

• specify the model representing the system 

• the initial state of the system 

• the time variation of the inputs to the system 

 mathematically an initial value problem that can be 
 solved numerically to determine the time variation of  

 the system from the initial state to some final state. 
 
. . . this clarifies the distinction between a representation of 
the system (the model) and the calculations it is used for 
(the simulation).  Obviously the same model may be used 
for many different simulations (different scenarios). 
 

                                                
2 but by no means the only calculation. 



DYNAMIC SIMULATION 
 

More formally, we can view a dynamic simulation as an 
experiment with a model. 
 
An experiment is composed of three elements: 

• the object (or artifact, system) under investigation - in 
this case we use a model to represent the behaviour 
rather than experimenting with a physical system. 

• the experimental frame - e.g., the circumstances under 
which the system is to be investigated. 

• the data generated by execution of the experiment. 

Obviously, the experimental frame is unique to each 
experiment and a dynamic simulation experiment will 
require specific categories of information in order to be 
fully defined. 
 
This second section of the notes is concerned with 
specification and solution of dynamic simulation 
experiments: 

• software tools that support specification and solution 
of dynamic simulation experiments. 

• specifying the experimental frame: initial conditions 
and input trajectories. 

• checking if the experiment is well posed. 

• numerical solution of the experiment. 



DYNAMIC SIMULATION AS AN EXPERIMENT 
 
 

 
 
 
. . . the most useful model is one that can be disengaged 
from the details of individual experiments (it can be  
reused). 



SETTING UP THE DYNAMIC SIMULATION 
EXPERIMENT - EXAMPLE 

 
Let us consider the model of a non isothermal CSTR from 
section I and identify the information required to define 
an experimental frame: 
 
(a) assign values to all the time invariant (constant) 

parameters: 
 

 A,AJ ,UJ ,g,K,KR , ER, R,P0  
 
(b) select a subset of the variables to be designated as 

inputs (disturbances, controls), e.g.: 
 

FIN (t),CA, IN (t),CB, IN (t ),TIN (t),TJ (t)  
 
 and specify their time variation explicitly, e.g.: 

 

FIN

t

TJ

t  
 

Denote a variable that is a known function of time by 
FIN (t)  - this function is not necessarily continuous or 
differentiable (e.g. step change above). 



SETTING UP THE DYNAMIC SIMULATION 
EXPERIMENT - EXAMPLE 

 
Notes: 

• the selection of a set of input variables is analogous 
to the selection of the degrees of freedom in a 
steady-state simulation. 

• once we have selected the input variables, we should 
have a fully determined set of differential equations 
(number of unknown variables = number of 
equations) that determine the time variation of these 
unknowns uniquely. 

• from a practical point view, in dynamic simulation 
we are very limited in our choice of input variables 
— see discussion of high index problems later 
(numerical methods for solution of dynamic 'design' 
problems are only just emerging). 

 
This raises the question of how to select a set of input 
variables that will lead to a problem we can solve with 
current technology? 



SETTING UP THE DYNAMIC SIMULATION 
EXPERIMENT - EXAMPLE 

(c) specify the initial state of the system (initial condition 
at t = t0 ). This defines where we start from! Note: 

i) correct numerical solution of the initial value 
problem requires consistent values for all the 
unknown variables at t = t0   

ii) in general, we are not free to specify initial values 
for all the unknowns independently — the values 
must satisfy the model equations.  In this case, for 
example, only the values: 

M(t0 ),CA(t0 ),CB(t0 ),T (t0 ) 

 are sufficient to define the initial state of the 
reactor - given these, all the other initial values can 
be determined by solving the model equations. 

 
Hence we must address the questions: 
 
• for models of the general functional form derived 

in section I, what is the number of side conditions 
at t = t0  that is sufficient to define uniquely the 
initial state of the system? 

• how are these side conditions expressed? 
• given the side conditions, how can initial values for 

all the unknowns be determined? 

(d) the duration of the simulation - e.g. t f . 



SETTING UP THE DYNAMIC SIMULATION 
EXPERIMENT - EXAMPLE 

 
The initial value problem is now fully defined — submit it 
to the computer for numerical solution. 
 
This process will determine the variation of all the 
unknowns with respect to time in the interval [t0,t f ] e.g.: 
 

 
 
Note that we are calculating functions of time, rather than 
point (steady-state) values. These are commonly referred 
to as the 'trajectories' of the variables.  Again, these 
functions need not be continuous or differentiable. 
Change any of the above information and you have a new 
scenario — a different dynamic simulation experiment, 
with different solution trajectories. 
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DYNAMIC SIMULATION TOOLS 
 

A dynamic simulation tool is some form of computer 
software that supports the engineer in building dynamic 
models and solving the resulting simulation problems 
(e.g., something more than coding everything from scratch 
in FORTRAN). 
 
There are really three features of a dynamic simulation 
tool that are of interest: 

(a) how is the model developed and coded? 

(b) how are individual simulation experiments 
specified? 

(c) how is numerical solution of the simulation 
experiment conducted? 

. . . most dynamic simulation tools offer a mixture of 
different features in each category. 
 
 
 
 
 
 
 
Note:  in the early days analogue computers were widely 
used for dynamic simulation of chemical processes — I 
don't think anyone is doing this any more!  All these 
remarks are concerning dynamic simulation on digital 
computers. 



CODIFYING THE MODEL 
 

PROGRAMMING LANGUAGES

(FORTRAN, PASCAL, C)

automated transformation

EQUATION BASED
LANGUAGES

(SPEEDUP, ASCEND, ABACUSS)

 PHENOMENOLOGICAL
LANGUAGES

(MODEL.LA, VEDA)

automated transformation

increasing ease of use,
maintenance and
debugging

increasing
flexibility



PROGRAMMING LANGUAGES 
 
The old fashioned approach! Basically, the user codes a 
subroutine in some general-purpose programming 
language (usually FORTRAN) that returns some specific 
information concerning the process model. 
 
All numerical methods for solving ordinary differential 
equations require either: 

• function evaluations — consider system (ODE): a 
function evaluation will evaluate the vector of 
functions f  given values for x  and t  (e.g., evaluate ˙ x  
given x  and t ) 

• residual evaluations — a more general approach: the 
model equations are rearranged to the general form: 

g( ˙ x , x,t ) = 0 

 . . . and the vector of functions g  (residuals) is 
evaluated given values for ˙ x , x  and t . Note that the 
residuals will only equal the zero vector if the set of 
values { ˙ x , x , t } are a solution of the differential 
equations. 

 
Consider the model of a buffer tank from section I — 
overleaf, I have coded a FORTRAN subroutine to return 
the residuals given values for the unknowns.  This 
subroutine would (for example) be called repeatedly 
during an iterative process to find variable values that 
satisfy the differential equations.   



 RESIDUAL SUBROUTINE — EXAMPLE 

 
      SUBROUTINE BUFFER(X,XDOT,U,T,RES) 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
      DIMENSION X(5), XDOT(5), U(2), RES(5) 
C 
C      Definition of unknown variables: 
C 
C X(1) mass of fluid in vessel   [kg] 
C X(2) volume of fluid in vessel  [m3] 
C X(3) volumetric flow out of vessel [m3 s-1] 
C X(4) pressure at bottom of vessel [N m-2] 
C X(5) liquid level in vessel  [m] 
C XDOT(i) time derivative of X(i) 
C 
C      Definition of input variables: 
C 
C U(1) volumetric flow into vessel [m3 s-1] 
C U(2) atmospheric pressure  [N m-2] 
C 
C      Definition of time invariant parameters: 
C 
C AREA cross sectional area of vessel [m2] 
C DENS fluid density    [kg m-3] 
C COEF loss coefficient                 
C G gravitational acceleration [m s-2] 
C 
      AREA = 1.767 
      DENS = 1000 
      COEF = 0.01 
      G = 9.81 
C 
C       Evaluate residuals given X, XDOT and U  
C    
      RES(1) = XDOT(1) - (DENS*U(1) - DENS*X(3)) 
      RES(2) = DENS*X(2) - X(1) 
      RES(3) = X(5)*AREA - X(2) 
      RES(4) = X(4) - (U(2) + DENS*G*X(5)) 
      RES(5) = X(3) - (COEF*SQRT(X(4) - U(2))) 
      RETURN 
      END 
 



PROGRAMMING LANGUAGES 
 
In addition, other subroutines can be written that return: 

• Jacobian evaluations — many numerical methods work 
better if it is possible to evaluate the matrix of partial 
derivatives of the functions with respect to the 
dependent variables analytically. The user can derive 
expressions for the partial derivatives and then write 
an appropriate subroutine (extremely tedious and 
prone to error). 

In fact, there are now automatic differentiation codes 
being quite widely used (see Griewank et al., 1991). 
These codes can take a FORTRAN residual evaluator 
as input, and automatically generate a FORTRAN 
routine coding the Jacobian evaluation. 

• incidence information — for medium to large systems 
of equations (>20) only a few of the variables will 
appear in each equation — sparse equation system.  
Therefore, most of the Jacobian entries (partial 
derivatives) will be zero at all times. Incidence 
information encapsulates this — an explicit statement 
of which variables appear in each equation. This can 
be used to great advantage in numerical Jacobian 
evaluations and in solving systems of linear 
equations (sparse linear algebra).  Again, this is tedious 
and error prone. 

 
. . . as you can imagine, these become monumental tasks to 

do by hand when dealing with models composed of 
1,000's of equations!



PROGRAMMING LANGUAGES  
 

Advantages: 

• anyone can do it — you don't need to buy a dynamic 
simulator! 

• the ultimate in flexibility — can express the most 
general functional forms. 

Disadvantages: 

• tedious, time consuming, error prone, not a natural 
way to represent equations, etc. . . Probably the 
biggest problem is human error - one Jacobian entry 
that is calculated incorrectly can cause a numerical 
method to fail to converge. 

• difficult to separate model from the mechanics of its 
solution — model locked into a single application 
(calculation). 

• mathematical information concerning the model is 
lost — e.g., the only access we have to the model is 
the residuals given values for the variables. 

• inflexible — if you want to change the model (or even 
the set of input variables) must code a completely 
new model. 

• no way to check automatically if the model has been 
coded correctly  

• requires expertise in modelling, computer science and 
mathematics — expert users! 



EQUATION BASED LANGUAGES 
 
 
The simulation software supports an equation based 
programming language with which to code process 
models.   
 
These languages are: 

• high level and specialized to the task of specifying 
equation based models. 

• declarative rather than procedural — the purpose is 
to specify the functional form of the model (e.g., a 
system of equations) and is not a series of statements 
to be executed in a sequence.  

. . . currently, this is the state of the art. 
 
This high level representation can be automatically 
translated into FORTRAN subroutines to interface to 
standard numerical solvers. 
 
Procedural: x := x^2 + 1 ; 
 
Compute x2 + 1 based on the current value of memory 
location x and assign the result to memory location x. 
 
 
Declarative: x = x^2 + 1 ; 
 
Find solution of quadratic equation x2 + 1 - x = 0. 



EQUATION BASED LANGUAGES — EXAMPLE 
 

 
MODEL Buffer_Tank 
 
########################################################### 
# 
#  ABACUSS model of a buffer tank - Paul I. Barton 7/27/94 
# 
#  NOTE: anything following a # symbol is a comment 
# 
########################################################### 
 
PARAMETER 
  Cross_Sectional_Area     AS REAL 
  Grav_Acceleration     AS REAL 
  Loss_Coefficient                       AS REAL 
  Density       AS REAL 
 
VARIABLE  
  Mass_Holdup                            AS Mass 
  Liquid_Volume                          AS Volume 
  Flow_In, Flow_Out                      AS Volumetric_Flow 
  Atm_Press, Press                       AS Pressure 
  Liquid_Level      AS Length 
 
STREAM 
  Inlet  : Flow_In, Atm_Press   AS MainStream  
  Outlet : Flow_Out, Press              AS MainStream 
 
EQUATION 
 
 # Mass balance - $ is the time differential operator 
 $Mass_Holdup = Density*Flow_In - Density*Flow_Out ; 
 
 # relate liquid volume and mass 
 Density*Liquid_Volume = Mass_Holdup ; 
 
 # relate liquid level and volume 
 Liquid_Level*Cross_Sectional_Area = Liquid_Volume ; 
 
 # hydrostatic pressure 
 Press = Atm_Press + Density*Grav_Acceleration*Liquid_Level ; 
 
 # flow/pressure relationship 
 Flow_Out = Loss_Coefficient*(Press - Atm_Press)^0.5 ; 
 
END # model buffer_tank     



EQUATION BASED LANGUAGES 
 
 

Advantages: 

• declarative — model is decoupled from mechanics of 
solution. No assumption concerning which variables 
are inputs is made during model coding. 

• incidence information and Jacobian matrix can be 
generated automatically — using symbolic 
differentiation or automatic differentiation technology 
(automatic, fast, and error free!) 

• all mathematical information is retained — computer 
stores complete functional form of model. 

• tools that check if a system of equations is 
mathematically well posed can be applied 
automatically (see appendix). 

• can embed automatically more sophisticated solution 
strategies: e.g., combined discrete/continuous 
simulation, dummy derivative method for high index 
systems. FORTRAN based approach will just solve an 
IVP with smooth inputs unless user adds code for 
discontinuity handling herself. 

Disadvantages: 

• although high flexibility, advances are still needed to 
express more general functional forms. 

• user must derive equations => expert users! - but, 
user only has to focus on the physics and chemistry. 

• model documentation only as comments. 



PHENOMENOLOGICAL LANGUAGES 
 

This is really only in the realm of (not very mature) 
academic research. . . 
 
Problem: the following paradox: 

(a) deriving models from first principles in terms of 
equations is a difficult and skilled task requiring 
experts - error prone! 

(b) it is difficult (or even impossible) to standardize 
dynamic models3 — each study of a  new system will 
require some model development activity.4 

Idea: can we develop dynamic models in terms of higher 
level concepts than equations? 

• develop a phenomena based modelling methodology 

• codify this as a software tool 

• and then generate the equations automatically from 
this higher level description 

                                                
3 in contrast to steady-state simulation where by and large (reactors being an exception) 
standardization has been achieved. 
4 this is, in my opinion, a major reason why the equation based langauges have become 
so popular 



PHENOMENOLOGICAL LANGUAGES 

 
The advantages claimed of such an approach are: 

• the engineer can work directly with the principles of 
physics, chemistry and biology rather than equations 
— this is perceived as "easier" (but a complete set of 
concepts is required and the user must learn the 
phenomena based modelling methodology). 

• guarantees can be made that the model is correct for 
the assumptions made (?) 

• assumptions, domains of validity, etc., can be 
generated and documented automatically — 
qualitative information forms part of the model. 

 

Several ideas have emerged in the recent literature, for 
example: 

(a) specify the phenomena of interest => balance 
equations required; specify the assumption => terms 
in these balance equations (Stephanopoulos et al., 
1990a; 1990b) 

(b) specify a set of thermodynamic phases exchanging 
mass, energy and/or momentum. Connections 
between phases are characterized by the transport 
phenomena leading to transfer of mass, energy 
and/or momentum (Perkins et al., 1994; Marquardt 
1994) 

 
. . . research continues. 



DYNAMIC SIMULATION TOOLS 

The software tools currently available roughly fall into the 
following categories: 
(a) subroutine libraries coded in a general-purpose 

programming language (typically FORTRAN): 
• models coded as subroutines - some library models 
• series of subroutines to conduct numerical 

integration, coordinate models, report results, etc. 
• at least use a standard numerical integration code 

(Perkins, 1986) — e.g., Harwell Subroutine Library, 
IMSL, ODEPACK, DASSL, DSL48S. 

Examples: DYFLO (Franks, 1972), DAEPACK (Tolsma 
and Barton, 2000). 

(b) continuous system simulation languages (CSSLs) — 
typically derived from the CSSL'67 (Strauss, 1967) 
standard: 
• equation based simulation language 
• extensively used by control engineers for many 

years. 
• only solve models in state space form (i.e. ODEs but 
not  DAEs) 

• not really suitable for large-scale simulations. 
• no chemical engineering specific concepts (e.g., 

multi-component streams, physical properties, unit 
operation libraries). 

Examples:  ACSL, SIMUSOLV, SIMULINK (Matlab), 
etc. 



DYNAMIC SIMULATION TOOLS 
 
(c) operator training tools — typically vendor will 

develop plant model, simulation and interface. 
 
(d) dynamic flowsheeting packages5 — e.g., dynamic 

simulation tools specifically designed for chemical 
process simulation: 

• some have equation based simulation languages 

• facilities to solve large-scale differential-algebraic 
models. 

• support flowsheet paradigm (e.g., concept of 
streams, unit operations, etc.) 

• physical properties, unit operation, model libraries, 
etc. 

Examples:  ACM, gPROMS, ABACUSS II, DIVA, 
HYSYS 

 
Most of the simulation tools above use simultaneous 
numerical solution methods — e.g., the differential 
equations are assembled together and solved 
simultaneously with a single algorithm. 
 
However, in the development of dynamic flowsheeting 
packages two approaches have emerged: modular and 
direct. These are introduced in the following pages. 
 

                                                
5 see Marquardt (1991) for a comprehensive list of software tools and their current 
availability. 



MODULAR INTEGRATORS 

Effectively, this is an attempt to extend the sequential 
modular approach to steady-state process simulation to 
dynamic simulation.  

Each unit operation model (black box model): 

• is coded with its own numerical integration routine 
(any suitable method) 

• can solve for the time variation of its outputs given the 
time variation of its inputs: 

 

 
 

So, given the input trajectories each unit model can be 
integrated independently over a time horizon TH  (the 
numerical algorithms embedded may take several steps in 
this time horizon). 

Advantage: can tailor algorithm to a particular unit 
operation - for example, rapid transients may be localized 
to a single unit operation. 
 
Problem: must coordinate solution of individual models if 
there is feedback of material or information in the 
flowsheet - e.g. inputs of some unit operations not known 
in advance. Need to develop a coordinator algorithm. 



MODULAR INTEGRATORS 
 

Solution: tearing concept - guess the time variation of the 
recycle streams and iterate until the function guessed 
matches the function calculated. 

  
 
Problem: find x(t), t [0,TH] such that: 
 

x(t) = g(x(t), t) t [0,TH] 

 
Note that in dynamic simulation we are solving for a 
function rather than a single value. Severe problems with: 

• integration error control 
• stability 
• converging recycles (choice of norm to compare 

functions) 
• extrapolation of variable trajectories 
• choice of time horizon 
• treatment of discontinuities 
• computational expense of co-ordination 

Examples: GEPURS, FLOWPACK II, PROSIM 



DIRECT INTEGRATORS 

 
Examples: SPEEDUP, DIVA, DYNSIM, ASCEND, 
gPROMS, ABACUSS, POLYRED: 

• all equations assembled and integrated 
simultaneously with a single algorithm 

• guarantees for stability, and integration error can be 
controlled automatically — theoretical guarantees on 
the accuracy of solution (  errors = modelling errors) 

• efficient general-purpose codes for large-scale 
problems exist 

• can use equation based modelling language 

• in practice, more efficient for accurate simulation of 
processing systems! 



MATHEMATICAL FORMULATION OF 
DYNAMIC SIMULATION PROBLEMS 

 
A simulation tool will be coded to support a specific 
mathematical formulation for dynamic simulation 
experiments. In principle, the most general 
formulation is desirable. However, from a practical 
point of view we must work within the constraints of 
current technology.  
 
Assuming we only have time as an independent 
variable, a dynamic model together with a choice of 
input variables will typically give rise to one of the 
following (similar) mathematical problems: 

 
(A) systems of explicit first order ordinary differential 
equations (ODEs): 
 
    ˙ x = f x,t( )     (1) 

 
which is the mathematical formulation supported by 
the CSSL-type simulation languages.  

 
More specifically, it is possible to introduce auxiliary 
algebraic equations of the form: 
 

   

y1 = g1(x)

y2 = g2(x,y1)

ym = gm (x,y1 ym 1)

    (2) 



MATHEMATICAL FORMULATION OF 
DYNAMIC SIMULATION PROBLEMS 

 
In words: algebraic equations are acceptable provided 
a suitable calculation sequence can be found so that 
each algebraic variable can be determined explicitly 
given x  and any previously calculated yi - i.e. the 
algebraic variables can be eliminated by direct 
substitution of the algebraic equations into the 
ordinary differential equations. 

Note that most of the models derived in section I do 
not conform to this formulation without some form of 
manipulation (in general, differentiation with respect 
to time). 
 
 
(B) systems of differential-algebraic equations (DAEs 
- coupled systems of ordinary differential and 
algebraic equations): 
 

    F ˙ z ,z,t( ) = 0      (3) 
 
where z Rn ,    F :R

n Rn R Rn  – this general  
formulation is known as the fully implicit form. 
 
Note: what distinguishes (3) from a system of implicit 
ODEs (IODE) is the fact that the Jacobian of F  with 
respect to ˙ z  is singular everywhere. In other words, 
equations (3) cannot be solved for ˙ z  given z  and t . 



MATHEMATICAL FORMULATION OF 
DYNAMIC SIMULATION PROBLEMS 

 
Chemical engineering models frequently give rise to 
the semi-explicit form of differential-algebraic 
equations, which provides useful insights into the 
structure of DAEs: 
 

    
f ˙ x ,x,y,t( ) = 0

g(x,y,t) = 0     (4) 

     
where we can categorize: 

x Rn  (differential variables) 
y Rm

 (algebraic variables) 
˙ x Rn  (time derivatives of the 

  differential variables) 

  
f :Rn Rn Rm R Rn

 (differential equations) 

  
g :Rn Rm R Rm

 (algebraic equations) 

...so we have (n + m) unknowns and (n + m) 
equations. 
 
Note that (4) is just a specialization of (3): z  would be 
just a n + m  vector composed of the components of x  
and y. 
The Jacobian of equations (4) with respect to the time 
derivatives of the unknowns is clearly rank deficient 
everywhere ( ˙ y  do not appear anywhere). 



MATHEMATICAL FORMULATION OF 
DYNAMIC SIMULATION PROBLEMS 

 
In the literature some authors advocate that two other 
(more restricted) forms are appropriate for chemical 
engineering applications, the linear semi-explicit form: 
 

    

˙ x = f x,y,t( )

g x,y,t( ) = 0     (5) 

 
or the linear implicit form: 
 

    B x,t( ) ˙ x = f x,t( )   (6) 
 
These arguments seem rather pointless because 
reliable general-purpose codes for the direct solution 
of the general formulation (3) are widely available (if 
index = 1). Further, formulation (5) is clearly 
unsuitable for some of the models derived in section I 
of these notes. 
 
However, theoretical treatment of both (5) and (6) is 
easier. 



WHY USE DAEs? 
 

(a) it is the most natural form in which to derive the 
model — e.g. modelling of physico-chemical 
phenomena in chemical processes gives rise to 
DAEs (see section I). 

Advantage: user can just submit model directly 
to the computer without further manipulation. 

(b) derivation of ODEs requires (extremely) tedious 
differentiation and algebraic manipulation of the 
equations. To illustrate this, consider the semi-
explicit form (4): 

  f ( ˙ x ,x, y,t) = 0      (7) 

  g(x,y,t) = 0       (8) 

Take the total differential and divide by dt to 
yield the time derivatives of these equations:  

 
˙ f =

f

˙ x 
˙ ̇ x +

f

x
˙ x +

f

y
˙ y +

f

t
= 0   (9) 

 ˙ g =
g

x
˙ x +

g

y
˙ y +

g

t
= 0      (10) 

and provided that the matrix:  

f

˙ x 
0

g

x

g

y

 

 

 

 

 

 

 

 

 

 

 

 

  



WHY USE DAEs? 

is nonsingular, then (7) and (10) can be solved 
simultaneously for ˙ x  and ˙ y  given x , y  and t . 
Hence the system (7) and (10) is a system of 
implicit ODEs (i.e. the relevant Jacobian is 
nonsingular). 

For example, consider just the energy balance 
and enthalpy relations in our CSTR model: 

dH

dt
= FIN IN hIN FOUT OUT hOUT + ˙ Q 

H = MhOUT

hOUT = h(T,CA ,CB )  
...and derive ODEs by differentiation of the 
algebraic equations: 

dH

dt
= hOUT

dM

dt
+ M

dhOUT
dt

dhOUT
dt

=
h

T
 

 

 

 CA ,CB

dT

dt
+

h

CA

 

 
 

 

 
 

T,CB

dCA

dt
+

h

CB

 

 
 

 

 
 

T,CA

dCB

dt

 

• these are not yet in state space form — in 
general, algebraic manipulation may not be 
able to yield the explicit ODE form. 

• total differentials of physical property models 
are particularly tedious to derive. 

In general, derivation of ODEs from DAEs 
requires one (or more) differentiations of the 
equations (or subsets) with respect to time. 



WHY USE DAEs? 

 (c) the solution set of the ODEs derived by 
differentiation is larger than the solution set of 
the original DAEs — the solution to the 
derivative of an equation is the original equation 
plus an arbitrary constant. 

 Example: the numerical integration of the ODEs 
above will treat the enthalpy holdup and 
temperature as independent variables — 
however, we know they are not independent but 
related by the physical property model. 

 Typically, we can ensure the initial conditions 
(e.g. H(t0) and T(t0 )) are consistent — but we 
cannot avoid numerical errors (i.e. under 
discretization) building up during integration 
that will lead to H(t) and T(t) at some later time 
that are not consistent with the physical property 
model. This may, or may not, be disastrous (see 
below). 

 
 Direct integration of the DAEs ensures that the 

algebraic equations are satisfied at each time step 
— hence the algebraic variables will remain 
consistent with the differential variables. 



WHY USE DAEs? 

 (d) the numerical integration of a minimal set of 
independent variables (e.g. the differential 
variables in a DAE system) is more consistent 
with the results of classical thermodynamics - e.g. 
only a certain minimal set of independent 
quantities is required to fully define the 'state' of 
a simple system (Modell and Reid, 1983). 



DEGREE OF FREEDOM ANALYSIS 
 
Process models are typically under determined systems 
of equations - there are more variables describing the 
behaviour of the system than equations relating them. 
Degree of freedom analysis is concerned with 
identifying a subset of variables to assign values to (or 
specify), so that the equations become fully determined  
in the remaining unknown (or dependent) variables - 
and thus can be solved to determine a set of unique 
values for these unknowns. 

A necessary condition that a system of NEQ equations 
is fully determined in the NUK  unknown variables is 
that: 

NEQ NUK  

So, clearly, we must at least specify values for a 
sufficient number of variables so that the number of 
unknowns becomes equal to the number of equations. 

If the situation arises where so many specifications 
have been made that there are more equations than 
unknowns (i.e. NEQ > NUK ), the extra equations are 
either: 

• redundant - i.e. they add no extra information, so 
they do not constrain the solution further 
(example: adding an overall mass balance to a 
flowsheet model where we already have mass 
balances for each unit) 

• inconsistent - i.e. there is no solution that will 
satisfy all the equations. 



DEGREE OF FREEDOM ANALYSIS 
 
Bearing this in mind, we will only accept a model for 
solution if : 

NEQ = NUK  

...and degree of freedom analysis is concerned with 
selecting a subset of variables to specify so that this 
condition is satisfied. 
 
When setting up a dynamic simulation experiment 
we have to worry about degree of freedom analysis 
twice: 

• first derive a fully determined system of DAEs 
from the under determined model by selecting a 
set of input variables (in fact, we are assigning 
known functions of time rather than values to the 
input variables) 

• next (given a fully determined system of DAEs) 
establish the degrees of freedom available to 
specify the initial state of the system - e.g. the 
number of side conditions required at t = t0 . 

 
...details of each follow. 



INPUT SPECIFICATIONS - GENERAL 
FORMULATION 

 
Typically, chemical engineering models give rise to 
under determined systems of DAEs — we have 
degrees of freedom to satisfy before a fully 
determined system that can be submitted to the 
computer. 
 
Process model: 
 

f ˙ x , x, y,u,t( ) = 0  
 
where: 

 x Rn     (differential variables) 
 y Rm      (algebraic variables) 
 u Rl     (input variables) 
 f :Rn Rn Rm Rl R Rn+m  
 
This is just a restatement of the general formulation 
(3) above — here, the set of variables has merely been 
partitioned into differential, algebraic, and input 
variables according to the definitions: 

• input - assigned a known function of time 
• differential - whose time derivative appears 
• algebraic - whose time derivative do not appear 

Satisfying the degrees of freedom is merely selecting 
which subset of l  variables will belong to the vector u, 
and assigning functions of time to these variables. 



INPUT SPECIFICATIONS - GENERAL 
FORMULATION 

 
This leads to the fully determined DAE system: 

 
f ( ˙ x , x, y,u,t) = 0

u = u(t)
 

 
Alternatively, we could add extra equations to the 
model, reducing the number of input specifications 
required by one for each non redundant equation 
added. 



SOLVING DYNAMIC SIMULATIONS 
 

Solve initial value problem in differential-algebraic 
equations in the interval [t0,t f ]: 

 

 
This requires solution of three sub problems: 

1. Defining and solving for the initial state of the 
system at t0 . 

2. Numerical integration of the DAEs from t0  to t f . 

3. Discontinuity handling — for example, correct 
processing of discontinuities in the functions 
assigned to the input variables (also their time 
derivatives): 

 

  
 
Details of each follow. . . 



DEFINING THE INITIAL STATE OF THE SYSTEM 
 

Mathematically: defining the side conditions for the 
initial value problem, and utilizing these to determine 
initial values for the unknowns. 
 
For explicit ODE systems the side conditions are 
usually specified by providing initial values for x : 
 

x(t0 ) = x0 
 

˙ x (t0 ) = f (x(t0 ),t0 ) 
 
In this case, calculating the initial state is trivial and 
requires only a function evaluation - i.e. x(t0 ) 
independent. 
 
However, for most dynamic simulation experiments a 
more general approach is both desirable and possible. 



CONSISTENT INITIALIZATION 
 

Consistent initialization: find a consistent set of initial 
values for the variables x(t) and ˙ x (t) at t = t0 : 
 

Denoted by: x(t0 ), ˙ x (t0 ){ } 
 
A set of consistent initial values defines one possible 
initial state for the system. 
 
Idea: in general, undertake a consistent initialization 
calculation in which the model equations at t = t0 , e.g.: 
 

˙ x (t0 ) = f (x(t0 ), t0 ) 
 
are solved for the initial state of the system. 
 
The initial values x(t0 ), ˙ x (t0 ){ } will then be consistent 
with the model equations. 



CONSISTENT INITIALIZATION 
 

Example: many dynamic simulations involve starting 
from the system from steady-state and then 
introducing a disturbance (e.g. step change, ramp, 
etc.). 
 
In the ODE example, an initial state of steady-state is 
equivalent to defining: 
 

˙ x (t0 ) = 0  
 
...substitute this specification into the ODEs (system 
at t = t0 ) to yield: 
 

0 = f (x(t0 ),t0 ) 
 
and solve the resulting system of nonlinear algebraic 
equations to find consistent initial values for x(t0 ). 
 
This assumes that the model has a steady-state 
solution - not always the case, e.g. a batch reactor. 
 
Note that this is entirely equivalent to a steady-state 
simulation. In fact, steady-state simulation is really 
only a subset of dynamic simulation: it is merely one 
possible consistent initialization calculation. 



DEGREES OF FREEDOM FOR CONSISTENT 
INITIALIZATION OF ODEs 

 
For ODEs, degrees of freedom for the initialization 
calculation are clear. 
 
Given a fully determined ODE system: 
 
 n  equations   ˙ x (t0 ) = f (x(t0 ), t0 ) 
 
 2n variables   x(t0 ), ˙ x (t0 ){ } 
 
 => n  degrees of freedom 
 
Examples of possible specification sets for consistent 
initialization: 

a) x(t0 ){ } 

b) ˙ x (t0 ){ } 

c)  or some mixture of values for the variables and 
their time derivatives 



DEGREES OF FREEDOM FOR CONSISTENT 
INITIALIZATION OF DAEs 

 
In direct analogy, to define the initial state of a fully 
determined system of DAEs we need to find a set of 
consistent initial values for the variables x(t), ˙ x (t) and 
y(t ) at t = t0 , e.g.: 
 

x(t0 ), ˙ x (t0 ), y(t0 ){ } 
 
Clearly, a necessary condition for a set of consistent 
initial values is that the model equations are satisfied 
at t = t0 , e.g.: 
 

f ( ˙ x (t0 ), x(t0 ), y(t0 ),u,t0 ) = 0

u = u(t0 )
 

 
Assuming that this necessary condition is also 
sufficient (not always the case - see discussion of high 
index problems), degree of freedom analysis gives: 
 
n + m equations f ( ˙ x (t0 ), x(t0 ), y(t0 ),u(t0 ), t0 ) = 0 
 
2n +m  variables x(0), ˙ x (0), y(0){ } 
 
 => n  degrees of freedom 

 
Note the degrees of freedom is equal to the number of 
differential variables n . 



DEGREES OF FREEDOM FOR CONSISTENT 
INITIALIZATION OF DAEs 

 
So, we can choose a n  membered subset of variables 
out of x(t0 ), ˙ x (t0 ), y(t0 ){ } to assign initial values to. 
This is the formulation supported by SpeedUp. 
 
These values (substituted into the model equations) 
will fully define the initial state of the system.  
 
Notes: 

a) consistent initialization of DAEs requires the 
solution of large sparse systems of nonlinear 
algebraic equations from poor initial guesses - in 
principle, we can use any technique already 
developed for steady-state simulation. 

b) as with steady-state simulation, not all subsets 
of variables and not all choices of values lead to 
a well-posed problem (functionally nonsingular 
equations). 

c) numerical integration of DAEs should always 
be started from consistent initial values - 
otherwise the results can be garbage and/or the 
integration can fail. The numerical integration 
algorithms most commonly used can generate a 
solution from arbitrary (possibly inconsistent) 
initial values - in fact, standard DAE solver 
routines do not usually have facilities for the 
consistent initialization calculations described 
above! (see Kroner, et al., 1992) 



DEGREES OF FREEDOM FOR CONSISTENT 
INITIALIZATION OF DAEs 

d) we will also discuss the situation when the 
model equations are not necessary and 
sufficient to define consistent initial values - in 
general, we have at most n  degrees of freedom 
to specify the initial state of the system. 



CONSISTENT INITIALIZATION - EXAMPLES  
 
Consider possible initial states for our well stirred reactor 
system: 
 
a) operate the reactor as a CSTR and start the simulation 

form steady-state at t= 0. 
 
 Define steady-state by setting the time derivatives of 

all the differential variables to zero (n specifications):  
 
   ˙ M (0) = 0, ˙ N A (0) = 0, ˙ N B(0) = 0, ˙ H (0) = 0 
 
 ...and solve the model equations for     x(0) and     y(0).  In 

this case, the equations need to be solved 
simultaneously. 

 
b) operate the reactor as a batch reactor - define the initial 

charge to the vessel - e.g. at      t = 0: 
 
  M(0) =1000,NA(0) =100,NB (0) = 0,H(0) =1E7 
 
 so, given x(0) solve equations ˙ x (0) and y(0).  Note that 

the equations are much easier to solve for this choice of 
initial condition! 



CONSISTENT INITIALIZATION - EXAMPLES 
 
c) for a batch reactor, we typically do not know the 

enthalpy of a charge - after all this is a value related to 
some arbitrary zero energy reference state. 

 
 For example, a more realistic operating policy would 

specify the charge as 1m3 of solvent with a specified 
concentration of A at 300K: 

 
   V(0) = 1,CA(0) = 1,CB(0) = 0,T(0) = 300  
 
 and we solve the equations for the remaining variables 

- x(0), ˙ x (0) and remaining y(0). 
 
 Note that it is often most convenient to specify the 

initial condition in terms of values for a subset of the 
algebraic variables - hence the immense flexibility of 
this approach. 

 
 
 
 
 
 
  Exercise: why is the specification of: 
 

V (0),NA (0),CA (0),T(0){ } 
 
  invalid?



CONSISTENT INITIALIZATION - GENERAL 
FORMULATION 

 
Example: consider a batch distillation column: 
 

L D

Qr

Qc

Species: A, B , C

 
 
Typical operating policy: 
 
a) charge the reboiler with mixture of A, B and C 
 
b) apply steam to reboiler and bring to steady-state at 

total reflux (D(t) = 0)  
 
c) draw cut rich in A overhead —     D(t) > 0 
 
d) draw cut rich in B overhead —     D(t) > 0 
 
Simulation experiment: define initial state as steady-state 
at total reflux and simulate the sequence of cuts. 
 
Note: the model required to simulate start-up is much 
more complex - neglect this period. 



CONSISTENT INITIALIZATION - GENERAL 
FORMULATION 

 
How to define steady-state at total reflux? 
 
a) if we specify steady-state: ˙ x (0) = 0  badly posed 

problem - no way to determine the initial extent of 
material in the reboiler. 

 
b) define the initial condition as: 
 

 NT ,i = NR,i(0) + Nj,i (0)
j=1

NTray

      i = 1…NC 

 
 ˙ N i, j (0) = 0          j =1…NTray 
            i = 1…NC 
 
 where 
 
 NT ,i  = amount of species i in charge (known) 
 
 NR,i = holdup of species i in reboiler 
 
 Nj ,i  = holdup of species i on stage j 
 
 i.e. all trays at steady-state, holdup in reboiler 

determined by an overall mass balance on column. 
 
Note that this time we have defined an initial condition in 
terms of a set of equations rather than an assignment of 
values. 



CONSISTENT INITIALIZATION - GENERAL 
FORMULATION 

 
The general formulation for consistent initialization 
requires the solution of the following system of nonlinear 
algebraic equations for the unknowns ˙ x t0( ),x t0( ),y t0( ){ }: 
  

f ( ˙ x (t0 ), x(t0 ), y(t0 ),u(t0 ), t0 ) = 0
c( ˙ x (t0 ),x(t0 ),y(t0 ),u(t0 ), t0 ) = 0  

where: 
 

c :Rn Rn Rm R l R Rn  
 
and the functions c may be value assignments or general 
functional relationships. 
 
Again, this system of equations must be functionally 
nonsingular. 
 
Remarks: 

 
a)  we are again faced with the problem of solving 
  a large set of nonlinear algebraic equations    

 from poor initial guesses. 
 
b)  two competing technologies: 
 

i) sequential modular 
ii) equation oriented - assemble all equations and 

solve simultaneously with general-purpose solver. 



CONSISTENT INITIALIZATION - GENERAL 
FORMULATION 

 
c) the sequential modular approach is superior for 

finding steady-state - but what about other initial 
states? - little flexibility to define the initial state of a 
system. 

 
d) however, direct (equation-oriented) methods superior 

for numerical integration of DAEs. 
 
e) unresolved research question, two approaches: 
 

i) improve robustness of equation oriented technology 
- ongoing problem: solve large systems of nonlinear 
equations from poor initial guesses. 

 
ii) interface sequential modular initial condition to 

direct integrator - but problem with flexibility 
remains. 



CONSISTENT INITIALIZATION AND  
HIGH INDEX DAE SYSTEMS 

 
Some DAE systems pose fundamental mathematical 
difficulties. 
 
Example: total condenser for a pure component vapour 
(e.g. a steam jacket): 
 

FIN

hIN
VAPOUR

Q

hOUT

(vapour)

L
(liquid)

NV(t)

 
 
Assumptions: 
 
 (i) all liquid formed is immediately removed 
   from the system (e.g.,     N L

= 0) 
 (ii) no sub cooling occurs 
 (iii) system reaches vapour-liquid equilibrium 
   instantaneously 
 (iv) ideal physical properties 



NOMENCLATURE  
 

FIN total molar flow rate to vessel 
(vapour) 

[mol s-1] 

hIN molar enthalpy of feed stream [J mol-1] 
hOUT molar enthalpy of liquid stream [J mol-1] 
L total molar flow rate of liquid 

from vessel 
[mol s-1] 

NV number of moles of vapour in 
vessel 

[mol] 

P pressure of vessel [Nm-2] 
Q cooling load [J s-1] 
R gas constant [J mol-1 K-1] 
T temperature of vessel contents [K] 
U internal energy of gas in vessel [J] 
V volume of vessel (constant) [m-3] 



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
Material Balance: 
 

 
dNV

dt
= FIN L 

 
Energy Balance: 
 

 
dU

dt
= FINhIN LhOUT Q 

 
Physical Properties: 
 
  P = PSAT (T )   (vapour-liquid equilibrium) 
 
 PV = NVRT    (equation of state) 
 
 hOUT = hL (T )    
 
 NVhV (T) =U + PV  



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
Simulation experiment: 
 
 (a) input set R,V ,Fin (t),hin(t),Q(t) 
 (b) initial condition at t0 = 0  
 
solve model for: NV (t),T(t),L(t),P(t),hOUT (t),U(t)  
 
Degrees of freedom to specify initial condition: 
 
 6 equations 

 8 unknowns  {N V (0), ˙ N V (0),U(0), ˙ U (0),T (0),
L(0), P(0),hOUT (0)}

 

 
   2 degrees of freedom for consistent 
   initialization (?) 
 
Try to specify the initial conditions NV (0),U(0): 
 
1. given NV (0) solve: 
 

   P(0)V = NV (0)RT(0)
P(0) = PSAT (T (0))

 

 
 for P(0),T(0). 
 
2. hOUT (0) = h

L (T(0)) 



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
3. this leaves 3 equations: 
 

  

˙ N V (0) = FIN L(0)
˙ U (0) = FIN hIN L(0)hOUT (0) Q
N V (0)hV (T(0)) = U(0) + P(0)V

 

 
 in the unknowns L(0), ˙ N V (0), ˙ U (0). 
 
 BUT: equations are structurally singular - none of 
 the unknowns appears in the third equation, e.g. the  
 incidence matrix is singular for all values of the 
 unknowns: 
 

f1
f2
f3

NV (0) U(0) L(0)

0
0
0 0 0

 

  badly posed problem. 
 
This implies that the differential variables NV  and U are 
not independent. This is a: 
 

“high index” problem 



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
In this case, the problem is a consequence of our 
modelling assumptions: from classical thermodynamics 
(Duhem’s theorem) we know that NC + 2 (3 in this case) 
independently variable properties fully define that state of 
a system at equilibrium (we have assumed the system is 
always at equilibrium). We have specified: 
 
 (a) the volume of the system 
 (b) the vapour fraction of the system (=1). 
 
Therefore, we can only specify one out of NV (0) and U(0) 
to fully define the state of the system. 
 
Remarks: 
 
 (a) if we can only specify one out of  NV (0) and   
  U(0), where do we get an (additional)    
  specification or equation to satisfy the degrees  
  of freedom for consistent initialization? 
 
 (b) in this case, the high index problem is a    
 consequence of our modelling assumptions (e.g.   
N L

= 0) - a fundamental property of the model.   
 We could relax this assumption, and add a    
 relationship relating the liquid holdup to the   
 liquid flow rate. 
 
However, we frequently want to make assumptions like 
this due to a lack of data, to reduce stiffness of the model, 
for simplicity, etc. 



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
Example:  dynamic “design” problem. Consider an 
exothermic fixed volume CSTR: 
 

CIN
TIN

C
T

COOLING
MEDIUM

Reaction
A—>B

TJ  
 

Mass Balance: 
 

 
dC

dt
=
1
CIN C( ) r  

 
Energy Balance: 
 

 
dT

dt
=
1
TIN T( ) +

HR

Cp

 

 
 

 

 
 
r

UA

CpV

 

 
 

 

 
 
T TJ( ) 

 
Rate equation: 
 
 r = ke E / RTC  



NOMENCLATURE 
 

A heat transfer area of heating coil [m2] 
C concentration of A in reactor [mol m-3] 
CIN feed concentration of A [mol m-3] 
CP heat capacity [J mol-1 K-1] 
K pre-exponential factor [s-1] 
T temperature in reactor [K] 
TIN feed temperature [K] 
TJ jacket temperature [K] 
U heat transfer coefficient [J m-2 K-1 s-1] 
V reactor volume [m2] 
HR  heat of reaction [J mol-1] 
E  activation energy [J mol-1] 
 density of reactor contents [mol m-3] 
 residence time [s] 



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
1. Simulation Problem 
 

 Given:    
A,Cp, E, HR ,k,U,V, ,R, (t),
CIN (t),TIn (t),TJ (t)

 

 
 Determine:   C(t ),T(t ), r(t) . 
 
Straightforward:  specify initial conditions C(0),T(0) and 
solve equations. 
 
      no high index problem 
 
We can assume from this that any high index problems 
are not a fundamental property of this model. 
 
2. Dynamic Design Problem (or trajectory tracing 
problem): determine variation in coolant temperature 
TJ (t) necessary to achieve a specified outlet concentration 
profile, e.g.: 
 

C(t)

t
 



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
Simulation experiment: dynamic design problem: 
 

 Given:   
A,Cp , E, HR , k,U ,V, ,R,
(t),CIN (t),TIn (t),C(t)

 

 
 Determine:  T(t),TJ (t),r(t)  
 
Degrees of freedom for consistent initialization: 
 
 3 equations 
 4 unknowns  T (0),TJ (0),r(0), ˙ T (0){ } 
 

 1 degree of freedom for consistent initialization 
 ( ˙ C (0) derived by differentiating C(t )) 
 
Try: C(0) or T(0): 
 
1. obviously we cannot specify an arbitrary initial value 

for C(0) — already specified. 
2.   can we specify an arbitrary initial value for T(0)? 
 
Substitute rate equation into mass balance: 
 

˙ C (0) =
1

(CIN C(0)) ke E / RT (0)C(0) 

 
BUT: C(0), ˙ C (0) fully specified 
 

 T(0) determined by this equations, so it cannot be 
specified. 



CONSISTENT INITIALIZATION AND 
HIGH INDEX DAE SYSTEMS 

 
In this case, the high index problem arises through a 
particular choice of input variables and is not a 
fundamental property of the model. 
 
In general, dynamic design problems will lead to high 
index problems because you are effectively trying to 
specify the time variation of a differential variable — 
hence it is no longer independent. 



HIGH INDEX PROBLEMS - REMARKS 
 

(a) despite the difficulties with consistent initialization, 
both problems have proper mathematical solutions. 

(b) common features of high index problems: 

(i) the differential variables are not independent  
  and therefore cannot be given arbitrary initial  
  values. 

(ii) in many problems, a quick way to spot a high  
  index problem is the fact that the algebraic   
  equations cannot be solved for the algebraic   
 variables given the differential variables - e.g.   
 one or more algebraic variables only appear in   
 the differential equations (example: the liquid   
 flow rate from the total condenser). 

(iii) it follows from (ii), that high index DAEs cannot  
  be reduced to ODEs by using the algebraic   
  equations to eliminate the algebraic variables  
   differentiation is required. 

(c) two important issues with high index problems: 

(i) where to get the additional equations to satisfy  
  the degrees of freedom for consistent    
  initialization? 

(ii) controlling the error of integration in numerical 
algorithms — the differential variables are not 
really independent, even though the 
discretization treats them as such. 



CONSISTENT INITIALIZATION OF 
HIGH INDEX SYSTEMS 

 
 
We have seen that problems with consistent initial-ization 
are associated with “high index” problems. 
 
Definition: the index of a DAE system is defined as the 
smallest non-negative integer I such that the DAE system 
and its first I derivatives with respect to time define ˙ x  and 
˙ y  as locally unique functions of x,y,u (and its time 
derivatives) and t  (Brenan et al., 1989). 
 
Although the above definition is more precise, it is, as is 
the case with many mathematical definitions, not very 
helpful from a practical point of view. 
 
A more informal statement is that the index of a DAE 
system is the maximum number of differentiations of the 
original DAEs (or subsets of them) that must be 
undertaken to derive an ODE system (implicit or explicit). 
 
   all ODE systems are by definition of index 0. 
 
This definition is sometimes called the differential index. 
Some authors use a perturbation index with a different 
definition, which is equal to or one greater that the 
differential index. In general, both indices are local 
quantities. 



CONSISTENT INITIALIZATION OF 
HIGH INDEX SYSTEMS 

 
Example 1: 
 
 ˙ x 1 = 2x1 + x2 + y        (1) 
 ˙ x 2 = x1 2x2 3y        (2) 
 0 = x1 + x2 y          (3) 
 
Consistent initialization at t = 0: specify x1(0), x2 (0): 
 
 1. y(0) = x1(0) + x2 (0) 
 2. ˙ x 1(0) = 2x1 (0) + x2 (0) + y(0) 
 3. ˙ x 2 (0) = x1(0) 2x2 (0) 3y(0) 
 
Everything fine. 
 
What is the index? Differentiate the algebraic equation 
(3): 
 
  0 = ˙ x 1 + ˙ x 2 ˙ y   
 ˙ y = 3x1 x2 2y        (3’) 
 
Equations (1),(2),(3’) form a system of three ODEs in 
x1, x2 , y: 
 

 Index = 1 



CONSISTENT INITIALIZATION OF 
HIGH INDEX SYSTEMS 

 
Example 2: 
 
 ˙ x 1 = 2x1 + x2 + y       (1) 
 ˙ x 2 = x1 2x2 3y       (2) 
 0 = x1 + x2          (3) 
 
Note: the algebraic variable y does not appear in the 
algebraic equation so we can expect trouble. 
 
Consistent initialization: clearly x1(0)  and x2 (0)  not 
independent. 
 
What is the index? Differentiate the algebraic equation (3): 
 
 0 = ˙ x 1 + ˙ x 2  
 0 = 3x1 x2 2y      (3’) 
 
Equations (1), (2), (3’) are still DAEs! Differentiate (3’) - to 
derive second derivative of (3): 
 
 0 = 3 ˙ x 1 ˙ x 2 2 ˙ y  

 ˙ y =
5
2

x1 +
5
2

x2 + 3y       (3”) 

 
Equations (1), (2), (3”) are an ODE system in x1, x2 , y. We 
have differentiated (3) twice to derive the ODEs: 
 

 Index = 2 



CONSISTENT INITIALIZATION OF  
HIGH INDEX SYSTEMS 

 
Each differentiation of (3) (i.e., a subset of equations) 
reduces the index by one — (1), (2), (3’) is an index-1 
system. 
 
In our index 2 example, if we cannot specify x1(0) and 
x2 (0) independently, can we try another specification set 
of two variables? 
 
Example: x1(0) = 1, y(0) = 1: 
 
 1. x2 (0) = 1 
 2.  ˙ x 1(0) = 2  
 3. ˙ x 2 (0) = 0  
 
which at first glance seems fine. However, from 
differentiation of the algebraic equation (3), we also know 
that: 
 
   0 = ˙ x 1 (t) + ˙ x 2 (t)       (3’) 
 
...and this relationship must be satisfied at t = 0. 
 
Clearly the values calculated above are inconsistent with 
this equation. 
 
So, what are the necessary and sufficient conditions for a 
set of consistent initial values? 



NECESSARY AND SUFFICIENT CONDITIONS 
FOR CONSISTENT INITIALIZATION 

 
Necessary and sufficient conditions for a consistent set of 
initial values x(t0 ), ˙ x (t0 ),y(t0 ){ } are that they satisfy: 
 
(a) the model equations at t = t0  - i.e.: 
 
    f ( ˙ x (t0 ), x(t0 ), y(t0 ),u(t0 ),) = 0  
 
(b) the first and higher order time derivatives of the model 

equations at t = t0  
 
Note: 
 
(i) we originally have 2n +m  degrees of freedom. 
 
(ii) the model equations take up n + m degrees of 

freedom. 
 
(iii) whether or not the derivatives of the equations take 

up further degrees of freedom is closely related to the 
index of the equations: 

 
 (a) if index   2, extra equations derived by 

 differentiation are always required.  
 
 (b) for most index 1 systems, the original equations 

 are sufficient. 
  
 For high index systems it is therefore necessary to 

identify which subset of the derivatives take up 
further degrees of freedom. 



NECESSARY AND SUFFICIENT CONDITIONS 
FOR CONSISTENT INITIALIZATION 

 
Obviously, for each extra equation required we have to 
make one less specification on the initial state of the 
system. Revisiting our examples: 
 
Example 1: 
 

  
˙ x 1 = 2x1 + x2 + y
x2 = x1 2x2 3y
0 = x1 + x2 y

 

 
differentiate: 
 

  
˙ ̇ x 1 = 2 ˙ x 1 + ˙ x 2 + ˙ y 
˙ ̇ x 2 = ˙ x 1 2 ˙ x 2 3 ˙ y 
0 = ˙ x 1 + ˙ x 2 ˙ y 

 

 
we have introduced 3 new equations and three new 
variables ( ˙ ̇ x 1, ˙ ̇ x 2 , ˙ y ) — these equations do not constrain our 
original variables further. 
 

 we have 2 degrees of freedom to specify the 
 initial condition. 



 NECESSARY AND SUFFICIENT CONDITIONS 
FOR CONSISTENT INITIALIZATION 

 
Example 2: 
 

 
˙ x 1 = 2x1 + x2 + y
˙ x 2 = x1 2x2 3y
0 = x1 + x2

 

 
differentiate: 
 

 
˙ ̇ x 1 = 2 ˙ x 1 + ˙ x 2 + ˙ y 
˙ ̇ x 2 = ˙ x 1 2 ˙ x 2 3 ˙ y 
0 = ˙ x 1 + ˙ x 2

 

 
Again, we have introduced three new equations and three 
new variables ( ˙ ̇ x 1, ˙ ̇ x 2 , ˙ y ). BUT the third equation does not 
involve these variables, it only involves our original 
variables and therefore must constrain them further. 
Further differentiation yields no further constraints on our 
original variables. 
 
Therefore, the necessary and sufficient conditions for 
consistent initial values in this example are: 
 

  

˙ x 1(0) = 2x1 (0) + x2 (0) + y(0)
˙ x 2 (0) = x1(0) 2x2 (0)+ 3y(0)
0 = x1 (0) + x2 (0)
0 = ˙ x 1 (0) + ˙ x 2 (0)

 

 
This yields 4 equations in the 5 unknowns, so we have one 
degree of freedom to specify the initial condition. 



NECESSARY AND SUFFICIENT CONDITIONS 
FOR CONSISTENT INITIALIZATION 

 
Exercise: perform this analysis for the CSTR dynamic 
design problem — in fact, in this case we have zero 
degrees of freedom to specify the initial condition! 



CONSISTENT INITIALIZATION - REMARKS 
 

(a) in general, the degrees of freedom for consistent 
initialization is equal to or less than the number of 
differential variables. 

(b) for large systems of DAEs it is difficult to determine by 
inspection which (if any) of the equations must be 
differentiated with respect to time to derive the 
necessary and sufficient conditions. 

An algorithm that uses the structure of the equations 
(the incidence matrix) to identify the minimal set of 
equations that must be differentiated has been 
developed (Pantelides, 1988a). For most practical 
chemical engineering problems, the necessary and 
sufficient conditions can be derived in this manner 
from structural information alone. 

However, there are situations in which structural 
information is insufficient. For example: 

   ˙ x 1 = x1 x2 + y      (1) 
   ˙ x 2 = x1 + x2 y      (2) 
   x1 + x2 =1      (3) 

the structural algorithm will differentiate (3) to yield: 

   ˙ x 1 = x1 x2 + y      (1) 
   ˙ x 2 = x1 + x2 y      (2) 
   ˙ x 1 + ˙ x 2 = 0       (3’) 

 and terminate. 



CONSISTENT INITIALIZATION - REMARKS 
 

 The algorithm terminates because these equations are 
structurally nonsingular with respect to { ˙ x 1, ˙ x 2 , y}. 
However, they are functionally singular with respect to 
this set — a further differentiation is actually required 
to derive the necessary and sufficient conditions. 

 
(c) A sufficient condition for the original equations to be 

necessary and sufficient to define consistent initial 
values is: 
 
  Rank f˙ x fy[ ] = n +m   

 
 i.e. the Jacobian of the equations with respect to ˙ x  and 

y is nonsingular. 
 
 Practical Consequence: if we can solve the original 

equations for ˙ x (0) and y(0) given x(0), then we do not 
need to differentiate the original equations. 

 
(d) most dynamic simulators1 are therefore limited to 

those DAEs that satisfy the condition above. ABACUSS 
(Feehery and Barton, 1996) uses a combination of the 
structural algorithm and automated symbolic 
differentiation of the equations to find consistent initial 
conditions for a much broader class of DAE systems. 

                                                
1 i.e. any simulator apart from ABACUSS 



CONSISTENT INITIALIZATION - REMARKS 
 

(e) the condition above: 
 
   Rank f˙ x fy[ ] = n +m  

is also a sufficient (but not necessary) condition for the 
DAEs to be index 1. Not all index 1 DAEs satisfy this 
condition: for example: 

   ˙ x + 2 ˙ x 2 = 1       (1) 
   x1 + x2 =1       (2) 

Clearly x1(0) and x2 (0) are not independent — one 
must derive an extra equation to define a consistent 
initial condition. However, the index is still 1 by the 
rigorous definition at the beginning of this section: 
differentiate the algebraic equations: 

   ˙ x 1 + ˙ x 2 = 0        (2’) 

and (1) and (2’) yield the ODEs: 

   
˙ x 1 = 1
˙ x 2 = 1  

One differentiation  Index = 1. 



CONSISTENT INITIALIZATION - REMARKS 
 

Special index 1 problems of the above form arise most 
frequently when an index 2 problem has been 
transformed into an index 1 problem by eliminating an 
algebraic variable that only appears in the differential 
equation. 

Observe that this transformation does not eliminate the 
problem of finding a consistent initial condition! 

(f) there are claims in the literature concerning a necessary 
and sufficient condition for an index 1 system 
(Lefkopoulos and Stadtherr, 1993). These are incorrect: 
the condition in question is also only sufficient. 

(g) in many cases, high index problems arise due to errors 
in model formulation. Typically, the model 
formulation implies that a greater number of quantities 
are independent than is actually the case. An index 1 
model for the system can be derived through 
identification of the true number of independent 
quantities (Ponton and Gawthrop, 1991). 

Clearly it is extremely important for a simulator to 
automatically identify these errors, and inform the user 
of alternatives. 



 CONSISTENT INITIALIZATION - REMARKS 
 

(h) it is sometimes possible to “trick” a simulator into 
finding consistent initial values for a high index 
problem by specifying steady-state as the initial 
condition. In these cases, the specification of steady-
state is redundant with the additional equations 
derived through differentiation, rather than 
inconsistent. Therefore, solving the equations with 
˙ x (0) = 0 will give the same answer. 

There are several examples in the literature of attempts 
to solve high index DAEs in this manner — it works 
provided no discontinuities in the inputs are 
introduced (consistent initialization is required at 
discontinuities as well - see later). 

However, there are also severe problems with the 
numerical integration of DAEs with index  2 (see 
below) — the results of attempting to do this are 
invariably failure or garbage!  



NUMERICAL INTEGRATION OF DAEs 
 

Dynamic simulation of chemical processes requires 
the numerical solution of large DAE systems that are: 
 

(a) large — typically 100s - 10,000s of equations (or 
even 100,000s!) 

 
(b) sparse — only a few (~5) variables appear in 

each equation - special advantage can be taken 
in Jacobian evaluations and linear algebra. 

 
(c) stiff — a range of phenomena taking place on a 

wide range of time scales — so the equations 
have widely different time constants. 

 
Numerical methods for integration of differential 
equations are usually categorized as explicit or 
implicit. 
 
Implicit algorithms are used in most cases . . . details 
to follow. 
 
See the recommended text books for a comprehensive 
treatment of this subject: different integration 
algorithms; properties of algorithms: convergence, 
consistency, stability (of the solution process, not the 
system of equations); integration error control; etc. 



NUMERICAL INTEGRATION 
 

Numerical integration methods approximate the 
solution of differential equations by obtaining the 
values of the unknowns at a set of distinct points in 
time (a process known as discretization): 
 

 

Distinct time points: t i( ) i = 1... N  
Variables at t( i) :  x i( ) 
Derivatives at t( i) :  ˙ x i( ) 

The values obtained must satisfy the differential 
equations at these points in time:  

˙ x i( ) = f (x i( ) ,t i( ) )  

This is a set of n  algebraic equations in the 2n  
unknowns ˙ x i( ) , x i( ){ }. 

=> we need another n  equations to solve for the 
unknowns. Different numerical methods suggest 
different forms of these n  extra equations. 



EXPLICIT METHODS 
 
There are two main objections to explicit methods for 
solving DAEs: 
 
(a) it is not any cheaper (in computational effort) to 
 solve DAEs with explicit methods (vs. implicit 
 methods). 
 
 With ODEs, one advantage of an explicit method 
 is that it is unnecessary to solve a set of 
 nonlinear algebraic equations at each time step. 
 
 Example:  Explicit Euler Method for ODEs uses 
 the approximation: 
 

x(i+1)
= x(i)

+ ˙ x (i)(t( i+1) t(i)) 
 
 This leads to the algorithm: 
 

 



EXPLICIT METHODS 
 

 for Explicit Euler each time step only requires a 
 function evaluation of the model to determine  
˙ x i( ) 
 
For a system of DAEs the algorithm would be: 
 

  
 
Note: must be able to solve f ( ˙ x , x, y,t) = 0 given x(t ); 
explicit methods limited to index one problems that 
satisfy this condition. 
 

   explicit methods for the general DAE 
 formulation1  require iterative solution of 
 nonlinear equations. 

                                                
1 and indeed ODEs in implicit form as well (remember that an ODE in implicit form is the typical 
result of trying to derive an ODE from a DAE). 



EXPLICIT METHODS 

(b) process models give rise to stiff sets of 
differential equations. 

For linear time invariant ODEs, i.e.: 

 x = Ax  

stiffness is characterized by the Stiffness Ratio: 

SR
max
i
Re i

min
i
Re i

1 

where i= ith eigenvalue of A . 

i.e. the stiffness ratio is the ratio of the 
eigenvalues of  with the largest and smallest 
real components. 

Process models tend to have high stiffness 
ratios (>1000) — i.e., there are phenomena taking 
place with widely different time constants. 



EXPLICIT METHODS 
 
Example: jacketed bath with thermowell: 
 

 
 
Normalized model: 
 

dT

d
= 1 T

dTM

d
=

1
T TM( )

˙ T 
˙ T M

 

  

 

  
=

1 0

1 1
 

  

 

  

T

TM

 

  

 

  
+

1

0
 

  

 

  

 
The time constant  of the thermowell is related to 
ratio of the thermal inertias of the bath and the 
thermowell — i.e., the smaller the thermowell, the 
smaller the time constant ( <<1): 

SR =
1
1

=
1

 

...as the thermowell becomes smaller relative to the 
bath, the stiffness ratio increases. 



EXPLICIT METHODS 
 

The maximum time step an explicit method can take 
is usually limited by stability criteria — i.e., the step 
size must always be smaller than some threshold for 
the solution process to remain stable. 
 
Note: 
 
• the time domain of interest is determined by the 

slowest decaying component — that with the 
largest time constant (smallest eigenvalue). 

 
• but, the maximum step size is limited by the fastest 

decaying component (largest eigenvalue) to 
maintain stability. 

 
As the stiffness ratio increases, the maximum step size 
decreases, but the time domain of interest remains 
fixed  an excessive number of time steps required. 
 
Because stability criteria severely limit the step size in 
stiff problems, explicit methods are not applied very 
often to process simulation problems. 



EXPLICIT METHODS 
 
Note: several textbooks that discuss dynamic 
simulation of chemical processes advocate the use of 
explicit methods.  These books were either written 
before reliable methods for solving stiff systems of 
ODEs had been developed, or recommend that the 
engineer determine the stiffness of the problem and 
select an appropriate numerical method.  In the latter 
case, it seems safer to always use an implicit method 
because most problems are stiff, and non-stiff 
problems are trivial to solve with today's 
computational resources. 



IMPLICIT METHODS 
 

Implicit methods: always required to solve a set of 
nonlinear equations at each time step. 
 
Advantage: theoretical guarantees for stability 
regardless of step size — step size limited by the need 
to control truncation error rather than stability. 
 
=> we can take much larger time steps when the  
 problem is stiff and the fast components of the 
 solution have decayed away. 
 
Example: Implicit Euler method for ODEs: 
 
  x(i+1)

= x(i)
+ ˙ x (i+1) (t(i+1) t( i) ) 

 
...and substitute: 
 
  ˙ x (i+1)

= f (x(i+1),t (i+1) ) 
 
into this to yield Implicit Euler algorithm. 



IMPLICIT METHODS 
 

 
 
Predictor-Corrector methods: 
 
• the numerical methods used to solve the set of 

nonlinear equations at each step require a good 
initial guess. 

• use an explicit method to provide this guess 
(predictor step) 

• then solve nonlinear equations (corrector step) 
 
Example: 
 
Predictor: Explicit Euler step 
Corrector: Implicit Euler step using results of 
   predictor step as initial guess. 



IMPLICIT METHODS FOR DAEs 
 
Most codes for solving DAEs use linear multi-step 
methods - in particular, the Backward Differentiation 
Formula (BDF) family of methods (also known as 
Gear's method) (Gear, 1971). 
 
These methods have particularly good stability 
properties and hence are well suited to stiff problems. 
 
Idea: fit qth order polynomial to q+1 values of x : 
 
  

  
x(t) = c0 + c1t + c2t

2
+…+cqt

q  
 

  
  

˙ x (i) =
dx(t(i))

dt
= c1 + 2c2t(i)

+…+qcqt(i)q 1
 

 
Given q+1 values for t(i)  and x(i) 
 
 

  
t( i) , x(i){ }, t(i 1), x( i 1){ },…, t(i q), x(i q){ }  

 
we can derive the coefficients for these polynomials in 
terms of x( i j) j = 0…q . 



IMPLICIT METHODS FOR DAEs 
 
Therefore, by differentiating the polynomial, the time 
derivatives can be expressed as a linear combination 
of these values: 
 

 ˙ x (i) =
1

h(i) j
j=0

q

x(i j) 

 
where: 
 
h( i)   =  current step size 
j  =  scalar multipliers; a function of the order of  

  integration q  and the current and previous  
  step sizes. 
 
So, we have established a relationship between ˙ x (i) 
and x(i) and q  previous values of the unknowns 
(presumed known). 
 
This relationship can be solved simultaneously with 
the differential equations to determine x(i)  and ˙ x (i). 
 
Note that the order of the integration method is given 
by the order of the polynomial q  - the number of 
previous values used to derive the approximation to 
˙ x (i). 
 
Exercise: show that the first order Gear method is 
equivalent to the Implicit Euler method. 



IMPLICIT METHODS FOR DAEs 
 
Gear's method is a predictor corrector method: 
 
a) predictor: extrapolate polynomial derived at 

previous time step. 
b) corrector: solve polynomial and model equations 

iteratively. 
 
Two approaches to solving DAEs with implicit 
methods have been proposed: 
 
(A)  reduce the DAE system to an explicit ODE 

system and solve using a standard BDF code for 
ODEs: 

 

 



IMPLICIT METHODS FOR DAEs 
 
Objections: 
 
a) VERY expensive - at each step of the ODE 
 method: 
 

• each polynomial approximation must be 
solved iteratively. 

• each function evaluation of this iteration 
requires the nested iterative solution of the 
DAEs 

 
b) each nested solution to the DAEs is inexact  
 and subject to numerical noise. 
 
c) again, can only be applied to those index one 
 DAEs for which we can solve f ( ˙ x , x, y,t ) = 0   
 given x(t ). 



IMPLICIT METHODS FOR DAEs 
 

(B) Solve the DAE system directly - eliminate ˙ x (t) 
 from f ( ˙ x , x, y,t ) = 0  using the polynomial 
 approximation to yield: 
 

f ( 0

h(i)
x(i) + d(i), x(i), y(i),t(i)) = 0  

 
 ...and solve this set of nonlinear equations 
 simultaneously for x(i) and y( i)  at each time step. 
 
The d( i)  are constants defined by: 
 

d( i) =
1

h(i)
j x
(i j)

j=1

q

 

 
This method is much more efficient because the 
nested iteration is avoided - note the number of 
equations solved is the same as the inner iteration 
above, and in the explicit method. 
 
There are several reliable and efficient implement-
ations of the direct approach - e.g., DASSL (Petzold, 
1983), DASOLV (Jarvis and Pantelides, 1992), and 
DSL48S (Barton et al., 1997). 
 
A version of DASOLV is used by SpeedUp. Within 
ABACUSS, the user may either use DSL48S or 
DASOLV. 



VARIABLE ORDER, VARIABLE STEP SIZE 
METHODS 

 
Typically, rather than requiring the user to specify the 
step size and integration order, a good BDF code will 
automatically adjust: 

• the integration step size 

• and the order of integration 

so that estimates of the truncation error satisfy some 
user specified tolerance. 
 
Warning: controlling the error of integration (i.e. 
choosing step size, order) is a complex task - standard 
codes will invariably do a better job than you can. 
Fix the step size at your peril! 
 
Clearly Gear's method must always start with a first 
order step (Implicit Euler) and then automatically 
adjust the order and step size as the number of 
previous steps increases and "confidence" concerning 
the behaviour of the solution is built up. 
 
 
Note: some simulators prompt the user for a step size 
- always check what this means (for example, in 
SpeedUp this is just a reporting interval for the results 
and has no effect whatsoever on the actual steps taken 
by the numerical methods). 



NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

 
 
Severe difficulties are encountered when the 
standard codes mentioned above are applied for 
numerical integration of high index systems. 
 
Example: undamped rigid pendulum modelled in 
Cartesian co-ordinates. 

 
Problem:      

m˙ ̇ x +
x

L
= 0

m˙ ̇ y +
y

L
= mg

x 2
+ y 2

= L2

y(0) = 0

˙ y (0) = 0

 

 
Differential index = 3. 

x
y

Length L



NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

 
The pendulum problem is the standard academic 
example. In this case, the index problem arises due 
to the assumptions used in model development 
(use of Cartesian co-ordinates when rigidity of the 
pendulum implies the x and y positions are not 
independent). 
 
For comparison purposes, if the model is 
reformulated in polar co-ordinates, we get: 
 

 

+
g

L
sin( ) = 0  

 
where  is the angle of rotation. 
 
The index of this model is 0 (an ODE). Hence, the 
numerical solution to this model is a reference by 
which numerical solutions to the index 3 model can 
be judged. 
 
Note that in the following, only the solution found 
by the method of dummy derivatives is virtually 
indistinguishable from that of the index 0 model. 



NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

 
CASE 1: SOLVE FROM CONSISTENT INITIAL 
CONDITIONS WITH STANDARD CODE 
 
All case studies are solved from the consistent 
initial condition defined by the solution to the 
equations: 
 

mx(0) +
(0)x(0)

L
= 0

my(0) +
(0)y(0)

L
= mg

x(0)2 + y(0)2 = L2

2x(0)x(0) + 2y(0)y(0) = 0

2x(0)x(0) + 2y(0)y(0) + 2x(0)2 + 2y(0)2 = 0

y(0) = 0

y(0) = 0

 

 
For this problem, standard code will take a few 
steps, then cut the step size to zero and terminate 
abnormally.  
 
Since a high index problem is not the only cause of 
this type of behaviour, the user is left clueless as to 
what to do next. 



NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

 
CASE 2: SOLVE USING METHOD SUGGESTED 
BY GEAR AND PETZOLD (1984) 
 
Gear and Petzold (1984) suggested deriving the 
underlying index 1 system from a high index 
system using differentiation, and then submitting 
this index 1 system to a standard solver. 
 
For the pendulum example, this process yields the 
index 1 system: 
 

m˙ ̇ x +
x

L
= 0

m˙ ̇ y +
y

L
= mg

2x˙ ̇ x + 2y˙ ̇ y + 2 ˙ x 2 + 2 ˙ y 2 = 0
 

 
PROBLEM: solution set of this system is bigger 
than original index 1 system. The solution satisfies 
the second derivative of the path constraint 

    x
2
+ y 2

= L2  rather than the path constraint itself. 
 
In practice, even given consistent initial conditions, 
rounding and truncation error lead to a disastrous 
deviation from the path constraint (see overleaf). 



METHOD OF GEAR AND PETZOLD (1984) 
RESULTS 

 
 

 
 
The incredible shrinking pendulum!! 
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NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

 
CASE 3: THE METHOD OF DUMMY 
DERIVATIVES  
(Mattsson and Soderlind, 1993; Feehery and Barton, 
1996) 
 
PROPOSITION: for any high index system there 
exists a family of index 1 systems that have an 
equivalent solution set to the original high index 
system. 
 
IDEA: if we can find one of these equivalent index 
1 systems, we can then submit this index 1 system 
to a standard code and the results from solution of 
this system can be treated as the solution of the 
high index system. 
 
Mattsson and Soderlind (1993) proposed an 
algorithm that can find a member of this family of 
equivalent index 1 systems for a broad class of 
nonlinear DAEs of arbitrary index.1  
 
Overleaf we show how their algorithm works when 
applied to the pendulum example. 
 

                                                
1 specifically, those for which structural criteria can correctly determine the differential index 
of the system 



NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

1. apply Pantelides’ (1988) algorithm to derive the 
system of equations that must be satisfied by 
consistent initial conditions: 

m˙ ̇ x +
x

L
= 0

m˙ ̇ y +
y

L
= mg

x 2
+ y 2

= L2

2x˙ x + 2y˙ y = 0

2x˙ ̇ x + 2y˙ ̇ y + 2 ˙ x 2 + 2 ˙ y 2 = 0

 

2. this is an overdetermined dynamic system (more 
equations than unknowns). Pick a subset of the 
time derivatives to substitute for dummy 
algebraic variables. 

m   x +
x

L
= 0

m˙ ̇ y +
y

L
= mg

x 2
+ y 2

= L2

2x  x + 2y˙ y = 0

2x   x + 2y˙ ̇ y + 2  x 2
+ 2 ˙ y 2 = 0

  (EQUIV) 

 
...    ̇ x  and     ̇ ̇ x  replaced by new algebraic variables  x  
and   x . Note true dynamic degrees of freedom of 
system revealed. 



NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

 
3.  system (EQUIV) is a fully determined index 1 

system (when     x 0). Solve with standard code. 
 
In this example there are two members of the 
family of equivalent index 1 systems: instead,     ̇ y  and 
    ̇ ̇ y  could have been substituted (this system is index 
1 except when y 0 ). 
 
PROBLEM: members of the family of index 1 
models can have their index change locally (to 
index 2+) at certain points in state space. If a 
numerical method steps in the neighbourhood of 
such points, severe difficulties, typically failure, are 
encountered (Feehery and Barton, 1996). 
 
Example: the model (EQUIV) above becomes high 
index locally when     x = 0 (similarly, the other 
member of the family becomes high index locally 
when     y = 0 ). 
 
SOLUTION: since the points in state space where 
the index rises locally do not coincide, switch 
between members of the family to avoid 
approaching such points for the current model. 
 
This is known as dummy pivoting. 
 
Feehery and Barton (1996) have recently developed 
an efficient and automated approach for dummy 
pivoting. 



THE METHOD OF DUMMY DERIVATIVES IN 
ABACUSS 

 
ABACUSS is now capable of automatically solving 
a broad class of nonlinear DAEs of arbitrary index2 
using the method of dummy derivatives (Feehery 
and Barton, 1996). 
 
Give a model coded in ABACUSS, the following 
steps are done automatically: 
 
• identification of the extra equations that constrain 

the initial conditions using Pantelides’ (1988) 
algorithm. 

 
• automated derivation of these extra equations 

using symbolic or automatic differentiation 
 
• generation of statistics on the (structural) 

differential index, degrees of freedom for 
consistent initialization, etc. 

 
• given the degrees of freedom, solution of the 

consistent initialization (standard NLE solver) 
 
• automated numerical integration using the 

method of dummy derivatives, and the dummy 
pivoting algorithm of Feehery and Barton(1996). 

                                                
2 specifically, those for which structural criteria can correctly determine the differential index 
of the system 



METHOD OF DUMMY DERIVATIVES 
RESULTS 

 
 

 
 

Almost identical to ODE model in polar co-
ordinates. Very small energy loss. 
 
This problem is particularly challenging because 
the pendulum is on the limit of stability. 

ABACUSS Dynamic Simulation

X

Y

Values

Time

-1.00

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.00 50.00 100.00 150.00 200.00 250.00 300.00



NUMERICAL INTEGRATION OF HIGH INDEX 
DAEs 

STANDARD CODES 
 
When the standard numerical codes are applied to 
DAEs with index  2, the stability, convergence and  
error control of the BDF method begin to break 
down. 

Health Warning: although (given a consistent 
initial condition) standard DAE codes may be able 
to advance the solution of high index problems - 
the results will be garbage (error control breaks 
down). 

• in the pendulum example we were fortunate that 
the code gave up 

• there are examples in the literature (particularly 
distillation simulation) where the code has 
advanced solution of a high index model: the 
results are terrible - for example, predicting 
inverse responses where no such physical 
behaviour exists. 

Standard codes can be modified to solve classes of 
nonlinear index 2 and index 3 systems correctly. 
However, no such modification exists to solve 
nonlinear DAEs of arbitrary index. 
 
Why care about index 3+ systems? 
 
• dynamic design problems: specify pressure at the 

bottom of a column and the index is NP+1 where 
NP is the number of trays 

• path constrained dynamic optimizations 
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VALVE AUTOMATON 
 



RESPONSE OF TANK TO MAJOR SURGE IN 
UPSTREAM PRESSURE 

 

 



DISCONTINUITY HANDLING 
 

In most dynamic simulation experiments we must be able 
to handle discontinuities in both the functions assigned to 
the input variables and discrete changes to the functional 
form of the equations that describe the behaviour of the 
system. Example:  open the feed valve to a tank:  

FIN = KVz P

   
 
In this case, we select the input to the system (e.g., the 
variable we can control) as the stem position of the control 
valve z(t).  We can model the valve opening at time t * by 
defining the time variation of the stem position as a 
discontinuous function, for example: 
  

 
DISCONTINUITY HANDLING 



Note: assigning a step change to the stem position will 
typically be an abstraction.  In reality, the valve will 
require a finite amount of time to open. Obviously, if this 
level of detail is necessary, we could assign the following 
function to the stem position: 
 

 
 
. . . or even model the valve dynamics and introduce the 
step change in the pressure signal to the valve. Remember, 
as the modeller you choose the appropriate level of 
abstraction. 



DISCONTINUITY HANDLING 
 
If we know in advance when the valve is to be opened, we 
can divide the time interval of interest [t0,t f ] into two sub 
intervals: 

 
. . . note that in this case the process model in each interval 
is the same, but we have assigned different functions to 
the input variables in each interval. 

What we have done is posed the overall simulation 
problem as two initial value problems in DAEs: 

(a) given consistent initial conditions at t = t0 , integrate 
 numerically the first initial value problem to t *.  If the 
 last step goes beyond t *, simply curtail the step to t *. 

(b) at t * set up the new initial value problem — change 
 the functions assigned to the inputs.  

(c) determine consistent initial conditions for the 
 variables ˙ x , x  and y at t *. 

(d) integrate numerically this new initial value problem 
 from t * to t f .  Note integration is restarted: a BDF 
 method must start again with a first order step. 



DISCONTINUITY HANDLING 
 
If there are more discontinuities like this, just divide the 
time interval into more sub intervals: 
 
=> dynamic process simulation is a sequence of initial 

 value problems in DAEs interspersed by 
discontinuities (Barton and Pantelides, 1994) 

 
Note:  

(a) the end of a sub interval is marked by the   
 occurrence of an event. 

(b) the time variation of the system between events is  
 smooth. 



CONSISTENT REINITIALIZATION 
 

At the events that mark the end of the sub intervals it is 
necessary to determine consistent initial values for the 
variables at the beginning of the new interval - this is 
called consistent reinitialization. 
 
For a ODE system this reinitialization is trivial: 
 

˙ x (t*) = f (x(t*),u(t*),t*) 
 
. . . it is assumed that the values of the variables x  are 
continuous at the event, so discontinuities can only appear 
in the values of the time derivatives ˙ x  (the function above 
is evaluated with the new functions assigned to the input 
variables).   
 
For a DAE system both the time derivatives and the values 
of the algebraic variables can be discontinuous. 
 
Example: consider again the inlet valve of our tank.  The 
flow rate into the tank is related algebraically to the stem 
position of the valve by the equation: 
 

FIN = KVz P  
 
. . . even if the pressure drop remains constant at the 
discontinuity, the value of FIN  must be discontinuous to 
remain consistent with the discontinuous value of the 
stem position z(t) at t *. 



CONSISTENT REINITIALIZATION 
 
In general, with a DAE system we need to determine 
consistent initial values for the new initial value problem 
at each event. We proceed in the following manner: 

(a) determine the values of the inputs at t * u(t*)   
 according to the new functions. 

(b) the necessary conditions for a consistent initial 
 condition are given by the model equations at t *: 
 

f ( ˙ x (t*),x(t*),y(t*),u(t*),t*) = 0  
 
 These may have to be augmented with additional 
 equations derived by differentiation of the original 
 equations - i.e. when index  2. 
 
 For this discussion, we will assume the index = 1 and 

the original equations are necessary and sufficient to  
define consistent initial values. 

(c) we have: 

  n + m equations 

 and 

  2n +m  unknowns ˙ x (t*), x(t*),y(t*){ }  

=> we need n  more side conditions to fully define the 
initial state of the system in the new sub interval.  



CONSISTENT REINITIALIZATION 
 
In order to obtain these side conditions, the normal 
assumption is that the values of the differential variables 
are continuous across the boundary between two 
intervals, e.g., we solve: 

   f ( ˙ x (t*),x(t*),y(t*),t*) = 0     (R1) 

for ˙ x (t*) and y(t*) keeping x(t*)  constant at the values at 
the end of the previous interval (leading to a fully 
determined system of equations). 
 
The physical reasoning behind this is that the differential 
variables represent conserved quantities (such as mass, 
energy, or momentum) or are directly related to them: 
 
=> at an event, the values of input, algebraic or time 
 derivative variables may be discontinuous, but the 
 values of the differential variables are continuous. 
 
Note: this poses problems for DAE systems for which the 
condition: 

Rank f
x

f
y

= n+m  

 
is not satisfied (i.e. all index  2 and some index = 1). 
Clearly, if this condition is not satisfied the calculation 
(R1) above is impossible. In these cases, the assumption of 
continuity for all the differential variables at the boundary 
is either redundant or inconsistent with some of the time 
derivatives of the model equations. Research continues... 



EVENTS 
 

Discontinuities1 are triggered by the occurrence of events 
during the simulation experiment. 
 
Events belong to one of two categories: 

1. Time Events — the exact time of occurrence is known 
 in advance.  Solution of the sequence of initial value 
 problems can proceed to these events in strict time 
 order: 

(a) advance numerical integration in the current 
interval. 

(b) curtail the final integration step length to the 
event time. 

(c) restart the simulation with the new initial value 
problem. 

 Time events can be further categorized as: 

• exogenous — if the time of occurrence is known a 
priori 

• endogenous — if the time of occurrence is 
calculated from some earlier event in the 
simulation.  

...in either case, the time of occurrence of the next time 
event is known when integration starts in a sub 
interval.   

                                                
1  discontinuities may occur in the value of variables and/or in the value of their time 
derivatives.  



EVENTS 
 
2. State Events — the time of occurrence of state events 
 is not known in advance because it is dependent on 
 the system fulfilling certain conditions — state 
 conditions.  
 
 Numerical integration of the current IVP must be 
 advanced speculatively until the state condition 
 becomes satisfied. 
 
Discontinuities as a consequence of state events require 
careful handling . . . details to follow. 



STATE EVENTS — EXAMPLE 
 

Example: consider a batch reactor: 

Reactions

A
k1 B

B k2 CA

  

 
Homogeneous catalytic liquid phase reactions; product B 
desired, C waste. 
 
 => operating objective:  maximize yield of B 
 
From reaction engineering we know that the maximum 
yield of B occurs when: 
 

dCB
dt

= 0   

 
i.e. the concentration of B in the reactor reaches a 
maximum. 



STATE EVENTS — EXAMPLE 
 
Provided we can estimate dCB / dt  with some analytical 
instrument, we could define the operating policy for the 
reactor in the following manner: 
 
 # charge the reactor 
 OPEN INLET VALVE 
 WAIT 10 MINUTES   
 CLOSE INLET VALVE 
 
 INJECT CATALYST 
 WAIT UNTIL dCB / dt  0 
 
 # discharge the reactor 
 OPEN OUTLET VALVE 
 WAIT 10 MINUTES    
 CLOSE OUTLET VALVE 
 
In order to simulate this operating policy, we must be able 
to deal with the state condition defined by: 
 

dCB
dt

0  

 
. . . i.e., advance simulation speculatively until this 
condition is satisfied, then open the outlet valve (a 
discontinuity). 
 
It is extremely important to locate state events accurately 
and deal with them in strict time order — the occurrence 
of a discontinuity can radically change the way in which 
the subsequent process behaviour evolves with time. 



STATE EVENTS 

In general, a state event is the time at which a state 
condition expressed in terms of classical propositional 
logic becomes true, i.e.: 

l(x, ˙ x , y, ˙ y ,u,t)
TRUE t t *

FALSE t < t *
 
 
 

 

. . . t  in some non zero interval around the event time t *. 

Example:  steam trap (a common device that only allows a 
liquid phase to flow): 

 
IF (h hMIN ) ( P 0)THEN

v = KV P

ELSE

v = 0

END

            

where: 

h  = liquid level in steam trap 
v   = velocity of liquid through steam trap 

 = logical AND operator. Note: h hMIN( ) P 0( ) 



STATE EVENT LOCATION 
 

Simple minded approach: rely on the automatic error 
control mechanism of the numerical integration method. 
 
Example: predictor corrector method:       
   
 

 



STATE EVENT LOCATION 
 

Algorithm: Ad Hoc: 

(a) Take a step from tk  to tk+1.  State event occurs at t * in 
 this interval — we do not know t * because we have 
 to integrate to t * to determine when the condition 
 becomes satisfied. 

(b) Predictor step gives point on old trajectory. 
 Corrector step gives point on new trajectory. 

(c) Error control mechanism uses difference between 
 predictor and corrector steps to estimate the 
 truncation error:  

=> if discontinuity in step, error estimate is very large! 

 Alternatively, the initial guess provided by the 
predictor may be so poor that the corrector iteration 
fails to converge. 

(d) Error control will mechanism will reject step to tk+1, 
 halve the step length and try the step again. 

(e) Eventually. . . after repeated truncation error failures 
and/or corrector iteration failures, and great 
reduction in step length . . . a step is taken close 
enough to t * that the error criterion is satisfied, and 
integration can then proceed on the new trajectory. 



STATE EVENT LOCATION 
 
Problems with Ad Hoc: 

i) extremely inefficient — repeated truncation error 
failures and cutting the step size both drastically slow 
down the simulation. 

ii) DAEs require consistent initialization at a 
discontinuity - code has to guess that a discontinuity 
has occurred. However, a rapid transient can also 
cause repeated truncation error failures and step size 
reduction - how to distinguish between the two?  

iii) as the only way of detecting the state event is the 
difference between the predictor and corrector steps, 
it is possible to skip over the discontinuity 
completely, e.g., 

 

 
 
. . . as a new initial value problem must be started at t * 
which may have a radically different solution from the 
predicted trajectory, this is extremely dangerous 
(particularly in safety related applications). 



DISCONTINUITY LOCKING 
 

Numerical methods for ordinary differential equations 
typically make assumptions concerning the continuity of 
the solution trajectories: 
 
=> do not expect efficient (or even correct) solutions 
 along discontinuous trajectories! 
 
Solution:  discontinuity locking: 
       

 



DISCONTINUITY LOCKING 

Algorithm: Discontinuity Locking: 
(a) lock the process model in a sub interval: do not allow 

equations or input functions to change while 
numerical integration is being advanced in a sub 
interval. 

(b) advance solution on this continuous trajectory until a 
converged corrector step beyond the state event is 
obtained (e.g. we have bounded the time of 
occurrence) 

(c) locate the exact time at which the state event occurs 
t * — within the step just taken (i.e., backtrack using 
interpolation over this step). 

(d) implement the change to the process model at t *, 
 perform consistent reinitialization at t *, and restart 
 integration in the new sub interval. 
Assumption: 
• the differential equations that make up the old model 

have a mathematically defined solution beyond t * — 
even if the solution is not physically meaningful (e.g., 
negative mole fractions). 

• counter examples exist: i.e., a mathematical solution 
does not exist beyond the event. 

Once the time step in which the state event occurs has 
been located, a variety of methods can be used to locate 
the exact state event time. 



DISCONTINUITY LOCKING - BISECTION 
ALGORITHM 

 

 
 

Algorithm implemented in SpeedUp (Pantelides, 1998b), 
gPROMS. 
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DISCONTINUITY LOCKING - HIERARCHICAL 
INTERVAL ARITHMETIC BASED ROOT 

FINDING 
 

 
 

New algorithm implemented in ABACUSS (Park and 
Barton, 1996). 
 
Which answer is correct? Park and Barton algorithm 
guarantees correctness. 
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COMBINED DISCRETE/CONTINUOUS 
SIMULATION1 

 
As the number of discontinuities increases in a dynamic 
simulation, we are really performing what is called a 
combined discrete/continuous simulation — i.e., we are 
simulating a system whose dynamic behaviour has both 
significant continuous and discrete aspects: 
 
• continuous aspects — physico-chemical phenomena 

modelled by differential equations (material, energy, 
momentum balances) 

 
• discrete aspects: 
 
 (a) discontinuities in physical behaviour — e.g., 

 phase changes, flow transitions 
 
 (b) control actions — e.g., open/close valves, 

 start/stop pumps, open/close control loops. 
 
. . . a dynamic simulation tool must be able to cope with 
descriptions of both aspects of process behaviour (see 
ABACUSS workshop). 
 

                                                
1 for a more comprehensive discussion of this subject see Barton and Pantelides (1994) 



WHEN IS COMBINED SIMULATION IMPORTANT? 
 

 
Whenever the system state moves far from steady-state: 
 

• modelling sequential operations — e.g., start-up, 
shut-down, feedstock changeover.  Must model the 
control actions in the operating procedures, and the 
physical transitions the system goes through. 

 
• major process disturbances — model interaction of 

process, regulatory control system, and automatic 
protective system.  Process model can change (e.g. 
vessel running dry) and control/safety systems can 
impose discrete actions. 

 
• periodic processes — e.g., pressure swing absorption. 
 
• batch processes — must model complex operating 

policies composed of discrete actions. 
 
We can see that almost all interesting process simulations 
are combined discrete/continuous - certainly it provides a 
convenient unified strategy for process simulation. 



PROCESS MODEL DECOMPOSITION 
 
 

 
 
 
Key concept: 
 
Discrete aspects of process behaviour can be modelled by 
manipulation of the functional form of the equations 
describing the process model, e.g. changing the functional 
form of: 
 

 
f ( ˙ x , x, y,u,t) = 0

u = u(t)
 



PHYSICO-CHEMICAL DISCONTINUITIES 
 

Any description of the physical behaviour should include 
those discrete changes to the process model that occur as a 
result of physical phenomena: 
 
(a) so that the model of physical behaviour is compact 

and complete. 
 
(b) the model will automatically adjust its functional 

form in response to current conditions without 
intervention from the user. 

 
General observation: 
 
 Physico-chemical discontinuities can be modelled 

changing subsets of the equations that make up the 
process model in response to changes in process 
conditions. 

 
. . . therefore physico-chemical discontinuities occur as a 
consequence of state events. 



PHYSICO-CHEMICAL DISCONTINUITIES  
EXAMPLE 

 
Example: tank with an overflow pipe:   
          

 
 
 
This can be represented in an equation based modelling 
language by: 
 

IF h hMIN  THEN 
 FOUT = f (h hMIN ) 
ELSE 
 FOUT = 0  
END 



PHYSICO-CHEMICAL DISCONTINUITIES 
EXAMPLE 

 
Finite automaton representation of the model state — a 
digraph: 
 
• nodes represent model in a particular state 

(characterized by a set of equations) 
• arcs represent discrete transition from one state to 

another — transition triggered by the occurrence of a 
state event.            

 

FOUT = 0 FOUT = f (h hMIN )

NOT h hMIN

h hMIN  
 
. . . IF equations represent symmetric reversible 
discontinuities:  the condition for the forward transition is 
the negation of the condition for the reverse transition. 



PHYSICO-CHEMICAL DISCONTINUITIES 
EXAMPLE 

 
 
Example: pressure vessel fitted with safety relief valve:        
 
 

FRELIEF

P

 
 
 
Mechanical safety device:  relief valve opens at the set 
pressure (PS ), but closes at a (lower) reseat pressure (PR). 



PHYSICAL-CHEMICAL DISCONTINUITIES 
EXAMPLE 

 
Finite automaton:       
 

FRELIEF = 0 FRELIEF = f (P)

P < PR

P > PS  
 
 
The behaviour of this system exhibits hysteresis 
(memory):  the equations describing the system are a 
function of both the current value of the process variables 
and the previous behaviour of the system. 
 
For example, if the pressure is between the reseat and set 
pressures the system may be in either state — the actual 
state depends on what has happened in the past.  The 
initial state of the model must be defined as part of the 
initial conditions of the system. 
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