This article was downloaded by: [18.20.170.50] On: 30 December 2019, At: 11:54
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research
OPERATIONS E .

RESEAH':H Publication details, including instructions for authors and subscription information:
i nu:l http://pubsonline.informs.org

Evaluating Portfolio Policies: A Duality Approach

re H i Martin B. Haugh, Leonid Kogan, Jiang Wang,
H .
* E;I
4
[
i q rﬂlr"" -

To cite this article:
Martin B. Haugh, Leonid Kogan, Jiang Wang, (2006) Evaluating Portfolio Policies: A Duality Approach. Operations Research
54(3):405-418. https://doi.org/10.1287/0pre.1060.0279

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2006, INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



http://pubsonline.informs.org
https://doi.org/10.1287/opre.1060.0279
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

OpreraTIONS RESEARCH

Vol. 54, No. 3, May—June 2006, pp. 405-418
1ssN 0030-364X | EIsSN 1526-5463 | 06 | 5403 | 0405

[lorms}

por 10.1287/opre.1060.0279
©2006 INFORMS

Evaluating Portfolio Policies: A Duality Approach

Martin B. Haugh

Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027,
mh2078 @columbia.edu

Leonid Kogan
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, lkogan @mit.edu

Jiang Wang

Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and CCFR and NBER,
wangj @mit.edu

The performance of a given portfolio policy can in principle be evaluated by comparing its expected utility with that
of the optimal policy. Unfortunately, the optimal policy is usually not computable, in which case a direct comparison is
impossible. In this paper, we solve this problem by using the given portfolio policy to construct an upper bound on the
unknown maximum expected utility. This construction is based on a dual formulation of the portfolio optimization problem.
When the upper bound is close to the expected utility achieved by the given portfolio policy, the potential utility loss of
this policy is guaranteed to be small. Our algorithm can be used to evaluate portfolio policies in models with incomplete
markets and position constraints. We illustrate our methodology by analyzing the static and myopic policies in markets
with return predictability and constraints on short sales and borrowing.
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1. Introduction

Optimal portfolio choice is one of the central subjects
in finance (see, e.g., Merton 1990). However, analytical
solutions are known only in a few special cases, under
restrictive assumptions on the market structure and/or the
investor’s utility function. Most problems of practical inter-
est cannot be solved in closed form and must be analyzed
using approximations, but how costly are the approximation
errors of a candidate portfolio policy to the investor? To
answer this question, one must compare the expected utility
under the candidate policy with the expected utility under
the optimal policy. Such a direct comparison is impossible
when the optimal policy cannot be computed explicitly. In
this paper, we construct an upper bound on the expected
utility under the optimal policy based on the dual formu-
lation of the portfolio optimization problem developed by
Cvitanic and Karatzas (1992). When the upper bound is
close to the expected utility achieved by a candidate port-
folio policy, the utility cost of choosing such a suboptimal
policy is guaranteed to be small. Our method applies to
models with incomplete markets and position constraints.
The most general class of tractable problems are those
where the financial market is dynamically complete. Market
completeness allows one to use the martingale techniques
to restate the portfolio choice problem in an equivalent
static form. This was first shown by Cox and Huang (1989),
Karatzas et al. (1986), and Pliska (1986). The static prob-
lem often leads to analytical solutions and is also amenable
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to simulation techniques (see, e.g., Detemple et al. 2003).
When the financial market is incomplete due to position
constraints or nonspanned risks, explicit solutions have
been obtained for only a few special cases. For example,
Kim and Omberg (1996) solve the portfolio choice prob-
lem assuming an affine nonspanned process for the market
price of risk and no portfolio constraints (with power utility
function). Liu (2005) extends their results to multivariate
problems.

The martingale approach has been generalized by a
number of researchers using stochastic duality theory
to allow for portfolio constraints and nonspanned risks.
They include Cuoco (1997), Cvitanic and Karatzas (1992),
He and Pearson (1991), and Karatzas et al. (1991),
among others. However, explicit solutions are rare. Notable
exceptions are problems with logarithmic preferences, or
problems with constant relative risk aversion (CRRA)
preferences and deterministic investment opportunity set
(see, for example, Karatzas and Shreve 1998, §6.6). For
most portfolio choice problems, explicit solutions are not
available, and one must rely on numerical approxima-
tions. Various types of approximate methods have been
used in the literature. They include the log-linear ana-
lytical approximations of Campbell and Viceira (1999,
2002) (see also Campbell et al. 2002, Chacko and Viceira
2005), finite-difference PDE solution methods (e.g., Bren-
nan 1998, Brennan et al. 1997, Brennan and Xia 2002, Xia
2001), Markov-chain approximations (e.g., Munk 2000),



406

Haugh, Kogan, and Wang: Evaluating Portfolio Policies: A Duality Approach

Operations Research 54(3), pp. 405-418, © 2006 INFORMS

numerical dynamic programming based on state-space dis-
cretization for discrete-time problems (e.g., Ait-Sahalia and
Brandt 2001, Balduzzi and Lynch 1999, Brandt 1999,
Barberis 2000, Dammon et al. 2000, Lynch 2001), and
the approximate dynamic programming approach of Brandt
et al. (2005). Other techniques for solving dynamic opti-
mization problems that are applicable to portfolio choice
problems are described in Judd (1996) and Rust (1996).

An important limitation of the approximate solution
methods is that it is usually difficult to evaluate the accu-
racy of the obtained approximations. Judd (1996) points
out that there are few theoretical results on the convergence
properties of the numerical algorithms used in economic
applications, and even when such results are available,
asymptotic convergence does not guarantee the accuracy
of any given approximation. Moreover, some of the exist-
ing approaches are based on a single approximation, rather
than a sequence of successive approximations (e.g., the
log-normal approximation method used by Campbell and
Viceira 1999), and for these the notion of asymptotic con-
vergence is not even applicable. Den Haan and Marcet
(1994) and Judd (1996) suggest procedures for testing how
accurately the first-order optimality conditions are satisfied.
Such tests, however, provide little information about the
economic impact of the approximation errors.

The method we propose allows us to evaluate the quality
of approximations for portfolio choice problems by provid-
ing an upper bound on the utility loss associated with an
approximate solution. If a sequence of progressively refined
approximate portfolio policies was generated using an iter-
ative numerical algorithm, then our method could be used
to determine at what point the quality of the approxima-
tion becomes acceptable. At that point the algorithm could
then be terminated. Because our approach does not depend
on the particular method used to construct the approximate
policy and value function, it can be applied to any approx-
imate solution method. Moreover, in principle our method-
ology could be used to guide the numerical algorithm as
well. In this paper, however, we will focus on evaluating
the quality of a fixed portfolio policy and not attempt to
construct and evaluate a sequence of approximations.

Our approach is based on the duality formulation of
the portfolio choice problem proposed by Cvitanic and
Karatzas (1992). For a given portfolio choice problem,
which is subject to position constraints, we can define a
fictitious, unconstrained problem with modified price pro-
cesses such that the maximum expected utility achieved in
the fictitious problem is at least as high as in the orig-
inal problem. Under certain assumptions, the constructed
upper bound can be shown to be tight, i.e., to coincide with
the maximum expected utility for the original problem.
Because the fictitious problem is unconstrained, we can
solve it explicitly using the well-known martingale tech-
niques of Cox and Huang (1989). The solution gives an
upper bound on the maximum expected utility (the value
function) of the original problem. (Haugh and Kogan 2004

develop a similar algorithm for the problem of pricing
American options, which is an optimal stopping problem.
As in this paper, the upper bound on the value function
is constructed using a dual formulation of the original
problem.)

To evaluate an approximation for the optimal policy and
value function, we can use this upper bound when the value
function itself is not available. The goal is to make the
upper bound tight by properly choosing the fictitious prob-
lem, in particular, the fictitious market with the modified
price processes.

Our key insight is to perform such a modification using
the information contained in the approximate solution to the
problem. In particular, one must first specify the approx-
imate portfolio policy and the value function. It would
be natural to compute the value function implied by the
approximate portfolio policy, but it is not necessary to
do so. In our numerical examples below, we specify an
approximate value function directly in a particularly simple
way and use it together with different portfolio policies to
establish bounds on the true value function. The approx-
imation to the value function is then used to define the
candidate return processes for all the assets in the fictitious
financial market, as implied by the optimality conditions of
the original portfolio choice problem. The implied return
processes in general do not qualify to be the return pro-
cesses in the fictitious problem. Our next step is to choose
the qualified fictitious return processes that are “closest” to
the candidate processes. We then solve the unconstrained
optimization problem in the fictitious market. The value
function of this fictitious problem gives an upper bound on
the value function of the original problem.

We illustrate our method with a few simple numerical
examples. These are not designed to be fully realistic, but
rather serve to demonstrate the potential of our algorithm.
Because it is not the purpose of this paper to develop new
schemes for computing approximate portfolio policies, to
simplify implementation, we adopt very simple, analytical
approximations to the portfolio policies. In particular, we
evaluate the quality of static and myopic portfolio poli-
cies in a market with return predictability under constraints
on short sales and borrowing. A static portfolio policy
is obtained by ignoring time variation in the investment
opportunity set and fixing the instantaneous moments of
stock returns at their long-run average values. To obtain
a myopic policy, we assume at any point in time that the
investment opportunity will remain constant thereafter. By
comparing the expected utility under the static strategy with
our upper bound, one can measure the economic impor-
tance of return predictability. A small gap between the
upper bound and the value function under the static policy
would indicate that return predictability is not economically
important for the problem at hand.

Similar logic can be applied to the myopic policy. A
small gap under the myopic policy indicates that the hedg-
ing component of the optimal portfolio policy has little
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impact on the expected utility. The analysis of the myopic
policy is particularly relevant because the existing litera-
ture analyzing the patterns of predictability in stock returns
commonly ignores the hedging component of portfolio
policies (see, for example, Johannes et al. 2002, Kandel and
Stambaugh 1996, Pastor 2000, Pastor and Stambaugh 2000,
Stambaugh 1999). This is motivated by the fact that for
most realistic problems the optimal portfolio policy cannot
be computed numerically due to the curse of dimension-
ality and analytical solutions are only available for highly
restrictive settings, which typically rule out portfolio con-
straints and limit the range of possible specifications for
the return processes. Several authors have argued in the
context of specific applications that hedging demand is
relatively small (e.g., Ait-Sahalia and Brandt 2001, Ang
and Bekaert 2002, Brandt 1999, Chacko and Viceira 2005,
Gomes 2004). Based on this, one may be tempted to
assume that for “similar” problems, hedging demand can
be safely ignored. However, we know that this cannot be
the case in general, and for important classes of problems
hedging demand is crucial. These classes include long-
horizon problems (Barberis 2000; Campbell and Viceira
1999, 2002) and problems with nonlinear dynamics or non-
standard preferences (Chan and Kogan 2002). Using our
method, one can verify that for a particular problem under
consideration, ignoring the hedging component of the opti-
mal portfolio policy has little effect on the expected utility.

The rest of this paper is organized as follows. Section 2
formulates the portfolio choice problem. Section 3 reviews
the duality theory, while §4 describes the algorithm for
constructing the upper bound on the optimal expected util-
ity. Section 5 illustrates our approach for several types of
portfolio choice problems and approximate strategies. We
conclude in §6.

2. The Model

We now state a portfolio choice problem under incomplete
markets and portfolio constraints. We formulate our prob-
lem in continuous time and assume that stock prices follow
diffusion processes.

The Investment Opportunity Set

There are N stocks and an instantaneously risk-free bond.
The vector of stock prices is denoted by P, = (Py,, ..., Py,)
and the instantaneously risk-free rate of return on the bond
is denoted by r,. Without loss of generality, we assume that
the stocks pay no dividends. The instantaneous moments of
asset returns depend on the M-dimensional vector of state
variables X,:

r=r(X,), (1a)
dPt = Pt{up(X,)dt +2,(X,)dB,], (1b)
dX, =px(X,)dt + 24 (X,)dB,, (Ic)

where P, = X, =0, B, = (By,,...,By,) is a vector of
N independent Brownian motions, @, and wy are N- and
M-dimensional drift vectors, and X, and X are diffusion
matrices of dimension N by N and M by N, respectively.
We assume that the diffusion matrix of the stock return pro-
cess 3, is lower triangular and nondegenerate: x' 3,3} x >
€||x||* for all x and some € > 0. Then, one can define a
process m,, given by

n = 21:: (,"LPt - rt)'

In a market without portfolio constraints, 7, corresponds
to the vector of instantaneous market prices of risk of the
N stocks (see, e.g., Duffie 2001, §6.G). We adopt a stan-
dard assumption that our return generating process is suf-
ficiently well behaved, so that the process m, is square
integrable:

T
Bl [ I <.

Portfolio Constraints

A portfolio consists of positions in the N stocks and the
risk-free bond. We denote the proportional holdings of risky
assets in the total portfolio value by 6, = (0,,, ..., 0y,). We
require the portfolio policy to satisfy a square integrability
condition: fOT 6,]]* dt < oo almost surely. The value of the
portfolio changes according to

th:Wt{[rr+6tT(MPt_rt)]dt_’_arTEPtdBf}' (2)

We assume that the portfolio shares are restricted to lie
in a closed convex set K, containing the zero vector:

6, cK. 3)

For example, if short sales are not allowed, then the con-
straint set takes the form K = {6: 6 > 0}. If in addition
to prohibiting short sales borrowing is not allowed, then
K=1{0:06>0,170 <1}, where 1" = (1,...,1). In our
analysis, we take the set K to be constant, but it can be
allowed to depend on time and the values of the exogenous
state variables.

The Objective Function

We assume that the portfolio policy is chosen to maxi-
mize the expected utility of wealth at the terminal date 7,
E,[U(W;)]. The function U(W) is assumed to be strictly
monotone with positive slope, concave, and smooth. More-
over, it is assumed to satisfy the Inada conditions at zero
and infinity: lim,,_ , U (W) = o0 and limy,_ U (W) =0.
In our numerical examples, we use the utility function with
constant relative risk aversion (CRRA) so that U(W) =
W /(1 —).

In summary, the portfolio choice problem is to solve for

Vo =supE,[U(W;)] subject to (1), (2), and (3), ()
{6:}

where V|, denotes the value function at 0.
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In the setting we adopt, with continuous-time and dif-
fusion processes for stock prices, the financial market has
the property that it can be made dynamically complete by
introducing a small number of additional securities. Our
analysis primarily relies on this property, and thus can be
extended to discrete-time and discrete-state models, using
the results in Pliska (1997). However, our approach would
not be directly applicable to models that do not possess
this property, for instance, to models with continuously dis-
tributed jumps in stock prices.

3. Review of the Duality Theory

In this section, we briefly review the duality approach to
the constrained portfolio optimization problem, following
Cvitanic and Karatzas (1992) and Schroder and Skiadas
(2003). We build on these theoretical results to construct
bounds on the performance of portfolio policies in §4
below.

Starting with the portfolio choice problem (), we can
define a fictitious problem (%)), based on a different
financial market and without the portfolio constraints. First,
we define the support function of K, 8(+): RV — RUco, by
8(v) =sup(—v'x). (4)

xeK

The effective domain of the support function is given by
K={r: 8(v) <} (5)

Because the constraint set K is convex and contains zero,
the support function is continuous and bounded from below
on its effective domain K. We then define the set D of
F,-adapted R"-valued processes to be

DE{V,,OSIST: v, €K,

EO[/()TS(V,)dt]+E0|:/0T||V,||2dti|<oo}. 6)

For each process v in D, we define a fictitious mar-
ket M), in which the N stocks and the risk-free bond are
traded. The diffusion matrix of stock returns in M®) is the
same as in the original market. However, the risk-free rate
and the vector of expected stock returns are different. In
particular, the risk-free rate process and the market price of
risk in the fictitious market are defined, respectively, by

r =r+8(v,), (7a)

n” =m+ 357, (7b)

where 6(v) is the support function defined in (4). We
assume that 7, is square integrable. Following Cox and
Huang (1989), the state-price density process 77,(") in the
fictitious market is given by

w,(y)zexp< / r®) ds — /n(”) ") ds
LT
- " am) ®)
0

and the vector of expected returns is given by
i ="+ S,

The dynamic portfolio choice problem in the fictitious mar-
ket without position constraints can be equivalently formu-
lated in a static form (e.g., Cox and Huang 1989; Karatzas
and Shreve 1998, §3):

V¥ =sup B,[U(Wy)]
{wr}

subject to EO[W(TV) W] < W,. (P™)

Due to its static nature, problem (%)) is easy to solve.
For example, when the utility function is of the CRRA type
with relative risk aversion vy so that U(W) = W=7 /(1 —v),
the corresponding value function in the fictitious market is
given explicitly by

v »(r=D/y
v =t yEo[” | ©)

It is easy to see that for any admissible choice of v € D,
the value function in (9) gives an upper bound for the opti-
mal value function of the original problem. In the fictitious
market, the wealth dynamics of the portfolio are given by

AW = W(v)[( (u)+0T2P[n(v))dt+9j2md31], (10)

so that

dw  aw, o)

0 Wt =[(r[

- R+ 6075, (= n,))dr

=[8(v,) +6,v,]dt

The last expression is nonnegative according to (4) because
6, € K. Thus, W) > W, V1 [0, T] and

v >, (11)

In this paper, we use this property of the fictitious prob-
lem (%)) to construct an upper bound on the value func-
tion of the original problem (2).

Results in Schroder and Skiadas (2003) imply that if the
original optimization problem has a solution, then the upper
bound is “tight,” i.e., the value function of the fictitious
problem (2®)) coincides with the value function of the
original problem (%):

v = inf v =y, (12)

(see Schroder and Skiadas 2003, Proposition 3(b), Theo-
rems 7 and 9). The above e(%uahty holds for all times, and
not just at time 0, i.e., V V,. Cvitanic and Karatzas
(1992) have shown that the solution to the original problem
exists under additional restrictions on the utility function,
most importantly that the relative risk aversion does not
exceed one. Cuoco (1997) proves a more general existence
result, imposing minimal restrictions on the utility function.



Haugh, Kogan, and Wang: Evaluating Portfolio Policies: A Duality Approach

Operations Research 54(3), pp. 405-418, © 2006 INFORMS

409

4. The Performance Bound

The theoretical duality results of §3 suggest that one can
construct an upper bound on the value function of the port-
folio choice problem (%) by computing the value function
of any fictitious problem (2™). The fictitious market is
defined by the process v, as in (7). Of course, one can pick
any fictitious market from the admissible set D to com-
pute an upper bound. Such a bound is uninformative if it is
too loose. Because our objective is to evaluate a particular
candidate policy, we can construct a process ¥, based on
such a policy to obtain tighter bounds. The solution to the
portfolio choice problem under the fictitious market defined
by 7, then gives us a performance bound on the candidate
policy.

To construct the fictitious market as defined by 7,, we
first use the solution to the dual problem (which also gives
the solution to the original problem) to establish the link
between the optimal policy 6* and value function V"),
and the corresponding fictitious asset price processes, as
defined by v*. Not knowing the optimal portfolio policy
and value function, we instead use their approximations to
obtain the candidate process for v*, which is denoted by ».
This candidate process in general does not belong to D and
cannot be used to define a fictitious problem. Instead, we
search for a qualified process ¥ in D, which is “closest”
to 7. We then use ¥ as an approximation to v* to define the
fictitious problem in (2*)). Because # € D, the solution to
the corresponding unconstrained problem in M® provides
a valid performance bound for the candidate policy.

According to Cox and Huang (1989),

V=V, = supE,[UWy)]
{Wr}
-
subject to E,[W WT:| <W,.

t

The first-order optimality conditions then imply U’ (W;) =
A ), where A, is the Lagrange multiplier on the
time-t budget constraint. On the other hand, according
to the envelope condition, the partial derivative of the
value function with respect to the portfolio value satisfies
dV,/oW, = A, (see Karatzas and Shreve 1998, §3.7, Theo-
rem 7.7 for a formal proof). Thus, W;V*)/W, ") = uwy)/
(0V,/dW,), and hence,
)V, /W,

7 AV, joW,

The above equality implies that

av
' (13)
aw,

In particular, the stochastic part of dIn W,(V*) is equal to the
stochastic part of d1IndV,/dW,. If V, is smooth, Ito’s lemma
and Equations (8) and (2) imply that

. 0V, /OW?
« (V") t t T p*
= =—W(———L13,.0
m="N 1( v, Jaw, ) Pt

W, \ ot [V,
— — ), 14
<aw,) 2X’(aw,ax, (14)

2 t.

din7") =dn

where 07 denotes the optimal portfolio policy for the orig-
inal problem. In the special but important case of a CRRA
utility function (which we analyze in more detail below),
the expression for nfv*) simplifies. In particular, the first
term in (14) becomes equal to yX}, 6%, where 7 is the rela-
tive risk-aversion coefficient of the utility function, and one
only needs to compute the first derivative of the value func-
tion with respect to the state variables X, to evaluate the
second term in (14). This simplifies numerical implemen-
tation, because it is generally easier to estimate first-order
than second-order partial derivatives of the value function.

Given an approximation to the optimal portfolio pol-
icy 5,, one can compute the corresponding approximation
to the value function, 17,, defined as the conditional expec-
tation of the utility of terminal wealth, under the portfolio
policy 51. We can then construct a process ¥ as an approx-
imation to v*, using (14). Approximations to the portfolio
policy and value function can be obtained using a variety
of methods (e.g., Brandt et al. 2005). In this paper, we take
é, as given and use it to construct an upper bound on the
unknown true value function V.

Assuming that the approximate value function V is suf-
ficiently smooth, we can replace V, and 6; in (14) with v,
and 6, and obtain

N 5 3V, [IW? - V!
77;5775)=—Wt< ~I ’)2;0,-( t)
av. /oW, aw,

2V
T t
. ) 1
EX’(aW,ax) (15)

We then define 7, as a solution to (7b).

Obviously, 7, is a candidate for the market price of risk
in the fictitious market. However, there is no guarantee that
7, and the corresponding process ¥, belong to the feasi-
ble set D defined by (6). In fact, as we illustrate below,
for many important classes of problems the support func-
tion &6(v,) may be infinite for some values of its argument.
Thus, we look for a price-of-risk process 7, € D that is
“close” to 17,. We choose a Euclidean norm as our measure
of distance between the two processes to make the resulting
optimization problem tractable.

To guarantee that 7], € D without sacrificing tractability,
we replace the original integrability constraints defining the
set D with a set of tighter uniform bounds,

17—l <A, (16a)
8(V) < A, (16b)

where A, and A, are positive constants that can be taken to
be arbitrarily large. Condition (16a) implies that the process
D, is square integrable, because we have assumed that 7, is
square integrable and |9 —n|*> =" (2,") 2,0 > A||p|?
for some A > 0. If the process 7m}, corresponding to the
optimal portfolio policy, does not satisfy constraints (16a)
and (16b), imposing such constraints on %, and ¥, would
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increase the upper bound. This is the price one must pay
for a computationally tractable description of a feasible set
of 1, and 7,. For the examples we consider below, one
can verify directly that the constructed processes 7, and 7,
are feasible, and therefore constraints (16a) and (16b) do
not need to be imposed. In general, because the choice of
constants A, and A, is somewhat arbitrary, one may want
to experiment with different values. Constraints (16a) and
(16b) may bind because the optimal process ;. is not uni-
formly bounded, or because the approximation error 1, — ¥
is not uniformly bounded. In the former case, one would
like to make the constants as large as possible, while in
the latter case large values of A, and A, could increase the
upper bound.

We now define 7, and 7, as a solution of the following
problem:

mip I -7l (17)
subject to

N=n+3,'7, (18a)
o(v) < oo, (18b)
17—l <A, (18¢)
(V) < A,. (18d)

The objective is to minimize the FEuclidean distance
between the process 7, used to compute the upper bound,
and the candidate process for the market price of risk, 7,.
The first constraint simply relates the market price of risk
to the process v. The second constraint requires the support
function to be finite. This is a general form of a constraint,
which, depending on the specific choice of the set K, rep-
resents a set of constraints on 7. For the examples we con-
sider below, the requirement that 6(v) < oo results in a set
of linear constraints on #. Finally, the last two constraints
in (18) are the uniform bounds guaranteeing that 1 € D, as
we discussed above.

The value of 1), and ¥ can be computed quite easily for
many important classes of portfolio choice problems. In
particular, we consider the three examples mentioned in §2.

Incomplete Markets

Assume that only the first L stocks are traded. The positions
in the remaining N — L stocks are restricted to zero. In this
case, the set of feasible portfolio policies is given by

K={6]6,=0for L <i< N}, (19)

and hence the support function &(v) is equal to zero if
v; =0, 1 <i< L, and is infinite otherwise. Thus, as long
as v; =0, 1 <i< L, constraint (16b) does not need to be
imposed explicitly. To find 7 and ¥, we must solve

g@”ﬁ—ﬁw (20)

subject to

The diffusion matrix 3, is lower triangular and so is its
inverse. Using this, the solution can be expressed explic-

n=m, 1<i<L,

iy =m+a(f;—n)., L<j<N,
v=3,(n-m),

where

A= F—n? 12 L
. (L) ~112 ~2
a=min 1,( — po ) ], (71(3 =Zﬂ,~
[ I7—nl2—l17—nl, WS

Note that when the constant A, is very large, it will invari-
ably be the case that a = 1, and therefore 7; =7, for L <
J<N.

Incomplete Markets and No Short Sales

Consider the market in which only the first L stocks can be
traded and no short sales (of the stocks) are allowed. The
set of admissible portfolios is given by

K={0]6>0,0,=0 for L <i<N} (21)

and the support function is equal to zero if v; >0, i =
1,..., L, and is infinite otherwise. As in the previous case,
constraint (16b) is automatically satisfied. Thus, ¥ can be
determined as a solution of a standard quadratic program-
ming problem:

g@”ﬁ—ﬁw (22)

19 —mll* < A7
Incomplete Markets, No Short Sales, and

No Borrowing

Consider the same market as in the previous case, but no
short sales and borrowing are allowed. Then, the set of
admissible portfolios is given by

K={0]0>0,170<1,0,=0for L<i<NJ}. (23)

The support function is given by &(v) = max(0, —v, ...,
—v, ), which is finite for any vector v. Because in this case
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8(v) < [[v]|, the relation |[v[| = [[Zp(7 — M < [[Zp[lA,
(see (16a) and (16b)) implies that as long as A, is suffi-
ciently large compared to A,, one only needs to impose
(16a), and (16b) is redundant. Thus, one needs to solve the
following problem:

min 7 — 7 24)
subject to

H=n+3,'7,
19—l < A7

Then, the fictitious market is described by

A
+min<1, ~—l>(ﬁ— 1),
7=l

Again, by setting A, to be sufficiently large, we will invari-
ably obtain 1) = 7.

5. Numerical Experiments

The method described in the previous section can be
applied to various problems of portfolio choice. In this sec-
tion, we illustrate its performance based on several numer-
ical experiments, but first we summarize our algorithm as
a sequence of four basic steps:

Step 1. Start with an approximation to the optimal port-
folio policy of the original problem, and the corresponding
approximation to the value function, which can be obtained
using a variety of methods. In this paper, we simply assume
that such approximations are available.

Step 2. Use the approximate portfolio policy and partial
derivatives of the approximate value function to construct
a process 1), according to the explicit formula (15). The
process 1, is a candidate for the market price of risk in the
fictitious market.

Step 3. Construct a process 7], that is close to 7, and
satisfies the conditions for the market price risk of a ficti-
tious market in the dual problem. This involves solving the
quadratic optimization problem (17).

Step 4. Compute the value function from the static prob-
lem (%)) in the resulting fictitious market defined by the
market price of risk process 1),. This can be accomplished
efficiently using Monte Carlo simulation. This results in an
upper bound on the value function of the original problem.

The lower bound on the value function is obtained
by simulating the terminal wealth distribution under the
approximate portfolio strategy.

Calibration

In our numerical experiments, we assume that the utility
function is of the constant relative risk aversion (CRRA)

type so that U(W) = W!=7/(1 — y). We consider three
values for the relative risk-aversion parameter: y = 1.5, 3,
and 5. We also consider two values for the problem hori-
zon: T =5 and T = 10 years.

Our continuous-time model is very similar to the
discrete-time market model in Lynch (2001), and we use
the parameters estimated by Lynch to guide our calibra-
tion. He considers a financial market with three traded risky
assets and a single state variable. To represent the same
market in our framework, we assume that there is a total of
four risky assets, the first three of which are traded, and a
single state variable, i.e., we consider an incomplete market
with N =4, M =1, and L =3, meaning that the first three
stocks can be traded.

The dynamics of asset returns is given by

r,=r, (25a)
dPt = Pt[(mo+ X,py)dt + 2, dB,], (25b)
dX, = —kX,dt + S4dB,. (25¢)

The diffusion matrix X is of size 1 by 4 and we assume
that the fourth row of the matrix 3, coincides with 3.
This assumption is made for convenience, and it econo-
mizes on the number of parameters to be reported. Note
that because the fourth risky asset is not traded, one can
specify the fourth row of X, arbitrarily, as long as the
matrix 3, satisfies the necessary regularity conditions. We
set the initial value of the state variable to zero, X, =0, in
all numerical examples below.

Lynch (2001) considers two choices for the state vari-
able X: the dividend yield and the term spread. The div-
idend yield captures the rate at which dividends are paid
out, as a fraction of the total stock market value. Specif-
ically, Lynch uses a continuously compounded 12-month
yield on the value-weighted NYSE index. The term spread
is the difference in yields between 20-year and one-month
Treasury securities. Both of these predictive variables are
normalized to have zero mean and unit variance. He also
considers two sets of risky assets: three portfolios obtained
by sorting stocks on their size or on their book-to-market
ratio. Details of the procedure are reported in Lynch (2001);
here we are interested only in the parameters of the stock
return process, as summarized in Tables 1 and 2 of Lynch.
Thus, by considering two choices of risky assets and two
choices of the predictive variable, we have four sets of cali-
brated parameter values. These are reported in Table 1. We
set the risk-free rate at r =0.01 throughout.

Approximate Policies

As in Lynch (2001), we consider two types of portfolio
policies. The first policy, which we call “static,” ignores
predictability of stock returns. It is defined using the uncon-
ditional average returns instead of the time-varying condi-
tional expected returns on the stocks. Specifically,

6[8[3.[10

=argmax(pg —r)0 — 3y 3,30
9

subject to 6 € K. (26)
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Table 1. Calibrated model parameters.
k Mo M 2p
Parameter set 1
0.366 0.081 0.034 0.186 0.000 0.000  0.000
0.110  0.059 0.228 0.083 0.000  0.000
0.130  0.073 0.251 0.139 0.069  0.000
0.000 0.000 -0.741 —0.037 —0.060 0.284
Parameter set 2
1.671  0.081 0.046 0.186 0.000 0.000  0.000
0.110  0.070 0.227 0.082 0.000  0.000
0.130  0.086 0.251 0.139 0.069  0.000
0.000 0.000 -0.017 0.149 0.058 1.725
Parameter set 3
0.366  0.142  0.065 0.256 0.000 0.000  0.000
0.109  0.049 0.217 0.054 0.000  0.000
0.089  0.049 0.207 0.062 0.062  0.000
0.000  0.000 —0.741 0.040 0.034  0.288
Parameter set 4
1.671 0.142  0.061 0.256 0.000 0.000  0.000
0.109  0.060 0.217 0.054 0.000  0.000
0.089  0.067 0.206 0.062 0.062  0.000
0.000 0.000 -0.017 0.212 0.096 1.716

Notes. The four sets of parameters correspond to: (1) size-sorted
portfolios and the dividend yield as a state variable; (2) size-sorted
portfolios and the term spread as a state variable; (3) book-to-
market sorted portfolios and the dividend yield as a state variable;
(4) book-to-market sorted portfolios and the term spread as a state
variable. Parameter values are based on the estimates in Tables 1
and 2 of Lynch (2001).

This is an optimal portfolio policy in a dynamic model
with a constant investment opportunity set and cone con-
straints on portfolio positions, e.g., Karatzas and Shreve
(1998, §6.6).

As we discussed in the introduction, a small gap
between the upper bound and the expected utility under
the static policy indicates that return predictability is not
economically important for the problem at hand. The
reverse, however, is not necessarily true—when the upper
bound is significantly higher than the lower bound, we can-
not formally conclude that the static portfolio policy is sig-
nificantly inferior to the optimal strategy. We discuss these
issues in more detail in the context of the numerical exam-
ples below.

The second portfolio policy we consider is the “myopic”
policy. It is defined in the same way as a static policy,
except the instantaneous moments of asset returns are fixed
at their current values, as opposed to their long-run average
values:

é;nyopic = arg maX(l-’qu, o I‘)O _ %'}/OTEPE;O
6
subject to 6 € K. (27)

The approximate portfolio policy in (27) ignores the
hedging component of the optimal trading strategy. By
comparing the corresponding expected utility with an upper

bound, we will be able to evaluate the economic impor-
tance of hedging as a component of the portfolio policy. In
a portfolio choice problem similar to ours, Lynch (2001)
finds a significant hedging demand for some of the param-
eter values he considers. In particular, for the third parame-
ter set when there are no portfolio constraints, Lynch finds
that the optimal policy is very different from the myopic
approximation. Below we will show that even though the
myopic strategy may be far from optimal in terms of actual
portfolio holdings, the utility loss due to using it may not
be very large. As we previously emphasized, the advantage
of our method is that such results can be obtained without
knowing the optimal strategy, which would be the case for
most realistic applications.

Our algorithm for evaluating portfolio strategies relies
on an approximate value function, \7, In general, one has
to estimate \7, as the conditional expectation of the util-
ity of terminal wealth under the approximate strategy 6,.
This could be done, for example, using standard regression
methods. Instead, we choose a particularly straightforward
closed-form expression for \7, This simplifies computa-
tions, while still allowing us to illustrate the conceptual
steps involved in estimating the upper bound on the value
function. The cost of using a simplified closed-form for-
mula for \7, is a potentially wider gap between the upper
bound and the true value function.

Because the utility function is of CRRA type, the true
value function has a homothetic functional form, V, =
g(t, Xr)W,lfy. As a drastic simplification, we ignore the
dependence of the value function on the state variable and
set V. = g(t)W,™". The exact form of the function 3(r)
does not affect the specification of the artificial market
below. Note that removing the dependence of the approx-
imate value function on X does not eliminate it from the
price of risk in the fictitious market, given by (14). This is
because the leading term in that expression depends on X,
through the approximate portfolio policy, 6,.

We will see in the numerical examples below that even
such a simplistic approximation to the value function can
lead to informative bounds on the true value function. How-
ever, in realistic practical applications, one should use more
accurate approximations to the value function to achieve
tighter bounds whenever possible.

Simulation

For each of the approximate portfolio strategies, we esti-
mate the corresponding expected utility of terminal wealth,
as well as the upper bound on the true value function, using
Monte Carlo simulation. The expected utility under the sub-
optimal portfolio policy provides a lower bound on the
true value function of the problem. We estimate the former
by simulating independently 100,000 or 1,000,000 paths of
stock prices and state variables according to (25a)—(25¢c).
We used 100,000 paths to estimate the bounds for the prob-
lems with constraints on short sales only, as the correspond-
ing quadratic subproblem in that case needs to be solved
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numerically. We used 1,000,000 paths for all other cases.
(The problems were solved using MATLAB, so the compu-
tational times for the various problems are not particularly
informative.) We compute the portfolio value along each
path under the approximate portfolio strategy and record
the utility of the terminal wealth. We then average over the
simulated paths to estimate the expected utility. In simula-
tions, we discretize the continuous-time diffusion processes
using a standard Euler scheme with a time step At =0.01
years. For the case of incomplete markets and the case of
no short sales and no borrowing, quadratic subproblems
given by Equations (17) and (18) can be solved in closed
form. For the case of no borrowing, we solved each of
the quadratic subproblems using the MATLAB optimizer.
Each of the subproblems was in three dimensions with
three inequality constraints. The total number of subprob-
lems was equal to 107 x 7.

As we showed in §4, the true value function is bounded
from above by the value function in the fictitious market,
which in turn is given by
Vo(u) _ MEO[W(TV)W—I)/V]Y' (28)

I—y
We simulate the process 7T;—V) by discretizing the integrals
in (8) with the same time step Az =0.01. The market price
of risk and the risk-free rate in the fictitious market are
computed according to the procedure described in §4. In
our simulations, we do not impose constraint (16a), because
one can directly verify, under our assumption about the
return-generating process and the approximate trading strat-
egy, that the process 7, is square integrable. The second
constraint (16b) does not need to be imposed explicitly for
the problems we are considering below, as discussed in §4.

Incomplete Markets

We first consider the incomplete market model, in which
portfolio positions in tradable assets are unconstrained.
Table 2 reports the estimates of the expected utility both
under the static and myopic portfolio strategies in Equa-
tions (26) and (27), which provide lower bounds on the true
value function, as well as the corresponding estimates of
the upper bound. Expected utility is reported as a continu-
ously compounded certainty equivalent return, R. The value
of R corresponding to the value function V|, is defined by
U(W,eRT) = V,. Alternatively, one could report the utility-
equivalent wealth W, defined by U(W) = V,. We express
our results in terms of the certainty equivalent return to
facilitate comparison across different problem horizons 7.
We also report the exact value function, which can be
computed explicitly using the results in Kim and Omberg
(1996) and Liu (2005). Table 2 contains results for four
parameter sets, three values of the risk aversion parame-
ter vy, and two values of the economy horizon 7.

One can see that there is a sizeable gap between the
expected utility achieved by the static strategy and the cor-
responding upper bound on the true value function. For

most of the parameter combinations considered, the differ-
ence, expressed as annualized certainty equivalent return,
is in the range of 1%—-3%.

The difference between the upper bound and the lower
bound can be decomposed into a sum of two terms:

UB—LB=(V—LB)+ (UB—V). (29)

The first term is the utility loss of the approximate portfo-
lio strategy under consideration. It captures the utility loss
due to using a suboptimal portfolio strategy. The second
term is the difference between the upper bound and the true
value function, and it depends on how tight the estimated
upper bound is. Ideally, we would like to know the first
term, but because the true value function is not known, we
can only estimate the sum of two terms, i.e., the differ-
ence UB — LB. This difference is large because either or
both of the two terms on the right-hand side are large. In
particular, the magnitude of the second term depends on
the accuracy of the approximate portfolio policy and value
function used to estimate the upper bound. Table 2 indicates
that in this particular case, the magnitude of the second
term is relatively small, as can be seen from the difference
between the upper bound, UB®, and the exact solution, V*.
(The exact solution is available for this special case from
Liu (2005). This will not be the case once we impose
portfolio constraints below.) This is somewhat surprising,
because the difference between the lower and the upper
bound suggests that the static policy is quite far from being
optimal.

To summarize, the above results do not allow us to con-
clude that predictability can be safely ignored for the prob-
lems under consideration. However, without knowing the
exact solutions, we could not argue that the economic value
of predictability is large either. More generally, one should
not view the difference UB — LB we construct as a for-
mal test statistic for optimality of a given portfolio pol-
icy, because we have not established that the difference
UB — LB must be “small” when a portfolio policy used to
construct the upper bound is close to being optimal. One
can, however, draw definitive conclusions from the cases
when the difference UB — LB is small, which implies that
the considered suboptimal portfolio policy has a small util-
ity cost.

We now turn to the corresponding results for the myopic
strategy, also shown in Table 2. As we have discussed in
the introduction, using our method, one can verify that for a
particular problem under consideration, ignoring the hedg-
ing component of demand has little effect on the expected
utility. For the problems with a five-year horizon, the dif-
ference between the point estimates of UB and LB tends
to be in the 0.1%-0.2% range, except for the third param-
eter set, where it reaches approximately 0.6%. Thus, we
conclude that for most of the parameter sets, the hedging
component of demand is not very significant economically
with a five-year model horizon.
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Table 2. Incomplete markets.
T=5 T=10
y=1.5 y=3 y=5 y=15 y=3 y=5
Parameter set 1
LB* 7.50 4.64 3.27 7.70 4.84 342
(7.48,7.52) (4.63,4.65) (3.27,3.28) (7.69,7.71) (4.84,4.85) (3.42,3.43)
UB’ 9.44 5.94 4.20 10.12 6.72 4.88
(9.40,9.48) (5.86,6.01) (4.10,4.30)  (10.09, 10.15) (6.65,6.79) (4.76,5.00)
LB" 9.35 5.72 3.97 9.94 6.18 4.29
(9.32,9.37) (5.70,5.73) (3.96,3.98) (9.92,9.96) (6.16,6.19) (4.28,4.29)
UB™ 9.44 5.94 4.20 10.12 6.72 4.88
(9.40,9.48) (5.86,6.01) (4.10,4.30)  (10.09, 10.15) (6.65,6.79) (4.76, 5.00)
v 9.44 5.95 4.19 10.09 6.62 4.75
Parameter set 2
LB* 6.55 3.69 2.59 6.53 3.67 2.58
(6.52,6.58) (3.67,3.70) (2.58,2.60) (6.51,6.55) (3.66,3.69) (2.58,2.59)
UB’ 9.07 5.00 3.40 9.16 5.07 3.46
(9.02,9.11) (4.95,5.05) (3.35,3.46) (9.13,9.20) (5.03,5.11) (3.41,3.51)
LB" 9.02 4.92 3.33 9.10 4.95 3.35
(8.99,9.05) (4.90, 4.93) (3.32,3.34) (9.08,9.12) (4.94,4.97) (3.34,3.36)
UB™ 9.07 5.00 3.40 9.16 5.07 3.46
(9.02,9.11) (4.95,5.05) (3.35,3.46) (9.13,9.20) (5.03,5.11) (3.41,3.51)
v 9.02 4.92 3.33 9.08 4.94 3.34
Parameter set 3
LB* 14.67 8.59 5.73 15.06 8.98 6.02
(14.64, 14.70) (8.57, 8.60) (5.72,5.74)  (15.04,15.08) (8.97,8.99) (6.01, 6.02)
UB?* 16.84 10.43 7.27 17.84 11.90 8.76
(16.78,16.90)  (10.32,10.55) (7.09,7.45) (17.80,17.88) (11.78,12.01) (8.54,8.98)
LB" 16.64 9.88 6.61 17.47 10.60 7.10
(16.61, 16.68) (9.86,9.90) (6.59,6.62) (17.44,17.49) (10.58,10.61)  (7.09,7.12)
UB™ 16.84 10.43 7.27 17.84 11.90 8.76
(16.78,16.90)  (10.32,10.55) (7.09,7.45) (17.80,17.88) (11.78,12.01) (8.54,8.98)
v 16.79 10.32 7.06 17.76 11.55 8.12
Parameter set 4
LB* 13.17 7.10 4.66 13.18 7.11 4.67
(13.14,13.21) (7.08,7.12) (4.65,4.68) (13.15,13.21) (7.09,7.13) (4.66,4.69)
UB’ 15.93 8.47 5.54 16.06 8.59 5.62
(15.87,15.99) (8.40, 8.55) (5.46,5.63)  (16.01, 16.10) (8.52, 8.66) (5.53,5.71)
LB™ 15.91 8.45 5.48 16.02 8.51 5.51
(15.87,15.95) (8.42,8.47) (5.46,5.49)  (15.99, 16.05) (8.49,8.54) (5.49,5.53)
UB™ 15.93 8.47 5.54 16.06 8.59 5.62
(15.87,15.99) (8.40, 8.55) (5.46,5.63)  (16.01,16.10) (8.52, 8.66) (5.53,5.71)
v 15.91 8.45 547 16.00 8.49 5.49

Notes. The four parameter sets are defined in Table 1. All results are computed for the initial value of the state
variable X, = 0. The rows marked LB® and LB™ report the estimates of the expected utility achieved by using
the static and myopic portfolio strategies, respectively. The estimates are based on 1,000,000 independent
simulations. Expected utility is reported as a continuously compounded certainty equivalent return. Approximate
95% confidence intervals are reported in parentheses. The rows marked UB°® and UB™ report the analogous
results for the upper bound on the true value function computed according to the procedure described in §4.
The row marked V" reports the optimal value function for the problem.

When we increase the problem horizon to 10 years, the
gap UB — LB increases. For the second and fourth param-
eter sets the difference remains small, under 0.2%, but for
the third parameter set it now reaches as much as 1.5% for
the case of y = 5. These observations are consistent with

our intuition that hedging demand tends to be more impor-
tant for problems with longer horizons. It is well known
that the myopic policy is optimal for y =1 in this case,
and therefore it is not surprising that it performs well for
values of y close to one.
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No Short Sales and No Borrowing

We now consider the market in which both short sales and
borrowing are prohibited, i.e., portfolio policies must sat-
isfy (23). Table 3 reports the estimates of the expected util-
ity both under the static and myopic portfolio strategies and
the corresponding estimates of the upper bound. We also
report the value function obtained by relaxing the portfo-
lio constraints on the three risky assets, which is the same
as the values reported in Table 2. Table 3 contains results
for four parameters sets, three values of the risk-aversion
parameter vy, and two values of the economy horizon 7.

As in the case of incomplete markets and no position
constraints, there is a significant gap between the expected
utility achieved by the static strategy and the correspond-
ing upper bound on the true value function. As before, we
decompose the difference between the upper bound and the
lower bound as in (29). Table 3 indicates that the magni-
tude of the second term is substantial, at least for some of
the parameter sets. In particular, for y =5 the estimated
upper bound often exceeds the value function of the uncon-
strained problem, which in turn is greater than or equal to
the true value function. As in the incomplete market case,
we cannot conclude that predictability can be safely ignored
for the problems under consideration.

The results for the myopic strategy are similar to those
in Table 2. For the problems with a five-year horizon, the
difference between the point estimates of UB and LB tends
to be in the 0.1%-0.2% range, except for the third param-
eter set, where it reaches approximately 0.5%. Thus, we
conclude that for most of the parameter sets the hedging
component of demand is not very significant economically
with a five-year model horizon. A closer examination of
the portfolio composition under the myopic policy (not
reported here) suggests that our conclusions may be too
conservative, at least for the third parameter set. Because
of the binding short-sale constraints, the myopic policy is
likely to be close to the optimum most of the time. Thus,
if we were to use a more accurate approximation to the
approximate value function \7, our upper bound would
likely be tighter than the values reported in Table 3. As
we pointed out earlier, our objective here is not to maxi-
mize the accuracy of computations, but rather to illustrate
the concepts, and therefore we do not pursue this issue any
further.

No Short Sales

In the numerical experiments above, we assumed that nei-
ther borrowing nor short sales are allowed. As we showed
in §4, in this case the fictitious market used to estimate the
upper bound is particularly straightforward to define. We
now consider the case when short sales are prohibited, but
borrowing is allowed. Then, to define the fictitious market
one must solve the quadratic optimization problem (22).
Table 4 reports the results, and to reduce the computa-
tional effort, we only consider the case of T =5 years.

Unlike the previous two cases, when we impose no short-
sales constraint, we have to solve a quadratic optimization
problem numerically for every point in time on each simu-
lated path. This increases the computational cost. To reduce
the total computation time, we limit the model horizon to
T =5 years and only use 100,000 simulated paths. A com-
parison with Table 3 reveals a peculiar regularity. Because
the borrowing constraint rarely binds for the myopic policy
when y =3 and y =5, the corresponding expected utility,
LB, is similar to the values reported in Table 3. However,
the upper bound tends to be much tighter for these cases
compared to Table 3, even though the true value function
for the problem considered in Table 4 exceeds the one for
the problem corresponding to Table 3 (because the latter
problem is a more constrained version of the former). The
situation is reversed for y = 1.5, but in that case the static
policy calls for borrowing, hence the expected utilities can-
not be directly compared across the two tables. Neverthe-
less, one can observe that for y = 1.5, the difference UB —
LB is significantly larger than for y =3 and y=35.

For the myopic strategy, the difference UB — LB is very
similar to the corresponding values in Table 3. It is as high
as 0.4% for the third parameter set and is less than 0.2%
for all other parameter sets, demonstrating that the hedg-
ing component of demand is not crucial when borrowing is
allowed. A comparison with the results for the static strat-
egy shows that the gap UB — LB for the static strategy
is primarily due to the difference between the true value
function and the lower bound, and the corresponding upper
bounds are relatively tight.

6. Conclusion

In this paper, we developed a method for evaluating the
quality of approximations for portfolio choice problems by
providing an upper bound on the utility loss associated with
an approximate solution. Our algorithm relies on the duality
theory for constrained portfolio optimization. Starting from
an approximate portfolio policy, we construct a fictitious
financial market without portfolio constraints in which the
optimization problem can be easily solved. The resulting
value function is estimated using Monte Carlo simulation
and provides an upper bound on the (unknown) value func-
tion of the original problem.

Our method is independent of the nature of the original
approximation and can be used in combination with vari-
ous algorithms for approximating optimal portfolio strate-
gies and value functions. The algorithm can also be applied
to verify that an approximate strategy is in fact close to
the optimum in terms of expected utility. This applies not
only to problems that can be potentially handled by tradi-
tional numerical methods, but also to large-scale problems,
because the computational time required by our simulation-
based method does not grow exponentially with the dimen-
sion of the state space or the number of risky assets.

In our analysis, we consider problems with the objective
defined over the terminal wealth. Extending our results to
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Table 3. No short sales and no borrowing.
T=5 T=10
y=1.5 y=3 y=5 y=1.5 y=3 y=35
Parameter set 1
LB’ 7.39 4.64 3.28 7.57 4.84 3.42
(7.37,7.41) (4.63,4.65) (3.27,3.28) (7.56,7.58) (4.83,4.85) (3.42,3.43)
UB’® 9.22 7.23 6.33 9.59 7.80 7.00
(9.19,9.25) (7.19,7.26)  (6.29,6.37) (9.57,9.62) (7.78,7.83) (6.97,7.02)
LB" 8.09 5.57 391 8.35 5.99 4.22
(8.07,8.11) (5.56,5.59) (3.89,3.92) (8.34, 8.36) (5.98,6.00) (4.21,4.23)
UB™ 8.15 5.84 4.18 8.45 6.48 4.77
(8.12,8.18)  (5.79,5.90) (4.08,4.28)  (8.43,8.47)  (6.42,6.54) (4.60,4.94)
v 9.44 5.95 4.19 10.09 6.62 4.75
Parameter set 2
LB* 6.54 3.69 2.60 6.52 3.67 2.58
(6.52,6.57) (3.68,3.71)  (2.59,2.61) (6.51,6.54) (3.66,3.69) (2.58,2.59)
UB’ 9.54 6.94 5.79 9.59 7.00 5.84
(9.50,9.57) (6.90,6.98) (5.74,5.83) (9.57,9.62) (6.96,7.03) (5.80,5.87)
LB™ 7.88 4.85 3.30 7.91 4.87 3.31
(7.86,7.90) (4.84,4.87) (3.29,3.31) (7.90,7.93) (4.86,4.83) (3.30,3.32)
UB” 7.93 4.98 342 7.95 5.01 3.44
(7.89,7.96) (4.93,5.03) (3.37,3.48) (7.93,7.98) (4.97,5.04) (3.39,3.49)
v 9.02 4.92 3.33 9.08 4.94 3.34
Parameter set 3
LB’ 10.03 6.76 4.62 10.22 7.12 4.87
(10.01,10.04)  (6.75,6.78)  (4.61,4.63) (10.21,10.23) (7.11,7.12)  (4.87,4.88)
UB’® 10.71 8.83 7.38 11.04 9.51 8.17
(10.68,10.74)  (8.78,8.88) (7.33,7.42) (11.02,11.06) (9.47,9.54) (8.13,8.21)
LB" 10.17 7.65 5.35 10.37 8.18 5.80
(10.15,10.18)  (7.63,7.66)  (5.33,5.36)  (10.36,10.38) (8.17,8.19) (5.79,5.81)
UB™ 10.23 8.05 5.85 10.47 3.88 6.79
(10.20,10.26)  (7.98,8.11)  (5.69,6.01)  (10.46,10.49)  (8.82,8.94)  (6.34,7.25)
v 16.79 10.32 7.06 17.76 11.55 8.12
Parameter set 4
LB* 9.22 5.31 3.57 9.21 5.29 3.56
(9.20,9.24) (5.29,5.32)  (3.56,3.58) (9.19,9.22) (5.27,5.30) (3.54,3.57)
UB’ 10.23 7.69 5.91 10.26 7.72 5.95
(10.19,10.26)  (7.63,7.74)  (5.86,5.97) (10.23,10.28) (7.68,7.77)  (5.89, 6.00)
LB™ 9.51 6.07 4.05 9.51 6.08 4.06
(9.49,9.53) (6.05,6.09) (4.04,4.06) (9.50,9.53) (6.06,6.09) (4.05,4.07)
UB” 9.54 6.20 4.19 9.55 6.22 4.20
(9.51,9.57) (6.15,6.26)  (4.12,4.25) (9.52,9.57) (6.17,6.26)  (4.14,4.26)
Vi 1591 8.45 5.47 16.00 8.49 5.49

Notes. The four parameter sets are defined in Table 1. All results are computed for the initial value of the
state variable X, = 0. The rows marked LB° and LB™ report the estimates of the expected utility achieved
by using the static and myopic portfolio strategies, respectively. The estimates are based on 1,000,000
independent simulations. Expected utility is reported as a continuously compounded certainty equivalent
return. Approximate 95% confidence intervals are reported in parentheses. The rows marked UB°® and
UB" report the analogous results for the upper bound on the true value function computed according to
the procedure described in §4. The row marked VY reports the optimal value function for the model with
incomplete markets and without the portfolio constraints.
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Table 4. No short sales.
y=15 vy=3 vy=5
Parameter set 1
LB* 7.47 4.62 3.27
(7.41,7.53) (4.59,4.65) (3.25,3.29)
UB* 10.35 6.28 4.32
(10.21, 10.49) (6.06, 6.50) (4.02,4.62)
LB™ 9.04 5.58 3.89
(8.96,9.12) (5.53,5.62) (3.86,3.92)
UB™” 9.14 5.77 4.04
(9.02,9.27) (5.56,5.98) (3.75,4.33)
v 9.44 5.95 4.19
Parameter set 2
LB’ 6.52 3.67 2.58
(6.44, 6.60) (3.63,3.72) (2.56,2.61)
UB*® 10.76 5.85 3.88
(10.60, 10.92) (5.67,6.03) (3.69,4.08)
LB™ 8.92 4.86 3.30
(8.82,9.01) (4.81,4.91) (3.26,3.33)
UB™” 9.01 4.98 3.38
(8.87,9.15) (4.82,5.14) (3.20,3.56)
v 9.02 4.92 3.33
Parameter set 3
LB* 11.19 6.76 4.61
(11.12, 11.26) (6.72, 6.80) (4.59,4.64)
UB* 14.68 8.89 6.09
(14.50, 14.85) (8.61,9.18) (5.70, 6.48)
LB™ 12.80 7.82 5.34
(12.71, 12.89) (7.77,7.88) (5.30,5.38)
UB™” 12.99 8.22 5.73
(12.83,13.14) (7.95, 8.49) (5.35,6.11)
v 16.79 10.32 7.06
Parameter set 4
LB* 9.71 5.29 3.55
(9.61,9.81) (5.23,5.34) (3.52,3.59)
UB* 13.67 7.32 4.75
(13.49, 13.85) (7.10,7.54) (4.50,5.01)
LB™ 11.36 6.10 4.04
(11.25,11.47) (6.04,6.16) (4.00, 4.08)
UB™” 11.47 6.21 4.09
(11.30, 11.63) (6.02,6.41) (3.86,4.33)
v 1591 8.45 5.47

Notes. The four parameter sets are defined in Table 1 and the prob-
lem horizon is T =5 years. All results are computed for the initial
value of the state variable X, = 0. The rows marked LB® and LB"
report the estimates of the expected utility achieved by using the
static and myopic portfolio strategies, respectively. The estimates
are based on 100,000 independent simulations. Expected utility is
reported as a continuously compounded certainty equivalent return.
Approximate 95% confidence intervals are reported in parentheses.
The rows marked UB® and UB™ report the analogous results for the
upper bound on the true value function computed according to the
procedure described in §4. The row marked V" reports the optimal
value function for the model with incomplete markets and without
the portfolio constraints.

models with intermediate consumption is straightforward
and will require an approximate consumption policy in
addition to the trading strategy. Certain consumption con-
straints can be handled as well, for instance, constraints
of the form C, > C. Such constraints allow the mar-
tingale methods to be applied to the dynamic portfolio-
consumption choice (e.g., Cox and Huang 1989).

Our formulation currently does not cover an important
class of portfolio choice problems with illiquid (nontrad-
able) assets and liquidity constraints. Such problems are of
great practical and theoretical importance, but they rarely
allow for explicit analytical solutions and are mostly han-
dled using numerical methods. Because general results for
the quality of such numerical approximations are not avail-
able, an algorithm for estimating the quality of approximate
portfolio policies would be very valuable.

Another promising direction for future research is
to explore combining our methodology with recently
developed approximate dynamic programming (ADP)
techniques. The bounds we obtain could be used both for
guiding the choice of approximation architecture in ADP
applications, as well as evaluating the resultant policies.

We are pursuing the above extensions in ongoing
research.
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