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Abstract
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survive and to affect prices in the long run in a general setting with minimal restrictions on endowments, 
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impact in a broad class of economies. Our results cover economies with time-separable utility functions, 
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1. Introduction

It has long been suggested that evolutionary forces work in financial markets: agents who are 
inferior at forecasting the future will either improve through learning or perish as their wealth 
diminishes relative to those superior in forecasting (e.g. Friedman, 1953). If such an evolution-
ary mechanism works effectively, then in the long run only those agents with the best forecasts 
will survive the market selection process and determine asset prices. This “market selection hy-
pothesis” (MSH) is one of the major theoretical arguments in support of the efficient markets 
paradigm in neoclassical asset pricing theory. The appeal of the selection argument is that one 
need not assume that all agents hold rational expectations in order for prices to reflect the true 
data generating process, at least asymptotically. Rather, it is sufficient that a subset of agents hold 
correct beliefs, as long as these agents eventually come to dominate the economy and determine 
equilibrium prices. After all, if agents with more accurate knowledge of fundamentals do not 
eventually determine the behavior of market prices, there is little reason to assume that prices are 
driven by fundamentals and not by behavioral biases.1

Our main contribution is to develop necessary and sufficient conditions for asymptotic survival 
and price impact with minimal restrictions on endowments and beliefs. The only significant 
economic restriction on preferences in our analysis is time separability. For this broad class of 
models, we show that both parts of the MSH – that traders with inferior forecasts do not survive 
asymptotically and that extinction destroys their price impact – are false in general.

Common arguments in favor of the MSH rely on unrestricted competition, no limits to ar-
bitrage, etc.; hence, in this paper we analyze market selection in frictionless, infinite-horizon, 
complete-market exchange economies. Furthermore, to isolate the impact of disagreement, we 
populate our economies with competitive agents who only differ in their beliefs.

Our first positive result is that the MSH does hold if the curvature of the agents’ utilities 
declines sufficiently fast as a function of their consumption level, or if the aggregate endowment 
is bounded. In such economies, agents with more accurate forecasts eventually dominate the 
economy and determine price behavior. Moreover, we find that the rates of extinction in both 
consumption and price impact are proportional to the growth rate of an agent’s accumulated 
forecast errors. Without the above restrictions, the survival of agents with less accurate forecasts 
and their impact on state prices are determined by the tradeoff between agents’ preferences, 
the magnitude of their forecast errors, and the aggregate endowment growth rate: we show that 
if forecast errors accumulate slowly enough over time, agents with less accurate forecasts can 
maintain a nontrivial consumption share and affect prices.

To understand intuitively why MSH may or may not hold, consider how agents with hetero-
geneous beliefs trade consumption across states. When two agents disagree in their probability 
assessment of a particular state, the more optimistic agent buys a disproportionate share of the 
state-contingent consumption. How disproportionate depends on the agents’ utility functions: 
Pareto optimality implies that asymptotic divergence in beliefs leads to divergence in marginal 
utilities. Divergence in marginal utilities does not necessarily lead to divergence in consumption 
share.

Whether or not large differences in marginal utilities correspond to large differences in con-
sumption depends on the elasticity of marginal utility with respect to consumption. This elasticity 

1 More generally, it would be comforting that markets select for those agents with more accurate forecasts, even if 
agents with less accurate forecasts are replenished over time (e.g. in overlapping generations economies).
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is in turn related to the local curvature of the utility function.2 If the utility curvature of the two 
agents declines slowly in their consumption level, their marginal utility differences may not trans-
late into large consumption differences. In fact, we show that the two agents may consume equal 
consumption shares asymptotically despite their growing disagreement.

Another of our main findings is that the conditions for survival and price impact are different. 
In equilibrium, the level of belief differences determines the relative consumption levels of the 
agents (survival), while the stochastic discount factor, and hence the price impact of disagree-
ment, is determined by time-variation in the marginal utility of consumption. An agent with a 
diminishing consumption share may maintain a persistent impact on state prices as long as his 
presence affects the fluctuations in the marginal utility of the dominant agent. In other words, 
a disappearing agent may affect the stochastic discount factor as long as he provides nontrivial 
risk-sharing opportunities for the dominant agent.

To flesh out this intuition further, consider an exchange economy with two agents. Assume that 
the first agent has objective beliefs, while beliefs of the second agent are such that he consumes 
an asymptotically diminishing share of the aggregate endowment. Thus, the second agent does 
not survive in the long run. Next, compare the stochastic discount factor in this economy to the 
one in an identical economy without the second agent, i.e., in an economy in which the first 
agent consumes the entire aggregate endowment. The stochastic discount factor is proportional 
to the marginal utility of the first agent. Thus, differences in the consumption growth of the first 
agent across the two economies translate into differences in state prices. This suggests that the 
dynamics of the stochastic discount factors in the two economies may be persistently different 
even while the consumption share of the second agent converges to zero asymptotically. This 
can happen, for instance, if the consumption level of the second agent is sufficiently volatile 
for him to be engaged in nontrivial risk sharing with the first agent, despite of the second agent’s 
diminishing consumption share. Whether such dynamics can be observed in equilibrium depends 
on the agents’ preferences as well as their beliefs and the aggregate endowment process, and is 
the subject of our analysis.

Our results extend to state-dependent preferences, such as external habit formation or 
catching-up-with-the-Joneses. Such models of preferences are emerging as increasingly impor-
tant in recent asset pricing research. State-dependent preferences change the risk attitudes of the 
agents in the economy, but they do not change how those risk attitudes affect survival or price 
impact. We are therefore able to apply the necessary and sufficient conditions for the validity of 
the MSH to models with state-dependent preferences that are commonly used in the literature. 
We conduct this analysis in the on-line Appendix.

1.1. Related literature

Despite the appeal and importance of the market selection hypothesis, its validity has re-
mained ambiguous. Prior studies use specialized models motivated by tractability, making it 
difficult to understand the economic mechanism behind the MSH and the scope of its validity. 
For instance, relying on partial equilibrium analysis, De Long et al. (1991) argue that agents mak-
ing inferior forecasts can survive in wealth terms despite market forces exerted by agents with 
objective beliefs. Using a general equilibrium setting, Sandroni (2000) and Blume and Easley

2 The elasticity of marginal utility with respect to consumption is given by d ln(U ′(C))/d ln(C) = CU ′′(C)/U ′(C) =
−CA(C), where A(C) = −U ′′(C)/U ′(C) is the absolute risk aversion coefficient, which characterizes the local curva-
ture of the utility function.
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(2006) show that only agents with beliefs closest to the objective probabilities (in a sense they 
make precise) will survive and have price impact. Their results are obtained in economies with 
bounded aggregate endowment. Models with homothetic preferences (constant relative risk aver-
sion) form a particularly important special class because of the common use of such preferences 
in the asset pricing literature. Yan (2008) obtains strong results in support of the MSH under 
the assumption of homothetic preferences and a geometric endowment process. We allow for a 
much broader family of preferences and find that the case of homothetic preferences is somewhat 
special and in general validity of the MSH needs to be qualified.

Kogan et al. (2006) demonstrate in a general equilibrium setting without intermediate con-
sumption that if aggregate endowment is unbounded, agents with incorrect beliefs can survive.3

In this paper, we perform a comprehensive analysis of the MSH and its pricing implications in 
a general complete-market setting with time-separable preferences (including state-dependent 
preferences, e.g., catching up with the Joneses), not limiting ourselves to commonly used para-
metric specifications.4

Kogan et al. (2006), in particular, draw the distinction between the two parts of the MSH. 
They show, in a stylized setting, that even when agents with inferior beliefs do not survive in 
the long run, their impact on prices can persist. In other words, survival and price impact are 
two distinct concepts. In particular, an agent with relatively low consumption level can affect the 
prices of low-aggregate consumption states because the elasticity of prices with respect to the 
agent’s wealth spent on consumption in such states is inversely proportional to the agent’s con-
sumption level. As a result, by distorting the prices of primitive Arrow–Debreu claims over a set 
of states of diminishing probability, it is possible for an agent to persistently distort valuations of 
non-primitive assets, like stocks and bonds, while failing to survive in the long run. In addition 
to relying on a particular set of non-primitive financial assets for their definition of price im-
pact, Kogan et al. (2006) assume the absence of intermediate consumption, CRRA preferences, 
and IID endowment growth, leaving it unclear how their results apply in more general settings. 
Relative to their results, our analysis provides more general and robust insight into the distinc-
tion between price impact and survival. Importantly, we show existence of long-run price at the 
level of the primitive Arrow–Debreu claims, and not only at the level of certain non-primitive 
long-lived assets.5 Moreover, we show that price impact in general settings does not hinge on 
the distortion in agents’ consumption over a set of states of diminishing probability (specifically, 
the low-aggregate endowment states). Instead, price impact of distorted beliefs has to do with 
the ability of an agent holding such beliefs to provide non-trivial risk sharing to other agents in 
equilibrium despite of failing to survive in the long run.

2. The model

We consider an infinite-horizon exchange (endowment) economy. Time is indexed by t , which 
takes values in t ∈ [0, ∞). Time can either be continuous or discrete. While all of our general 

3 A significant body of work exists examining pricing implications of heterogeneous beliefs in specific parameterized 
models, including Dumas et al. (2009), Fedyk et al. (2013), Xiong and Yan (2010), Yan (2008), and Borovička (2015).

4 While the class of preferences we consider is broad, it excludes non-separable recursive preference specifications. 
Thus, our analysis inevitably blurs the distinction between individual aversion to risk and the desire to smooth consump-
tion intertemporally. General theoretical analysis of economies with non-separable preference is beyond the scope of this 
paper. Borovička (2015) obtains promising results in this direction.

5 We discuss these alternative notions of price impact in detail in Section 2.
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results can be stated either in discrete or continuous time, some of the examples are simpler in 
continuous time. We will use integrals to denote aggregation over time. When time is taken as 
discrete, time-integration will be interpreted as summation. We further assume that there is a 
single, perishable consumption good, which is also used as the numeraire.

2.1. Uncertainty and the securities market

The environment of the economy is described by a complete probability space (�, F, P). 
Each element ω ∈ � denotes a state of the economy. The information structure of the economy 
is given by a filtration on F , {Ft }, with Fs ⊆Ft for s ≤ t . The probability measure P is referred 
to as the objective probability measure. The endowment flow is given by an adapted process Dt . 
We assume that the aggregate endowment is strictly positive: Dt > 0, a.s. Here and in the rest of 
the paper we apply the concept of almost-sure convergence under measure P.

In addition to the objective probability measure P, we also consider other probability mea-
sures, referred to as subjective probability measures. Let A and B denote such measures. We 
assume that A and B share zero-probability events with P when restricted to any finite-time 
information set Ft . Denote the Radon–Nikodym derivative of the probability measure A with 
respect to P by ξAt . Then

EA

t [Zs] = EP

t

[
ξAs

ξAt
Zs

]
(1)

for any Fs -measurable random variable Zs and s ≥ t , where Et [Z] denotes E [Z|Ft ]. In addition, 
ξA0 ≡ 1. The probability measure B has a corresponding Radon–Nikodym derivative ξBt . The 
random variable ξAt can be interpreted as the density of the probability measure A with respect 
to the probability measure P conditional on the time-t information set.

We use A and B to model heterogeneous beliefs. We define the ratio of subjective belief 
densities

ξt = ξBt

ξAt
. (2)

Since both ξA and ξB are nonnegative martingales, they converge almost surely as time tends to 
infinity (e.g., Shiryaev, 1996, §7.4, Th. 1). Our results are most relevant for models in which the 
limit of ξt is either zero or infinity. We examine the asymptotic condition on subjective beliefs in 
more detail in Section 3.

We assume that there exists a complete set of Arrow–Debreu securities in the economy, so 
that the securities market is complete.

2.1.1. Agents
There are two competitive agents in the economy. They have the same utility function, but 

differ in their beliefs. The first agent has A as his probability measure while the second agent 
has B as his probability measure. We refer to the agent who uses A as agent A and the agent 
who uses B as agent B. It is clear from the context when we refer to an agent as opposed to a 
probability measure.

Until stated otherwise, we assume that the agents’ preferences are time-additive and state-
independent with the canonical form
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∞∫
0

e−ρtu(Ct )dt, (3)

where u(·) is the utility function, Ct is an agent’s consumption at time t , and ρ is the time-
preference parameter. The common utility function u(·) is assumed to be increasing, weakly-
concave, and twice continuously differentiable. We assume that u(·) satisfies the standard Inada 
condition at zero:

lim
x→0

u′(x) = ∞. (4)

We make use of two standard measures of local utility curvature, A(x) ≡ −u′′(x)/u′(x) and 
γ (x) ≡ −xu′′(x)/u′(x) = xA(x) which are, respectively, an agent’s absolute and relative risk 
aversion at the consumption level x.

Let CA,t and CB,t denote consumption of the two agents. Each agent maximizes his expected 
utility using his subjective beliefs. Agent i’s objective is

Ei
0

⎡
⎣ ∞∫

0

e−ρtu(Ci,t ) dt

⎤
⎦ = EP

0

⎡
⎣ ∞∫

0

e−ρt ξ i
t u(Ci,t ) dt

⎤
⎦ , i ∈ {A,B}, (5)

where the equality follows from (1). This implies that the two agents are observationally equiv-
alent to the two agents with objective beliefs P but state-dependent utility functions ξAt u(·) and 
ξBt u(·) respectively.

The two agents are collectively endowed with a flow of the consumption good, with possibly 
different shares of the total endowment.

2.1.2. Equilibrium
Because the market is complete, if an equilibrium exists, it must be Pareto-optimal. In such 

situations, consumption allocations can be determined by maximizing a weighted sum of the 
utility functions of the two agents. The equilibrium is given at each time t by

max (1 − α) ξAt u(CA,t ) + α ξBt u(CB,t ) (6)
CA,t , CB,t

s.t. CA,t + CB,t = Dt

where α ∈ [0, 1].
Concavity of the utility function, together with the Inada condition, imply that the equilibrium 

consumption allocations satisfy the first-order condition

u′(CA,t )

u′(CB,t )
= λξt , (7)

where λ denotes α/(1 − α).
We define wt = CB,t

Dt
as the share of the aggregate endowment consumed by agent B. The 

first-order condition for Pareto optimality (7) implies that wt satisfies6

6 Throughout the paper we use the convention 
∫ a = − 

∫ b .
b a
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− ln(λξt ) = − ln(u′((1 − wt)Dt)) + ln(u′(wtDt )) =
(1−wt )Dt∫
wtDt

A(x)dx, (8)

since A(x) = − d
dx

ln(u′(x)). This equation relates belief differences (ξt ) to individual utility cur-
vature (A(x)) and the equilibrium consumption allocation (wt and Dt ), and will be our primary 
analytical tool.

2.1.3. Definitions of survival and price impact
Without loss of generality, we focus on the survival of agent B and that agent’s impact on 

security prices in the long run. If one replaces λξt with 1
λξt

in our analysis, our results instead 
describe the survival and price impact of agent A.

We first define formally the concepts of survival and price impact to be used in this paper and 
examine their properties.

Definition 1. [Extinction and Survival] Agent B becomes extinct if

lim
t→∞

CB,t

Dt

= 0, a.s. (9)

Agent B survives if he does not become extinct.

The above definition provides a weak condition for survival: an agent has to consume a posi-
tive fraction of the endowment with a positive probability in order to survive.

We opt for a relatively conservative definition of price impact, and define it in terms of dis-
tortions in the prices of primitive state-contingent claims (or the stochastic discount factor). This 
choice is natural for a frictionless complete-market economy. An alternative would be to define 
price impact over a set of non-primitive long-lived assets, in analogy with Kogan et al. (2006). 
The set of economies in which agent B’s beliefs affect prices of some long-lived assets is larger 
than the set of economies with persistent distortions in the state-price density. In fact, it is typ-
ically easy to construct a particular long-lived asset that is persistently affected by the belief 
distortions, posing a question of which long-lived assets are more or less economically relevant, 
and therefore should or should not be considered when checking for price impact.7 Our definition 
avoids such questions, which are ill-posed in the context of complete frictionless markets.

Let mt denote the equilibrium state-price density. Pareto optimality and the individual opti-
mality conditions imply that

mt = e−ρt ξ
A
t u′((1 − wt)Dt )

u′((1 − w0)D0)
= e−ρt ξ

B
t u′(wtDt )

u′(w0D0)
. (10)

In general, mt depends on λ, the relative weight of the two agents in the economy. Thus, we write 
mt = mt(λ). We denote by m	

t (λ) the state-price density in the economy in which both agents 
have beliefs described by the measure A and hence ξt = 1. We define m	

t (0) to be the state-price 

7 See the on-line Appendix, Section B.5, for an example of a standard economy in which distorted beliefs have no 
long-run impact on the Arrow–Debreu prices, and yet prices of some of the long-lived non-primitive assets are affected 
by belief distortions. The reason for price impact on the non-primitive state-contingent claim we consider in our example 
is that its payoff is concentrated on a set of states in which agent B has a nontrivial consumption share. This set of states 
has an asymptotically vanishing probability but is relevant for the pricing of long-lived non-primitive state-contingent 
claims.
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density in an economy in which all wealth is initially allocated to agent A. We identify the price 
impact exerted by agent B by comparing mt to m	.

Definition 2. [Price Impact] Agent B has no price impact if there exists λ	 ≥ 0, such that for 
any s > 0,

lim
t→∞

mt+s(λ)/mt (λ)

m	
t+s(λ

	)/m	
t (λ

	)
= 1, a.s. (11)

Otherwise, he has price impact.

Our definition formalizes the notion that agent B has no price impact if the equilibrium 
stochastic discount factor is asymptotically indistinguishable from the one in a reference econ-
omy with the same preferences but with both agents using the beliefs of agent A. We allow for the 
initial wealth distribution in the reference economy to differ from that in the original economy. 
Our motivation for this is straightforward, as we illustrate with the following argument.

Consider an economy with an equal initial wealth distribution between A and B. Suppose 
that A maintains objective beliefs, while the beliefs of B are inaccurate. Suppose further that the 
primitives of the model are such that agent B becomes extinct asymptotically and therefore agent 
A dominates the economy in the long run. Assume that the stochastic discount factor in this 
economy converges asymptotically to the one in an economy in which only agent A is present. 
Intuitively, one would like to conclude that, because the stochastic discount factor converges 
to that of an economy without B, the latter has no long-run impact on prices. If we insisted 
that the reference economy must be obtained from the original model by simply setting beliefs 
of both agents to those of agent A, we would generally be forced to conclude that agent B
maintains long-run impact on prices. The reason is that, in general, the stochastic discount factor 
in the model with homogeneous beliefs depends on the initial wealth distribution between the 
two agents.8 Thus, to reflect our basic intuition, the definition for price impact must allow the 
reference economy to start with a wealth distribution different from that in the original model.

In contrast to the notion of long-run survival, equations (10) and (11) show that price im-
pact is determined by changes in consumption over finite time intervals relative to a benchmark 
economy. In particular, we compare the stochastic discount factor in the original economy, 
mt+s(λ)/mt (λ), to the one in a reference economy where both agents maintain the same be-
liefs, but, possibly, have a different initial wealth distribution, m	

t+s(λ
	)/m	

t (λ
	).

The above definition may seem difficult to apply because condition (11) must be verified for 
all values of λ	. However, to demonstrate the absence of long-run price impact for economies 
in which agent B does not survive it is often sufficient to verify the definition for λ	 = 0. As a 
measure of the magnitude of price impact, we use in that case

PI (t, s;0) ≡ ln

(
mt+s(λ)/mt (λ)

m	
t+s(0)/m	

t (0)

)
=

Dt+s∫
Dt+s (1−wt+s )

A(x) dx −
Dt∫

Dt (1−wt )

A(x)dx, (12)

where the final equality follows from

8 As shown in Rubinstein (1974), the stochastic discount factor does not depend on the initial wealth distribution in the 
special case when the agents’ utility function exhibits hyperbolic absolute risk aversion.
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u′(D(1 − w))

u′(D)
= exp

⎛
⎜⎝

D∫
D(1−w)

A(x)dx

⎞
⎟⎠ . (13)

Price impact can be similarly defined for any λ∗.

2.1.4. Discussion of the assumptions
Our analysis focuses on a specific question: “Do markets select for relatively accurate fore-

casts?” Thus, we abstract away from differences in utility functions across agents. Understanding 
the behavior of economies with heterogeneous preferences is an important topic, but it is distinct 
from the market selection hypothesis, which postulates an evolutionary rationale for long-run 
market rationality. Thus, we isolate the effect of belief heterogeneity on long-run survival and 
price impact.

We consider the setting without constraints on trading to evaluate the economic mechanism 
behind market selection. It is clear that market incompleteness and constraints may have a direct 
impact on the long-run dynamics of prices. As a stark illustration, consider an economy in which 
none of the agents are allowed to transact in financial markets. In this case, survival does not de-
pend on beliefs, and prices are arbitrary. Similarly, in an economy with nontrivial labor income, 
liquidity constraints may guarantee that agents cannot lose their future labor income by making 
poor trading decisions, and thus survive. More generally, specific forms of market incomplete-
ness may impede transactions among agents, thus reducing the long-run advantage of agents with 
more accurate forecasts (see, e.g., Blume and Easley, 2006 and Beker and Chattopadhyay, 2010). 
Our frictionless framework helps evaluate the logic of the original argument for the validity of 
the MSH, which is based on unrestricted competition among agents, and we show under what 
assumptions the argument is or is not valid.

Our description of the long-run market dynamics is qualitative. We study the general con-
ditions under which prices eventually reflect superior forecasts, and we characterize how the 
rate of convergence of consumption and prices depends on the economic primitives. Yan (2008)
calibrates the empirically plausible speed of selection in a particular parameterized economy 
in which agents with CRRA preferences disagree about the growth rate of the aggregate endow-
ment, and argues that market selection in such an economy is likely to be slow. In contrast, Fedyk 
et al. (2013) show that market selection speed is drastically higher when agents disagree about 
multiple sources of randomness than in analogous economies with a single source of disagree-
ment. Thus, the market selection mechanism may work very slowly or very quickly, depending 
on the assumed economic primitives.9 Our analysis makes it clear how these primitives drive the 
selection mechanism, and under what circumstances market selection is eventually successful.

In our analysis we allow for general utility functions and do not restrict ourselves to CRRA 
preferences. In addition to helping us understand the role of preferences in the MSH, such a 
general setting also addresses the issue of market selection in many models used in the asset 
pricing literature. For example, models investigating the link between market dynamics and het-
erogeneous beliefs/asymmetric information, wealth accumulation under uncertainty, savings in 
the presence of taxes, trading costs, and market liquidity often use preferences with constant 

9 As we show, the rate at which ξt converges to zero is critical in determining the survival and price impact of agents 
with relatively inaccurate forecasts. So, for example, if there is a constant disagreement of δ over the drift of N different 
independent Brownian Motions Zi

t – there are N sources of disagreement – then ln(ξt ) = − 1
2 Nδ2t + δ

∑N
i=1 Zi

t . Thus, 
the selection speed in this example is proportional to the number of sources of disagreement.
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absolute risk aversion.10 As we show below, such preferences have very different implications 
for market selection compared to the utilities with constant, or, more generally, bounded relative 
risk aversion. Without taking a stand on which utility specification is most convenient or realistic 
in any particular setting, we instead cover a broad spectrum of possible individual preferences. 
Importantly, our results apply to state-dependent preferences. These increasingly common spec-
ifications allow risk aversion to be a stochastic function of consumption, departing from pure 
power utility.

We define survival and extinction in terms of consumption share, as opposed to consumption 
level. In economies in which the aggregate dividend is bounded, extinction in level and extinction 
in share are equivalent, but this is generally not true in economies with a growing aggregate 
endowment. If we define extinction in level instead of share (wtDt → 0 rather than wt → 0), 
then the result that extinction implies no price impact is immediate for utility functions with 
decreasing absolute risk aversion. Since wtDtA(Dt −wtDt) ≥

∫ Dt

Dt−wtDt
A(x)dx ≥ wtDtA(Dt), 

and both bounds go to zero as wtDt → 0, equation (12) shows that there is no price impact. The 
reverse – that survival implies price impact – is not always true, as we show later. However, 
extinction in level is a very strong condition, which is not met in many economies of interest. For 
example, in an economy in which aggregate endowment follows a geometric Brownian motion 
with a 5% expected growth and unit volatility, investors have log utility, and one investor knows 
the true growth rate while the second agent persistently believes the true growth rate is 25%, 
there is no extinction in consumption level. The second agent does, however, face extinction in 
terms of his consumption share and has no long-run price impact.

Finally, we have assumed that both agents have the same time discount factor. This allows us 
to isolate the effect of heterogeneous beliefs, but this assumption can be relaxed without loss in 
tractability. With different time discount factors, we would have that the Pareto optimal allocation 

is u′(CA,t )

u′(CB,t )
= λe(ρA−ρB)t ξt instead of (7). This is equivalent to replacing the belief process ξt in 

our setting with the process ξ̂t = e(ρA−ρB)t ξt .

3. Examples

In this section we use a series of examples to illustrate how survival and price impact proper-
ties depend on the interplay of the model primitives and to provide basic intuition for the more 
general results in the next section. Our examples are organized in three sets. Each set compares 
economies differing from each other with respect to only one of the primitives: endowments, 
beliefs, or preferences. Formal derivations are presented in the on-line Appendix.

3.1. Endowments

The following two examples illustrate the dependence of survival and price impact results on 
the endowment process. We show that a change in the properties of the economic environment 
(the endowment), holding the agents’ characteristics (beliefs and preferences) fixed, may affect 
the validity of the MSH, altering both the survival and price impact results. In addition, we 
demonstrate an example in which survival and price impact are not equivalent.

10 See for example Shefrin (2005) on heterogeneous beliefs; Caballero (1991) on aggregate wealth accumulation; 
Kimball and Mankiw (1989) on savings; Vayanos (1999) and Lo et al. (2004) on volume and microstructure; Gromb 
and Vayanos (2002), Huang and Wang (2009), Yuan (2005) on liquidity and crashes; Garleanu (2009) on search.
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Our first example has no aggregate uncertainty: investors differ in their beliefs only over an 
extraneous source of randomness:

Example 3.1. Consider a continuous-time endowment economy. The aggregate endowment pro-
cess is given by

Dt = (1 + μt), (14)

where μ > 0. There is an additional state variable Xt , which evolves according to

dXt = −θXt dt + σ dZt , (15)

where θ > 0 and Z is a Brownian motion under the objective probability measure.
Both agents have the same utility function with A(x) = 1 for x ≥ 1. We also assume A(x) = 1

x
for x < 1 to preserve the Inada condition at zero. The utility function thus exhibits decreasing 
absolute risk aversion for low levels of consumption and constant absolute risk aversion for high 
levels of consumption.

Assume that agent A knows the true distribution, while agent B disagrees with A and believes 
that Z has a drift. Assume that the disagreement is constant, δ �= 0, and therefore the difference 
in agents’ beliefs is described by the density process

ξt = exp

(
−1

2
δ2t + δZt

)
. (16)

Agents’ beliefs thus diverge asymptotically, with limt→∞ ξt = 0 a.s. Then,

i. If μ > δ2/2, agent B survives in the long run and exerts long-run impact on prices;
ii. If μ < δ2/2, agent B fails to survive in the long run and does not exert long-run impact on 

prices;
iii. If μ = δ2/2, agent B fails to survive in the long run but exerts long-run impact on prices.

Since there is no aggregate uncertainty and investors have the same preferences and equal ini-
tial endowments, differences in consumption between the two agents are driven by their beliefs. 
Investors act to smooth their marginal utilities, as modified by their beliefs, granting more con-
sumption to an agent in states that agent believes are relatively more likely. This happens even in 
the case in which disagreement is over events that are irrelevant to the aggregate endowment.

Our example cover cases in which the aggregate endowment grows faster, slower, or at the 
same rate as the agent’s belief differences accumulate. The key comparison is between the rate 
of accumulation of belief differences – and hence the rate of growth of consumption differences 
– with the level of aggregate consumption.

In addition, this example illustrates the importance of endowment growth overall. The two 
cases in which agent B survives or has price impact, (i) and (iii) are impossible without a growing 
endowment. We show in Sections 4 and 5 that this result can be made general: a necessary 
condition for either price impact or survival is that the endowment is not bounded from above 
and below by positive constants.

In the first case, (i), aggregate consumption grows fast enough so that the growth in local 
utility curvature, evaluated at the aggregate consumption level, outpaces the rate of accumulation 
of differences in beliefs (growth rate of ξ ) and agent B both survives and has price impact. Here, 
belief differences drive a wedge between agents’ consumptions, but that wedge is small relative 
to the size of the economy, and so agent B can survive and exert price impact. In the second 
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Fig. 1. Survival. This figure illustrates survival results in Examples 3.1 and 3.2. We set λ = 1. We plot the aggregate 
endowment D on the horizontal axis, and the negative of the log of relative belief density, − ln(ξ), on the vertical axis. 
Solid lines are the level curves for the consumption share of agent B, so that each solid line plots pairs (D, ln(ξ)) that give 
rise to a given consumption share w. These pairs can be found by fixing w and plotting the value of ln(ξ) as a function 
of D, with the function given by the Pareto optimality condition (8). Labels for agent B’s consumption share are shown 
alone the right margin. The marked lines show the median path (Zt = 0) of (Dt , ln(ξt )) for each case in Example 3.1. 
We choose δ = 0.5 and set μ in cases (i), (ii), and (iii) to δ2, δ2/4, and δ2/2 respectively. We mark the corresponding 
median paths with circles, squares, and triangles.

case, (ii), aggregate consumption grows slowly so that growth in the local utility curvature is 
slower than the rate of accumulation of belief differences, and so the wedge that belief difference 
creates between the two consumption levels is large relative to aggregate consumption. Thus, 
agent B does not survive and cannot exert price impact.

In the third case, (iii), aggregate consumption, and hence local utility curvature, grow at an in-
termediate rate. Here, belief differences create consumption differences that are large enough 
relative to the aggregate endowment that agent B cannot survive. However, over time, be-
lief differences can still drive changes in the consumption allocation: consumption levels are 
volatile enough that marginal utilities are affected. In particular, as we show in the appendix, 
limt→∞ CB,t

Dt
= 0, while lim supt→∞ CB,t = ∞. This means that for large enough t , A(CA,t ) = 1, 

while, whenever CB,t > 1, Pareto optimality implies CA,t = 1
2Dt − 1

2 ln(λξt ) = 1
2 (1 − lnλ −δZt ). 

As we discuss in the introduction, agent B can exert nontrivial impact on prices if he is able 
to provide agent A with nontrivial risk sharing in the long run. This is the case in our ex-
ample. The conditional volatility of the marginal utility of agent A is equal to vol(dmt ) =
A(CA,t )vol(dCA,t ) = δ/2. In contrast, if agent B had the same beliefs as A, the volatility of 
the stochastic discount factor would be zero (since the aggregate endowment is deterministic). 
Because agent B maintains non-vanishing volatility of his consumption changes in equilibrium, 
his beliefs distort equilibrium prices asymptotically.
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Fig. 1 illustrates the tradeoff between endowment growth and accumulation of belief differ-
ences in the economy described in Example 3.1. Specifically, Fig. 1 shows the median path of the 
economy in each of the three cases considered in Example 3.1, plotted against level curves for 
the consumption share of agent B (solid lines). The median path of the economy is obtained by 
setting the driving Brownian motion Zt to zero. Each level curve represents pairs (D, ln(ξ)) that 
give rise to a particular consumption share w. These lines depend only on preferences, and they 
can be found by fixing w and plotting the value of ln(ξ) as a function of D, with the function 
given by the Pareto optimality condition (8). Note that, because of constant absolute risk aversion 
at high consumption levels, a given difference in consumption shares requires a larger difference 
in beliefs at higher endowment levels. This explains why the level curves tend to be spaced wider 
at higher endowment levels.

The economy illustrated in Fig. 1 is growing, since μ > 0, and so the median path is traced 
from left to right as time passes. In case (i), the median path (marked with circles) does not cross 
the level curves for large t , which shows that as the economy grows over time, the consumption 
share of agent B along the median path converges to a constant, and hence agent B survives. In 
case (ii), the median path (marked with squares) crosses consumption-share level curves from 
above, showing that as the economy grows, agent B’s consumption share vanishes. Since the rate 
of accumulation of belief differences is identical in all three cases, the only reason why the three 
median paths have different slopes is because of the different growth rates of the endowment 
process. Slow endowment growth (and hence slow growth of local utility curvature) generates 
a steep median path, leading to agent B’s extinction. The median path for case (iii) (marked 
with triangles) also crosses consumption-share level curves from above, showing that agent B’s 
consumption share vanishes as the economy grows. The difference between cases (ii) and (iii) 
is in the rate at which agent B’s consumption share vanishes. The rate of extinction is lower in 
case (iii), allowing agent B to retain impact on prices in the long run.

In Example 3.1, the aggregate endowment process is deterministic. The same conclusions 
carry over to a setting in which the two agents disagree about the distribution of the aggregate 
endowment process, as we show in the Example 3.2 below. In this example, the stochastic compo-
nent of the endowment is stationary and thus does not affect the relation between the asymptotic 
growth rate of endowment and the rate of accumulation of belief differences. Different conclu-
sions could result under alternative assumptions of endowment growth.

Example 3.2. We modify Example 3.1 so that there is aggregate risk and agents disagree over the 
evolution of the aggregate endowment process. The aggregate endowment process is now given 
by

Dt = (1 + μt)eXt , (17)

dXt = −θXt dt + σ dZt . (18)

Then,

i. If μ > δ2/2, agent B survives in the long run and exerts long-run impact on prices;
ii. If μ < δ2/2, agent B fails to survive in the long run and does not exert long-run impact on 

prices;
iii. If μ = δ2/2, agent B fails to survive in the long run but exerts long-run impact on prices.
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3.2. Beliefs

Our second set of examples illustrates how extinction depends on the assumptions on agents’ 
beliefs.

Example 3.3. Consider a continuous-time economy with the aggregate endowment given by a 
geometric Brownian motion:

dDt

Dt

= μdt + dZt , D0 > 0. (19)

Assume that the two agents have logarithmic preferences: U(c) = ln(c) and that they do not 
know the growth rate of the endowment process. The agents start with Gaussian prior beliefs 
about μ, N (μ̂i , (νi)2), i ∈ {A, B}, and update their beliefs based on the observed history of the 
endowment process according to the Bayes rule. Then, if both agents have non-degenerate priors 
(min(νA, νB) > 0), then both agents survive in the long run. If agent A knows the exact value of 
the endowment growth rate but agent B does not, i.e., νB > νA = 0, then agent B fails to survive.

In the above example, both agents’ beliefs tend to the true value of the unknown parameter 
μ asymptotically and survival depends on the relative rate of learning. If both agents start not 
knowing the true value of μ, then, regardless of the bias or precision of their prior, they both 
learn at comparable rates. Formally, the ratio of the agents’ belief densities converges to a positive 
finite constant. However, if one agent starts with perfect knowledge of the true parameter value, 
eventual convergence of the learning process by the other agent is not sufficient to guarantee that 
agent’s survival.11

Our second example is motivated by Dumas et al. (2009), who study an economy with an 
irrational (“overconfident”) agent who fails to account for noise in his signal during the learning 
process. We do not model the learning process of the overconfident agent explicitly, as Dumas 
et al. (2009) do, but instead postulate a qualitatively similar belief process exogenously. In our 
example, agent B is the analog of the overconfident agent in Dumas et al. (2009).

Example 3.4. Consider a discrete-time economy with uncertainty described by the i.i.d. sequence 
of independent normal variables (εt , ut ) ∼ N(0, I ). Aggregate endowment is given by

Dt = Dt−1 exp (μt−1 + εt ) , D0 > 0, (20)

where the conditional growth rate of the endowment, μt−1 is a stationary moving average of 
the shocks εt−1, εt−2, . . . . Assume that agent A knows the true value of μt , but agent B does 
not. Specifically, agent B’s estimate of the current growth rate of the endowment is given by 
μt−1 + δt−1, where δt follows a finite-order moving average process driven by ut . Assume that 
both agents have logarithmic preferences. Then, agent B fails to survive in the long run.

In the above example, agent B’s errors follow a stationary process and thus do not diminish 
over time. Agent B’s mistakes accumulate asymptotically so that limt→∞ ξt = 0, and therefore 
he fails to survive.

11 Our example builds on the models of Basak (2005) and Detemple and Murthy (1994). See also Blume and Easley
(2006) for further discussion of Bayesian learning and its implications for survival.
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The above examples emphasize the importance of the requirement that ξt → 0, which is our 
usual condition on belief dispersion. In Example 3.3, both agents are learning about the true 
data-generating process at the same rate, and thus their relative errors do not accumulate fast 
enough over time. In contrast, in Example 3.4, one agent knows the true probability law while 
errors of the other agent accumulate fast enough so he fails to survive.

In our general analysis we do not take a stand on whether one set of incorrect beliefs is more 
or less “wrong” than another. We simply observe that the condition ξ → 0 defines a particular 
criterion by which errors of agent B accumulate faster than errors of agent A. In particular, 
market selection is not selection for “better” learning. For instance, in Example 3.3, ln ξBt grows 
at rate 1

2 ln(t). Thus, if agent A has any set of beliefs, not necessarily “rational”, for which the 
differences from the true measure accumulate slower than ln(t), then agent A will survive and 
agent B will not. For example, agent A may be correct most of the time but make infrequent 
large errors so that ln ξAt asymptotically grows at rate 1

3 ln(t).12 In this case B’s mistakes vanish 
in magnitude over time, A’s do not, and yet A survives and B does not because B’s accumulated 
errors grow faster than A’s accumulated errors.

3.3. Preferences

We now illustrate how survival depends on preferences. We consider a family of economies 
that differ only with respect to the agents’ utility function. Suppose that agent B accumulates 
forecast errors at a higher rate than agent A. For agent B to become extinct, agent A must bet 
sufficiently aggressively on his beliefs. If these agents have sufficiently high utility curvature at 
high consumption levels, A does not bet on his beliefs aggressively enough, which allows B to 
survive and have price impact. This result bears similarity to the finding that inferior forecasters 
can survive in incomplete market economies, since the agents are limited in their ability to bet 
on their beliefs by the available menu of financial assets. Whether the agents lack willingness to 
bet on their beliefs because to their preferences or face constraints, the end result is that agents 
with inferior forecasts are able to survive.

Example 3.5. Consider a continuous-time economy with the aggregate endowment given by a 
geometric Brownian motion:

Dt = exp (μ t + σ Zt) , D0 > 0, μ,σ > 0. (21)

Assume that agent A uses the correct probability measure, A = P, but agent B has a constant 
bias, δσ �= 0, in his forecasts of the growth rate of the endowment. Therefore,

ξt = exp

(
−1

2
δ2t + δZt

)
. (22)

Let the absolute risk aversion function be A(x) = 1
x

for x < 1 to preserve the Inada condition at 
zero, and

A(x) = xα, α ≤ 0, (23)

for x ≥ 1. Then, if local utility curvature is declining rapidly enough, α ≤ −1, agent B does not 
survive and does not affect prices asymptotically. If local utility curvature declines only slowly, 
α ∈ (−1, 0], then agent B survives and has price impact in the long run.

12 Beker and Espino (2011), example 4, contains a similar construction.
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Decreasing absolute risk aversion (DARA) is a weak a priori restriction on utility functions, 
and within this family of preferences we can see how the properties of local utility curvature 
affect survival. When high levels of consumption generate a high propensity to accept gambles 
– local utility curvature declines rapidly in consumption – agent B does not survive and has no 
price impact.

4. Survival

In this section we present general necessary and sufficient conditions for survival. The follow-
ing theorem shows formally how survival depends on the tradeoff between endowments, beliefs, 
and preferences.

Theorem 4.1. A necessary condition for agent B to become extinct is that for all ε ∈ (0, 12 ),

lim sup
t→∞

∫ (1−ε)Dt

εDt
A(x)dx

− ln(λξt )
≤ 1, a.s. (24)

A sufficient condition for his extinction is that the inequality is strict, i.e., for all ε ∈ (0, 12 ),

lim sup
t→∞

∫ (1−ε)Dt

εDt
A(x)dx

− ln(λξt )
< 1, a.s. (25)

From the conditions in Theorem 4.1, it is clear that survival depends on the joint properties 
of aggregate endowments (Dt ), preferences (in particular, risk aversion A(x)), and beliefs (ξt ). 
Survival is determined by the relation between the rate of accumulation of belief differences and 
the rate of decline of local utility curvature, evaluated at the aggregate endowment. Theorem 4.1
formalizes the informal discussion in the introduction. If utility curvature declines sufficiently 
slowly, the numerator in (24) dominates and agent B survives. Intuitively, the numerator captures 
the relation between differences in consumption and differences in marginal utilities between the 
two agents. The Pareto optimality condition (7) implies that if belief differences of the two agents 
accumulate sufficiently rapidly, their marginal utilities evaluated at their equilibrium consump-
tion must diverge. But if utility curvature declines too slowly, increasing differences in marginal 
utilities fail to generate large differences in consumption. Equation (24) provides the precise 
restriction on the rate of decline in utility curvature necessary for agent B’s extinction.

Next, we impose stricter assumptions on some of the primitives, thus simplifying the interplay 
between the endowment, beliefs, and preferences. The following straightforward applications of 
Theorem 4.1 identify a broad class of models in which agent B does not survive, under easily 
verifiable conditions on the utility function (in Corollary 4.2) or on the endowment process (in 
Corollary 4.3).

Corollary 4.2. If local utility curvature is bounded so that A(x) ≤ Cx−1, and limt→∞ ξt = 0, 
a.s., then agent B never survives.

If local utility curvature is bounded as in Corollary 4.2, then large differences in marginal 
utilities imply large differences in consumption. Therefore, as belief differences accumulate, 
agent B fails to survive. The class of models with bounded utility curvature in the manner of 
Corollary 4.2 (i.e., utilities with a bounded relative risk aversion coefficient) is quite large.
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If the endowment process is bounded, then large differences in marginal utilities require one 
agent’s consumption to approach zero. Sandroni (2000) and Blume and Easley (2006) study 
models with bounded endowment and heterogeneous beliefs and find that agent B fails to sur-
vive regardless of the exact form of preferences. We replicate this result as a consequence of 
Theorem 4.1.

Corollary 4.3. If the aggregate endowment process is bounded away from zero and infinity, 
0 < D ≤ Dt ≤ D < ∞, and limt→∞ ξt = 0, a.s., then agent B never survives.

In models covered by Corollaries 4.2 and 4.3, we sharpen the survival results further by es-
tablishing the rate of extinction of agents with inferior beliefs. In particular, in models satisfying 
restrictions on the local utility curvature as in Corollary 4.2, the rate of extinction is directly 
related to the rate of accumulation of differences in beliefs.

Proposition 4.4. Assume that utility curvature is bounded so that Cx−1 ≤ A(x) ≤ Cx−1, and 
limt→∞ ξt = 0, a.s. For each element of the probability space where limt→∞ ξt = 0, let t be 
large enough that λξt < 1. Then agent B’s consumption share satisfies

(λξt )
1/C

1 + (λξt )
1/C

≤ wt ≤ (λξt )
1/C

1 + (λξt )
1/C

. (26)

The rate of extinction is proportional to the rate of accumulation of belief differences. For 
instance, consider the specification of endowment and beliefs as in Example 3.1. Under the 
preference restrictions in Proposition 4.4, agent B’s consumption share approaches zero expo-
nentially at the rate bounded between 1

2Cδ2 and 1
2Cδ2. As Fedyk et al. (2013) make clear, belief 

differences in realistic settings can accumulate arbitrarily quickly if agents disagree on the distri-
bution of multiple sources of randomness. Thus, our convergence rate result shows that extinction 
happens at high rates in economies with quantitatively large disagreement between agents, or at 
low rates in economies with mild degrees of disagreement.

We obtain a similar characterization of extinction rates in economies with bounded aggregate 
endowment.

Proposition 4.5. Assume that the aggregate endowment process is bounded away from zero and 
infinity and limt→∞ ξt = 0, a.s. For each element of the probability space where limt→∞ ξt = 0, 
let t be large enough that λξt < 1. Then, agent B’s consumption share satisfies

1

D
(u′)−1

(
u′(D/2)

λξt

)
≤ wt ≤ 1

D
(u′)−1

(
u′(D)

λξt

)
. (27)

As in Proposition 4.4, we find that the rate of extinction of agent B is directly related to the rate 
of accumulation of belief differences. However, the relationship between the two is modulated by 
the assumed utility function. Qualitatively, the sharper the rise in marginal utility as consumption 
level approaches zero, the lower the rate of extinction. For instance, with CRRA preferences, the 
rate of extinction is proportional to the rate of accumulation of belief differences. It is clear, 
however, that without restricting preferences it is impossible to place tighter bounds on the rate 
of extinction.
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If the endowment process and the utility curvature are not bounded, as in Propositions 4.4
and 4.5, then the precise relation between the primitives is important in determining agent B’s 
survival. We simplify the conditions of Theorem 4.1 for the class of utilities with (weakly) de-
creasing absolute risk aversion (DARA), which is generally considered to be the weakest a priori 
restriction on utility functions.

Proposition 4.6. Suppose that the utility function exhibits DARA and limt→∞ ξt = 0, a.s. Then, 
for agent B to become extinct asymptotically, it is sufficient that there exists a sequence of num-
bers εn ∈ (0, 12 ) converging to zero such that for any n

lim
t→∞

A(εnDt)Dt

− ln(λξt )
= 0, a.s. (28)

For agent B to survive, it is sufficient that for some ε ∈ (0, 12 )

Prob

[
lim sup
t→∞

A(εDt)Dt

− ln(λξt )
= ∞

]
> 0. (29)

If, in addition to (29),

lim
t→∞

A(Dt)Dt

− ln(λξt )
= ∞, a.s., (30)

then limt→∞ wt = 1
2 , a.s.

The above proposition clarifies the trade-off between beliefs, endowments, and preferences 
that determines survival. Intuitively, given the endowment growth rate in the economy, agent B
fails to survive if local utility curvature declines sufficiently fast with the consumption level, or 
if differences in beliefs accumulate at a sufficiently high rate.

We finally consider a generalization of the setting analyzed in Kogan et al. (2006) and Yan
(2008), where endowment follows a Geometric Brownian motion and agent B is persistently op-
timistic about the growth rate of the endowment. We make a weaker assumption that the endow-
ment and belief differences grow at proportional asymptotic rates, i.e. limt→∞ ln(Dt )− ln(ξt )

= b < ∞. 
Such models, with geometric Brownian motion specifications for D and ξ in particular, are com-
mon in the literature.

Corollary 4.7. Consider an economy with 0 < limt→∞ ln(Dt )− ln(ξt )
= b < ∞ and limt→∞ ξt = 0, a.s. 

Assume that the utility function is of DARA type. Then, if

lim
x→∞

A(x)

1
x

ln(x)
= 0, (31)

agent B becomes extinct. If

lim
x→∞

A(x)

1
x

ln(x)
= ∞, (32)

agent B survives.

We thus identify two broad classes of preferences for which survival does and does not take 
place under the above assumption on the endowment and beliefs. Agent B becomes extinct if 
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local utility curvature at high consumption levels declines rapidly enough, and he survives if 
local utility curvature declines sufficiently slowly. Models with CRRA preferences and geometric 
Brownian motions for D and ξ satisfy condition (31): with relative risk aversion equal to γ , 
A(x)

1
x

ln(x)
= γ

ln(x)
→ 0, and therefore agent B becomes extinct in such economies.

5. Price impact

We now consider the influence agent B has on the long-run behavior of prices and how this 
influence is related to his survival. Below we identify broad classes of economies in which the 
agent making relatively inaccurate forecasts does or does not have impact on prices in the long 
run.

As we have shown in Corollaries 4.2 and 4.3, if local utility curvature declines sufficiently 
rapidly with consumption level, or if the aggregate endowment is bounded, agent B does not 
survive. In these cases, agent B also has no price impact in the long run:

Proposition 5.1. If local utility curvature is bounded such that A(x) ≤ Cx−1, and limt→∞ ξt = 0, 
a.s., then agent B has no asymptotic price impact.

Proposition 5.2. If the aggregate endowment process is bounded away from zero and infinity, 0 <
D ≤ Dt ≤ D < ∞, and limt→∞ ξt = 0, a.s., then agent B has no price impact asymptotically.

The relation between Arrow–Debreu prices and marginal utilities means that agent B can 
affect prices if he has nontrivial impact on the marginal utility of agent A. When local utility 
curvature declines at a high enough rate, this requires him to have significant impact on con-
sumption growth of agent A. This in turn is impossible since agent B does not survive. Similarly, 
in economies with bounded aggregate endowment, agent B cannot have significant impact on 
consumption growth for agent A, and so agent B cannot have price impact.

In addition to showing that agent B has no long-run impact on prices in economies covered 
by Propositions 5.1 and 5.2, we characterize how rapidly price impact of agent B disappears. 
We measure the magnitude of price impact according to (12) relative to the reference economy 
with utility weight λ	 = 0 because price impact of agent B vanishes asymptotically with respect 
to this reference economy under either bounded coefficient of relative risk aversion or bounded 
aggregate endowment.

Proposition 5.3. Assume that local utility curvature is bounded so that A(x) ≤ Cx−1, and 
limt→∞ ξt = 0, a.s. For each element of the probability space where limt→∞ ξt = 0, let t be 
large enough that λξt < 1. Then, the measure of price impact PI (t, s; 0) satisfies

|PI (t, s;0)| ≤ C
(
(λξt )

1/C + (λξt+s)
1/C

)
. (33)

In economies covered by Proposition 5.3, the distortion of the stochastic discount factor cre-
ated by B’s beliefs disappears at a rate at least proportional to the rate of accumulation of belief 
differences. As shown in Proposition 4.5, B’s consumption share in such economies also vanishes 
at the rate of accumulation of belief differences.

The price impact of agent B’s beliefs in economies with bounded aggregate endowment van-
ishes at least as quickly as B’s consumption share:
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Proposition 5.4. Assume that the aggregate endowment process is bounded away from zero and 
infinity, and limt→∞ ξt = 0, a.s. For each element of the probability space where limt→∞ ξt = 0, 
let t be large enough that λξt < 1. Then, the measure of price impact PI (t, s; 0) satisfies

|PI (t, s;0)| ≤
(

max
x∈[D/2,D]

A(x)

)
(wt + wt+s)D, (34)

where wt is the equilibrium consumption share of agent B.

As we show in Proposition 4.5, in economies with bounded aggregate endowment, B’s con-
sumption share vanishes at the rate directly related to the rate of accumulation of belief differ-
ences. Since the exact extinction rate generally depends on preferences in a nonlinear manner, 
we do not derive an explicit bound on price impact in Proposition 5.4 in terms of the primitives, 
and instead express an upper bound on price impact in terms of B’s consumption share.

When conditions on the primitives are relaxed, consumption and price dynamics may have 
more complex properties. It is possible for agent B to affect the marginal utility of agent A
without having non-vanishing asymptotic effect on agent A’s consumption growth, which means 
that agent B’s asymptotic price impact may exist even if B fails to survive asymptotically. We 
have described such an economy in Example 3.1. In the context of Example 3.1, price impact 
without survival occurs in a “knife-edge” case. We next explore more generally the conditions 
under which such a phenomenon occurs.

Proposition 5.5. Consider an economy with a DARA utility function, assume that limt→∞ Dt =
∞, a.s., and limt→∞ ξt = 0, a.s. Then, a necessary condition for price impact is

lim sup
t→∞

∫ Dt

1 A(x)dx

− ln(λξt )
≥ 1, a.s. (35)

A necessary condition for price impact without survival is

lim sup
t→∞

maxz∈[1,Dt ] γ (z) ln(Dt )

− ln(λξt )
≥ 1 ≥ lim sup

t→∞
γ (Dt)

− ln(λξt )
, a.s. (36)

The above result hinges on the difference between extinction in consumption share (wt → 0) 
and in consumption level (wtDt → 0). As we have shown in Section 2 (and show again formally 
in the Appendix), there is no price impact when B experiences extinction in consumption level. 
Thus, a necessary condition for price impact is lim supt→∞ wtDt > 0, a.s., which we use to 
derive (35). We combine equation (35) with Theorem 4.1 to find DARA-utility economies that 
may exhibit price impact with extinction (or, without survival). The result is (36).

The necessary conditions for asymptotic price impact without survival give us an idea of how 
special this phenomenon is. Consider, for instance, Examples 3.1 and 3.2. In these examples, 
A(x) = 1 for x ≥ 1, and A(x) = 1

x
for x < 1, and hence for D > 1, maxz∈[1,D] γ (z) = γ (D) = D. 

Then, Proposition 5.5 implies that in the context of these examples, necessary conditions for price 
impact without survival are satisfied only in case (iii), for which

lim
t→∞

Dt

− ln(λξt )
= 1, a.s. (37)

While one can design more general specifications of A(x) that allow for price impact without 
survival, informally, Proposition 5.5 shows that the set of such economies is rather restricted.
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Survival does not always imply asymptotic price impact. Below, we establish necessary and 
sufficient conditions for price impact in a broad class of economies in which agent B survives. 
We present the proof of Propositions 5.6, 5.7, and 5.8 in the on-line Appendix.

Proposition 5.6. Consider a growing economy with limt→∞ Dt = ∞, a.s. Assume that the utility 
function is such that A(x) is weakly decreasing and xA(x) is weakly increasing in consumption 
level. Further, assume that the endowment and the beliefs satisfy

lim
t→∞

A( 1
2Dt)Dt

(ln(λξt ))2
= ∞, a.s. (38)

Then agent B survives and asymptotically consumes half of the aggregate endowment.

Proposition 5.7. In the economy defined in Proposition 5.6, if the belief process ξt has non-
vanishing growth rate asymptotically, i.e., there exist s > 0 and ε > 0 such that

Prob

[
lim sup
t→∞

|ln(ξt+s) − ln(ξt )| > ε

]
> 0, (39)

and, in addition, there exist s′ > 0 and ε′ > 0 such that

Prob

⎡
⎢⎣lim sup

t→∞

∣∣∣∣∣∣∣
Dt+s′∫

Dt+s′/2

A(x)dx −
Dt∫

Dt/2

A(x)dx − 1

2
ln(ξt+s′) + 1

2
ln(ξt )

∣∣∣∣∣∣∣ > ε′

⎤
⎥⎦ > 0, (40)

then agent B exerts long-run price impact. Moreover, asymptotically the state price density does 
not depend on the initial wealth distribution, i.e., does not depend on λ.

Condition (39) is necessary for asymptotic price impact to exist in this economy.

Proposition 5.7 shows that survival does not necessarily lead to price impact: there can be 
an additional condition on the variation in the belief process. Note that if condition (39) holds, 
(40) would be violated only in economies with a very particular combination of primitives. Such 
cases are covered by the additional condition (40).

The next proposition helps clarify why the survival and price impact properties of various 
economies are connected to the rate of decrease in local utility curvature. It states a general result 
for consumption sharing rules in growing economies with unbounded relative risk aversion.

Proposition 5.8. Consider the economy defined in Proposition 5.6, and assume that both agents 
hold the same beliefs. Then, for any initial allocation of wealth between the agents, their con-
sumption shares become asymptotically equal. Moreover, the state price density in this economy 
is asymptotically the same as in an economy in which the two agents start with equal endow-
ments.

As we know from Corollary 4.2 and Proposition 5.1, economies with agents having local util-
ity curvature A(x) rapidly declining in consumption exhibit simple behavior: agent B does not 
survive and has no asymptotic impact on the state-price density. When local utility curvature is 
only slowly declining, survival is also determined by belief differences. Proposition 5.8 shows 
that in a homogeneous-belief economy consumption shares of the agents tend to become equal-
ized over time no matter how uneven the initial wealth distribution is. Similarly, the state-price 
density does not depend (asymptotically) on the initial wealth distribution.
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The above convergence mechanism remains at work in economies with heterogeneous beliefs. 
However, there is another force present under belief heterogeneity: agent B tends to mis-allocate 
his consumption across states due to his distorted beliefs, which reduces his asymptotic con-
sumption share. The tradeoff between the two competing forces is intuitive: distortions in agents’ 
consumption shares caused by belief differences tend to disappear over time, unless the belief 
differences grow sufficiently rapidly. Condition (38) guarantees that differences in beliefs do not 
accumulate too quickly, and so under this condition agent B survives and consumes half of the 
aggregate endowment asymptotically. Agent B can exert asymptotic price impact as long as the 
differences between his beliefs and those of agent A do not vanish asymptotically in a sense 
made precise by the conditions in Proposition 5.7.

6. Conclusion

In this paper we examine the economic mechanism behind the Market Selection Hypothesis 
and establish necessary and sufficient conditions for its validity in a general setting with min-
imal restrictions on endowments, beliefs, or utility functions. We show that the MSH holds in 
economies with bounded endowments or bounded relative risk aversion. The commonly stud-
ied special case of constant relative risk aversion preferences belongs to this class of models. 
However, we show that the MSH cannot be generalized to a broader class of models without 
additional qualifications. Instead, survival is determined by a comparison of the forecast errors 
to risk attitudes. The price impact of inaccurate forecasts is distinct from survival because price 
impact is determined by the volatility of traders’ consumption shares rather than by their level. 
We show a new mechanism by which an agent who fails to survive in the long run can exert per-
sistent impact on prices. This phenomenon exists because the asymptotically disappearing agent 
can provide a non-trivial degree of risk sharing in equilibrium.

Our results apply to economies with state-dependent time-separable preferences, such as ex-
ternal habit formation. In the on-line Appendix, we show how our approach extends to this 
broader class of preferences. One limitation of our approach is that we consider only time-
additive preferences, and thus cannot separate risk aversion effects from inter-temporal substitu-
tion effects. Extending theoretical analysis of the Market Selection Hypothesis to a broader class 
of preferences remains an important open problem.

Appendix A

The on-line Appendix contains explicit calculations for our examples (Section B), including 
an example of the impact of distorted beliefs on the prices of non-primitive claims. We also 
include proofs of Propositions 5.6, 5.7, and 5.8. We follow that with our analysis of the case of 
state dependent preferences (Section C).

A.1. Proof of Theorem 4.1

Suppose that agent B becomes extinct, i.e., wt = CB,t

Dt
converges to zero almost surely. For 

each element of the probability space ω for which wt vanishes asymptotically, one can find 
T (ω; ε), such that wt(ω) < ε and ln(λξt ) < 0 for any t > T (ω; ε). Since 

∫ (1−w)D

wD
A(x) dx is a 

decreasing function of w, the first-order condition (8) implies that for all t > T (ω; ε)

1 =
∫ (1−wt )Dt

wtDt
A(x) dx ≥

∫ (1−ε)Dt

εDt
A(x)dx

. (A.1)
− ln(λξt ) − ln(λξt )
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Thus, the desired result follows by applying lim supt→∞ to both sides of the inequality.
We now prove the sufficient condition. Consider the subset of the probability space over which 

lim supt→∞
∫ (1−ε)Dt
εDt

A(x) dx

− ln(λξt )
< 1 for any ε > 0. For each element of the probability space w in such 

set, we can define T (ω; ε) and δ(ω) > 0, such that∫ (1−ε)Dt

εDt
A(x)dx

− ln(λξt )
≤ 1 − δ and ln(λξt ) < 0 (A.2)

for all t > T (ω; ε). If lim supt→∞ wt �= 0, then one can always find ε > 0 and t > T (ω; ε), such 
that wt > ε. But then

1 =
∫ (1−wt )Dt

wtDt
A(x) dx

− ln(λξt )
≤

∫ (1−ε)Dt

εDt
A(x)dx

− ln(λξt )
. (A.3)

Taking lim supt→∞ on both sides, implies 1 ≤ 1 − δ, which is a contradiction.

A.2. Proof of Corollary 4.2

By assumption xA(x) < C for all x and C > 0. For every path of ξ that converges to zero, let 
t be large enough so that λξt < 1. Then∫ (1−ε)Dt

εDt
A(x)dx

− ln(λξt )
≤ C

ln(1 − ε) − ln(ε)

− ln(λξt )
(A.4)

which converges to zero almost surely as t → ∞.

A.3. Proof of Corollary 4.3

Let D and D denote the upper and lower bound of Dt , 0 < D ≤ D. Let A(ε) denote the 
maximum of A(x) on [εD, (1 −ε)D]. We then have 

∫ (1−ε)Dt

εDt
A(x)dx ≤ (

(1 − ε)D − εD
)
A(ε), 

which is finite. Given that ξt → 0, a.s., as t → ∞ and hence − ln(ξt ) → ∞, a.s., we conclude 
that (25) holds, and agent B does not survive.

A.4. Proof of Proposition 4.4

We establish the upper bound. Derivation of the lower bound is analogous. For every path 
of ξ that converges to zero, let t be large enough so that λξt < 1. Using the Pareto optimality 
condition and the restriction A(x) ≤ Cx−1,

− lnλξt =
(1−wt )Dt∫
wtDt

A(x)dx ≤
(1−wt )Dt∫
wtDt

Cx−1dx = C ln
1 − wt

wt

, (A.5)

which implies

wt

1 − wt

≤ (λξt )
1/C . (A.6)

The upper bound then follows.
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A.5. Proof of Proposition 4.5

Using Pareto optimality condition and concavity of the utility function,

λξt = u′((1 − wt)Dt)

u′(wtDt )
≥ u′(D)

u′(wtDt )
, (A.7)

which implies

u′(wtDt ) ≥ u′(D)

λξt

(A.8)

and therefore

wt ≤ 1

Dt

(u′)−1

(
u′(D)

λξt

)
≤ 1

D
(u′)−1

(
u′(D)

λξt

)
. (A.9)

Similarly, to derive the lower bound, use

λξt = u′((1 − wt)Dt)

u′(wtDt )
≤ u′(D/2)

u′(wtDt )
, (A.10)

which implies

u′(wtDt ) ≤ u′(D/2)

λξt

(A.11)

and therefore

wt ≥ 1

Dt

(u′)−1
(

u′(D/2)

λξt

)
≥ 1

D
(u′)−1

(
u′(D/2)

λξt

)
. (A.12)

A.6. Proof of Proposition 4.6

For every path of ξ that converges to zero, let t be large enough so that λξt < 1. Since A(x)

is a non-increasing function,

(1−ε′)D∫
ε′D

A(x)dx ≥
εD∫

ε′D

A(x)dx ≥ A(εD)D(ε − ε′), (A.13)

where 0 < ε′ < ε < 1 − ε′. Condition (29) then implies that with positive probability, we have

lim sup
t→∞

∫ (1−ε′)Dt

ε′Dt
A(x)dx

− ln(λξt )
= ∞ (A.14)

and hence a necessary condition for extinction is violated (from Theorem 4.1). Thus, agent B
survives.

Next, for any ε ∈ (0, 1/2), find εn < ε. Then, since A(x) is a non-increasing function,

(1−ε)D∫
A(x)dx ≤ A(εD)D(1 − 2ε) ≤ A(εnD)D(1 − 2ε). (A.15)
εD
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Then, ∫ (1−ε)Dt

εDt
A(x)dx

− ln(λξt )
≤ A(εnDt)Dt (1 − 2ε)

− ln(λξt )
, (A.16)

and the result follows from applying (28) to show that we have a sufficient condition for extinc-
tion (25).

Lastly, since the utility function is of DARA type, condition (8) implies that

− ln(λξt ) ≥ A((1 − wt)Dt )Dt (1 − 2wt) (A.17)

and therefore, using condition (30), limt→∞ wt = 1/2 a.s.

A.7. Proof of Corollary 4.7

Consider a set (of measure one) on which limt→∞ ln(Dt )− ln(ξt )
= b and limt→∞ ξt = 0. On this set,

lim
t→∞

A(εDt)εDt

− ln(λξt )
= lim

t→∞

1
Dt

ln(Dt )

− ln(λξt )

A(εDt )εDt

1
Dt

ln(Dt )
= εb lim

t→∞
A(εDt)

1
Dt

ln(Dt )
(A.18)

for any positive ε. Thus, by Proposition 4.6, agent B becomes extinct as long as the risk aver-
sion coefficient satisfies (31). According to the same proposition, if the risk aversion coefficient 
satisfies (32), then agent B survives.

A.8. Proof of Propositions 5.1 and 5.2

As we show in Corollary 4.2, there is no survival in models with bounded relative risk aver-
sion. Thus, wt converges to zero almost surely. Consider now the first term in (12). By the mean 
value theorem and the bound given in the proposition, this term equals

A(x	
t+s)Dt+swt+s ≤ C

Dt+swt+s

x	
t+s

, (A.19)

for some x	
t+s ∈ [(1 − wt+s)Dt+s , Dt+s]. Since, almost surely, the ratio Dt+s

xt+s∗ converges to one 
and wt+s converges to zero, we conclude that the first term in (12) converges to zero almost 
surely. The same argument implies that the second term converges to zero almost surely, and 
therefore there is no price impact. This proves Proposition 5.1. Proposition 5.2 follows from 
the fact that bounding the endowment implies bounding relative risk aversion on the interval 
(Dt (1 − wt), Dt).

A.9. Proof of Proposition 5.3

We use the tighter of the two upper bounds on the consumption share wt of agent B in Propo-
sition 4.4:∣∣∣∣∣∣∣

Dt∫
A(x)dx

∣∣∣∣∣∣∣ ≤ C |ln(1 − wt)| ≤ C

∣∣∣ln(
1 + (λξt )

1/C
)∣∣∣ ≤ C (λξt )

1/C .
Dt (1−wt )
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Then,

|PI (t, s;0)| =

∣∣∣∣∣∣∣
Dt+s∫

Dt+s (1−wt+s )

A(x) dx −
Dt∫

Dt (1−wt )

A(x)dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
Dt+s∫

Dt+s (1−wt+s )

A(x) dx

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
Dt∫

Dt (1−wt )

A(x)dx

∣∣∣∣∣∣∣
≤ C

(
(λξt )

1/C + (λξt+s)
1/C

)
. (A.20)

A.10. Proof of Proposition 5.4

For every path of ξ that converges to zero, let t be large enough so that λξt < 1 and therefore 
wt ≤ 1/2. Because aggregate endowment is bounded, D ≤ Dt ≤ D,∣∣∣∣∣∣∣

Dt∫
Dt (1−wt )

A(x)dx

∣∣∣∣∣∣∣ ≤
(

sup
x∈[D/2,D]

A(x)

)
wtD (A.21)

and therefore

|PI (t, s;0)| =

∣∣∣∣∣∣∣
Dt+s∫

Dt+s (1−wt+s )

A(x) dx −
Dt∫

Dt (1−wt )

A(x)dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
Dt+s∫

Dt+s (1−wt+s )

A(x) dx

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
Dt∫

Dt (1−wt )

A(x)dx

∣∣∣∣∣∣∣
≤

(
sup

x∈[D/2,D]
A(x)

)
D(wt + wt+s). (A.22)

A.11. Proof of Proposition 5.5

For every path of ξ that converges to zero, let t be large enough so that λξt < 1. Consider the 
measure of price impact defined with respect to λ	 = 0, as given in (12). In an economy with 
DARA utility function,

0 ≤
Dt∫

(1−wt )Dt

A(x)dx ≤ wtDtA((1 − wt)Dt ), (A.23)

and therefore, for price impact to exist asymptotically, it is necessary that

lim supwtDt > 0, a.s. (A.24)

t→∞
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The equilibrium consumption sharing rule in (8) implies that

− ln(λξt ) ≤
Dt∫

wtDt

A(x)dx, (A.25)

and therefore, to satisfy the condition (A.24), the model primitives must satisfy

lim sup
t→∞

∫ Dt

1 A(x)dx

− ln(λξt )
≥ 1, a.s. (A.26)

where, because limt→∞ ξt = 0, a.s., the lower limit in the integral can be set to any constant.
Next, we use

Dt∫
1

A(x)dx =
Dt∫

1

A(x)
1

x
x dx ≤ max

z∈[1,Dt ]
γ (z) ln(Dt ), (A.27)

to establish the first inequality in (36). Then, starting from (24), we have

(1−ε)Dt∫
εDt

A(x)dx ≥ A(Dt)(1 − 2ε)Dt = γ (Dt)(1 − 2ε) (A.28)

for any ε > 0. Thus, a corollary of Theorem 4.1 is that a weaker necessary condition for extinction 
is

lim sup
t→∞

γ (Dt)

− ln(λξt )
≤ 1, a.s., (A.29)

which yields the second inequality in (36).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2016.12.002.
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