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Wind Forecasting in the US

* Southern California Edison: 2000

e (California ISO: 2004

* Electricity Reliability Council of Texas: 2008
* New York ISO: 2008

* Midwest ISO: 2008

* PJM: 2009

* Bonneville Power Administration, Xcel Energy, others under
development

The great majority of US wind plants are now receiving forecasts
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Why Do Wind Forecasting?

e Unforecasted wind fluctuations increase
requirements for spinning reserves and raise
electricity system production costs

e Unforecasted large ramp events can affect
electricity system reliability

e State-of-the-art forecasts have high economic
value compared to their cost (but potential
savings are not always realized)

e Wind forecasts become essential for effective grid
management with high wind penetrations (>5%)
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Cost of Intermittent Wind

Base Case Assumptions: 54 50
DA firmness (B0%)
Ha firmness (87%)
Added spin (2.4 MW) $4.00

$3.50
$3.00
$2.50

$2.00

Integration Cost

$1.50

$1.00

Wind Energy Penetration

i Within-hour Regulating
M Hour-ahead Uncertainty

M Day-ahead Uncertainty

$0.40
$0.11

$0.39

4%
$0.41
$1.88
$0.95

7%
$0.31
$2.32
$0.93

$4.08

10%
$0.37
$2.65
$1.06

Arizona Public Service (Acker et al., 2007)

Typical range for all studies: $1.5-54.5/MWh:....

Roughly 2.5-7.5% of cost of energy
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The Forecasting Challenge

If you think ordinary weather forecasting is challenging...

e Wind is typically created by small pressure gradients
operating over large distances: hard to forecast accurately

e Turbulent & chaotic processes are also important & even
harder to forecast

e |ocal topography can have a strong influence, but not
captured in standard weather models

e Plant power curves are highly non-linear, so small errors in
wind = big errors in power

e Plants experience unexpected losses and downtime and
may operate sub-optimally
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Forecasting Systems

Observations

Weather observations set the initial
conditions — but there is never
enough data

Weather

Numerical weather prediction e
Prediction Models

(NWP) models forecast evolution of
weather systems

Statistical models convert wind to Slant Outout &
power output and correct for Statistical Models
systematic biases and error patterns

Actual plant production data provide
feedback to improve the statistical
models
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Production

Forecast

Forecast providers use these

components in many different ways
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NWP Models

e Physical equations of the
atmosphere are solved on a 3-D
grid

e |nitial conditions are obtained
from observations (surface,
balloons, satellites, Doppler
radars, etc.)

e Models typically run 2x or 4x
per day out 1-5 days

e Some forecast providers rely on
government-run models; others
run their own




Statistical Models

: Predictors Predictand
e Correct for systematic NWP FE SR e

biases & sub-gridscale effects

e Incorporate recent data from
the site or nearby locations

e Often include conversion of
forecasted winds to plant output

Training
e Many different statistical Algorithm
models are used: linear
regression, neural networks )

support vector machines...
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Forecast Time Horizons

* 5-60 minutes
— Uses: Regulation, real-time dispatch decisions
— Phenomena: Large eddies, turbulent mixing transitions
— Methods: Largely statistical, driven by recent measurements

e 1-6 hours ahead:

— Uses: Load-following, next-operating-hour unit commitment
— Phenomena: Fronts, sea breezes, mountain-valley circulations
— Methods: Blend of statistical, NWP models

 Day-ahead
— Uses: Unit commitment and scheduling, market trading
— Phenomena: “Lows” and “Highs,” storm systems
— Methods: Mainly NWP with corrections for systematic biases

e Seasonal/Long-Term
— Uses: Resource planning, contingency analysis
— Phenomena: Climate oscillations, global warming
— Methods: Based largely on analysis of cyclical patterns
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How is Forecast Skill Measured?

e Typical: mean error (ME), mean absolute error
(MAE), root-mean-square error (RMSE)

e More refined “skill scores” are sometimes used, e.g.

— Improvement over persistence, climatology, or
other “dumb” forecast

— Skill at predicting special conditions, e.g. ramp
events, max/min output, cumulative output in
critical periods

e Skill scores should be customized to the user’s cost
or risk function (but rarely are)
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Typical Forecast Performance

"Hour-Ahead" Forecast

eWind
Persistence

eWind v. Persistence

Skill Score
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Forecast Hour
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Typical Forecast Performance

"Day-Ahead" Forecast
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eWind

Persistence

Climatology

eWind v. Persistence
eWind v. Climatology
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Forecast Hour
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Apples and Oranges

e Forecast performance varies with many factors

Forecast time horizon (especially for short-term)
Amount and diversity of regional aggregation

Quality of generation & met data from the plant
Distribution of wind speeds relative to the power curve
Type of wind and weather regime

Shape of the plant-scale power curve

Amount of variability in the wind resource

Sensitivity of a forecast to initialization error

e These factors make casual comparisons of forecast
performance very difficult and lead to misconceptions
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How to Improve Forecasts

(3) Improved models

v" Improved NWP modeling of sub-grid and surface processes
v" Improved statistical models and training methods

(2) More effective use of models

v Higher resolution, more frequent NWP model runs
v’ Better data assimilation techniques
v' Ensemble forecasting

(1) More and better weather data

v' Greater and more effective use of “off-site” data
v A leap in quality/quantity of global satellite-based sensor data
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Ensemble
Forecasts

e Uncertainty is present in
any forecast method

— Input data & initial state

e

— Model type TEIUEER V.« ER

— Model configuration

e By varying the initial state and model parameters, an
ensemble of plausible forecasts is produced

e On average, the ensemble forecast is usually the best — but
costly in computer resources
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Regime-Based Forecasts

Divide weather conditions
into characteristic regimes

Optimize forecasts for
each regime

Often yields a substantial
Improvement in
accuracy...

...but requires more
thought and expertise
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e |Large ramp events are gaining
attention since they can drive

orid v

I.1 #-

Observed ramp: 36% / hour
Forecast Ramp: 15% / hour

o MAE

-
>

may



Reliability Diagram

Compares forecasted
probabilities to
observed frequencies

Forecasted
probabilities are
grouped into bins

Example: 180-minute
ramp rate probabilities

Issue: Small sample
Size
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Probabilistic 180-min Ramp Rate Forecasts

July 5 - August 17, 2010
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Weather Data

There is a great need
for more weather
observations

Can use mesonets,
profilers, offsite towers,
Doppler radars, other...

Custom observing
networks may be key in
the future

Imply frequent NWP
updates (e.g., Rapid
Update Cycle 8x per
day)

Rapid Update Cycle NWP forecast of a ramp event
caused by a frontal system propagating southward
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But Where to Measure?

e Improving forecasts 6 hours ahead may require
measurements up to 300 km away: a huge area!

e Don’t forget the vertical dimension: surface
measurements alone are generally not sufficient,
even for “next hour” forecasts

e Be smart: Some locations, heights, parameters
may have far more predictive value than others

» Corollary: “Masts of opportunity” may have little
value

e US DOE-funded research under way to optimize
observing systems for short-term forecasts
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Observation Targeting Procedure

* Initiate many forecasts over a
range of initial states

Assimilation Assimilation
o X; x¢ =x! +K(y, - H(x/ )
o X° K=P'HY(HP'HT +R)"!

Schematics of EnKF Cycles

* Map the sensitivity of forecast
errors to the variations in each
parameter

* Experimental but promising
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Centralized v. Decentralized Systems

 Centralized systems
— Owned or contracted by the grid operator
— Lower total cost for multiple plants
— Easier to set and enforce standards, maintain consistent quality
— Potential to aggregate data from different plants and improve forecast quality
— Can make shared investments, e.g., targeted observational network
— May not allow enough competition

 Decentralized systems
— Forecasts supplied individually by wind projects
— No external funding needed — therefore often the easiest choice
— Standards can be set, but enforcement may be difficult
— May lead to greater competition among forecast providers
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Integration with Grid Operations

 The forecasts may be fine, but will they be used?

* Forecasts should be customized to the real needs of the grid
operators
— Confidence levels on routine forecasts

— Focus on critical periods, e.g., times of maximum load or maximum load
swing

— Ramp forecasts

— Severe weather forecasts
* Dedicated staff should be assigned to monitor forecasts

* Other steps to make integration more effective: training,
visualization tools, plant clustering
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Summary

Wind forecasting is becoming ever more important
as wind penetration grows

Current forecasting technology is far from perfect
but nonetheless highly cost effective compared to
no forecast at all

Improvements lie in better models, better use of
models, and more observational data

Benefits of aggregation and need for large
investments (e.g., observational networks) favor
centralization of forecasting operations
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Thank you

Michael Brower
Chief Technical Officer
AWS Truepower, LLC
463 New Karner Road
Albany, NY 12205
mbrower@awstruepower.com
Ph. 978-835-8263
awstruepower.com
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