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We analyze how asymmetric information and imperfect competition affect liquidity and
asset prices. Our model has three periods: Agents are identical in the first, become
heterogeneous and trade in the second, and consume asset payoffs in the third. We show
that asymmetric information in the second period raises ex ante expected asset returns
in the first, comparing both to the case where all private signals are made public and
to that where private signals are not observed. Imperfect competition can instead lower
expected returns. Each imperfection can move common measures of illiquidity in opposite
directions. JELD43, D82, G12, G14)

Financial markets deviate, to varying degrees, from the perfect-market ideal in
which there are no impediments to trade. A large body of empirical work has
quantified these deviations using various measures of illiquidity, and has linked
illiquidity to expected asset returns. While theoretical work has provided
useful guidance on the empirical findings, the guidance has been incomplete,
especially concerning the relationship between illiquidity and expected returns.
Consider, for example, asymmetric information, a market friction that has
been studied extensively in the literature. Seminal paper&logten and
Milgrom (1985 and Kyle (1985 have shown that asymmetric information
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is positively related to illiquidity as measured by the bid-ask spread and by

Kyle's lambda (price impact). In these articles and most of the subsequent
literature, however, market makers are risk neutral, are competitive, and can
take unlimited positions. Hence, the autocovariance of asset returns, which is
also a widely used measure of illiquidity, is zero. Moreover, expected asset
returns are equal to the riskless rate. These articles thus offer little guidance on
what the empirical relationship between illiquidity and expected returns should

be under asymmetric information.

Few articles, to our knowledge, study the effect of asymmetric information
on expected return®©’Hara (2003 andEasley and O’Har§2004) show in a
multi-asset extension @rossman and Stiglitt1 980 that prices are lower and
expected returns higher when agents receive private signals than when signals
are public. This comparison, however, is driven not by asymmetric information
per se but by the average quality of agents’ information. Indeed, while prices
in their model are lower under asymmetric information than when signals
are public, they are higher than under the alternative symmetric-information
benchmark where no signals are observ@drleanu and Peders€B004)
show in a model with risk-neutral agents and unit demands that asymmetric
information can raise or lower expected returns, with the effect being zero
when probability distributions are symmetric—as is the case under normality,
an assumption used in much of the literature. These articles thus suggest an
ambiguous effect of asymmetric information on expected rethrns.

In this article, we study how asymmetric information affects liquidity and
expected returns. Our model builds on Grossman and Stiglitz’s canonical
framework, and thus assumes normality. We replace the noise traders in
Grossman and Stiglitz with rational hedgers. More importantly, we examine
how the effects of the asymmetric-information friction are priced in an ex
ante period, in a spirit similar to Garleanu and Pedersen, and to much of the
earlier literature on transaction costs (eAmihud and Mendelson 19860ur
model can incorporate a variety of market frictions in addition to asymmetric
information. In particular, we also study the impact of imperfect competition,
a friction closely related to asymmetric information since large traders, whose
trades can move prices, are often privately informed (Kyje 1985.2

We show three main results. First, asymmetric information raises expected
returns, compared both with a symmetric-information benchmark where all
private signals are made public and with one where private signals are not
observed. Second, asymmetric information and imperfect competition raise

See alsEllul and Pagang2006), who show that asymmetric information in the post-IPO stage can reduce the
IPO price. Their post-IPO stage involves exogenous noise traders and an insider who is precluded from bidding
for the IPO. So, the IPO price is influenced only by a subset of agents trading in the post-IPO stage.

A previous version of this articlefayanos and Wang 201@lso considers participation costs, transaction costs,
leverage constraints, and search frictions.
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Liquidity and Asset Returns

Kyle's lambda but can bring the autocovariance of asset returns closer to
zero. Thus, lambda reflects both frictions more accurately than autocovariance.
Third, imperfect competition can lower expected returns.

Our results imply that the empirical relationship between illiquidity and
expected returns is sensitive to the underlying imperfection and to the measure
of illiquidity being used. For example, if illiquidity is measured by lambda, the
relationship with expected returns is positive under asymmetric information
but can turn negative under imperfect competition. Moreover, the relationship
can turn negative even under asymmetric information, if illiquidity is measured
by autocovariance.

Our model has three periods,= 0, 1, 2. In Periods 0 and 1, risk-averse
agents can trade a riskless and a risky asset that pay off in Period 2. In Periodg-
0, agents are identical, so no trade occurs. In Period 1, agents can be one og
two types: liquidity demanders who will receive in Period 2 an endowment
covarying with the risky asset’s payoff, and liquidity suppliers who will receive
no endowment. The covariance between the endowment and the risky asset’
payoff is privately observed by liquidity demanders and is the source of trade.
When, for example, the covariance is positive, liquidity demanders are overly
exposed to the risk that the risky asset's payoff will be low, and hedge by
selling that asset. Frictions concern trade in Period 1. In the case of asymmetric
information, liquidity demanders can observe in Period 1 a private signal about
the payoff of the risky asset. In the case of imperfect competition, liquidity
demanders can collude and behave as a single monopolist in Period 1. We
study the effects of each friction in isolation and of both simultaneously.

We measure illiquidity using lambda and price reversal. We define lambda
as the regression coefficient of the price change between Periods 0 and 15
on liquidity demanders’ signed volume in Period 1. Lambda characterizes &
the price impact of liquidity demanders’ trades. In our model, these trades £
can be motivated by hedging or information, and their price impact has a §
transitory and a permanent component. We define price reversal as minus theg
autocovariance of price changes. Price reversal characterizes the importances:
of the transitory component in price, which in our model is entirely driven
by volume. Both measures are positive even in the absence of imperfections.
Indeed, because agents are risk averse, liquidity demanders’ trades move th
price in Period 1 (implying that lambda is positive), and the movement is
away from fundamental value (implying that price reversal is positive). We
examine how each imperfection impacts the two measures of illiquidity and ¢
the expected return of the risky asset. To determine the effect on expected &
return, we examine how the price in Period 0 is influenced by the anticipation >
of imperfections in Period 1.

Our first main result is that asymmetric information raises the expected
return of the risky asset. We compare with two symmetric-information bench-
marks: the no-information case, where information is symmetric because
no agent observes the private signal available to liquidity demanders in
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Period 1, and the full-information case, where all agents observe that signal.
We consider both benchmarks so that the effects of asymmetric information
are purely driven by the dispersion in information across agents and not by any
changes in the average quality of information.

The expected return of the risky asset is higher under full information than
under no information. This result is related to tHashleifer (1977 effect,
which is that public revelation of information can reduce the welfare of all
agents because it hampers risk sharing. We derive the implications of the
Hirshleifer effect for asset pricing, showing that the reduced risk sharing in
Period 1 renders agents less willing to buy the asset in Period 0. Indeed, agents
are concerned in Period 0 that the endowment they might receive in Period
1 will increase their existing risk exposure. Therefore, if they are less able to
hedge in Period 1, they are less willing to take risk in Period O and require
a higher expected return. When information is asymmetric, the quality of
publicly available information (revealed through the price) is between the two
symmetric-information benchmarks, so one might expect the expected return
to be also in between. The expected return is higher, however, than under either
benchmark. This is because risk sharing in Period 1 is further hampered by the
unwillingness of the uninformed to accommodate the trades of the informed.

Our second main result is that both asymmetric information and imperfect
competition increase lambda but can reduce price reversal (i.e., render the
autocovariance less negative). A discrepancy between these measures of illig-
uidity can arise because lambda measures the price impact per unit trade, while
price reversal concerns the impact of the entire trade. Market imperfections
generally raise the price impact per unit trade, but because they also reduce
trade size, the price impact of the entire trade can decrease.

Our third main result is that imperfect competition by liquidity demanders
can lower the expected return of the risky asset. Intuitively, since noncompet-
itive liquidity demanders can extract better terms of trade in Period 1, they
are less concerned with the event where their risk exposure increases in that
period. Therefore, they are less averse to holding the asset in Period O.

While we focus mainly on the positive analysis of imperfections, our model
is also suitable for a normative analysis. We illustrate the normative analysis in
the case of asymmetric information. We show that asymmetric information
makes both liquidity demanders and suppliers worse off relative to either
symmetric-information benchmark—i.e., no information and full information.

The perfect-market benchmark version of our model borrows ftam
Mamaysky, and Wan{004 andHuang and Wan¢2009 2010. As in these
articles, agents receive endowments correlated with the payoff of a risky asset,
and the expected return compensates them for the risk that their exposure to
that asset will increase. None of these articles, however, consider asymmetric
information or imperfect competition.

The equilibrium in Period 1 with asymmetric information is closely related
to Grossman and Stiglit£1980. We model, however, non-informational
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trading through random endowments, as in the differential-information model
of Diamond and Verrecchi@d 9817), rather than through a random asset supply.
The results on how the asymmetric-information friction is reflected in ex
ante prices and expected returns (Period O equilibrium) are new, and so are
the results on how asymmetric information affects price reversal. Subsequent
work by Qiu and Wang(2010 shows that asymmetric information can raise
expected returns and lower welfare in an infinite-horizon setting and under
a more general information structure than ours. These results, which are
numerical, indicate that the closed-form results of our three-period model are
more general.

The equilibrium in Period 1 with imperfect competition is closely related
to Bhattacharya and Spieg@l991), who assume that an informed monopolist
with a hedging motive trades with competitive risk-averse agéfite results
on how the imperfect-competition friction is reflected in ex ante prices and
expected returns (Period 0 equilibrium) are new, and so are the results on how
imperfect competition affects price reversal.

The result that asymmetric information can make all agents worse off goes
back to Akerlof (1970 and Glosten and Milgrom(1985, who show that
asymmetric information can cause market breakdowns. In our model, there
are no market breakdowns, and the trading mechanism is a Walrasian auction.
Within a Walrasian auction modeRahi (1996 shows that a hedger prefers
to issue an asset about which he has no information rather than one abou
which he is informed. We consider instead the welfare of both informed
and uninformed agents, and compare asymmetric information with both no
information and full informatiorf.

The rest of this article is organized as follows. Sectibipresents the
model. SectiorR treats the perfect-market benchmark. Sectidrad 4 add
asymmetric information and imperfect competition, respectively. Sectons
and6 discuss empirical and welfare implications, respectively, and Settion
concludes. All proofs are in an online Appendix.
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There are three periods= 0, 1, 2. The financial market consists of a riskless
and a risky asset that pay off in terms of a consumption good in Period 2. The
riskless asset is in supply & shares and pays off one unit with certainty. The
risky asset is in supply df shares and pays ob units, whereD has mearD

Strategic behavior under asymmetric information has mainly been studied in a setting introd géel (1985,
where strategic informed traders trade with competitive risk-neutral market makers and noise traders. See also
Glosten and Milgron{1989, Easley and O’Har§1987), andAdmati and Pfleideref1998.

SeeDow and Rahi(2000 and Marin and Rahi(2000 for further results on financial innovation under
asymmetric information, anidiu and Wang(2010 for a market-maker model in which asymmetric information
can make the informed agents worse off.
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and variance 2. Using the riskless asset as the numeraire, we dencfethye
risky asset’s price in Periag whereS = D.

There is a measure one of agents, who derive utility from consumption in
Period 2. Utility is exponential,

—exp(—aCy), (1.1)

whereC; is consumption in Period 2, and> 0 is the coefficient of absolute

risk aversion. Agents are identical in Period 0 and are endowed with the per-
capita supply of the riskless and the risky asset. They become heterogeneous
in Period 1, and this generates trade. Because all agents have the same
exponential utility, there is no preference heterogeneity. We instead introduce
heterogeneity through agents’ endowments and information.

A fractionz of agents receive an endowmexiD — D) of the consumption
good in Period 2, and the remaining fraction-1z receive no endowment.

The variablez has mean zero and variangg, and is independent @. While

the endowment is received in Period 2, agents learn whether or not they will
receive it before trade in Period 1, in an interim periog 1/2. Only those
agents who receive the endowment obsenand they do so in Period 1. Since

the endowment is correlated wilh, it generates a hedging demand. When, for
examplez > 0, the endowment exposes agents to the riskEhwaiill be low,

and agents hedge against that risk by selling the risky asset. We assume that the
endowment is perfectly correlated wilh for simplicity; what matters for our
analysis is that the correlation is nonzero. We denot&\byhe wealth of an

agent in Period. Wealth in Period 2 is equal to consumption—i\&5, = Co.

For tractability, we assume th&@lt andz are normal. Under normality, the
endowment(D — D) can take large negative values, and this can generate an
infinitely negative expected utility. To guarantee that utility is finite, we assume
that the variances db andz satisfy the condition

a’c%c? < 1. (1.2)

In equilibrium, agents receiving an endowment initiate trades with others to
share risk. Because the agents initiating trades can be thought of as consuming
market liquidity, we refer to them as liquidity demanders and denote them by
the subscriptl. Moreover, we refer ta as the liquidity shock. The agents who
receive no endowment accommodate the trades of liquidity demanders, thus
supplying liquidity. We refer to them as liquidity suppliers and denote them by
the subscrips.

Because liquidity suppliers require compensation to absorb risk, the trades
of liquidity demanders affect prices. Therefore, the price in Period 1 is
influenced not only by the asset payoff, but also by the liquidity demanders’
trades. Our measures of liquidity, defined in Secfpare based on the price
impact of these trades.
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The assumptions introduced so far describe our model's perfect-market
benchmark, to which we subsequently add asymmetric information and im-
perfect competitioR. We maintain the perfect-market assumption in Period 0
when determining the ex ante effect of the imperfections—i.e., how the antic-
ipation of imperfections in Period 1 impacts the Period O price. Imperfections
in Period O are, in fact, not relevant in our model because agents are identical =
in that period and there is no trade.

We model asymmetric information through a private sigrabout the asset
payoff D that some agents observe in Period 1. The signal is

1) papeojumoq

s=D +e, (1.3)

wheree is normal with mean zero and varianeg, and is independent of
(D, 2). We assume that only those agents who receive an endowment observe:
the signal—i.e., the set of informed agents coincides with that of liquidity
demanders. Assuming that all liquidity demanders are informed is without
loss of generality: Even if they do not observe the signal, they can infer it
perfectly from the price because they observe the liquidity shock. Asymmetric
information can therefore exist only if some liquidity suppliers are uninformed.
For simplicity, we assume that they are all uninformed.

We model imperfect competition by assuming that some agents can collude
and exert market power in Period 1. We focus on the case where liquidity
demanders collude and behave as a single monopolist, but we also consider=
more briefly monopolistic behavior by liquidity suppliers. We consider both
the case where liquidity demanders have no private information on asset & @
payoffs, and so information is symmetric, and the case where they observe 3 3
the private signall.3), and so information is asymmetric.

-9[011JB/S|/WO09° fJDnO'o!wepeoe//:sduq wo
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In this section, we solve our model’s perfect-market benchmark. We first
compute the equilibrium, going backward from Period 1 to Period 0. We next
construct measures of market liquidity in Period 1, and study how liquidity
impacts the price dynamics and the price level in Period 0.

2.1 Equilibrium
In Period 1, a liquidity demander chooses holdirﬂgsof the risky asset to
maximize the expected utilityl(1). Consumption in Period 2 is

Cd =W +6%(D — S) +z(D - D),

Our perfect-market benchmark has one market imperfection built in: Agents cannot write contracts in Period
0 contingent on whether they are a liquidity demander or supplier in Period 1. Thus, the market in Period 0 is
incomplete in the Arrow-Debreu sense. If agents could write complete contracts in Period 0, they would not need
to trade in Period 1, in which case liquidity would not matter. In our model, complete contracts are infeasible

because whether an agent is a liquidity demander or supplier is private information.
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i.e., wealth in Period 1, plus capital gains from the risky asset, plus the
endowment. Therefore, expected utility is

—Eexp{—a [vvl +09(D— ) +2(D - D)]} : 2.1)

where the expectation is over. BecauseD is normal, the expectation is equal
to

- exp{—a [Wl +69(D — S) — dac 209 + 2)2]} : 2.2)

A liquidity supplier chooses holding®’ of the risky asset to maximize the
expected utility

_ exp{—a [Wl +63(D - S) — %aaz(ﬁf)z]} : (2.3)

which can be derived from2(2) by settingz = 0. The solution to the
optimization problems is straightforward and summarized in Propositibn

Proposition 2.1. Agents’ demand functions for the risky asset in Period 1 are

D-§
03 = 2.4
1 aO'Z ) ( a)
D —
08 = 281 -z (2.4b)
ao

Liquidity suppliers are willing to buy the risky asset as long as it trades
below its expected payofD, and are willing to sell otherwise. Liquidity
demanders have a similar price-elastic demand function, but are influenced
by the liquidity shockz. When, for examplez is positive, liquidity demanders
are willing to sell because their endowment is positively correlated with the
asset.

Market clearing requires that the aggregate demand equals the asset

supplyé:

(1—m)05 + 708 =0. (2.5)
Substituting 2.43 and @.4b) into (2.5), we find

S =D-ac?(@+r2). (2.6)
The price S decreases in the liquidity shock When, for examplez is

positive, liquidity demanders are willing to sell, and the price must drop so
that the risk-averse liquidity suppliers are willing to buy.
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In Period 0, all agents are identical. An agent choosing holdiggsf the
risky asset has wealth

Wi = Wo + 60(S1 — ) (2.7)

in Period 1. The agent can be a liquidity supplier in Period 1 with probability
1 — =, or liquidity demander with probability . Substituting?; from (2.49,

S from (2.6), andW; from (2.7), we can write the expected utilit (3) of a
liquidity supplier in Period 1 as

— exp{—a [Wo + 60(D — Q) — 062000 + 7 2) + %aaz(ﬁ_ + nz)z]}
(2.8)
The expected utility depends on the liquidity shackincez affects the price
S1. We denote byJS the expectation of2.8) overz, and byUd the analogous

expectation for a liquidity demander. These expectations are agents’ interim
utilities in Period 1/2. An agent’s expected utility in Period 0 is

U=@1-7)Us+zUd (2.9)

11Sqe-9|01./S /W0 dNo"dIWapese//:sdyy Wol) PapEojuMod

Agents choosép to maximizeU. The solution to this maximization problem
coincides with the aggregate demand in Period 0, since all agents are identicalg
in that period and are in measure one. In equilibrium, aggregate demand has tOI\)
equal the asset supply and this determines the pri& in Period 0.

Proposition 2.2. The price in Period 0 is
_ _ M

=D—0ac%0———— A0 2.10
S ao ey L (2.10)
where
1+ Ao7r2
M = ex Ao0 , 2.11
p( %82 )\/1—|— Ao(1— )2 — 020202 (211)
Ag = azazazz, (2.12a)
2

A

Ay = a0 _2on (2.12b)

1+ Ao(1— )2 —a?c2c2’

a02A0

Ay = .
2 1+ Apg(l—7)2 — 020202

(2.12c)

The first term in .10 is the asset’s expected payoff in Period 2, the second
term is a discount arising because the payoff is risky, and the third term is a
discount due to illiquidity (i.e., low liquidity). In the next section, we explain
why illiquidity in Period 1 lowers the price in Period 0.
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2.2 llliquidity and its effect on price

We construct two measures of illiquidity, both based on the price impact of the
liquidity demanders’ trades in Period 1. The first measure, to which we refer
as price impact, is the coefficient of a regression of the price change between
Periods 0 and 1 on the signed volume of liquidity demanders in Period 1:

Cov[S1 — So, 7 (08 — )]

’ Var [z (09 - 0)]

(2.13)

Intuitively, when 4 is large, trades have large price impact and the market is
illiquid. Equation @.6) implies that the price change between Periods 0 and 1
is

SS-S9=D-as?(@+72) - S (2.14)

Equations2.4b) and @.6) imply that the signed volume of liquidity demanders
iS

708 —0)=—2(1-1n)z (2.15)
Equations 2.13—(2.15 imply that

2

A= .
1-=x

(2.16)

Price impactl is higher when agents are more risk aversdafge), the asset
is riskier @2 large), or liquidity suppliers are less numerous{x small).

Since the signed volume of liquidity demanders is minus that of liquidity
suppliers4 is also minus the regression coefficient of the price change between
Periods 0 and 1 on suppliers’ signed volume in Period 1:

_Cov[si— S, A-m)(65 - 0)]

L= ]
Var[(1— )05 — )]

(2.17)

The supplier-based definition df can be easier to implement empirically
than the equivalent demander-based definition. Indeed, an important class
of liquidity suppliers in some markets is designated market makers, and
information on their trades is often available.

The second measure of illiquidity is based on the autocovariance of price
changes. The liquidity demanders’ trades in Period 1 cause the price to deviate
from fundamental value, while the two coincide in Period 2. Therefore, price
changes exhibit negative autocovariance, and more so when trades have large
price impact. We use minus autocovariance

y = —Cov(S—SLS - D) (2.18)
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as a measure of illiquidity, and refer to it as price reversal. Equatiis, (
(2.19, (2.18, andS, = D imply that

y :—COV[D— D+a02(9_+7r2),[_)—aaz(é+7rz)—50]
= a2040227r2. (2.19)

Price reversaj is higher when agents are more risk averse, the asset is riskier,
liquidity demanders are more numerous large), and liquidity shocks are
larger ¢2 large)®

The measureg andy have been defined in models focusing on specific
market imperfections, and have been widely used in empirical work ever since.
Using our model, we can examine the behavior of these measures across
variety of imperfections, and provide a broader perspective on their properties.
We emphasize basic properties below, leaving a more detailed discussion of
the measures and their empirical estimation to Se@&ion

Kyle (1989 definesi in a model where an informed insider trades with
uninformed market makers and noise traders. The price impact measuted by
concerns the aggregate order that market makers receive, which is driven both
by the insider’s private information and by noise trading. Our definitio of
parallels Kyle’s since the trades of our liquidity demanders can be motivated
by hedging or information. In Kyle, however, market makers are risk neutral,
and trades affect prices only because they can contain information. Thus,
reflects purely the amount of information that trades convey, and is permanent &
because the risk-neutral market makers set the price equal to their expectation§
of fundamental value. In general, as in our modehas both a transitory
and a permanent component. The transitory component, present even in oury,
perfect-market benchmark, arises because liquidity suppliers are risk averses:x’:,r
and require a price movement away from fundamental value to absorb a <
liquidity shock. The permanent component arises only when information is
asymmetric, for the same reasons as in Kyle.

Roll (1984 links y to the bid-ask spread, in a model where market orders
cause the price to bounce between the bid and theGsssman and Miller
(1988 link y to the price impact of liquidity shocks, in a model where risk-
averse liquidity suppliers must incur a cost to participate in the market. In both
models, price impact is purely transitory because information is symmetric. In
our model, price impact has both a transitory and a permanent component,

Bno-owepeoe/:sdpy wouy pepeojumod
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The comparative statics of autocorrelation are similar to those of autocovariance. We use autocovariance rather
than autocorrelation because normalizing by variance adds unnecessary complexity.

09 L€ Uo Jasn Ayslenlun Buo| oelr ley

An alternative definition ofi, which isolates the permanent component, involves the price change between
Periods 0 and 2 rather than between Periods 0 and 1. This is because the transitory deviation between price an
fundamental value in Period 1 disappears in Period 2.
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and y isolates the effects of the transitory component. Note that besides
being a measure of imperfectiong, provides a useful characterization of
price dynamics: It measures the importance of the transitory component in
price arising from temporary liquidity shocks, relative to the random-walk
component arising from fundamentals.

llliquidity in Period 1 lowers the price in Period 0 through the illiquidity
discount, which is the third term in2(10. To explain why the discount
arises, consider the extreme case where trade in Period 1 is not allowed. In
Period 0, agents know that with probabilitythey will receive an endowment
in Period 2. The endowment amounts to a risky position in Period 1, the size of
which is uncertain because it dependszotyncertainty about position size is
costly to risk-averse agents. Moreover, the effect is stronger when agents carry
a large position from Period 0 because the cost of holding a position in Period 1
is convex in the overall size of the position. (The cost is the quadratic term in
(2.2 and @.3).) Therefore, uncertainty abomtreduces agents’ willingness to
buy the asset in Period 0.

The intuition is similar when agents can trade in Period 1. Indeed, in the
extreme case where trade is not allowed, the shadow price faced by liquidity
demanders moves in responseztto the point where these agents are not
willing to trade. When trade is allowed, the price movement is smaller, but
nonzero. Therefore, uncertainty abaustill reduces agents’ willingness to
buy the asset in Period 0. Moreover, the effect is weaker when trade is allowed
in Period 1 than when it is not (this follows from the more general result of
Proposition3.6), and therefore corresponds to a discount driven by illiquidity.
Because market imperfections hinder trade in Period 1, they tend to raise the
illiquidity discount in Period 0.

The illiquidity discount is the product of two terms. The first teq@ﬂ"w,
can be interpreted as the risk-neutral probability of being a liquidity demander:
7 is the true probability, andl is the ratio of marginal utilities of wealth of
demanders and suppliers, where utilities are interim in Period 1/2. The second
term, A10, is the discount that an agent would require conditional on being a
demander.

The illiquidity discount is higher when liquidity shocks are Iargef (arge)
and occur with higher probabilityz(large). It is also higher when agents are
more risk aversed large), the asset is riskier{ large), and the asset is
in larger supply § large). In all cases, the risk-neutral probability of being
a liquidity demander is higher, and so is the discount that an agent would
require conditional on being a demander. For example, an increase in any
of (022, 7, a,0?) increases the discount required by a demander because the
liquidity shockz generates higher price volatility in Period 1 (as can be seen
from (2.6)). Furthermore, in the case fZ, a, ¢ 2), the risk-neutral probability
of being a demander increases because so does thékationarginal utilities
of wealth of demanders and suppliers: Suppliers, who benefit from the higher
price volatility in Period 1, become better off relative to demanders, who are

1350

6102 leqweoa( L§ uo Jasn Ausianlun Buo] oelpr leybueys Agq z+9/951/6€E L/S/SZA0RIASR-8[01ME/SL/W00° dno olwapeoe//:sdiy Wol) pepeojumod



Liquidity and Asset Returns

hurt by this volatility. In the case of, bothM and the physical probability of
being a demander increa%e.

Proposition2.3 gathers the comparative statics of the illiquidity measures
and the illiquidity discount with respect to the parametér which measures
the magnitude of liquidity shocks. We derive comparative statics with respect
to the same parameter under the market imperfections that we consider, and in
Section5 we draw their empirical implications. The parame:térhas different
effects on the illiquidity measures and the illiquidity discount: It has no effect
on 4, while it raisesy and the discount. The intuition is thatmeasures the
price impact per unit trade, while and S concern the impact of the entire
liquidity shock.

SpeojUMO

}

o
=

Proposition 2.3. An increase in the varianae? of liquidity shocks leaves
price impactl unchanged, raises price reversal and lowers the price in
Period 0.

. Asymmetric Information

In this section, we assume that liquidity demanders observe the private signal
(1.3) before trading in Period 1. We examine how asymmetric information
affects the illiquidity measures and the illiquidity discount.

3.1 Equilibrium
The price in Period 1 incorporates the signal of liquidity demanders, and
therefore reveals information to liquidity suppliers. To solve for equilibrium,
we conjecture a price function (i.e., a relationship between the price and the
signal), then determine how agents use their knowledge of the price function
to learn about the signal and formulate demand functions, and finally confirm
that the conjectured price function clears the market.

We conjecture a price function that is affine in the sighahd the liquidity
shockz, i.e.,

S=a+b(s—D-c2 (3.2)

for three constant&, b, c). For expositional convenience, we et s— D —
cz We also refer to the price function as simply the price.

Agents use the price and their private information to form a posterior
distribution about the asset paydff. For a liquidity demander, the price
conveys no additional information relative to observing the signabiven

The comparative statics of the illiquidity discount extend to its ratio relative to the disceifift driven by

payoff risk. Thus, while risk aversiom, payoff risks 2, or asset supplg raises the risk discount, they have an
even stronger impact on the illiquidity discount. For example, an increaseadises the risk discount because
agents become more averse to payoff risk. The effect on the illiquidity discount is even stronger not only because o
agents become more averse to the risk of receiving a liquidity shock, but also because the shock has larger price=
impact and hence generates more risk.

weo9( | ¢ uo Jasn Aysiealun Buo oeir leybueys Aq z#9/9GL/6EE 1/S/SZA0BNSqR-0]011e/S1/WO00 dnoolwapeoe//:sdiy wo.
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the joint normality of(D, €), D remains normal conditional e = D + ¢,
with mean and variance

E[D]|s] = D + fs(s — D), (3.2a)

o?[D|s] = so?, (3.2b)

wherefs = 62/(62 + ¢?2). For a liquidity supplier, the only information is
the priceS, which is equivalent to observing Conditional or (or §), D is
normal with mean and variance

EIDIS] = B + fec = B+ 4
o?[DIS1] = Bz (o + o), (33b)

whereg: = 02/0? ands? = 6%+ 02 4 c?c2. Agents’ optimization problems
are as in Sectior2, with the conditional distributions oD replacing the
unconditional one. Propositidh1 summarizes the solution to these problems.

(&5 —a), (3.33)

Proposition 3.1. Agents’ demand functions for the risky asset in Period 1 are
s_ EIDIS] =S
01 = —2 N

ac?[DI§]

d_ E[DIs] — S
1™ as?[D|s]

(3.4a)

-z (3.4b)

Substituting 8.49 and @.4b) into the market-clearing equatio.6), we
find

1-m)

EOISI-S (DS _) 5 g

as?[D|S] ac?[Dls]

The price 8.1) clears the market if3.5) is satisfied for all values ofs, z).
SubstitutingS;, E[D]s], and ED|S] from (3.1, (3.29, and 8.339, we can
write (3.5 as an affine equation igs, z). Therefore, 8.5 is satisfied for
all values of(s, z) if the coefficients of(s, z) and of the constant term are
equal to zero. This yields a system of three equation@jib, c), solved in
Proposition3.2

Proposition 3.2. The price in Period 1 is given bB(1), where
a=D—a(l—b)s?, (3.6a)

_ 7pso?[DIS] + (1 — 7)Bz0?[D]s]
b= DI+ A= )02l (3.60)

¢ = ac. (3.6¢)
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Liquidity and Asset Returns

To determine the price in Period 0, we follow the same steps as in S€ction
The calculations are more complicated because expected utilities in Period 1

are influenced by two random variablés z) rather than onlyz. The price

in Period 0, however, takes the same general form as in the perfect-market

benchmark.

Proposition 3.3. The price in Period 0 is given by (10, whereM is given
by (2.13),

_ (b= p)*(e? + 02 + o))

A 3.7a
0 oZDISInZ 3.72)
B3hs2(n2 1 2,2
a°bo(c°+ )0
AL = ———s, (3.7b)
1+ Ao(l—7)* —a“c4os
202, 2
a3c402 [1+ Bs :;[E;srm]
Ay = (3.7¢)

1+ Aol —7)2—a20262 "

3.2 Asymmetric information and illiquidity

We next examine how asymmetric information impacts the illiquidity measures
and the illiquidity discount. When some agents observe a private signal, this
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each agent more informed because the signal is partially revealed through the<

price. The improvement in each agent’s information is not a distinguishing
feature of asymmetric information: Information can also improve if all agents
observe a public signal. To focus on the dispersion in information, which is
what distinguishes asymmetric information, we compare with two symmetric-
information benchmarks: the no-information case, where information is sym-

metric because no agent observes the signahd the full-information case,
where all agents observ& The analysis in Sectio2 concerns the no-

information case, but can be extended to the full-information case (Online

Appendix, Proposition A.1). Price impadtand price reversal under full
information are given by2.16) and @.19), respectively, where? is replaced
by 62[D|s].

Proposition 3.4. Price impactt under asymmetric information is

2
,__ ao¥(DIS]

Sl (1_ %). (3.8)

Price impact is highest under asymmetric information and lowest under full
information. Moreover, price impact under asymmetric information increases

when the private signall(3) becomes more precise—i.e., whefhdecreases.
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Proposition3.4 shows that price impact is higher under asymmetric in-
formation than under either of the two symmetric-information benchmarks.
Asymmetric information thus raises price impact because information differs
across agents and not because of any changes in the average quality of
information.

The comparison between the asymmetric-, no-, and full-information cases
is driven by two effects: an uncertainty and a learning effect. Price impact
increases in the uncertainty faced by liquidity suppliers, measured by their
conditional variance of the asset payoff. Because of this uncertainty effect,
price impact tends to be lowest under full information, since liquidity suppliers
observe the signal perfectly, next lowest under asymmetric information, since
the signal is partially revealed to liquidity suppliers through the price, and
highest under no information.

An additional source of price impact, present only under asymmetric
information, is that liquidity suppliers seek to learn the signal from the price.
Because, for example, liquidity suppliers attribute selling pressure partly to
a low signal, they require a larger price drop to buy. This learning effect
corresponds to the terfiy /b in (3.8), which lowers the denominator and raises
price impacti.

The learning effect works in the same direction as the uncertainty effect
when comparing asymmetric with full information, but in the opposite direc-
tion when comparing asymmetric with no information. Proposi8chshows
that in the latter comparison the learning effect dominates. Therefore, price
impact is higher under asymmetric information than under either of the two
symmetric-information benchmarks.

Price reversal is not unambiguously highest under asymmetric information.
Indeed, consider two extreme casesxzlf~ 1, i.e., almost all agents are
liquidity demanders (informed), then the price processes under asymmetric and
full information approximately coincide, and so do the price reversals. Since,
in addition, liquidity suppliers face more uncertainty under no information than
under full information, price reversal is highest under no information.

If insteadz ~ 0, i.e., almost all agents are liquidity suppliers (uninformed),
then price impact converges to infinity (order/kr) under asymmetric infor-
mation. This is because the trading volume of liquidity demanders converges
to zero, but the volume’s informational content remains unchanged. Because of
the high price impact, price reversal is highest under asymmetric information.

Proposition 3.5. Price reversaj under asymmetric information is
y = bl - fe)(0? + o2 + %)), (3.9)

Price reversal is lowest under full information. It is highest under asymmetric
information ifz ~ 0, and under no information if ~ 1.
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The analysis of the illiquidity discount involves an effect that goes in the
direction opposite to the uncertainty effect. This is that information revealed
about the asset payoff in Period 1 reduces uncertainty and hence the scop
for risk sharing. Less risk sharing, in turn, renders agents less willing to buy
the asset in Period 0 and raises the illiquidity discount. The negative effect
of information on risk sharing and welfare has been showiirshleifer
(1977). We derive the implications of the Hirshleifer effect for asset pricing:
Propositior3.6shows that the reduced scope for risk sharing in Period 1 lowers
the asset price in Period 0 and raises the illiquidity discount.

Because of the Hirshleifer effect, the illiquidity discount under full infor-
mation is higher than under no information—a comparison that is exactly the
reverse than for the measures of illiquidity. A corollary of this result is that
the illiquidity discount under no trade is higher than in the perfect-market
benchmark of Sectiof. Indeed, the perfect-market benchmark corresponds
to the no-information case, while no trade is a special case of full information
when the signali.3) is perfectly preciseq? = 0).°

The Hirshleifer effect implies that the illiquidity discount under asymmetric
information should be between that under no and under full information.
The discount under asymmetric information, however, is also influenced by
the learning effect, which raises price impact, reduces the scope for risk
sharing, and hence raises the discount. The learning effect works in the
same direction as the Hirshleifer effect when comparing asymmetric with
no information, but in the opposite direction when comparing asymmetric
with full information. Propositior8.6 shows that in the latter comparison the
learning effect dominates. Therefore, the illiquidity discount is higher under
asymmetric information than under either of the two symmetric-information
benchmarks. Asymmetric information thus raises the illiquidity discount
because information differs across agents and not because of any changes i
the average quality of information.

-0[011E/Sp/Wo0 dno-ojwapese;/:sdpy woly papeojusbg

Proposition 3.6. The price in Period 0 is lowest under asymmetric informa-
tion and highest under no information.

1un Buo] oeir leybueyd Aq 29795 1/6€€1/S/SZAORIISAE

The comparative statics with respect to the variafg%f liquidity shocks
are the same as in the perfect-market benchmark case, except for the pric
impact/. Under asymmetric information, an increasesthlowers A because
liquidity shocks make prices less informative and attenuate learning.

/(usm(R

Recall from Sectior® that the illiquidity discount is the product of% the risk-neutral probability of

being a liquidity demander, times; 4, the discount that an agent would require conditional on being a demander.

No trade renders both demanders and suppliers worse off relative to the perfect-market benchmark, and hence
has an ambiguous effect on the raNb of their marginal utilities of wealth. The increase in the illiquidity
discount is instead driven by the increase in the discay required by a demander.
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Proposition 3.7. An increase in the varianczﬁz2 of liquidity shocks lowers
price impacti, raises price reversal, and lowers the price in Period 0.

. Imperfect Competition

In this section, we assume that liquidity demanders can collude and exert mar-
ket power in Period 1. We consider both the case where liquidity demanders
have no private information on asset payoffs, and so information is symmetric,
and the case where they observe the private sidind), (@nd so information

is asymmetric. Since the second case nests the first by setting the vazrfance
of the signal noise to infinity, we treat both cases simultaneously. We examine
how imperfect competition affects the illiquidity measures and the illiquidity
discount.

The trading mechanism in Period 1 is that liquidity suppliers submit a
demand function and liquidity demanders submit a market order—i.e., a price-
inelastic demand function. Restricting liquidity demanders to trade by market
order is without loss of generality: They do not need to condition their demand
on price because they know all information available in Period 1.

4.1 Equilibrium

We conjecture that the price in Period 1 has the same affine 8rih s in

the competitive case, with possibly different constaiat®, c). Given 3.1),

the demand function of liquidity suppliers i8.49 as in the competitive case.
Substituting 8.43 into the market-clearing equatio.6) and using 8.39
yields Bhe price in Period 1 as a function of the liquidity demanders’ market
orderoy':

D-%a+ %[B,'—Sll(nef —0)

S167) = T (4.2)
b
Liquidity demanders chooﬁj to maximize the expected utility
_E exp{—a [wl +69 (D - sl(ef)) +2(D - D)]} . (42

The difference with the competitive case is that liquidity demanders behave as
a single monopolist and take into account the impact of their cﬂgiem the

price S;. Propositiod.1 characterizes the solution to the liquidity demanders’
optimization problem.

Proposition 4.1. The liquidity demanders’ market order in Period 1 satisfies

E[DIs] — S1(6¢) — ao?[DIs]z + 10

ac?[D|s] + 4 ’ (43)

o5 =
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dS_L(Qf) _ and?[D|S]

where] = = ]
dog (1—;1)(1—%;)

Equation 4.3 determinessliJ implicitly because it includle in both the
left- and the right-hand side. We writﬂl{j in the form @.3) to facilitate the
comparison with the competitive case. Indeed, the competitive counterpart
of (4.3 is (3.4b), and can be derived by settingto zero. The parameter
measures the price impact of liquidity demanders, and is closely related to
the price impact.. Because in equilibriuni > 0, the denominator of4(3)
is larger than that of3.4b), and thereforeé){j is less sensitive to changes in
E[D]|s] — S andz than in the competitive case. Intuitively, because liquidity
demanders take price impact into account, they trade less aggressively in
response to their signal and their liquidity shock.

Substituting 8.49 and @.3) into the market-clearing equatio2.5), and
proceeding as in Sectidd we find a system of three equations(im b, c).
Propositiond.2 solves this system.

Proposition 4.2. The price in Period 1 is given by(1), where
_ 7fso?[DIS] + (1~ 7)peo?[Dls]
~ 270?[D|S]]+ (1 —-7)s?[Dls]

and(a, c) are given by 8.69 and (3.60), respectively. The linear equilibrium
exists Ifa > 6f Whereo-2 is the positive solution of

(4.4)

a204022 =2+ 0 (4.5)

The price in the competitive market in Period 0 can be determined through
similar steps as in Sectio2sand3.

Proposition 4.3. The price in Period 0 is given b2 (10, where

M = exp( ocAZHZ) L+ Ao (4.6)
1+ Ag (1—|— 2[Dls])(l—n)z—ot o202
A a3bo?(c? +03)022 (4.72)
1 = s N
1+ Ao (1+ MZ[DB]) (1— )2 — a20202

Poio? |14 a(ﬁs—b)z(ﬂ2+63)(ariz[zDIS]+2j~)
A (ao‘Z[D|S]+/l) (4 7b)
2= .
1+ 80 (14 by ) A= 72— a?0202

OL(TZ[D|S

andAg is given by 8.73.
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4.2 Imperfect competition and illiquidity
We next examine how imperfect competition by liquidity demanders impacts
the illiquidity measures and the illiquidity discount.

Proposition 4.4. Price impactl is given by @.8). It is the same as under per-
fect competition when information is symmetric, and higher when information
is asymmetric.

Although price impact is given by the same equation as under perfect
competition, it is higher when competition is imperfect because the coefficient
b is smaller. Intuitively, when liquidity demanders take into account their
effect on price, they trade less aggressively in response to their signal and
their liquidity shock. This reduces the size of both information- and liquidity-
generated trades. The relative size of the two types of trades remains the

same, and so does price informativeness, measured by the signal-to-noise ratio.

Monopoly trades thus have the same informational content as competitive
trades, but are smaller in size. As a result, the signal per trade size is higher, and
so is the price impact of trades. Imperfect competition has no effect on price
impact when information is symmetric because trades have no informational
content.

An increase in information asymmetry, through a reduction in the variance
03 of the signal noise, generates an illiquidity spiral. Because illiquidity
increases, liquidity demanders scale back their trades. This raises the signal
per trade size, further increasing illiquidity. When information asymmetry
becomes severe, illiquidity becomes infinite and trade ceases, leading to a
market breakdown. This occurs wheg < 62, i.e., for values ofs? such
that the equilibrium of PropositioA.2 does not exist. Imperfect competition
is essential for the nonexistence of an equilibrium with trade because such an
equilibrium always exists under perfect competitidn.

Proposition 4.5. Price reversa) is given by @.9), and is lower than under
perfect competition.

Although price reversal is given by the same equation as under perfect
competition, it is lower when competition is imperfect because the coefficient
b is smaller. Intuitively, price reversal arises because the liquidity demanders’
trades in Period 1 cause the price to deviate from fundamental value. Under
imperfect competition, these trades are smaller and so is price reversal. Note
that imperfect competition has opposite effects on the two illiquidity measures:
Price impactl increases but price reversaldecreases.

There exist settings, however, where asymmetric information leads to market breakdowns even with competitive
agents. Sedkerlof (1970 for a setting where agents trade heterogeneous goods of different qualities, and
Glosten and Milgron{1985 for an asset-market setting.
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While imperfect competition raises the price impdgtit can lower the
illiquidity discount. Indeed, since liquidity demanders scale back their trades,
they render the price less responsive to their liquidity shock. Therefore, the
can obtain better insurance against the shock, and become less averse t
holding the asset in Period 0. This effect drives the illiquidity discount below
the competitive value when information is symmetric. When information is
asymmetric, the comparison can reverse. This is because the scaling bac
of trades generates the spiral of increasing illiquidity, and this reduces the
insurance received by liquidity demanders.

eQumoQ

Proposition 4.6. The price in Period 0 is higher than under perfect compe-
tition when information is symmetric, but can be lower when information is
asymmetric.

The comparative statics with respect to the variangef liquidity shocks
are the same as under perfect competition.

Proposition 4.7. An increase in the varianoez2 of liquidity shocks leaves
price impacti unchanged under symmetric information but lowers it under
asymmetric information. It raises price reversal and lowers the price in
Period 0.

/6/SZ10RNSqR-8[0IME/S /W00 dno-olwepeoe;/:sdpy Qo pep

The case where liquidity suppliers collude can be treated in a manner similar Q
to the case where demanders collude, so we provide a brief sketch. Suppose=>
that demanders are competitive but suppliers behave as a single monopolist in§
Period 1. Since suppliers do not know the liquidity shadnd signak, their
trading strategy is to submit a price-elastic demand function (rather than a
market order). Imperfect competition renders this demand function less price-
elastic than its competitive counterpaBt4g. The lower elasticity manifests
itself through an additive positive term in the denominator of the competitive
demand 8.49, exactly as is the case for liquidity demanders 346 and
4.3.

Because liquidity suppliers submit a less price-elastic demand function
than in the competitive case, the trades of liquidity demanders have larger
price impact. Hence, price impadétand price reversal are larger than in
the competitive case. The illiquidity discount is also larger because liquidity
demanders receive worse insurance against the liquidity shock. Thus, imper-
fect competition by suppliers has the same effect as by demandérstioa
opposite effect om, and the same or opposite effect on the illiquidity discount.

. Empirical Implications

In this section, we explore implications of our model for empirical studies of
liquidity. These implications concern the relative merits of different empirical
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measures of illiquidity, as well as the empirical relationship between liquidity
and expected returns.

5.1 Measures of illiquidity

Within our model, we can compute two widely used empirical measures of
illiquidity and examine how they behave across a variety of imperfections.
The first measure i3, defined as the regression coefficient of price changes
on the liquidity demanders’ signed volume, and based on the idea that trades
in illiquid markets should have large price impact. The second defined as
minus the autocovariance of price changes, and based on the idea that trades
in illiquid markets should generate large transitory deviations between price
and fundamental value. The measuktesndy have been linked to illiquidity
within models focusing on specific imperfectiong—n Kyle (1985, andy

in Roll (1984 andGrossman and Mille(1988—and have been widely used

in empirical work ever since. Measures closely related toe, for example,

the regression-based measuré&tdsten and Harrig1988 andSadka(2006),

and the ratio of average absolute returns to trading volunderohud (2002.
Measures closely related to, are, for example, the bid-ask spread measure
of Roll (19849, the Gibbs estimate dflasbrouck(2006, the price reversal
measure of Bao, Pan, and Wang (2011), and the price reversal conditional on
signed volume o€ampbell, Grossman, and Wa(ip93.

In our analysis,A captures not only the permanent component of price
impact, driven by the information that trades convey (as in Kyle), but also the
transitory component, driven by the risk aversion of liquidity suppliers. In this
sensej overlaps withy , which isolates the transitory componéhiVe further
show that under the two imperfections considered héreeflects market
imperfections more accurately than Indeed, both asymmetric information
and imperfect competition increase (Propositions3.4 and 4.4) but can
decrease (Propositions3.5and4.5).12

Estimatingy requires information only on transaction prices. Estimating
J requires also information on the signed trades of liquidity demanders or
suppliers. The signed trades of these agents can be partially identified using
data on transaction prices, quantities, and bid-ask qubais.and Ready
(1991 propose an algorithm to determine who initiates a trade, and hence to
assign trades to liquidity demanders and suppliers. Their algorithm is based
on the assumption that trade initiators—liquidity demanders—use mostly

The overlap is larger betweenand the conditional price reversal of Campbell, Grossman, and Wang (1993)
because both measures condition on signed volume.

A previous version of this articleMayanos and Wang 20)Ghows additionally that participation costs,
transaction costs, and leverage constraints increase/batiu y , while search frictions can decrease bath
andy, with 4 decreasing under more stringent conditions than
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market orders, while those agreeing to take the other side of trades—Iiquidity
suppliers—use limit orders. A number of articles (eSpdka 2005employ

Lee and Ready’s algorithm to estimatefor the U.S. equity market, where
data on transaction prices, quantities, and bid-ask quotes are available.

The estimation ofi can be further facilitated when data on the identity
of traders are available. For examplgadhavan and Smid{1993 and
Comerton-Forde et al(2010 use data on the quotes and inventories of
New York Stock Exchange (NYSE) specialists to examine their behavior in
supplying liquidity. The effective cost (price concession) that specialists extract
from other traders provides an estimate /gfat least for trades in which
specialists take part. The transaction data on corporate bonds also identify
dealer-customer and dealer-dealer trades (Edyvards, Harris, and Piwowar
2007, allowing estimation of.. 13

5.2 Liquidity and expected returns

Many empirical studies seek to establish a link between liquidity and expected
asset return? Their basic premise is that illiquidity is positively related to
expected returns. Our analysis shows, however, that this relationship does not%,r’
have to be positive. Moreover, its nature depends crucially on the underlying §
cause of illiquidity and on the measure of illiquidity being used. Suppose, for
example, that illiquidity is caused by asymmetric information. If illiquidity

is measured by, then its empirical relationship with expected returns will be
positive since asymmetric information raises bbtmd the illiquidity discount
(Propositions3.4 and 3.6). If, however, illiquidity is measured by, then

the relationship can be negative since asymmetric information can reduce
(Proposition3.5). Furthermore, if the imperfection is imperfect competition,
then a negative relationship can arise even if illiquidity is measured bis

is because imperfect competition raigdsut can lower the illiquidity discount
(Propositiongt.4and4.6).

Our model predicts that can reflect market imperfections and their impact
on asset prices more accurately thgrdoes this hold in the data? Suggestive
evidence comes from recent studies in the corporate-bond market that compar
the performance of andy in explaining credit yield spreadBick-Nielsen,
Feldhutter, and Land¢DFL forthcoming) examine how spreads are linked
to A, as approximated by the Amihud measureytoand to more heuristic

-o[o11e/S /W09 dnoolwepese//:sdiy Woly pepeojumod

{1 ocerr 1leyBueys Aq zv92951/68€1/5/52h

13 Besides requiring more information tharfor its estimation/. has the drawback that it might not reflect a causal
effect of volume on prices. For example, if public news causes both volume and price$,dherbe positive
even in the absence of a causal effect of volume on price changes. The causality problem does not arise in our
model. Indeed, volume is generated by shocks observable only to liquidity demanders, such as the liquidity
shockz and the signas. Since these shocks can affect prices only through the liquidity demanders’ tiades,
measures correctly the price impact of these trades.

14 gee, for example, the survey Bynihud, Mendelson, and Peders@005 for references.

6102 lequeoa( L§ uo Jasn Ausianlun 6

1361



15

The Review of Financial Studies /v 25 n 5 2012

measures of illiquidity such as turnover and trading frequéacyhey find

that the positive relationship between spreads afmgmore robust than that
between spreads and both across different rating categories and across the
pre- and post-2008-crisis sample periods (Table 3). Moreover, for the post-
crisis period, the relationship between spreads argecomes insignificant
except for AAA-rated bonds. For speculative-grade bonds, the relationship
becomes even negative (withtsstatistic of —1.16). Given that speculative-
grade bonds are more likely to be subject to information asymmetry, this
finding, if further confirmed, would be consistent with the predictions of our
model.

Rayanakorn and Wan{2011) examine how spreads are linked 10 v,
trading frequency, bond age and maturity, and the persistence and variance
of the stationary component in bond prices (presumably caused by transitory
liquidity shocks). They find thai can explain the cross-section of spreads
better thary , consistent with DFL.

One complication in measuring the relationship between illiquidity and
expected returns is that cross-sectional variation might be driven by factors
other than the imperfections themselves. Our analysis helps determine the
effects of such variation. Suppose, for example, that assets differ mainly in the
variances? of liquidity shocks. Under asymmetric information and imperfect
competition, Iargeﬁz2 lowers /. and raises expected returns (Propositidns
and 4.7). Thus, if cross-sectional variation is driven by and illiquidity
is measured by., then the empirical relationship between illiquidity and
expected returns will be negative. A positive relationship, however, will arise
if cross-sectional variation is driven by asymmetric information.

Finally, our analysis has implications for the positive relationship between
expected returns and idiosyncratic return volatility found in some empirical
studies (e.g.Spiegel and Wang 200%Ang et al. 2008. One source of
idiosyncratic volatility, especially over short horizons, is illiquidity because
it affects the stationary component of prices (see, 8gq, Pan, and Wang
2011). Therefore, the positive empirical relationship might be partly due to
illiquidity.

. Welfare

Our model is suitable for a normative analysis of imperfections. In this section,
we illustrate the normative analysis in the case of asymmetric information. We
examine how asymmetric information affects the interim utilities, U®)

of liquidity suppliers and demanders in Period 1/2. As in SecBiprwe
compare with two symmetric-information benchmarks: no information and full
information.

Earlier studies linking credit yield spreads to a more limited set of illiquidity measures inCloele, Lesmond,
and Wei(2007) andBao, Pan, and Wan@011).
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Since information reduces uncertainty and the scope for risk sharing,
the Hirshleifer effect implies that the interim utilitie®$, U%) under full
information are smaller than under no information. The Hirshleifer effect
also implies that the interim utilities under asymmetric information should be
between those under no and under full information. The interim utilities under
asymmetric information, however, are also influenced by the learning effect,
which raises illiquidity and reduces the scope for risk sharing. The learning
effect works in the same direction as the Hirshleifer effect when comparing
asymmetric with no information, but in the opposite direction when comparing
asymmetric with full information. Propositiof.1 shows that in the latter
comparison the learning effect dominates. Therefore, the interim utilities are
higher under asymmetric information than under either of the two symmetric-
information benchmarks.

Proposition 6.1. The interim utilities (US, U9) of liquidity suppliers and
demanders in Period 1/2 are lowest under asymmetric information and highest
under no information.

Proposition6.1 carries through to the ex ante utility in Period 0. Since the
ex ante utility is the expectation of the interim utilities, it is lowest under
asymmetric information and highest under no information.

. Conclusion

We examine how asymmetric information and imperfect competition affect
liquidity and expected returns. We show three main results. First, asymmet-
ric information raises expected returns, compared both with a symmetric- =
information benchmark where all private signals are made public and with one £
where private signals are not observed. Second, asymmetric information and 3
imperfect competition raise Kyle’s lambda but can bring the autocovariance
of asset returns closer to zero. Thus, lambda reflects both frictions more accu-
rately than autocovariance. Third, imperfect competition can lower expected
returns. Our results imply that the empirical relationship between illiquidity,
as measured by lambda, and expected returns is positive under asymmetri
information but can turn negative under imperfect competition. Moreover, the
relationship can turn negative even under asymmetric information, if illiquidity
is measured by autocovariance.

Our model can incorporate additional frictions. A previous version of this
article (Vayanos and Wang 20} 8lso considers participation costs, transaction
costs, leverage constraints, and search frictions. The results provide a unified
treatment of many different frictions under a common set of assumptions
concerning agents’ preferences and trading motives. Frictions are shown to
differ significantly as to their effects on illiquidity measures and expected
returns, and as to the empirical implications they generate.
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