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ABSTRACT 

This paper studies how market closures affect investors' trading policies and the 
resulting return-generating process. It  shows that closures generate rich patterns 
of time variation in trading and returns, including those consistent with empirical 
findings: (1) U-shaped patterns in the mean and volatility of returns over trading 
periods, (2) higher trading activity around the close and open, (3) more volatile 
open-to-open returns than close-to-close returns, (4) higher returns over trading 
periods than over nontrading periods, (5) more volatile returns over trading peri- 
ods than over nontrading periods. It also shows that closures can make prices more 
informative about future payoffs. 

WE MODEL A COMPETITIVE STOCK MARKET with periodic closures in which inves- 
tors trade for both allocational and informational reasons. We use the model 
to study how market closures intrinsically affect investors' trading behavior 
and the return-generating process. The purpose of this analysis is to in- 
crease our understanding of the time variation in security trading and re- 
turns that are associated with regular market closures, such as the intraday 
and intraweek patterns in stock returns, volatility, and trading volume. 

We consider a stock market in which the exogenous information flow is 
homogeneous over time and the market closes periodically. When the mar- 
ket is open, investors trade the stock either to rebalance their overall port- 
folio of assets, which also includes other illiquid assets, or to speculate on 
future stock payoffs using their private information. In particular, investors 
adjust their asset portfolio by trading the stock in order to hedge the risk of 
illiquid assets. We refer to these trades as hedging trades and those moti- 
vated by private information as speculative trades. When the market is closed, 
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investors hold on to their closing positions from the previous trading period 
despite their desire to trade as new information arrives. Consequently, in- 
vestors optimally adjust their trading strategies during the trading period 
(in anticipation of and following market closures), which gives rise to time 
variations in equilibrium returns. 

Market closures impact the economy in two ways: they preclude investors 
from trading in the market, and they prevent investors from learning about 
the economy by observing market prices and trading activities. The lack of trad- 
ing increases the risk of holding the stock over closures, causing investors to 
reduce their hedging trade at the market close. The anticipated decrease in 
investors'hedging trade tends to make the stock price decrease over time as a 
larger premium is demanded on the stock, and tends to make the stock price 
less sensitive to investors'hedging needs. The lack of market prices as a source 
of information gives rise to time variation in the information asymmetry among 
investors. While information asymmetry increases during the closure, it often 
decreases as trading continues after the market reopens. The decrease in in- 
formation asymmetry tends to make the stock price increase as a smaller pre- 
mium is demanded on the stock, and tends to make the stock price more sensitive 
to investors' private information on future payoffs as more private informa- 
tion is impounded into the price. 

The actual time variation in the stock price is determined by the inter- 
action of these two effects: the effect of time-varying hedging trade and the 
effect of time-varying information asymmetry. The interaction between these 
two effects can generate a rich set of patterns in stock returns. For example, 
when the effect of time-varying hedging trade dominates, both the mean and 
volatility of stock returns decrease over time during the trading periods. 
When the effect of time-varying information asymmetry dominates, both the 
mean and volatility increase over time. For some parameter values, the ef- 
fect of time-varying hedging demand dominates around market open and 
the effect of time-varying information asymmetry dominates around market 
close. In this case, both the mean return and return volatility are U-shaped 
during the trading periods, higher around the open and close and lower 
during midperiod. 

Additionally, when decreasing information asymmetry causes the stock 
price to increase during the day, the return over trading periods is higher 
than the return over nontrading periods. Also, trading reveals investors' pri- 
vate information, which moves the price; hence returns over the trading 
periods tend to be more volatile than returns over the nontrading periods. 
Furthermore, the information accumulation during a market closure gives 
rise to high trading volume at the open, and the reduction in investors'hedg- 
ing positions at  the end of a trading period can give rise to high trading 
volume at the close. 

The interaction between investors' hedging trade and the market's infor- 
mation flow also gives rise to other interesting phenomena. For example, as 
investors adjust their hedging trade in anticipation of future market clo- 
sures, the endogenous information flow in the economy also changes. As the 
level of hedging trade decreases at  the close, price changes are more likely 
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to be caused by speculative trade, and hence are more informative about 
investors' private information on future payoffs. As a result, closures can 
make market prices more informative about stock payoffs by reducing the 
level of "noise" in stock prices from hedging trade. 

There is an extensive literature on the empirical patterns of stock returns 
and trading activities associated with market closures. These patterns in- 
clude the following. 

a. Intraday mean return and volatility are U-shaped.1 
b. Intraday trading volume is U-~haped .~  
c. 	Open-to-open returns are more volatile than close-to-close returns." 
d. Weekend returns are lower than weekday return^.^ 
e. 	Returns over trading periods are more volatile than returns over non- 

trading periods." 

Many of these patterns are robust with respect to different market inicro- 
structures (such as the NYSE, Nasdaq, and the interbank market of 
currencies). 

The observed patterns have generated strong interest in developing theo- 
retical models to understand them. Admati and Pfleiderer (1988, 1989) and 
Foster and Viswanathan (1990, 1993) analyze how investors' discretion in 
timing their liquidity trade can lead to endogenous concentration of trades 
and price changes. Their models, however, leave the actual timing of con- 
centration in trade and price changes undetermined. Additional assump- 
tions on the time-variation of liquidity trade and/or information arrival are 
needed in order to produce the empirical patterns that are punctuated by 
closures. Brock and Kleidon (1992) point out the link between time-variation 
in market activity and closures. They solve for investors' optimal market- 
making policies under periodic market closures. Unfortunately, their analy- 
sis is in a partial equilibrium setting and cannot speak to the equilibrium 
patterns in return and trading. Using a noisy rational expectations equilib- 
rium setting, Slezak (1994) examines the impact of closure on equilibrium 
returns by comparing two equilibria, the one with closure and the other 
without closure. The difference in prices between these two cases suggests 
that market closure may help to explain some of the observed patterns. 

Slezak's (1994) results, however, depend crucially on the exogenous spec- 
ification of the liquidity trade. Under the assumption that the liquidity trade 
is constant over time, the higher risk (thus lower liquidity) before and after 
a closure leads to higher price volatility. If investors can instead allocate 

'See, for example, Andersen and Bollerslev (1997), Gerety and Mulherin (1994), Harris (1986, 
1988, 1989), Kleidon and Werner (1996), Lockwood and Linn (1990), Rogalski (1984), Smirlock 
and Starks (1986), and Wood, McInish, and Ord (1985). 

See, for example, Chan et al. (1996) and Jain and Joh (1988). 
See, for example, Amihud and Mendelson (1987, 1991), Cao, Choe, and Hatheway (1995), 

Chan et al. (1996), and Stoll and Whaley (1990). 
See, for example, French (1980), Gibbons and Hess (1981), and Keim and Stambaugh (1984). 

"ee, for example, Amihud and Mendelson (1991), Barclay, Litzenberger, and Warner (1990), 
Fama (1965), French and Roll (1986), and Oldfield and Rogalski (1980). 
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their trade accordingly, they may actually cut back their liquidity trade at  
the close, causing price volatility to decrease, not increase. Moreover, the 
intuition from comparing two different equilibria (with and without closure), 
though helpful, is inconclusive in explaining the actual time patterns. After 
all, these patterns appear in a single, intertemporal equilibrium, and hence 
need to be derived as the outcome of such an equilibrium. 

Our model differs from existing models in several dimensions. First, we 
explicitly model investors' allocational and informational trades simulta- 
neously. This stands in contrast to the noisy rational expectations models 
in the literature, in which allocational trade (liquidity trade) is exog-
enously specified. As we show in the paper, the fact that investors can 
choose the timing and size of their allocational trades is important in un- 
derstanding the equilibrium return and trading pattern^.^ Second, we focus 
on how market closures intrinsically affect investors' trading behavior and 
the return-generating process. In particular, we examine how closures gen- 
erate endogenous time-variation in trading activity, information arrival, 
and price movements. Third, we derive the time patterns of return and 
trading activity from a single intertemporal equilibrium, which is different 
from Slezak (1994) who relies on a comparative static analysis of station- 
ary equilibria.? Fourth, we assume a competitive market and avoid strate- 
gic and market microstructure issues. By analyzing periodic market closures, 
we focus on those effects on equilibrium returns and trading activities that 
are solely associated with closures. We show that only periodic market 
closures are needed to qualitatively generate all the empirical patterns 
mentioned above. 

The paper proceeds as follows. Section I describes the model. Section I1 
defines the notion of equilibrium and Section I11 discusses the general so- 
lution of equilibrium. Section IV analyzes how market closures affect inves- 
tors' hedging trade and equilibrium returns. Section V further examines the 
effect of information asymmetry on trading activity and stock returns. Sec- 
tion VI concludes. The Appendixes provides technical details and proofs. 

" Admati and Pfleiderer (1988, 1989) and Foster and Viswanathan (1990, 1993) allow some 
of the liquidity traders to time their trade of given sizes. But they do not provide a complete 
justification for the behavior of liquidity traders. For example, trade sizes are exogenously 
specified and not all investors can time their trade. See also Spiegel and Subrahmanyan (1995). 

Our model differs from Slezak (1994) in several other ways as  well. In our model, two 
things are present during market closures: new information (both public and private) on asset 
payoffs and shocks to investors' allocational demand for stock. In Slezak's model, only the for- 
mer is present. Thus, in the absence of any new information on stock payoffs (public and/or 
private), investors still desire to trade during a closure in our model but not in Slezak's model. 
In other words, in the absence of new information on stock payoffs, a closure in our model still 
affects the equilibrium, but a closure in Slezak's model does not. In this sense, the closure in 
Slezak's model is more like a pure information event such as a news arrival. Furthermore, in 
our model, the repeated nature of closures is important in generating the return patterns. In 
particular, what happens around the market close is related to past and future openings of the 
market, and what happens around the open is related to closures in the past and future. In 
Slezak (1994), there is a single closure, the open is not affected by the future close, and the close 
is not affected by past open. 
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I. The Model 

We consider an economy defined on a continuous time-horizon [O,w) with 
a single commodity, which is also used as the numeraire. The underlying 
uncertainty is characterized by an n-dimensional standard Wiener process 
w,, t E [O,w). There are two classes of investors denoted by i = 1,2. Investors 
are identical within each class, but different across classes in endowments 
and private information. Let the population weight of the two classes of 
investors be w and 1- w,  respectively, where w E [O,l]. For convenience, we 
also refer to any investor in class i as investor i. The economy is further 
defined below. 

A. Investment Opportunities 

Investors can invest in publicly traded securities or in private investment 
opportunities. Publicly traded securities include a risk-free money-market 
account and a risky stock. Private investment opportunities are linear pro- 
duction technologies available only to individual investors. The payoffs of 
these investments are as follows: 

a. 	The money-market account pays a positive, constant rate of return r. 

b. Each share of the stock pays a cumulative dividend D, where 

D, = [(G, ds + bD dw,); 

c. 	Investor i's private technology yields a cumulative excess rate of re- 
turn qi,,, where 

x,,= x,,+ I (-ayx,,ds + bi dw,). 

Here, i = 1,2, a G ,  a ,  are positive constants, b,, b,, b,, b,, b, are constant 
matrices of proper order.8 G, gives the expected dividend growth of the stock 
a t  t, and Y,,,, Y,,, give, respectively, the expected excess rate of return on 
class 1and class 2 investors' private technologies. They all follow Gaussian 
AR(1) processes. The system {G,,Y,,,,Y,,,) then follows a Gaussian Markov 

Throughout this paper, we use the following conventions: (1)Bold-face letters denote ma- 
trices (or vectors). (2) Given a set of elements e , , e , , . .  . , e m  (of proper order), [e,;e,;. . . ; e n , ]de-
notes the column matrix and [e,,e,,  . . . ,e,,,] the row matrix from these elements. (3) 1 denotes 
an identity matrix and 0 a zero matrix of proper order. 



The Journal of Finance 

ope11 close open 
..................... .................. ......... 


TLk- 1 t k  nk t k + l  nk+l 
I;-th day I;-th night 

Figure 1. Time line. Intervals of solid lines represent periods when the stock market is open 
and intervals of dotted lines represent periods when the stock market is closed. 

process, which completely determines the distribution of future payoffs on 
the stock and the investors' private technologies.Vor future convenience, let 
Zt = [Gt,Y,,t,Y2,tI'. Then 

where ZO = [Go;Y1,0;Y2,oI,a, = [ [ a G , O , O l ; [ O , a Y , O l ; [ O , O , a Y l l ,  and b, = 
[b,; b,; b2] . Investors can continuously invest in their private technologies. 
They can also trade the securities in a competitive securities market when 
the market is open.1° The money market is open continuously but the stock 
market is open only periodically. Thus, investors can adjust their money- 
market account a t  any time, but they can trade the stock only when the 
stock market is open. The dividend and interest payments are received con- 
tinuously as they accrue. P, denotes the share price of the stock when the 
stock market is open. 

Figure 1shows the time sequence of events. Here, [ tk,nk] is the k-th (stock) 
trading period, and (n,, t,,,) is the k-th nontrading period, where k = 0,1,2,.. . . 
We further require that  the lengths of the trading period (T)and nontrading 
period (N)  are constant over time. That is, n, - t, = T and t,,, - n, = N for 
all k. Consequently, tk = k (T + N )  and nk = tk + T. When N = 0, the economy 
reduces to the case of the stock market being permanently open. When T = 

0, it reduces to the discrete-trading case. Further, let I,= [t,, n,] denote the 
k-th trading period, Nk= (n,, t,,,) the k-th nontrading period, I=Uk[tk,nk] 
the set of times the stock market is open, and N = Uk(nk,tk+l)the set of 
times the stock market is closed. For convenience, we refer to the periods 
when the stock market is open and closed as "day" and "night" respectively. 

" Instantaneous returns on the private technologies of all investors are assumed to be per- 
fectly positively correlated. Our results stay qualitatively the same if partial correlation is 
allowed. 

loThe competitive assumption can be justified by the existence of many (possibly an infinite 
number of) identical investors within each class. Furthermore, for each class of investors, we 
can construct a representative investor who has the same information, preference, and invest- 
ment opportunities as each individual investor, but has the total endowments of all investors in 
the class. The risk tolerance of this representative investor is the sum of the risk tolerance of 
individual investors in the class (see, e.g., Rubinstein (1974)).The economy then can be viewed 
as consisting of the two representative investors, interacting competitively in the securities 
market. 
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B. Information Distribution 

All investors observe realized dividends and market prices of the stock. 
Class 1 investors observe all the state variables governing the investment 
opportunities in the economy (G,, Y,,,, and Y,,,), but class 2 investors only 
observe the state variable governing their own investment opportunities (Y,,,). 
Additionally, there is a set of public signals denoted by U, where 

Uo is jointly normal with Go, Y,,,, and Y,,,, and a U ,  b ,  are constant matri- 
ces of proper order. Thus, class 1investors have superior information about 
future stock payoffs. Let I,,,denote the information set of investor i a t  time 
t (t 2 0), i = {Us,Ps,Ds,Gs,Yl,s,Y2,s,ql,s:0= 1,2. We haveZ,,, 5 s  s t }  and 
Z,,, = {Us, Ps, Ds,Y2,s,q2,s :0 5 s 5 t),  where P, is only defined for t E 7 Z, = 

Z,,, v Z,,, then gives the full information set about the economy and Z,,, C 
Z, Vi = 1,2. 

C. Endowments, Policies, and Preferences 

In addition to his private technology, each investor is also endowed with 
one share of the stock. He chooses investment and consumption policies to 
maximize the expected utility over his lifetime consumption. For investor i 
(i = 1,2), let ci,, be his consumption a t  t, y,,, his investment in the private 
technology, and B,,, the number of stock shares he holds. Then, {c,,,: t E 
[O,oo)} and {y,,, :t E [O,w)} give his consumption policy and production policy, 
respectively, and { O , , ,  :t E I}his stock trading policy, defined only when the 
stock market is open. In short, we use {c~ , , ,Y , ,~ ,B~,~}  to denote investor i's 
policy, which is adapted to his information Z,,, . We further restrict investors' 
trading and production policies to predictable, square-integrable processes 
(with respect to the return processes) and the consumption policy to inte- 
grable processes.ll 

We assume that all investors have expected utility of the following form: 

where p and y (both positive) are the time-discount coefficient and the risk- 
aversion coefficient, respectively. 

The notion of integrability here refers to integrability over any finite period [0, t ]  t i t  0. 
See, for example, Harrison and Pliska (1981)for a discussion on the need of integrability conditions. 
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D. Comments on  the Model 

Many features of our model, such as the dividend process, the interest 
rate, investor preferences, and information structure, resemble those in the 
models of Campbell and Kyle (1993) (under homogeneous information) and 
Wang (1993, 1994) (under heterogeneous information). Gaussian distribu- 
tions for dividends and returns on nontraded assets, a constant interest rate, 
and the constant absolute risk aversion for investor preferences are adopted 
here merely for tractability. 

In our model, investors trade the stock for two reasons: hedging and 
speculation. First, an investor's portfolio consists of holdings of traded se- 
curities (the stock and money-market account) and his private investment. 
When the returns to his private investment and the stock are correlated, 
an investor's stock holding depends not only on the expected return on the 
stock itself but also on the expected return on his private investment. In 
particular, each investor uses the stock to hedge the risk from his private 
investment. As an investor adjusts his private investment in response to 
changes in its expected return, he also revises his hedging position in the 
stock. This generates the hedging trades in the market. Second, some in- 
vestors have private information about future stock payoffs. Those inves- 
tors take speculative positions based on their private information in 
anticipation of future profits. This generates the speculative trades in the 
market. 

In the model, private investments take the form of investing in private 
technologies. This particular form of private investment, if taken literally, 
might seem somewhat artificial, especially when the model is used to ex- 
plain return behavior over short time-intervals (such as intraday or in- 
traweek). However, we can reinterpret these private investments as illiquid 
assets that investors hold (see, e.g., Huang and Wang (1997)). I t  is conceiv- 
able that the value of these illiquid assets can change as quickly as the value 
of traded assets.12 The distinction between private technologies and illiquid 
assets is that an investor can adjust the level of investment in the former 
case but not in the latter. But this distinction is unimportant for our pur- 
pose. Since resources are always available via borrowing, investors trade in 
the stock not to get resources to invest, but to control portfolio risk. Thus, to 
the extent that  trade motivated by private technology shocks mirrors trade 
behavior generated by illiquid assets, our model with private technologies 
captures a salient feature of real markets. We choose the setting with pri- 
vate technologies merely for the simplicity in its solution. More generally, 
what we need here is a motive for investors to trade for allocational reasons. 
As will become clear through our discussion, how this motive is generated in 
the model is not crucial for our main results. 

For example, consider an investor holding both U.S. and Japanese stocks. When the U.S. 
market is open, the Japanese market is closed and his holding of the Japanese stocks becomes 
illiquid. Any news on Japanese stocks may cause him to trade the U.S. stocks in order to 
rebalance his overall portfolio. 
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Even though closures are modeled here as periods when the market phys- 
ically shuts down, they can be broadly interpreted as periods when a subset 
of investors withdraws from the market. The qualitative nature of the model 
is not changed if the market is assumed to be open all the time but most 
investors stop trading in the night. The lack of sufficient market participa- 
tion makes trading costly and prices uninformative. A market shutdown is 
simply the extreme of this situation.13 

E. Distributional Assumptions 

In order to be more specific in our analysis, we make several simplifying 
assumptions on the distribution of underlying shocks. In particular, we as- 
sume that 

and 

where K D ~E (-1,l) and K ,  = i ( d K 2  t d K 2 ) .  This specification of 
the underlying shocks has simple interpretations. For example, w,., fully 
characterizes instantaneous shocks to the dividend D, and a, gives its in- 
stantaneous volatility. This form of the b's gives a particular correlation 
structure among the shocks to different variables. In particular, KD, is the 
correlation between the payoffs from the stock and the investors' private 
technologies. We choose this correlation structure to simplify exposition, and 
our results are not sensitive to this particular choice. 

i? Additional Notation 

We also introduce some notation. Let Ei,, = E[./Zi,,](i = 1,2) and E, = 

E [.IT,]. Define 

l3 Intraday trading and return patterns of stocks cross-listed on exchanges with different 
trading hours provide interesting evidence on this point. See, for example, Chan et al. (1996) 
and Kleidon and Werner (1996). 
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F, gives the expected value of future dividends on the stock discounted at 
the risk-free rate under full information and dF, = -[a,/(r+a,)]G,dt + 
b,dw, where b, = [l/(r+aG)]bG. Also, define 

to be the instantaneous excess return on one stock share when the market is 
open and e = E [dQ,]/dt , a; = E [(dQ,)"/dt its first two unconditional mo- 
ments. In order to relate to the empirical findings, we also define the simple 
share return on the stock from s to t to be 

where s , t  E l a n d  t > s. 

11. Definition of Equilibrium 

In order to derive an equilibrium for the economy, we begin by stating each 
investor's budget constraint and optimization problem under a given stock price 
process P,. Investor i's financial wealth at  time t consists of two parts: the bal- 
ance in a money-market account denoted by WiPt and the position in stock de- 
noted by O,,,. During the day, that is, t EI,(k = 0,1,...), the stock market is 
open and his stock position can be marked to the market. Investor i's total fi- 
nancial wealth is then given by the market value of his stock position and money- 
market account: W,,, = W,:, + Oi,,Pt. He can freely adjust his stock and money- 
market positions to finance consumption and private investments. His budget 
constraint is specified by the dynamics of his total financial wealth W,,, . Dur-
ing the night (i.e., t E n/,), the stock market is closed and investor i holds 
his position from the previous day, Oi,llk, which can no longer be marked to the 
market. Investor i now has to finance his consumption and private invest- 
ments through his money-market account. His budget constraint is specified 
by the dynamics of his money-market account Wiy, . His overnight stock posi- 
tion Oi,,,, now acts as an additional state variable. 

Each investors' optimization problem can now be expressed as follows. For 
i = 1 , 2 a n d k  = 0,1, ..., 

s.t. d Wi. t = (rWi,t - c,. t )  dt + O,,t dQt + Yi, t dqi,t 
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where J,,,, J:, denote, respectively, investor i's value function during the 
day and night, and t-, t+, respectively, the time right before and after t. At 
the close and the open, the optimality of investors' policies yields the follow-
ing boundary conditions: 

Ji,7Ll,= E[q,7Lr;IZi,I?18]and J-s, t ,211- = E[Ji,t18ilIZi.ti+lI. (10) 

An equilibrium is given by a stock price process {P,,t E I }  such that 
investors follow their optimal policies and the stock market clears. The mar-
ket clearing condition is 

The equilibrium stock price and the investors' optimal policies can in gen-
eral be expressed as functions of time and the state of the economy. The 
state of the economy is determined by investors' wealth and their informa-
tion on current and future investment opportunities. We make two assump-
tions about the investors' information sets, which are verified later: (a) Z,,, 
has a finite dimensional sufficient statistic Ti,,, and (b) 9,= {TI,,,T2,, j  fol-
lows a Markov process under Z,,, (i = 1,2).Under these two assumptions, Yt 
together with investors' wealth defines a set of variables that fully charac-
terize the state of the economy at time t. We can then write P, = P(*; t ) (for 
t E I)and {c,,,,y,,,,Oi,,}= {c , ( * ; t ) , y , ( * ; t ) ,B , ( * ; t ) }  (for i = 1,2),where de-
notes the relevant state variables. (Given that each investor's policy is adapted 
to his information, it may only depend on a subset of the state variables.) We 
call P(*;t )  the price function and {c,(*;t),y,(*;t),B,(*;t)} the policy function 
of investor i. 

The price function and policy functions are time-dependent since the struc-
ture of the economy changes over time. For example, the daytime and the 
nighttime are different because the stock market opens only during the day. 
Different points in time during a day are also different because the trading 
opportunities remaining in the day are different. Given that N and T are 
assumed to be the same for all k, the time variation is periodic: the day and 
the night repeat themselves over time. Thus, we only consider periodic equi-
libria of the economy, in which the price function and investors' policy func-
tions exhibit periodicity in time. Specifically, we have 

Definition 1: A periodic equilibrium is defined by the stock price function 
P(* ; t )  and investors' policy functions {c , ( * ; t ) , y , ( * ; t ) ,B , ( * ; t ) } ,  i = 1,2, such 
that (a) the policies maximize investors' expected utility, (b) the stock mar-
ket clears, and (c) the price function and the investors' policy functions are 
periodic in t with periodicity T + N. 

Under Definition 1, the stock price depends on the relevant state variables 
in the same way for every day. That is, 
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where h = 0,1,. . . and r E [O,T]. Realized values of the stock price can be 
different from day to day as values of the state variables can be different. 
Furthermore, the periodicity in each investor's optimization problem and 
policy function yields 

that is, his value function, as a function of the state variables, is periodic in 
time with periodicity T + N. Equations (12) and (13) provide the boundary 
conditions we need to solve a periodic equilibrium. Thus, a periodic equilib- 
rium of the economy is given by a price function (12) such that investors 
adopt optimal policies given by the solution to equations (9), (lo), and (13), 
and the market clears as equation (11)requires. 

Given the constant risk-free rate and constant absolute risk aversion in 
preferences, each investor's demand of risky investments depends only on 
the distribution of future payoffs, not on his wealth (see, e.g., Merton (1969)). 
We thus seek an equilibrium in which the stock price is independent of in- 
vestors'wealth; that is, Pt = P(q, ; t ) .  Furthermore, in this paper we restrict 
ourselves to the linear equilibria in which the price function is linear in Yt. 

Definition 2: A linear, periodic equilibrium is a periodic equilibrium in 
which P, = L(q t ;  t )  Vt E I,where L( . ; t )  denotes a linear function, which is 
time dependent with periodicity T + N, and qt denotes the set of sufficient 
statistics for Z,,, and Z2,, . 

111. Solution of the Equilibrium 

In solving for an equilibrium, we first conjecture a particular equilibrium 
and then we characterize the investors' optimal policies and market clearing 
conditions under that conjectured equilibrium. Finally, we confirm that the 
conjectured equilibrium indeed exists. 

A. Conjecture of the Equilibrium 

In the current model, the distribution of future payoffs on the stock and 
private technologies is fully determined by 2, = [G,,Y1,,,Y2,,If. In general, 
investors do not have full information on 2, and need to rely on their own 
information in decision making. In seeking a linear, periodic equilibrium, we 
conjecture a price function linear in the conditional expectations of both 
investors: 

where A, = [AiG, -Ail, -Ai2] (i = 1,2), de^fined on ?, is deterministic but 
time-dependent with periodicity T + N. Let Gt = E2.,[Gt] and Y~. ,= E2,,[Y1,,]. 
From equation (14), it follows that  



309 I'Yading and Returns under Periodic Market Closures 

B. Characterization of the Equilibrium 

To characterize the equilibrium, we take the price function, equation (15), 
as given and derive each investor's expectations and policies and conditions 
for market clearing. 

B.1. Conditional Expectations 

Investor i receives a vector of signals S,,,: S,,,= [U,; D,; Pt;G,;Yl,,;Y2,,;ql,,] 
andS,,, = [Ut;D,;Pt;Y2,,;q,,,]. Thus,Z,,, = {S,,,:O5 s  5 t ] .SinceZ, andS,,, 
are jointly Gaussian, the distribution of Z, conditioned on {S,,, : 0 5 s 5 t ]  is 
Gaussian, fully characterized by its mean and variance. Let Zi,, = E,,,[Z,] 
and o,(t) = E,,, [(Z, - Z,,,)(Z, - Z,,,)'] denote investor i's conditional mean 
and variance of Z,, respectively. We have the following lemma. 

LEMMA1: Given equation (3), S,,,, and equation (151,2, is a Gaussian process 
under Xi,,, i = 1,2. That is, Ys ,  s,, . . ., s,, (zO), {ZS1,. . . ,ZS,}has a Gaussian 
distribution conditioned on Xi,,. Furthermore, Zit and o,(t) are governed by 

where k, and g,,, are deterministic, given in Appendix B. In particular, o, 
evolves deterministically over time. 

Given the solution to Z,,, in Lemma 1, the next result is immediate: 

LEMMA = E,,,[Y,], i = 1,2. Y,,, is a sufficient 2: Let Yt [Zl,,;Z2,,]and Ti,,= 

statistic for Z,,,, following a Gaussian Markou process under Z,,,, and Yt is a 
set of sufficient statistics for Z,,, and Z,,,, following a Gaussian Markou pro- 
cess under Z, as well as under Ti,,. 

Lemma 2 verifies the two assumptions in Section I1 about the investors' 
information sets in a linear equilibrium. We can define Yt = [Z,,,;Z,,,] to be 
the state vector. 

Lemmas 1and 2 apply under the conjectured linear price function, equa- 
tion (14), even when the lengths of the day and night change through time. 
For our purpose, the lengths of the day and night are assumed to be con- 
stant and we seek a periodic solution to the investors' expectations, which 
requires that 
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B.2. Optimal Policies 

For future convenience, we define Xt = [l,Y,,, ,Y,,, ,G, - G,,Y,,, - Y,.,]' as 
a subvector of the state variables and let Xi,, = E,,,[X,] denote investor i's 
conditional expectation ofXt. The price function in equation (15) can then be 
rewritten as follows: 

where A = [h,,h,,h,,l/(r + a,) - h,,O], Fi.t= E+[Ft], A,  = A, and A, = 

[Ao,A,,  h,,0,0] .I4 From Lemma 1,Xi., follows a Gaussian Markov process 
under Xi., and we have 

and 

where i = 1,2,  ai,x,ki,,, a,,@,bi,Q are given in Appendix B. 
With equations (19) and (20), investor i's control problem as defined in 

equation (9) can be solved explicitly. The following lemma summarizes the 
result: 

LEMMA3: Given the price function of equation (18) and the solution to inues- 
tors'expectations of equations (16) and (171, investor i's value function has 
the form 

where i = 1,2, k = 0,1, ..., W,'2, t = Wiyt + fli,lz,Fi,t, X "  7,t = [Xi,t;O1,lz,*],vi is a 
symmetric matrix, given by 

l4 Equation (15) can be r e ~ r i t t e n ~ a s  P, = (A,,  + A,,)?, - A, - (A,, ^+ A,,)Y,,, - (A,, + 
Azz)Yz.,- AzG(Gt- 6,)+ A,,(Y,., - Y,,,). Since A,,(G, - G,) = A,,(Y,,, Y,,,) for t E ?; there-

is no loss of generality in eliminating (Y,,, - Y,,,) from the price function (by redefining A,,j. 
No arbitrage requires that A,, + A,, = 1/( r  + a,). We then obtain the form in equation (18) 
wit11 A, = A,, + A,,, A, = A,, + A,,, and A, = A,,. 
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and 

with g,, ,  being deterministic, given in Appendix B. His optimal policies are 

where h ,,,, h ,,,y, hi are functions of A,, o,, vi, given in Appendix B 

Investors' optimal investment policies, Oi, t  and y,,, (i = 1,2), are both linear 
functions of Xi,,.  During the day, the stock market is open; investors can 
freely trade the stock and adjust their private investments. During the night, 
the stock market is closed and investors hold their closing stock positions 
from the previous day, which is Oi,,z, for t E (n,, t,,,). Investor i's investment 
in his private technology and consumption not only depend on Xi,,, but also 
depend on 

Given A and the resulting oi, Lemma 3 expresses investor i's optimal pol- 
icies as functions of v;, which is solved from equation (22), a (vector-form) 
first-order ordinary differential equation (ODE), with boundary condition 
(23). 

B.3. Market Clearing 

In equilibrium, the stock market clears. From Lemma 3, the market clear- 
ing condition requires 

where T = [[hl,O,O,O,O]; [O, hl,O, -AG,()]; [0,0, hl,O,O]]. The periodic condition 
further requires that, for k = 0,1,2,.. . , 
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Given hi,,  ( i  = 1,2), equation (25) defines a first-order ODE for A (see Ap- 
pendix C) and equation (26) defines the boundary condition. 

C. Existence and Computation of  the Equilibrium 

Lemmas 1, 2, and 3 specify the investors' expectations and optimal poli- 
cies and the stock market clearing condition in a linear, periodic equilibrium 
of the form in equation (14) or equivalently equation (15). Solving such an 
equilibrium now reduces to solving equations (16b), (22), and (25), a system 
of first-order ODES for o,, o,, v,, v,, and A, subject to periodicity conditions 
(17), (23), and (26). 

The solution of an ODE system depends on the boundary condition. In the 
case of the familiar initial-value problem, the boundary condition is simply 
the initial value of the system. I t  seeks a solution given its value a t  a fixed 
point in time. Our problem, however, has a different boundary condition. We 
need to find particular initial values oi(th), vi(tk) (i = 1,2), and A(t,) such 
that equations (17), (23), and (26) hold. This is known as a two-point bound- 
ary value problem, which seeks a solution of the system with its values a t  
two given points in time satisfying a particular condition. 

The following theorem states the result on the existence of a solution to 
the given system, which gives a linear, periodic equilibrium of the economy. 

THEOREM1: For w close to one, a linear, periodic equilibrium exists (generi- 
cally), i n  which the stock price has the form in  equation (151, the investors' 
expectations are given by equations (16a) and (16b), and the inuestors'poli- 
cies are given by equation (24).l5 

The proof of Theorem 1is given in Appendix C. 
In general, the actual values of oi ,  vi ( i  = 1,2), and A, can only be solved 

numerically. In solving the system, we always start  with the solution at  w = 

1and then obtain solutions for values of w close to one. Iteratively, we arrive 
at  the solutions for desired values of w. (The method for numerical solutions 
is discussed in more detail in Appendix E.) 

IV. The Case of Symmetric Information 

We first analyze the equilibrium in the case of symmetric information when 
Ti,, = Z, 'dt  r 0 and i = 1,2; all investors have perfect information about the 
economy and trade only for hedging reasons. This case can be obtained from 
the general model by letting U, =Z, ,  a ,  = [[I, 0,0]; [O, 1,0]; [O, 0, I]], and b ,  = 0. 

l5 We assume that the investor's initial information given by U, is consistent with what the 
periodic equilibrium requires. Here, the condition that w is close to one arises from the specific 
approach we use in the proof as opposed to economic reasons (see Appendix C). Our proof relies 
on a continuity argument. It  is first shown that a t  w = 1, a solution to the given system exists. 
Since the system is snlooth with respect to w ,  i t  is then shown that a solution also exists for w 

close to one. The proof itself, however, does not specify the required range of w.  
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G,, Y,,,, and Y,,, then become public information. Studying the case of sym- 
metric information allows us to examine how closures affect investors' hedg- 
ing trade and the resulting trading and return patterns. 

A. Equilibrium under Symmetric  Information 

From the general solution of the equilibrium in Section 111, the stock price 
under symmetric information is 

It is given by the value of expected future dividends (F,)minus a risk dis- 
count ( A o  + X i  AiY,,,). The risk discount consists of two parts: (a) an uncon- 
ditional part (A,) that is independent of the returns on the alternative private 
investments and (b) a conditional part that depends on the expected returns 
on the private investments. The unconditional part derives primarily from 
the uncertainty in future dividends.16 The conditional part of the risk dis- 
count depends on the correlation between the returns on the stock and the 
private technologies, K,,. When the expected return on investor i's private 
technology is high, he wants to increase his investment in private technol- 
ogy. If the return on private technology is uncorrelated with the return on 
the stock (K,, = 0), he can finance the additional private investment solely 
via borrowing at the risk-free rate and his holdings of the stock do not change. 
If there is positive correlation (K,, > O), however, some of the stock is sold 
to control the risk of his overall portfolio of risky assets, or if there is neg- 
ative correlation (K,, < 0), more stock is purchased (financed by borrowing). 
Thus, except when K,, = 0, holding the stock price fixed, changes in the 
expected return on private technologies affect the optimal holdings of the 
stock. In equilibrium, the price of the stock must change in order to induce 
other investors to hold amounts of the stock that clear the market. When 
KDq > 0 (< O), the stock price is lower (higher) for higher expected returns on 
private technologies; when K,, = 0, stock prices are unaffected by the ex- 
pected returns on private technologies. 

l6 From equation (I),the stock's future dividends can be decomposed into two components: a 
riskless component determined by current G, and a risky component independent of G, with 
zero mean. In particular, V t  2 s 2 0,  G, = ~ - " G ( ~ - " ) G ,  and+ J~e-""( ' -")bGdw,  

The first term gives the deterministic component in future dividends and the second term gives 
the risky component, which has zero mean conditioned on the information at  s. The present 
value of the riskless component is F,. The present value of the risky component is A , .  In other 
words, A, gives the risk premium associated with the risky component of dividends. 
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Investor i's stock position during the day is given by 

As an example, we consider investor 1's stock position, O,,,, which consists of 
three components. The first component hi:; gives his unconditional stock 
position. The second component hi? Y ~ , ,arises from his hedging trade as he 
adjusts his stock position to hedge the risk of his private investments. The 
third component hf i  Y,,, arises from his market-making activity. As class 2 
investors trade the stock to hedge the risk of their private investments, the 
price adjusts to induce class 1investors to take the opposite position, lead- 
ing to the third component in his stock position (which is proportional to 
Y,,,). So, hi:; and h$ characterize the intensity of investor 17s hedging and 
market-making activities in equilibrium, respectively.17 

B. Time Variation in Trading and Returns 

We now examine how market closures give rise to time variation in in- 
vestors' hedging trade and the resulting stock price. The intensity of inves- 
tors' hedging trade depends on its cost and benefit. In particular, the lack of 
overnight trading opportunities increases the risk of overnight stock posi- 
tions. The increase in hedging cost causes investors to decrease their over- 
night hedging positions at the close. In a continuous-time setting like ours, 
the low hedging position desired at the close need not affect investors' hedg- 
ing trade during the day. They can hedge actively throughout the day and 
reduce their hedging position discretely at the close, giving a discontinuity 
in h,,,= [h:PH), h$, h,j2d] at n, (k = 0,1,...). 

The low hedging demand at the close makes the market clearing price at  
the close to be less sensitive to private technological shocks and A, (i = 1,2) 
is lower than it would be if the market remained open. Moreover, the price 
at  the close also affects the prices prior to the close. Unlike investors' hedg- 
ing position, which goes through discrete changes at  the close, the market 
clearing price cannot change discretely. In our continuous-time setting, the 
information flow is continuous (the state variables follow continuous paths). 
Any discrete price change would be predictable and lead to arbitrage oppor- 

The above interpretation of an investor's stock holding is an oversimplification for ease of 
exposition. The economic forces behind each of the components (defined as part of the holding 
associated with a particular state variable) are more complicated. Take investor 1's hedging 
component as an example. It  originates from his hedging needs in response to technology shock 
Y,,,.As his cohort trades in the same direction, the expected return on the stock changes, which 
in turn affects his stock holding. Moreover, the stock return now becomes correlated with changes 
in expected returns on private investments and the stock itself, and investor 1 also uses the 
stock to hedge against these changes. The net dependence of his stock holding on hasY,,, 
contributions from all these channels. See Merton (1971, 1990) for general discussions of in- 
vestors' optimal asset demands when expected returns are stochastic. 
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tunities.18 Hence, hibeing lower at  the close also makes it lower before the 
close. Of course, the effect of the close diminishes as we move further away 
from the close. In short, closures cause discrete changes in investors' hedg- 
ing trade at the close, which generate smooth changes in the price over the 
day. 

B.1. Special Case 1: Homogeneous Investors 

In order to develop more intuition about the model, we first consider a 
special case in which investors are homogeneous. We establish the simple 
result that in the absence of any need to trade among investors, closures 
generate no time variation in prices. 

Let a, = a,, K,, = 1, and Y,,, = Y,,,. Thus, Y,,, = Y,,, 'dt 2 0, which we 
denote by the common process Yt with volatility a,. The two classes of in- 
vestors then face the same investment opportunities, both public and pri- 
vate. In this case, all investors become identical, the market is effectively 
complete, and the equilibrium is simple. 

PROPOSITION = a, and K,, = 1, the economy has a unique 1: When a, = a, 
linear, periodic equilibrium. The equilibrium stock price is 

where 

-2 2 CDKDq
ho  = y ( ~ ;+ a$ + h";) - hoo+ yh  a, and h = 

aq(r+ a y  + a;v) 

with 5; = $(I - and u = (l/2a:)[-(r~ 2 ~ )  + 2ay) + d(r  + 2aY), + 4a;/az]. 

Proofs of the propositions are given in Appendix D. 
Clearly, ho 2 0 and X 2 0 (assuming KDq 0). The equilibrium price func- 

tion is now independent of T and N. Being identical, all investors hold equal 
shares of the market (day or night) and there is no trading. How the market 
closes and opens has no effect on investors' investment-consumption deci- 
sions and the stock price function. 

Certain properties of the equilibrium are useful in future discussions, 
especially how it depends on the uncertainty in private investment oppor- 
tunities. First, ay gives the volatility of investors' private investment op- 
portunities. With correlated payoffs, more volatile private investments make 

See, for example, Huang (1985) for a discussion of general conditions under which asset 
prices must follow diffusion processes. Although Huang's results are derived for the case of 
complete markets, extending them to the case of incomplete markets as ours is intuitively 
straightforward. 
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the stock riskier, leading to a higher (unconditional) risk discount on the 
stock. In particular, for a, = 0 (constant private investment opportunities), 
Xoo = y(@; + as) gives the risk discount, which is proportional to the 
aggregate risk-aversion and the total risk of the stock.19 For a, > 0, h, is 
greater than A,,. The difference, yh";, gives the extra premium associ- 
ated with stochastic private investments, which increases with a;. More-
over, as the stock becomes riskier, investors reduce the level of their private 
investments (for a given expected return). As a result, shocks to their pri- 
vate investment opportunities have less impact on the stock price, leading 
to a smaller h. Additionally, a ,  determines the persistence in private tech- 
nological shocks. For more transitory shocks (larger a,), they have less 
effect on the risk of the stock. Thus, both ho and h become smaller for 
larger a,. 

B.2. Special Case 2: Heterogeneous Investors 
and Permanent Market Closure 

Next, we consider another special case in which investors are heteroge- 
neous in their private investments and there are gains from trade, but there 
is no aggregate uncertainty in private investment opportunities. This case 
allows us to analyze in closed form the discrete changes in investors' hedg- 
ing position at the close and the resulting time-variation in stock price. 

In particular, we let w = 1/2, a, = a,, K,, = -1, and Y,,, = Y,,,. Then, 
Y,,, = -Y2,, and shocks to individual investors' private technologies cancel 
with each other at  the aggregate level, leaving no aggregate uncertainty 
about private investment opportunities. Moreover, we let T be finite and 
N = oo. The stock market opens during [O,T] and then closes permanently 
thereafter. The result is stated in Proposition 2. 

PROPOSITION = 1/2, al = a, = a,, KI, = -1, Yl,O= Y2,0,and2: When w 
N = oo, the economy has a unique linear equilibrium. The equilibrium stock 
price is 

with ho = hoo + (h, - hoo)e-"'?'-t', and the investors' stock holdings are 

where h - - K ~ ~ v ~ / ( ? " c T ~ ~ ~ ) ,  ho, and h are defined in  0 < h/hO < / h iand A,,, 
Proposition 1. 

At zero expected excess returns, the private technologies attract negative investments 
because investors use them to hedge the risk of their stock investments. As a result, the total 
risk of the stock becomes 5: + m$ instead of m j  + m;. 
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Facing different private technologies, investors trade in the stock market to 
hedge the risk of their private investments. Since the risk exposures of the 
two classes of investors are perfectly negatively correlated, so are their hedg- 
ing needs. Consequently, their hedging trade does not move the stock price. 

When the stock market closes, the economy enters autarchy and investors 
can no longer mutually insure the risk from their private investments. Sim- 
ilar to the case of homogeneous investors, each investor's shadow price of the 
stock covaries with his private investment opportunity. The additional vol- 
atility in the (shadow) price makes the stock riskier for each investor when 
the market closes. In particular, the risk discount reaches h, at  the close, its 
value under no trading.20 Right before the close, the market is open and 
investors can trade the stock to mutually insure the risk from their private 
investments. However, the price of the stock cannot drop to its correspond- 
ing level in the case of the market being permanently open. As discussed 
earlier, such a discrete change in price is ruled out by arbitrage arguments. 
It  can only decrease gradually as we move further away from the closure. 
Far before the closure, that is, t T (assuming T >> l /r) ,  the economy is 
close to the case of the market being permanently open. The risk discount on 
the stock is close to its value when a, = 0: A, .= A,,. As t approaches T (from 
the left), A, approaches h, from h,,. 

Proposition 2 explicitly shows how investors change their stock positions 
discretely at  T. Before market closure, investors trade in the same fashion 
as in the case of the market being permanently open. In addition to their fair 
share of the market (one share per capita), the two classes of investors take 
on opposite stock positions to hedge the risk from their private investments. 
Their trading behavior is not at  all affected by the approaching closure. At 
the closure, however, they discontinuously cut back their hedging positions 
to avoid the high risk of overnight positions. Note that j h / increases with a, 
(since A, decreases with a,). Thus, for more transitory private technological 
shocks, investors take larger hedging positions during the day but make 
larger cuts at  the close. 

B.3. The General Case 

We now turn to the general case. The intuition from the special cases gives 
the following picture. Market closures give rise to time variation in investors' 
hedging trade. In particular, they discretely reduce their hedging positions at  
the close. As a result, the stock price is on average lower and less sensitive to 
investors' private technology shocks around the close than at the open. 

In the following discussions, we use numerical examples to illustrate the 
predictions of the model. We choose "reasonable" parameter values. For ex- 
ample, the daily interest rate is set at  0.1 percent, the daily volatility of 

20 When Y,,= 0, for example, B,,, = 1, and (from Proposition 1)investor i's shadow price of 
the stock is PI;, = F, - X, - XY,, for t > T. At the closure point, the market price equals the 
shadow prices, which is F, - A,. Thus, P,. = F, X,. For arbitrary values of Y,,,, the intuition -

is the same. 
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share returns at  0.135, and the daily excess share return at  0.01.21 For the 
remaining degrees of freedom, the choice for the parameter values is quite 
arbitrary since the qualitative features of the results are not sensitive to the 
particular values. In particular, we have set a, = a, and w = 1/2 to maintain 
certain symmetry between the two classes of investors. Given that the equi- 
librium is periodic, in all our illustrations we only present the patterns dur- 
ing a single trading period. The opening and closing points are T = 0 and T = 

T = 0.5, respectively. For easy comparison in our numerical illustrations 
throughout the paper, we use the following values for the other parameters 
as a benchmark: y = 1000, a, = a, = 0.08, a, = 0.5, a ,  = 0.25, a, = a, = 7, 
KD, = 0.5, and K,, = 0. 

Figure 2, Panel A, plots the intraday patterns of A,  and A ,  = A ,  = h (due 
to symmetry between the two classes of investors). Clearly, A,  increases dur- 
ing the day, indicating a decreasing price over the day. The lower price at  the 
close reflects the increase in risk to hold the stock overnight. h decreases 
during the day. Hence, the price is least sensitive to the investors' techno- 
logical shocks at  the close as they reduce their hedging trade. 

The investors' intraday holdings of the stock are similar to those in the 
case of permanent market closure considered above. The symmetry between 
the two classes of investors implies hi:; = 2 , ~  -hi:; = -ha::. Figure 2, h(,' = 

Panel B, plots h = hi:; over a trading day. At the beginning of the day, 
investors actively trade the stock to hedge the risk of their private invest- 
ments and the value of h is high. At the end of the day, they drastically re- 
duce their hedging trade and h drops discretely, as denoted by a circle a t  
.r = 0.5. The value of h maintains more or less the same level after the opening 
because the effect of closure is not significant. As the closing point approaches, 
investors start to adjust their positions, but not necessarily in the same di- 
rection as their closing trades. As we have seen in the case of permanent clo- 
sure (Section IV.B.2), investors can always wait until the close to establish their 
overnight position. Their trades before the close are affected by several fac- 
tors. To fix ideas, let us focus on investor 1. Suppose that Y,,, > 0 and he is 
selling the stock to hedge. On the one hand, the expected decrease of h as the 
closure approaches gives rise to expected price appreciation. Thus, the cost of 
selling the stock to hedge increases, which tends to make investors hedge less. 
On the other hand, the lower level of A itself reduces the cost of selling stock 
to hedge and the decrease in price volatility makes the stock a more attractive 
hedging vehicle, which tends to make investors hedge more. (Additional dy- 
namic effects are discussed in footnote 17.) 

From the intraday stock price, we can calculate the mean and the variance 
of instantaneous stock returns. Figure 2, Panel C, shows that the mean ex- 
cess share return e is decreasing during the day. Since the variability in the 
underlying state variables is constant over time, the iutraday variability of 

Since we use share returns in this paper, one should be careful in relating the return 
numbers here to the observed numbers on the rate of return (which is the return on one dollar 
instead of one share). We have not tried to calibrate the model to actual data, but it is possible 
(see, e.g., Campbell and Kyle (1993)). 
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Figure 2. Intraday patterns of the stock price, holdings, and returns under symmetric 
information. The figures plot the time variation as follows: Panel A, the risk premium, A,, and 
the sensitivity of the stock price to private technology shocks, A,; Panel B, the sensitivity of 
stock positions to private technology shocks, I L ;  Panel C, the instantaneous mean excess share 
return on the stock, e; and Panel D, the return volatility U Q ,in the case of symmetric infor- 
mation. In Panel A the dashed line is A, - h,, (h,, is the risk discount with constant private 
investment opportunities) and its values are on the left y-axis while the solid line is A and its 
values are on the right y-axis. In Panel B the value of h at  the close is marked by a circle. The 
parameters are set a t  the following values: T = 0.5, N = 0.5, w = 0.5, y = 1000, r = 0.001, u~= 

0 . 0 8 , ~ ~= 0 . 8 5 , ~ ~= 0 . 0 8 , ~ ~  K,,= 0 . 5 , a y =  0 . 2 5 , ~ , = a , =  7 ,  ~ , ,=0 .5 ,  = 0.  

the stock returns is determined purely by A, the sensitivity of price to tech- 
nological shocks. As A decreases during the day (see Panel A), the instanta- 
neous price volatility also decreases during the day as Figure 2, Panel D, 
shows. 

Given the reduction in investors' stock positions at  the close, the trading 
activity at  the close is abnormally high. Also, the information accumulation 
during the night gives rise to active trading at the open. Thus, abnormally 
high trading activities at  the open and the close are the simple outcomes of 
periodic market closures in our model. 
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Figure 2 illustrates the nature of the equilibrium using the benchmark 
parameter values. We now briefly discuss how the equilibrium changes as 
we change the values of different parameters. For a wide range of parameter 
values we have explored, the qualitative features of the equilibrium are the 
same as those shown in Figure 2. The quantitative features of course change 
with parameter values. A parameter of particular interest is a,. As dis- 
cussed in the two special cases, a larger a ,  gives more transitory shocks to 
private technologies, which lead to a higher level of hedging trade in the day 
and a larger drop a t  the close. As a result, a larger a ,  leads to more time 
variation in the stock price. In particular, A,  increases more and h decreases 
more before the close. Other parameters can change the quantitative feature 
of the equilibrium as well. For example, when a ,  decreases, fluctuations in 
dividend growth become more persistent and the stock becomes riskier. As a 
result, the level of hedging decreases and so does A. Moreover, the decrease 
in hedging positions a t  the close becomes larger, leading to more time vari- 
ation in the stock price during the trading periods. The effect of varying a, 
can be analyzed similarly. For brevity, we omit these results here. 

C. Discrete Simple Returns 

We now consider the discrete returns as defined in equation (8). In par- 
ticular, the simple share returns from open to open, close to close, open to 
close, and close to open are given by Roo = Rtli,tli+l,R CC -

- R,z12,,z12+l, =R O C  

Rt,+l,n12+l, = R,,,,t,+l, respectively. and RCO 
Given that A, is a periodic function of time on I, the expected simple 

return over a calendar day must be zero.22 Since the stock price is lower a t  
the close than at  the open, that  is, A,(O) < h,(T),  the expected return over 
the day is lower than the expected return over the night. 

PROPOSITION3. EIRoO]= E [RCC] = 0. For A,(O) < h,(T), E [Roc]5 0 % E [RCO]. 

Furthermore, h(0) > h ( T ) implies that  the stock price is more sensitive to 
the technological shocks a t  the open than a t  the close. Thus the open-to-open 
returns are more volatile than the close-to-close returns.23 Also, since the 
stock price linearly depends on the underlying state variables, the open-to- 
close returns and the close-to-open returns have the same volatility. Note 
that there is continuous trading from open to close but there is no trading 

22 In this paper, we have assumed that the stock dividend follows a stationary process and 
has a zero unconditional mean. Consequently, its price also follows a periodic-stationary pro- 
cess. Thus, simple returns over any number of calendar days have a zero unconditional mean. 
We can have a nonzero unconditional mean by adding a (constant) positive trend to the divi- 
dend process. The zero trend is assumed in the paper merely for simplicity. It  is also worth 
pointing out that, conditionally, the return over a calendar day may be positive or negative, 
depending on the value of G, at  the beginning of the day. 

23 The difference in the volatility of open-to-open and close-to-close returns also implies cer- 
tain patterns in autocorrelation in returns. See Amihud and Mendelson (1987) for a discussion 
on this relation and the empirical evidence. 
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Table I 


Discrete Stock Returns under Symmetric Information 

This table reports the unconditional mean and variance of various discrete returns produced by 
the model under symmetric information. R,,, R,,, Roc,and R,,, denote, respectively, the simple 
stock returns from a market open to the next open, from a market close to the next close, from 
a market open to the next close, and from a market close to the next open. The parameters are 
set a t  the following values: T - 0.5, N = 0.5, o = 0.5, y = 1000, r = 0.001, u, = 0.08, aG = 0.85, 
u G = 0 . 0 8 , u q = 0 . 5 , a , = 0 . 2 5 , u , = ~ , = 7 , ~ , , = 0 . 5 , ~ , , = 0 .  

Returns Mean ( X  lo-") Variance 

from close to open. This result suggests that under symmetric information, 
the volatility of discrete simple returns over a given period does not depend 
on whether or not there is trading within the period per se. 

PROPOSITION = =4. For h(0)> h ( T ) ,var[Roo]> var[RR]. For T N, var[RO"] 
var[RC0]. 

Table I reports the means and variances of discrete simple returns for the 
benchmark parameters used in Figure 2. Clearly, the mean return over mar- 
ket open is negative, the mean return over market close is positive, and the 
return volatility is the same over market close as over market open. 

To summarize, we have shown in this section that  investors reduce their 
hedging trade a t  the close, leading to time-variation in prices and returns. 
In particular, both the mean and volatility of stock returns decrease mono- 
tonically over the trading periods. The stock price also decreases during the 
trading periods, yielding higher returns over nontrading periods. The return 
volatility is the same for the periods of market open and the periods of mar- 
ket close. All these results are inconsistent with the empirical patterns.24 
However, the open-to-open return is more volatile than the close-to-close 
return and trading activity is high a t  the close and open, which are consis- 
tent with the empirical findings. 

V. The Case of Asymmetric Information 

The existence of asymmetric information changes the time-variation of 
stock returns. In this section, we show that under asymmetric information, 
periodic market closures can generate a rich set of return patterns, includ- 
ing those consistent with the empirical findings. 

24 Kleidon and Werner (1996), and Chan et al. (1996) have found that intraday return vol- 
atility can decrease monotonically for stocks cross-listed on the exchanges in London, New York, 
and Tokyo. This would be consistent with our model, assuming that those stocks are often large 
stocks and their trading is driven mostly by allocational reasons. 
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A. Equilibrium under Asymmetric Information 

For simplicity, throughout this section we let a, = 0 and b ,  = 0. Thus, the 
public signal after time 0 reveals no information. Class 1investors now have 
full information about the economy, while class 2 investors only have partial 
information. Thus, in this section we also refer to class 1 investors as the 
informed investors and class 2 investors as the uninformed investors. 

The general solution of equilibrium in Section I11 gives the following stock 
price: 

In the absence of informed investors, the stock price takes the form P, = F, -
A, - h,Y,,,, where F, gives the value of expected future payoffs as perceived 
by the uninformed investors and A, + A2Y2,, gives the risk discount. In the 
presence of the informed investors, they make speculative trades based on 
their private information-for example, when the uninformed investors un- 
derestimate the dividend growth, G, - G, > 0, and the informed investors 
purchase the stock in expectation of future appreciation in the value of the 
stock, thereby driving up its current price. This gives the term AG(Gt - G,) 
in the stock price where hG > 0. Additionally, the informed investors7 hedg- 
ing activities give the term A,Yl,, in the risk d i~count .~"  

From Lemma 3, investors7 optimal stock holdings are as follows: 

As in the case of symmetric information, the first three terms in both the 
informed and uninformed investor's stock position correspond to, respec- 
tively, the unconditional, hedging, and market-making components of his 
stock position. For an  informed investor (investor I) ,  however, the additional 
term, hi : i (~ ,  - G,), corresponds to his speculative trade, which is propor- 
tional to G, - G, (the difference between the true dividend growth and the 
uninformed investors7 estimate). The coefficient hi:; characterizes the inten- 
sity of the informed investors7 speculative trading. For an  uninformed inves- 
tor (investor 2), he cannot perfectly identify the informed investors7 trading 
motives. His market-making trade is based only on his expectation about the 

'"nother way to interpret the stock price is to rewrite it as Pt = AGGt+ [ l / ( r+ a,) - h , ] ~ ,-
(A, + A,Y,,, + A,Y,,,). The first two terms then reflect, respectively, how the expectations of in- 
formed and uninformed investors on future stock payoffs affect the stock price. In particular, we 
expect 0 < A, < l / ( r+a,). Since the uninformed investors'expectation of the true dividend growth 
comes from regressing the realized dividends, it is less sensitive to the true growth. 
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informed investors7 hedging needs, which depends on Y,,, instead of Y,,,. 
Part  of his market-making trade actually corresponds to the speculative trade 
of the informed investors, who are on the opposite sides of the trade. 

As the market closes and reopens, the endogenous flow of information in 
the economy also changes and so does the degree of information asymmetry 
among investors. This time-variation in information asymmetry leads to rich 
patterns in stock returns. In what follows, we first analyze the time varia- 
tion in information asymmetry generated by market closures and then ex- 
amine the resulting return patterns. 

B. Time Variation i n  Information Asymmetry 

During the closure, market prices cease to provide information to the un- 
informed investors. As the informed investors continue to receive new pri- 
vate information, the information asymmetry between the two classes of 
investors increases over the night. At the open, trading resumes. The open- 
ing price partially reveals the private information of the informed investors 
accumulated over the closure, causing the level of information asymmetry to 
drop discretely. As trading continues during the day, more private informa- 
tion is revealed through the prices, and the level of information asymmetry 
may continue to decrease. At the close, two additional forces come into play. 
On the one hand, the informed investors cut back their hedging positions, 
which also unveils their speculative positions and their private information. 
This tends to speed the decrease in information asymmetry a t  the close. On 
the other hand, the informed investors also cut back their speculative posi- 
tions due to the high risk over the closure. The reduction in speculative 
trade makes the stock price less revealing about existing private informa- 
tion. This tends to increase the information asymmetry a t  the close. The 
interaction between these two forces determines the time variation in infor- 
mation asymmetry around the close.26 

We define the uninformed investors7 conditional standard deviation of the 
dividend growth, S = {E,,,[(G, G , ) ~ ] ) ~ ' ~ ,- as a measure of information asym- 
metry between the two classes of investors. The level and the time variation 
of information asymmetry depend on several factors, in particular on the 
nature of the G, process and Y,,, process, each characterized by its instan- 
taneous volatility and mean-reversion coefficients (a,, a~ and cry, a,, re-
spectively), and the length of closure N. 

Figure 3, Panel A, plots the time path of S through the course of a calendar 
day for different values of cr, (the other parameters are set a t  the bench- 
mark values, except that the fraction of class 1 investors is now w = 0.05 
instead of 0.5). The time interval (-0.5,O) corresponds to the night and [0,0.5] 
corresponds to the following day. When c r ~= 0, the dividend growth is con- 

''The behavior of the equilibrium near the close depends on the competitive assumption, 
under which the informed investors revise their hedging positions without taking into account 
the fact that revisions also reveal their speculative positions. In a noncompetitive model, the 
informed investors would take into account the information impact of their hedging activities, 
and optimally trade off the benefits and costs of cutting back hedging positions at  the close. 
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Figure 3. Intraday patterns of information asymmetry. The figures plot the time varia- 
tion of information asymmetry, 6, for different values of: Panel A, the volatility of dividend 
growth rate, 17,; Panel B, the persistence of dividend growth rate, a,; Panel C, the persistence 
of private investment opportunities, a,; and Panel D ,  the length of the night. In Panel A, a ,  = 

0.85, a ,  = 0.25, and N = 0.5. In Panel B, a, = 0.08, a ,  = 0.25, and N = 0.5. In Panel C, crG = 

0.08, a ,  = 0.85, and N = 0.5. In Panel D, u, = 0.08, a ,  = 0.85, a ,  = 0.25. The other parameters 
are set at the following values: T = 0.5, w = 0.5, y = 1000, r = 0.001, cr, = 0.08, a;, = 0.5, cr, = 

u2= 7, K D ~= 0.5, K~~ = 0. 

stant and 6 = 0 'dt. As a, increases, the unconditional uncertainty of G,, 
given by E[Gf] = az/(2aG),  increases, and so does the overall level of 6. For 
a, > 0, 6 varies over time. Due to the periodicity of equilibrium, 6 takes the 
same value at  T = -0.5 and 0.5. Clearly, 6 increases during the night as the 
uninformed investors lose the market price as a source of information while 
the informed investors accumulate more private information. It drops dis- 
cretely as the market reopens and continues to decrease as trading contin- 
ues. Comparing the time path of 6 for different values of a, in Panel A 
further shows that for larger values of a,, 6 increases faster over the night, 
reflecting more accumulation of private information, and it drops more a t  
the open as the opening price reveals a larger amount of the private infor- 
mation accumulated over the night. 
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Fluctuations in G, (from its unconditional mean) have a half-life of l/a, 
and are more persistent for smaller values of a,. Figure 3, Panel B, illus- 
trates how the persistence of G, fluctuations changes the time pattern of 6. 
Higher persistence in G, fluctuations implies that (a) the unconditional un- 
certainty about G, is higher, (b) values of G, at  different times are more 
correlated, and (c) the private information of the informed investors on G, is 
longer-lived. The higher unconditional uncertainty tends to increase the over- 
all level of informational uncertainty. In particular, 6 increases faster during 
the night (as the market closes) and reaches a higher level right before the 
open. But, it goes through a larger drop at the open. As values of G, at  
different times become more correlated, the previous closing price contains 
more information about the value of G, at  the open. Combined with the 
previous closing price, the opening price reveals more information about the 
value of G,, leading to a larger decrease in 6 at the open. 

Although 6usually keeps decreasing as trading continues after the open, its 
behavior around the close depends on the half-life of the informed investors' 
private information on G,. For highly transitory G, fluctuations, the informed 
investors' private information (on G,) becomes very short-lived and its value 
dissipates fast over time. In particular, their private information on G, at  the 
close has little value in forecasting its value at  the next open and the expected 
payoff on overnight speculative positions is small. In this case, informed inves- 
tors would cut most oftheir speculative position at the close and the stock price 
then reflects little of their private information, causing 6 to increase as the clo- 
sure approaches. This effect from the reduction in their speculative trade is 
opposite to the effect from the reduction in their hedging trade, which causes 6 
to decrease faster before the close. The actual pattern of 6depends on which 
one ofthese two effects dominates.27As shown in Figure 3, Panel B, 6 decreases 
monotonically during the day and the decrease speeds up toward the close. How- 
ever, for very large values ofa, (not shown in the figure), the reduction of their 
speculative position at the close has a stronger effect; 6 decreases faster earlier 
in the day, slows down as the close approaches, and could even start to increase 
before the close (see Hong and Wang (1998) for more discussions). 

The degree of information asymmetry also depends on the nature of the Y,,, 
process, which drives the informed investors'hedging trades and gives rise to 
the "noise" in the price of the stock as a signal about its future payoffs. For larger 
values of v,,Y,,, becomes more volatile and the informed investors trade more 
for their hedging needs. More noise from their hedging trade leads to less in- 
formative prices about stock payoffs and a higher level of information asym- 
metry. The persistence in the informed investors'hedging needs, as measured 
by a,, determines the serial correlation in the noise. With low serial correla- 
tion in the noise, neighboring prices are close to independent signals (about 
G,), and they tend to reveal more of the informed investors' private informa- 
tion on G, .With high serial correlation in the noise, neighboring prices are more 

"There are also other indirect effects of changing a, on (5. For example, as a, decreases, F, = 

1/(r+a,)G, becomes more volatile (keeping other things the same). Thus, the stock becomes risk- 
ier as a hedging vehicle and the level of hedging decreases, and so does the level of 6. 
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correlated as signals, and they tend to reveal less information on G,. Thus, for 
larger values of a,, a sequence of market prices tends to be more informative 
about the true value of G,. Figure 3, Panel C, shows the time variation of 6 for 

Clearly, for larger values of a,, the drop in 6 at  the open 
is larger since the prices at  the open and previous close provide less-correlated 
signals about G,. The level of 6 during the day is also lower. Furthermore, for 
larger values of a,, investors cut more of their hedging positions at  the close 
because their hedging need is more transitory but the positions have to be held 
overnight. More reduction in informed investors hedging positions can reveal 
more of their private information about stock payoffs. Thus, 6 decreases faster 
toward the end of the day for larger values of a,. 

Another important parameter in determining the time variation of infor- 
mation asymmetry is N, the length of the night. As we increase the length of 
the night, it  has three effects. First, a longer night allows more overnight 
accumulation of private information. Thus, we may see a higher level of 
information asymmetry a t  the open than later in the day, giving rise to more 
time variation in the day. Next, a longer night makes overnight hedging 
positions riskier. As the informed investors cut their hedging positions at  
the close, prices become more informative about their speculative trade and 
private information, causing the information asymmetry to decrease faster 
a t  the close. Third, a longer night also makes overnight speculative positions 
riskier. It further reduces the expected gains since the private information 
a t  the close becomes less valuable in predicting the next opening price (the 
same effect as shortening the half-life of private information). Thus, the 
informed investors speculate less with overnight positions, which tends to 
increase the information asymmetry as the close approaches. Figure 3, Panel 
D, shows the time variation of 6 for different values of N. 

In the above discussion, we have focused mainly on the absolute level and 
the time variation of information asymmetry over time. We now want to 
compare the level of information asymmetry under periodic market closures 
(N  is finite) with its level in absence of any closures ( N  = 0). In the current 
model, the uninformed investors rely on market prices to extract informa- 
tion about the true dividend growth. When the stock market closes, they 
lose this important source of information. As a result, we would expect the 
level of information asymmetry to be higher when the market is closed more 
often. This, however, is only part of the story. As discussed earlier, market 
closures tend to reduce investors' hedging trade (especially a t  the close) and 
the "noise" in the price it generates. Consequently, prices become more in- 
formative about future payoffs, and the overall level of information asym- 
metry may decrease when the market is closed more often. In other words, 
closing the market periodically can actually make the prices more informa- 
tive and reduce the information asymmetry about future payoffs. Figure 4 
shows that for some parameter values the level of 6 with periodic closures 
(when N # 0) can indeed lie uniformly below its level without closures (when 
N = 0). This result stands in contrast to those from models of noisy rational- 
expectations equilibrium in which allocational trading is exogenously spec- 
ified, independent from market closures (see, e.g., Slezak (1994)). 
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Figure 4. Intraday patterns of information asymmetry relative to its level in absence 
of closures. The figures plot the time variation of information asymmetry, 6, relatlve to its 
level In absence of closures (N = O), for different values of the length of the night, N In Panel 
R the dashed line IS for N = 0, the solld llne lor N = 0 5 ,  and the dotted line for N = 1 The other 
parameters are set a t  the following valucs ?' = 0 5, w = 0 05, y - 1000, r = 0 001, C T ~ )  0 08, 
a<,= 1,u~ = 0 025, crcI = 0 5, a y  = 0 25, (rl crz = 7, tiDq = 0 5, tila = 0 

C. R m e  Variation in  Trading and Returns 

We now examine the effect of time-varying information asymmetry on equi- 
librium prices, trading strategies, and return distributions. We first illus- 
trate the nature of this effect using a particular set of parameter values and 
then examine the results for other parameter values. 

C.1. Stock Price Coefficients 

Figure 5 illustrates the time pattern of price coefficients A,, A,, A,, and 
A, for the benchmark parameters. The coefficient A, gives the mean risk 
discount of the stock. After the open, more private information is revealed 
through trading; hence the uninformed investors' uncertainty about the 
stock's future payoffs decreases. In equilibrium, a lower risk discount is 
required, and A, decreases after the market opens. Near the close, the risk 
discount decreases faster due to faster information revelation as the in- 
formed investors reduce their hedging trade (see Figure 3). A, decreases 
during the day as in the case of symmetric information, reflecting the 
anticipated reduction in the informed investors' hedging positions a t  the 
close. A, now exhibits a U-shaped pattern. A, reflects the impact of 
the informed investors' speculative trade on the equilibrium price. I t  in- 
creases monotonically during the day, indicating that the stock price is 
more informative about the dividend growth at  the end of the day than at  
the beginning. 
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Figure 5. Intraday patterns of the stock price under asymmetric information. The 
figures plot the time variation of the risk premium, A,, and the sensitivities of the stock price 
to changes in the private technologies of class 1and class 2 investors, and the dividend growth 
rate, A,, A,, and A,, respectively. The parameters are set a t  the following values: T = 0.5, N = 

0.5, w = 0.5, y = 1000, 7. = 0.001, c, = 0.08, a ,  = 0.85, rr, = 0.08, rr, = 0.5, a ,  = 0.25, rr, = 

rr, = 7, K , ~  = 0.5, K ~ ,= 0. 

C.2. Investors' Trading Strategies 

In order to better understand the time variation in price, let us now ex- 
amine the investors' trading behavior in equilibrium. For brevity, we focus 
on the informed investors. The trading behavior of the uninformed investors 
in equilibrium can be inferred from the market clearing condition of equa- 
tion (25). 

Figure 6 illustrates the different components of the informed investors' 
stock holdings, again for the benchmark parameters. Panel A gives an  in- 
formed investor's mean stock position in excess of his market share. Since 
the informed investors have better information about the dividend growth 
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Figure 6. Intraday patterns of an informed investor's stock holding under asymmet- 
ric information. The figures plot the time variation of an informed investor's mean stock 
holding hi:; and the sensitivities of his holding to changes in the private investment opportu- 
nities of class 1and class 2 investors, and the dividend growth-rate, hit;, h?; and h:", respec-
tively. Their values a t  the close (7 = T) are indicated by circles. The parameters are set a t  the 
following values: T = 0.5, N = 0.5, w = 0.5, y = 1000, r = 0.001, tr, = 0.08, a, = 0.85, cr, = 0.08, 
cr, = 0.5, a y  = 0.25, rr, = c, = 7,K,, = 0.5, K,, = 0. 

than the uninformed investors, they perceive lower risk for holding the stock, 
thereby holding more stock shares on average (hci > 1).Their excess stock 
positions tend to decrease after the market opens as information asymmetry 
decreases, and drop discretely at  the close.z8 

28 Another factor in determining the average stock holdings of the two classes of investors is 
the allocation of risk among them. For Figure 6, the informed investors are only a small fraction 
of the market (i.e., w = 0.05). With cr, = cr,, each individual investor faces similar nontraded risk. 
But the nontraded risk of uninformed investors is less diversifiable because they are the majority 
and they face the same risk. In other words, they bear most of the aggregate nontraded risk. Given 
the positive correlation between nontraded income and stock payoff, the uninformed investors are 
less willing to hold the stock. Both of these factors tend to yield h:!; - 1> 0. 
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The informed investors'hedging activity, as characterized by hit;, is shown 
in Figure 6, Panel B. It behaves in a fashion similar to the case of symmetric 
information. The informed investors actively trade in the stock in response to 
changes in their private investments, but reduce their positions abruptly a t  
the close. The coefficient hf; characterizes the market-making activity of in- 
formed investors, which in turn reflects the intensity of uninformed investors' 
hedging activities. Factors affecting the informed investors'hedging activities 
are also affecting the uninformed investors. Additionally, the continuous rev- 
elation of information through the day reduces the risk of taking stock posi- 
tions, thereby increasing the hedging activities of the uninformed. Also, as the 
market closes, market prices cease to be a source of information about the stock's 
future payoffs, and the uninformed investors rely solely on the information con- 
tained in realized dividends and public announcements. Consequently, changes 
in their expectations of dividend growth, now completely driven by dividend 
realizations, become more correlated with shocks to their nontraded income. 
Thus, the stock is perceived to be a better hedging vehicle during the night than 
during the day, causing uninformed investors to increase their hedging posi- 
tions a t  the close. Both of these additional factors tend to increase the un- 
informed investors'hedging activity around the close as Figure 6, Panel C shows, 
thereby increasing A, (see Figure 5, Panel C). 

Finally, we consider the speculative activities of the informed investors. 
The informed investors speculate actively during the day. At the close, they 
abruptly reduce their speculative positions because the risk of an overnight 
speculative position is high and its expected payoff is low as discussed ear- 
lier. The time variation of the informed investors' speculative trade is illus- 
trated by hi:; in Figure 6, Panel D. 

C.3. T ime Pattern of Returns 

Given the price process, we can now calculate the intraday patterns in the 
mean return and return volatility. Two factors are driving the time variation 
in the return-generating process, both associated with market closures. The 
first factor is the time variation in investors' hedging demand. In particular, 
all investors reduce their hedging demand a t  the close, causing the stock 
price to decrease and become less responsive to investors' technological shocks 
as the close approaches. Consequently, the mean return and volatility de- 
crease during the day. The second factor is the time variation in information 
asymmetry. As trading stops during the night, the information asymmetry 
on the stock (as measured by 6) increases over time. But as trading resumes, 
the information asymmetry decreases over time as Figure 3 shows. Conse- 
quently, the stock price increases during the day as a smaller premium is 
required on the stock by the uninformed investors. Also, the price becomes 
more volatile because it reflects more information about the stock's future 
payoffs. Thus, the time variation in information asymmetry tends to cause 
the mean and volatility of stock returns to increase during the day. The 
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Figure 7. Intraday patterns of stock returns under asymmetric information. The fig- 
ures plot the time variation of, Panel A, instantaneous mean excess share return, e ,  and Panel 
B, the return volatility, a ~ .The parameters are set a t  the following values: T = 0.5, N = 0.5, o = 

0.5, y = 1000, r = 0.001, v, = 0.08, a ,  = 0.85, a, = 0.08, v, = 0.5, a, = 0.25, v, = a, = 7 ,  KD, = 

0.5, K,, = 0. 

resulting time pattern of stock returns is determined by the interaction be- 
tween these two factors. In the extreme case when the effect of time-varying 
hedging demand dominates throughout the day, both the return and its vol- 
atility decrease monotonically as in the case of symmetric information. In 
another extreme case, when the effect of time-varying information asymme- 
try dominates throughout the day, the return and volatility increase mono- 
tonically during the day. 

A more interesting case arises when the effect of time-varying hedging 
demand dominates early in the day and the effect of time-varying informa- 
tion asymmetry dominates later in the day. In this case, the U-shaped in- 
traday patterns emerge for both the mean and volatility of returns. Figure 7 
illustrates these patterns for the benchmark parameters. In particular, both 
the mean and the volatility of instantaneous stock returns are increasing 
over time right before the close, instead of decreasing as under symmetric 
information. These patterns are consistent with those observed empirically. 

It is important to note that even though the U-shaped patterns occur for 
a wide range of parameter values, they are by no means the only patterns in 
addition to the simple, monotonic patterns. For some parameter values, we 
have also found inverted U-shaped patterns for both the mean and volatility 
of stock returns. Needless to say, these patterns depend on different param- 
eters of the model, such as those characterizing the G, process and Y,,,pro-
cess and the length of the day and night. We refer the readers to our working 
paper (Hong and Wang (1998)) for more discussions on various possible pat- 
terns of return and volatility. 
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Figure 8. Intraday patterns of returns under asymmetric information for different 
volatility of dividend growth rate. The figures plot the time variation of, Panel A, the 
instantaneous mean excess share return, e, and, Panel B, the return volatility, VQ,for different 
values of the volatility of dividend growth rate, crG. For ease of comparison, the mean return 
and return volatility are normalized by their respectivc values in the absence of closures, 
e(N= Oj and ~ G ( N= 0). Other parameters are set a t  the following va1uc:s: T = 0.5, N 0.5, 
w = 0.05, y = 1000, r = 0.001, a, = 0.08, a, = 0.85, rr, = 0.5, a ,  = 0.25, rr, = c2= 7, K,, -- 0.5, 
K l z  = 0. 

C.4. Further Discussions 

We now examine how intraday return patterns may change as model pa- 
rameters change. For brevity, we focus in this paper only on a subset of 
parameters, including those affecting the G, and Y,,,processes and the length 
of closures, and a limited range of their values (see Hong and Wang (1998) 
for more details on the effect of a larger set of parameters on return patterns 
and a wider range for their values). 

1. Varsyingcr, and n ~ .As discussed in Section V.B, a, and aG are impor- 
tant in determining the time-variation of information asymmetry. Conse- 
quently, they affect the equilibrium return process. Figure 8 shows how the 
stock return and its volatility change with a,:. For small values of ac;,the 
degree of information asymmetry is small as shown in Figure 3, Panel A, 
and so is its effect on the equilibrium. In this case, the return patterns are 
similar to those under symmetric information: both the mean return and 
return volatility decrease monotonically during the day. For large values of 
a,, the effect of time-varying information asymmetry dominates. The mean 
return and return volatility tend to increase as information asymmetry di- 
minishes over the day. For the middle range of r k ,  the effect of time-varying 
hedging trade tends to be more important earlier in the day, and the effect 
of time-varying information asymmetry tends to be more important later in 
the day. Thus, the mean return and return volatility both exhibit U-shaped 
intraday patterns. 
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Figure 9. Intraday patterns of returns under asymmetric information for different 
persistence of dividend growth rate. The figures plot the time variation of, Panel A. thc 
instantaneous mean excess share return, e, and, Panel B, the return volatility, UQ,for different 
values of the persistence of dividend growth rate, a,. For ease of comparison, the mean return 
and return volatility are normalized by their respective values in the absence of closures, 
e ( N = 0) and a;(N = 0). Other parameters are set a t  the following values: T = 0.5, N = 0.5, 
w - 1 0 0 0 , r = 0 . 0 0 1 , ~ , = 0 . 0 8 , ~ , = 0 . 0 8 , ~ , = 0 . 5 , a ~ = 0 . 2 5 , r ~ ~0.05, y = =a,= 7 , ~ ~ ~ = 0 . 5 ,  
Ki2 - 0. 

Figure 9 illustrates how intraday return patterns change with ac;. For 
most values of a,, the U-shaped patterns appear for both the mean return 
and the return volatility. However, as a, becomes large, the intraday vari- 
ation of information asymmetry increases as shown in Figure 3, Panel B. 
Thus, the effect of information asymmetry becomes more important and so 
the increasing trend in the mean and the volatility become more prominent 
(particularly for the mean). 

2. Varying a y .  Figure 10 shows the intraday patterns in mean stock re- 
turn (Panel A) and return volatility for different values of ay(Panel B). For 
most values of a,, the patterns are U-shaped. However, as ay  increases, the 
initial decrease in both the mean and the volatility becomes less significant. 
As discussed earlier, the U-shaped patterns appear when the hedging effect 
is more important earlier in the day and the information effect is more im- 
portant later in the day. Moreover, the hedging effect is mainly driven by the 
decrease in investors' hedging demand a t  the close. When a, becomes larger, 
the hedging demand a t  the close is less related to the hedging demand a t  the 
open. The hedging effect tends to be less important earlier in the day. Also, 
faster revelation of private information through the sequence of prices makes 
the information effect more important. Thus, the upward trend in the mean 
return and the return volatility becomes more important as a,  increases. 
(Moreover, as a, increases, the cutback a t  the close is larger, which tends to 
increase the overall size of the hedging effect a t  the close.) 
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Figure 10. Intraday patterns of returns under asymmetric information for different 
persistence of investors' private investment opportunities. The figures plot the time 
variation of, Panel A, the instantaneous mean excess share return, e, and, Panel B, the return 
volatility, UQ, for different values of the persistence of investors' private investment opportu- 
nities, u,. For ease of comparison, the mean return and return volatility are normalized by 
their respective values in the absence of closures, e(N= 0) and U:(N = 0). Other parameters are 
set a t  the following values: T = 0.5, N = 0.5, w = 0.05, y = 1000, r = 0.001, U, = 0.08, a ,  = 0.85, 
UG = 0.08, uq = 0.5, u1= u2= 7, K~~ = 0.5, K~~ = 0. 

3. Varying N and T.  We now examine how the lengths of night, N, and 
day, T, affect the interaction between market open and close. As discussed 
earlier, changing the length of night changes the risk of carrying overnight 
positions. For larger N,  investors reduce their hedging positions more dra- 
matically a t  the close, giving rise to larger intraday variation in both hedg- 
ing trade and information asymmetry (see Figure 3, Panel D).29A~ the length 
of the day (T) changes, the effect of the closure on the prices and returns 
around the open also changes. For example, larger values of T tend to di- 
minish the effect of reduction in hedging trade on returns around the open. 
For smaller values of T, however, both the effect of time-varying hedging 
trade and information asymmetry are squeezed into a small interval, lead- 
ing to less time variation and relatively simpler patterns in returns. 

Figure 11shows how the intraday patterns of return and volatility change 
as we change T and N, holding the total length of a calendar day T + N 
constant (so that the total amount of risk per calendar day is fixed). Note 
that  in Figure 11, we only show the range of small N (from 0.1 to 0.2). This 
is motivated by the observation that  in economic time, measured by the 
amount of information arrival, a night may only be a small fraction of a day. 
As N approaches zero (and T approaches one), we approach the case of the 

29 We discussed in Section V.B that longer nights also make overnight speculative positions 
riskier and less profitable. Thus, as N increases, investors' speculative trades tend to decrease 
as well, which makes prices less informative. For the cases we consider here, the effect from 
decreasing hedging trade dominates. 
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Figure 11. Intraday patterns of returns under asymmetric information for different 
lengths of closures. The figures plot the time variation of, Panel A, the instantaneous mean 
excess share return, e, and, Panel B, the return volatility, UQ, for different values of the length 
of closures, N. For ease of comparison, the mean return and ieturn volatility are normalized by 
their respective values in the absence of closures, e (N= 0) and o;(N = 0). Other parameters are 
set a t  the followingvalues: w = 0.05, y = 1000, r = 0.001, oD= 0.08, a ,  = 0.85, u~ = 0.08, u , ~= 

0 . 5 , a , = 0 . 2 5 , o , = ~ ~ = 7 , ~ ~ , = 0 . 5 , ~ , , = 0 .  

market being permanently open. Our intuition suggests that there is less 
variation across the trading day in mean return and return volatility. As N 
gets larger (and T gets smaller), we expect more intraday variation in these 
quantities, reflecting the increasing importance of market closure. From Fig- 
ure 11we see that even for small NIT (around 0.11, the closures can still give 
rise to U-shaped intraday patterns in mean return and return volatility. For 
larger values of NIT, the mean return and return volatility both become 
monotonically increasing. 

D. Discrete Simple Returns 

We now reconsider the discrete returns related to some of the empirical 
results. We use the same parameter values as in Table I for the case of 
symmetric information (except that w is now 0.05 instead of 0.5). The first 
two moments are reported in Table 11. The mean return over the trading 
periods is now positive, and the mean return over the nontrading periods is 
negative. This is simply due to the fact that the risk discount on the stock 
A,, which depends on the degree of information asymmetry, is higher at the 
open than at the close (see Figure 5 ) hence the (mean) stock price is lower at  
the open than at the close. From the periodicity of the equilibrium, it then 
follows that the daily return is positive and the nightly return is negative. 

The return over trading periods is more volatile than the return over non- 
trading periods. For the parameter values chosen here, the variance during 
market open is 0.0166, which is larger than the variance during market 
close which is 0.0148. The ratio between the variance of returns over the 
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Table I1 


Discrete Stock Returns under Asymmetric Information 

This table reports the unconditional mean and variance of various discrete returns produced by 
the model under asymmetric information. R,,, R,,, Roc, and R,, denote, respectively, the simple 
stock returns from a market open to the next open, from a market close to the next close, from 
a market open to the next close, and from a market close to the next open. The parameters are 
set a t  the following values: T = 0.5, N = 0.5, w = 0.5, y = 1000, r = 0.001, n, = 0.08, a, = 0.85, 
u~ = 0.08, u,[ = 0.5, a y  = 0.25, u1 = u2 = 7 ,  K,,~ = 0.5, K~~ = 0. 

Returns Mean (10 -4) Variance 

trading period and the nontrading period is 1.12. Note that we have chosen 
the length of trading periods and nontrading periods to be the same and the 
exogenous information flow to be constant over time. Under symmetric in- 
formation, the volatility of returns over the trading periods and over the 
nontrading periods is the same (see Table I). Under asymmetric information, 
trading among investors reveals investors' private information to the mar- 
ket. Consequently, returns over trading periods are more volatile than re- 
turns over nontrading periods since more information is impounded into the 
equilibrium price over the trading periods. Table I1 also shows that the re- 
turn variance from open-to-open, 0.0454, is larger than the return variance 
from close-to-close, 0.0441. The ratio between the variances of the two re- 
turns is 1.03. 

VI. Concluding Remarks 

In this paper, we consider a continuous-time stock market with periodic 
market closures where investors optimally trade for both hedging and spec- 
ulative reasons. We show that periodic market closures can generate varia- 
tions in the trading and return distribution that are consistent with the 
empirical findings. In general, open-to-open returns are more volatile than 
close-to-close returns and intraday trading volume is U-shaped. When in- 
vestors have asymmetric information about the stock's future cash flows, 
(1)the intraday returns and volatility can be U-shaped as well, (2) returns 
are positive over periods of market open but negative over periods of market 
close, and (3) returns are more volatile over the trading periods than over 
the nontrading periods. Our results point to the importance of market clo- 
sures in explaining documented intraday and intraweek return patterns. 

The paper focuses solely on the impact of market closures on trading and 
returns. Details of the market microstructure concerning the actual trading 
mechanism are ignored. Also, by assuming a competitive stock market, the 
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paper rules out any strategic behavior on the part of investors (see, e.g., 
Kyle (1985) and Vayanos (1999)). Given that the patterns of interest here are 
on daily or weekly frequency, these factors can be important in fully under- 
standing the empirical patterns. 

We have also made simplifying assumptions on the model for parsimony, 
but some of these assumptions can be partially relaxed. For example, the 
model allows only two classes of investors. The better-informed investors 
(class 1)trade for both hedging and speculative reasons. In general, hedging 
trades and speculative trades need not come from the same set of investors. 
We can have hedging and speculative trade initiated from different inves- 
tors (while still maintaining a hierarchical information structure). 

For simple exposition, we have also assumed that all of the informed in- 
vestors continuously receive new information about the dividend growth of 
the stock. This assumption can also be relaxed by only allowing a subset of 
informed investors to receive each piece of private information. This alter- 
native assumption does not affect the equilibrium as long as the informed 
investors receive the same information on other state variables. In this case, 
the other informed investors, knowing everything else, can extract that piece 
of private information from the market clearing price. 

Another assumption of the model is continuous dividends from the stock. 
Although seemingly unrealistic, this assumption is harmless and is made 
only for ease of exposition. We can assume instead that cumulative divi- 
dends are paid out infrequently. In this case, we only need to include the 
accrued dividend in the stock price. The equilibrium return distributions 
remain the same and the investors' investment and consumption decisions 
are unaffected (investors' consumption decisions do not depend on how div- 
idends are paid since they can finance any desired consumption policy for 
any finite time-period through the money market). 

Although the focus of this paper is on the time variation in trading and 
returns generated by market closures, the model developed here can also be 
used to analyze other issues and phenomena associated with market clo- 
sures such as welfare implications of market closures, overnight trading, the 
interaction across markets in different time zones (see, e.g., Barclay et al. 
(1990), Chan et al. (1996)), etc. We leave these issues for future research. 

Appendix A. Mathematical Preliminaries 

This appendix provides some technical results needed for later use. 
We begin by introducing some additional notation. Given a matrix m, mjj 

denotes its (ij) element, m(;,.) its i-th row, m(i,,:q) the row vector with ele- 
ments in the i-th row from thep-th to q-th column, m(,:q,j) the column vector 
with elements in the j-th column from the p-th to q-th row, and trim) its 
trace. Additionally, let [m] be the column matrix consisting of its indepen- 
dent elements and jlmlj = its norm. When m is positive semidef- m a ~ j m , , ~ l ,  
inite (positive definite), we state m 2 0 (> 0). Also, let i;!"'"' be an index 
matrix of order m x n with its (ijj-th element being one and all the other 
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elements being zero. And let I(") be an identity matrix of rank n. 0 = {r > 0, 
y > O,a, > O,a, > O , a D  r O,aG2 O , a ,  2 0,a2 2 O , a g  2 0,O < K D ~< 1,- 1 5  
K~~ 5 l , T  r 0 , N  r 0) denotes the set of parameter values and 0 E 0 denotes 
a generic element. For dX, = axJdt + bxJdw,, j = 1,2, let axixl, = bxJbil, 
denote the instantaneous covariation of Xj and Xj,  (e.g., see Karatzas and 
Shreve (1988) for a discussion of covariation processes). 

In deriving several results in the paper, we often encounter the two-point 
boundary-value problem for a (vector) first-order ODE. Here, we give a for- 
mal and relatively general definition of the two-point boundary-value prob- 
lem and state some known results concerning its solution. 

Definition A.l: Let f :  9i+ @ 9in @ $im @ 9i -+ $in, and g :  9in @ 9im @ 
9i -+ $in. A two-point boundary-value problem is defined as 

where T > 0, 0 E 0, and w E [0,1]. 

We also define the terminal value problem: 

Under appropriate smoothness conditions on f(t,z;O,w), system (A2) has a 
unique solution z = z(t;O,w;zT), which is differentiable in z, (see Keller 
(1992), Thm. 1.1.1). Solving the two-point boundary-value (Al) is to seek a 
value for z, that solves 

The existence of a root to equation (A3) relies on the properties o fg  z(z,; 0, w). 
Furthermore, let (g z + l)(zT;O,w)= g  z(zT;O,w)+ zT. 

LEMMAA.l: If (g z + 1)(.;0,w): $in -+ 9in is continuous and there exists a 
nonempty, closed, bounded, and convex subset of $in, L, such that (g z + 1) 
(.;O,w) maps L into itself, then equation (A31 has a root and the two-point 
boundary value problem (Al)has a solution. 

Proofi Existence of a root to equation (A3) follows from Brouwer's Fixed 
Point Theorem (see, e.g., Border (1985, p. 28), Cronin (1994, p. 352)). Q.E.D. 

The condition on (g z + 1)required by Lemma A.l is not always easy to 
verify, in which case the existence of a solution to problem (Al) is not readily 
confirmed. However, if a solution exists for w,, the existence of a solution for 
w close to w, is easy to establish. 
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Definition A.2: z = z(t;O;wo) is an  isolated solution of system (Al) if the 
linearized systenl 

jl = Vzf(t,z;0,w0) 'dt E [O,T] 
(A4)

0 = V Z ~ ( ~ O ; ~ , ~ O ) Y(0) + V Z ~ ( ~ T ; ~ , @ O ) Y ( T )  

has y = 0 as the only solution, where V denotes the partial derivative operator. 

LEMMA z( t ;  0, w,) A.2: Suppose that (a) system (All has an  isolated solution z = 

for w = w,, and (b) f (t, .;0, w) and g(.;0, w) are continuously differentiable in 
the neighborhood of ( t ,z( t ;  0, w,),w,). Then, system (All has a solution for w 
close to w,. 

Proofi See Keller (1992, p. 199). Q.E.D. 

We next state the general form of the boundary-value problems we en- 
counter in the paper and show that  they can be reduced to the two-point 
boundary-value problem (Al). Let j = a ,b ,  T = T + N, and z = [z , ; z~] .  Our 
boundary value problem is given by: 

i = f(z,0,w), 'dt E [O,T]; (A54 

z,(T) = g,"[z,(Tf );0,w] and z b ( T )= z b ( T f), t = T;  (A5b) 

kj = ( z j , , ) ,  'dt E (T,T) and j = a,b; (A54 

z , (Tp)  = g,"[za(T);0,w] and z b ( T )= g![zb(T-);0,w], t = T; (A5d) 

where f ,  gj", and gy are continuously differentiable. Given z,(O), period- f i ,
icity condition (A5e) and condition (A5d) give z,(Tp) = g,"[z,(0);0,w] as the 
terminal condition for equation (A5c). Integrating equation ( A h )  yields 
z,(T') = z:(T+;g:[z,(O);~,w]). Equation (A5b) gives a two-point boundary 
condition for z,(0) and z,(T) : 

Given zb(T) ,  conditions (A5b) and (A5c) lead to z ~ ( T - ; z ~ ( T ) ) .  From equa- 
tion (A5d) i t  follows that  zb (T) =g $ z f ( ~ - ;  zb (7'));0, w] . Condition (A5e) gives 
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Our boundary-value problem now reduces to the system given by equations 
(A5a), (A6), and (A7), which is in the form of problem (Al). 

For future use, we also state two auxiliary lemmas, which are needed in 
proving Lemma 1,Lemma 3, and Theorem 1. 

Definition A.3: Let a, r 0 and a, > 0 be constant, symmetric matrices. 
Also let r be the variable of interest, which is a symmetric matrix. Finally, 
let a , ( t , r )  be a positive, linear operator mapping symmetric matrices into 
themselves. A matrix Riccati differential equation is defined as 

r + a. + ( a i r  + r a l )  - ra2r+ a 3 ( t , r )= 0 (a.e.) 'dt E [O,T], (A81 

where r = dr/dt  and r ( T )  = r,. 

LEMMAA.3: For any given terminal value rT2 0, the matrix Riccati equalion 
(A8) has a unique, symmetric, positive, semidefinite solution. Let m be a n  
arbitrary (bounded measurable) matrix defined on [O,T] and  let e(t) be the 
solution of the following linear equation: 

where e ( T )  = r,. If rtt) is the solution of equation (A8), then r(t)  r e(t),'dt E 

C0,TI. 

Proof: See Wonham (1968). Q.E.D. 

LEMMAA.4: Let f :  D -+ M be a n  analytic function, where D = Dl @ . . . @ D, 
is a n  open, bounded subset of 91". Let Z = {x t- D :f (x) = 0) be its zero set. 
Then, eilher Z = D or ,un(Z) = 0, where p, is the n-dimensional Lebesgue 
measure. 

Proof: We prove Lemma A.4 by induction. First note that  Z is closed and 
therefore measurable. For n = 1,Z is either finite or has an  accumulation 
point. In the latter case, f is identically zero on D (see, e.g., Ahlfors (1979)). 
Noting that  any finite set has zero Lebesgue measure concludes this part  
of the proof. Let us suppose that  the conclusion of the lemma holds for 
certain k 2 1 and prove i t  for n = k + 1. We can write f as a function of 
two variables f ( t ,x)  on Dl @ D2, where D2 = D, @ . - - @ D,,,. Clearly, f 
is a real analytic function in both t and x separately. Consider the set S = 

{t E Dl: 'dx E D,, f ( t ,x)  = 0). For t 6Z S, JD,lf(,,,,=,dx = 0 by the inductive 
assumption. If S is finite, i t  is of zero Lebesgue measure in Dl. Thus, 
p,(Z) = JD,Jn,lf~f,,,=odxdt= 0 by the Fubini theorem (see, e.g., Doob 
(1991)). If S is not finite, i t  has an  accumulation point. From the result for 
n = 1, 'dx t- D2, f ( t ,x)  is identically zero in Dl. Thus, f ( t ,x)  is identically 
zero on D = Dl @ D,. Q.E.D. 
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Appendix B. Proofs of Lemmas 1-3 

Proof of Lemma 1: We first derive the results for a general system and 
then show that our system is a special case of the general system. Consider 
the following general system. Let Z, be the state vector, where Z, follows: 

Z t  = Z0 + [(-azZs ds + bz dw,), 

where az (> 0) and b, are constant over time. Next, define 

where asa,bso, ash, and bsb are deterministic and bounded. Then we define 
St = [S?;S,b] to be the signal vector during the day and St':= Sf to be the 
signal vector during the night. Then 

t tN: S; = S g  + (as Z, ds + bs- dw,), 
0 

where as, bs, as , and bs are deterministic and bounded. Further assume 
that bsb$ and bs- b$ are uniformly nonsingular on 7 and N respectively. 
Additionally, Z0  and Soare jointly normal. Let X, be observations of S and 
S" up to t (including the prior). 

The first part of the lemma states that the process (2,,(St,St  )) is condi- 
tionally Gaussian; that  is, 'ds,s,, . . . ,s, E [0, t] ( t  2 0), {ZS1,. . . ,Z , , )  has a 
joint Gaussian distribution conditioned on X,. We prove this by induction: 
We first show that the result holds for t < t,, and then show that it also 
holds for t < t,,, if it  holds for t < t,. Since Z0  and Soare jointly normal, it 
follows that Z 0  conditioned on Sois Gaussian. For t < no,  our result follows 
as a special case of Theorem 12.6 of Liptser and Shiryayev (1978). Since Z,, 
conditioned on K,, is Gaussian and as and bs are bounded, the result 
continues to hold for t < t,. Suppose the result holds for t < t, with h > 1. 
Since Z,, conditioned on X,, is Gaussian, by the same argument as for 
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to = 0, Z,, conditioned on Kt, is also Gaussian. By Theorem 12.6 of Liptser 
and Shiryayev again, the result also holds for t < t,,.,. The result then 
follows. 

Let 2, = E[Z,17-1,] and o( t)  = E[(Z, -z,)(z,- 2,)'7-1,]. We now prove the 
second part of the lemma. For t E I,or t E Ark, the dynamics of 2, and o( t )  
follow from Theorem 10.3 of Liptser and Shiryayev (1977). At t = n,, both 2 
and o are continuous. At t = t,, given 2,; and ~ ( t h ) ,  we can obtain z,, and 
o(t,) from the fact that Sg can be written as Sg = + bX(tk)e,,A ~ ( ~ / , ) Z , ,  
(where E,, is a standard normal vector) and the law of conditional expecta- 
tions for Gaussian variables (see, e.g., Jazwinski (1970, Thm. 7.1)). Summa- 
rizing these results, we have 

where k = 0,1,2,.. . and 

go = -( aZo+ oak) + oiz- k (ahs + as0); 

g; = -(aZo + oak) + oiz- kY(uhs-+ as 0). 

In particular, o is deterministic and independent of 7-1,. It  only depends on 
the parameters of the system (e.g., a,, b,, a,, bs, as - ,  and bs+) and the 
initial condition. 

The problem we consider in the paper maps directly into the system of equa- 
tions (B1)-(B3). First, note that our state vector given in equation (3) maps over 
to equation (Bl) since aZ= diag{aG,ay,ay)> 0 and b, = [bG; b,; b,] are con- 
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stant through time. Second, we show that  the investors' signal vectors Si,,can 
be mapped into system (B1)-(B3). To begin with, observe that  these signal vec- 
tors can be rewritten in a more compact form. For investor 1who observes all 
the state variables, Ptis a redundant signal. For investor 2, observing P, is equiv- 
alent to observing A,E ,,,[Z,] = A,  [G, ,Y,,, ,Y2, ,I ' . Knowing Y,,, , observing 

[Z,] allows him to infer AIGGt - h,,Y,,, .Define &,, = XiZtwhere A,= 

[_0,0,1] and A,= [A,,, -A,,,O] for t E l a n d  A,  = A, = 0 for t E N. Hence 
Pi,,denotes the effective signal investor i extracts from the price. Combined 
with the  other signals, investor i's signal vector Si,,can be rewritten as: 
S I , ~= [u~;D~;~~,,;G,;YI,,;Y~,,;~~,,I= [ ~ , ; ~ , ; p , , , ; ~ 2 , , ; q 2 , ~ 1 .and S,,, For in- 
vestor 1,A,= A,,bx = 0 and 

as-= [ a u ;  [1,0,01; - az ;  [0,1,011; bs  = [bu;b,;b,;b,l. 

For investor 2, let A, = A,, bx = 0 and 

Their signal vectors have the same form as in system (B3). Thus, their con- 
ditional expectations are given by system (B4) with appropriate substitu- 
tions for A,, b-,, a,, bs, a s - ,  and bs . If we define 

t E (nh,  th+,): ai,s a s . ;  bi,s = bs ; h i  = k * ;  z = g;;= g. ,0 


where GD(tk) -GD(t- tk) is the Dirac delta-function (see, e.g., Lighthill (1958)), 
we can then formally express our signal vector S,,,in the following form: 
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and Z , , , and o,(t) can be expressed in the form of system given by equations 
(16a) and (16b). Given an initial value o,(s), we can find o,(t) by integrating 
equation (16b). 

A periodic solution is given by the initial value o,(th), which equals o,(t,+,). 
We now prove its existence under the assumption that as, bs, and as , bs 
are periodic on l a n d  ,lV, respectively. The following lemma summarizes the 
result. 

LEMMAB.l: The system (16b) and (17) has a solution. 

Proofi The system (16b) and (17) is equivalent to a special case of the 
two-point boundary value problem specified in system (A5) with z = z b  = o, 
and f ,  fb, gf derived from g,,, for i = 1,2 in an obvious fashion. Hence, 
proving existence of a periodic solution is equivalent to proving existence of 
a solution to the analogous two-point boundary value problem. First, we 
prove a simple property this system satisfies. Using the notation of Lemma 

1A.3, let r = oi, a, = a,, - C T ~ , Z S C T ~ ~ ~ ~ U / , ~ ~ ,-az - C L : , ~ U ~ , ~ ~ U : , ~ ~ ,al = aa= 

c ~ j , ~ a ; & ~ a ~ , ~ ,and a,(t,r) = 0. It is easy to verify that a, and a, are positive 
definite. Thus, equation (16b) is a matrix Riccati equation. The initial value 
problem for oi(th) = o,,tk has a solution oi (t;oi, ,,) for t E [t,, t,,,). A linear 
bound on the solution 1 1  oi (t ;oi, ,,) 1 5 a, I o,,,, I + pi can be achieved by letting 

a, = exp{-(2ay + gT)); 5, = exp{[-(aZ + $ 1 ( 3 ) ] ( ~- s)); 

where m = -aj,sa;~sa/,zs@ i. (Here, m @ $ means adding to each 
element of matrix m.) Clearly, ai < 1.Next, using the notation of system 
(A5), define 

Imposing the periodicity condition oi (th+ l)  = o, ,~,, we can rewrite as oirtk = 

gz [oi ( t ~ + ~  Let L, be the space of symmetric, positive semidefinite ma- ;oi, J]. 
trices such that their norms are less than $i where $i = Pi/( l  - ai).It is clear 
that L, is a nonempty, closed, bounded convex subset of a finite-dimensional 
normed vector space. Suppose oi, ,, EL, . Let Mi (oi, ,,) = gbO [oi (th+l ;oi, tiz)]. Mi is 
clearly continuous and Mi (oi, t,) is symmetric and positive semidefinite. Fur- 
thermore, I Mi(oi,, , )  s Pi/(l  - a,).So Mi : L, -+ L,. By Lemma A.l the result 
follows. 

This completes the proof of Lemma 1. Q.E.D 
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Proof o fLemma 2: For t E I,,Yl,,= Yt= [Z l , , ;Z2 , t ]and Y2,,= [Z2 , , ;Z2 , , ] .  
Next Tl,,= [Zl,t;(Z,,t)(l:,,l);(Zl,t)(3,1)1 and Y2 , t  = [(Z2,t)il:2,1,;(Zl,t)(3,1);Z2,tl 
for t E Af,. It  is obvious that Y,,,is a subvector of Y,. From the solution of 
Z,,, ,  it  clearly follows a Gaussian Markov process under Z,,,. It  is immediate 
that Y,,, follows a Gaussian Markov process under Z,,,. However, (Z,,,)(,:,,,, 
is Gaussian but not Markovian under Z,,,. What remains to be shown is that 
[Z1, ,;(Z2,t)(1:2,1,]is Markovian under Z,,,. Given S ,,,, this is easy to verify. 
Thus, Pi,, follows a Gaussian Markov process under Ti,,, i = 1,2. By similar 
arguments, Y, is a Gaussian Markov process under Z,. Q.E.D. 

Proof of Lemma 3: For the solution to the investors' optimization problem, 
we derive the evolution of each investor's state vector, X,,,  = EL, ,[ X , ] ,given

(1,61..(1,6).- ( 1 , 6 ) .in equation (19).Let m1 = [ i 1 6  , 213 , ~1.4 , [(A2,~)(l,l),(A2,~)(1,2),0,0,0,01; 
ii$6)]and m, = k,a,,s. Then, 

Equation (19) follows immediately from equation (16a).Given the processes 
of the stock price and the state vector, the return processes for investor i can 
be expressed as follows: 

where 

- .(16 )  - .( 16 )  - - ( 13)  - (1,s).a,,, - E l i  ; b,,, - ~ 1 3 '  ; a,,, - ~ 1 3 '  ;b2,, - ~ 1 2, and dwi,t = ui,s'h2(dSi,t -
E,,,[dS,, ,]) ( i  = 1,2). Note that dw,,, behave as increments of a standard 
Wiener process everywhere except a t  t = t ,  where a jump occurs with a 
normal distribution as given by system (B4). 

Xi, ,  governs the expected excess returns (on both the stock and private 
technology) faced by investor i .  Given that Xi , ,  follows a Gaussian Markov 
process, it fully determines investor i's current and future investment op-
portunities. Also, a,,gand b,,Qare periodic functions of time on and ai,, 
and b,,, are constant matrices. Thus, the return process exhibits periodicity 
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over time with periodicity T + N. Given equation (B7), investor i's control 
problem can be solved explicitly. We s tar t  by conjecturing that  his value 
function has the following form: 

where i = 1,2,k = O,1,.. .,W,,, = Wiyt + Oi,,, Fi,, , WiP, is investor i s  investment 
in the risk-free asset, X t t  = [Xi,, ,Bi,n,]', v ,  is a symmetric matrix (5 x 5 for 
t E l a n d  6 X 6 for t E N),and v ,  is a symmetric matrix (3 x 3 for t E l a n d  
4 X 4 for t E ,hr).Define m ,  = 6, m, = 4, and ni = mi - 1for i = 1,2. We show 
that  the conjectured value function gives the solution to investor i's control 
problem by verifying that  i t  satisfies the Bellman equation: 

t E I,: 0 = sup { -e-+Yc[ + Ei,,[dJi,,]/dt) 
c , , ~ , , Y ,  

s.t. d Wi, t = (rWi,t ci,t ) dt  + oi,t dQt + ~ i ,- t dqi,t ; 

and the required boundary conditions. Define ai,w= [ai,Q;ai,,] and bi,w = 

[bi,Q; bi,,]. Substituting the conjectured form of the value function into the 
Bellman's equation and applying ItB7s lemma, we obtain the following ex- 
pression for the optimal policies: 
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Next, define 

Substituting the optimal policies into the Bellman's equation, we obtain equal- 
ity with the conjectured form when vi satisfies the following: 

t E (nh, th+l): ul = V L ~ L , Xx 0, - (aa,q - uc,q~ v,)'u;q1q(ac,q - ~ L , , X0,) 

+ rv, + (a,,x v, + ~ , a l , ~[ U  + tr(u,,x-~-v,)]ill;  (Bllb) ) -

t = nh: vi(nh)= Ac[vi(n$)]; (B l l c )  

t E [t/z,nhI: ui = viui,x~Vi- ( a i , ~- ui,WXvi)'ui~&(ai,W- u i , ~ x v i )  

+ rvi + (ai,xvi+ - [G + tr(ui,xxvi)]ill; (Blld) 

vi(t/z)= vi (th-i-1); (B l l e )  

where 

and 6 = 2 ( p  + r l n r  - r). 
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To yield equation (22), define Avi(tk) -- vi(tk) - vi(t;) and Av,(nk) -
~ ~ ( n h + - ~ )- vi(nkPl), and g,,, as follows: 

A periodic solution to equation (22) is given by the initial value ~ , ( t ~ + ~ )  that  
equals v,(t,) from equation (22) as  equation (Bl le)  requires. 

We now prove the existence of a periodic solution to equation (22) assum- 
ing that  A is periodic on l a n d  o is periodic on 7 U  N. This is accomplished 
through the following two lemmas. The first says that  equations (Blld) and 
(Bl lb)  have solutions; the second says that  a periodic solution exists. For 
convenience, define 0; = v,,(ln,,ln,,,u, and u , o  = U,,(rn, ,mL).= V,,(mL,lnL), 

LEMMAB.2: There exist a , ,  p i ,  a;, and  al l  positive with a, ,  at' < 1such 
that (a) given the terminal value vi,,,, which is symmetric and  semipositive 
definite, equation (Blld) has a solution vi(t;vi,,,) which is also symmetric, 
positive semidefinite, and  I ~ ~ ( t ; v ~ , ~ ~ ~ ) l l  + 0,; a n d  (b) given the ter- 5 a;I V ~ , ~ , , ~  
minal value v,,,,+~,which is symmetric a n d  semipositive definite, equation 
(Bl l  b) has a solution, v? (t ;v: which is symmetric, positive semidefinite, 
and  Ilv,"(t; v?  a ? ~ ~ v : F 1+ill - ~ . t l < + l  + 0;.2 

Proofi First, we verify this claim for equation (Blld).  Using the notation 
of Lemma A.3, let r = vi, a, = U ~ , ~ U ; & ~ ~ , W ,al = -irl("z) - ai,x -

1 
~ ~ , W U ~ , W W U ~ , W X ,a 2  = U i . n  - c+!,wxc+i,&wui,wx, and a3( t , r )  = [a + 
tr(ui,,r)]ill. I t  is easy to verify that  a, and a, are positive definite. 
Assume a 2 0 (this lemma can easily be shown to hold for 6 < 0).  Since 
trace is a linear operator, a 3 ( t , r )  is a linear positive operator. Hence, equa- 
tion (Bl ld)  is a matrix Riccati differential equation. By Lemma A.3, given 
vi(nk)= u ~ > ,0, ~ ~ ( t ; v ~ , ~ ~ ~ )  ~ ~ exists and is symmetric, positive semidefinite. ~ 
Let m -(a$,wu;&wui,wX), then by Lemma A.3, u ~ ( ~ ; u ~ , ~ ~ ~ )  = 5 e ( t ; ~ ~ , ~ ~ < ) ,  
where e is the solution to a linear system given in Lemma A.3 with 
a l  - = - l r l ( n , )  - 5 aiIvi,rai,I+a,,, < 0. It follows then that  l l e ( t ; ~ ~ , ~ , ~ ~ ) I  
pi, where 

a, = expi-(r + 2a y)T);  5, = exp{[-irl("8) - a, ,x](T - s)); 

Next, consider equation (Bllb). Let r = vZ;,a, = aj,,a;iqai,,,al = - !=rl(nr) -

ai,,, a, = ui,,, and a 3 ( t , r )  = [6itr(ui,,r)]ill. Apply the same reasoning 
as  above and equation (Bl lb)  is a matrix Riccati equation as  well. Let 
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U;(th ) -- :I > 0 and m =vi,,,+, l '"~),then it follows from the above reasoning 
that  j l~T(t;v[~~~+~)ll5 at lvziktl1 iPI where 

a; = expi-(r + 2ay)T);  It = exp{[-$rl("&)- a i ,x ] (T- s)); 

Finally, given ~ j ( t ; v [ , ~ + , ) ,  and u&,,,+,, u' and u': 
r ,o  exist since theyu ? , , ~ + ~ ,  r ,  

satisfy linear differential systems. 

LEMMAB.3: The system (B11) has a solution. 

Proofi For i = 1,2, let z i  = [vi] for t E ?; zi = [[v:]', [u;]', [u; ,~]] ,t E ."1', 
z, = zi .  First, the system conforms to the general boundary value prob-
lem, equation (A5). Next, since ui,xx - diag{0,0,0,(a,~)~/a,,) > 0, 
l l u ~ ( t ; ~ ~ ( t ; ~ ~ , ~ ~ ~ , ) ) / /5 P where 

Thus, uT(nh;vi(t;vi,,,)) is uniformly bounded in V ~ ( ~ ; V ~ , ~ ~ ~ ) .  Pi,Here, a,, a;, 
and pj' are given in Lemma B.2. Let 6, = arpi + ,Gf + P and qi = a l a i .  
Obviously, vi < 1. Let Li be the space of symmetric, positive semidefinite 
matrices such that  their norms are less than Gi where Gi = ii/(l- q i )  Let 
Mi:Li  + Li be given by the right-hand side of equation (Bllc). Li is a non-
empty, closed, bounded convex subset of a finite-dimensional normed vector 
space. Mi is symmetric since the right-hand side of equation (Bllc) is sym-
metric. Mi 2 0 because ~ : , ~ ( n ~ )> 0 is positive given its terminal value de-
fined in equation (Bl la)  and v;(nh) r 0 by Lemma B.2. I t  is easy to show 
that /Mi(vi,,,,)/5 G i / ( l  - qi). By Lemma A.1, the result follows. 

A solution to system (B11) gives a solution to the Bellman equation under 
the desired boundary condition. This completes our proof of Lemma 2. Q.E.D. 

Appendix C. Proof of Theorem 1 

We have shown that (a) for a conjectured periodic price function of the 
form in equation (18),a periodic solution to equation (16b) exists for investor 
i, and (b) given the periodic price function and a periodic solution for oi(t) ,  
a periodic solution to the control problem of investor i exists. Now we want 
to show that an equilibrium with the conjectured price function exists for w 
close to one. We do this in two steps. First, we show that for w = 1, there 
exists a periodic price function that  satisfies equation (25) in which the hold-
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ings of each investor are derived from the periodic solutions to equations 
(16b) and (22). Then, we verify that our system satisfies conditions stated in 
Lemma A.2 and Lemma A.4, which concludes the proof. 

Given the investors' optimal investment policies, the market clearing con- 
dition then becomes 

where r = [[hl,O,O,O,O]; [0, A1,O,  -AG,O]; [0,0, A1,O,O]]. The periodic condi- 
tion for the price function requires for k = 0,1,. . . , 

Let z i  = [vi] for t E 7,z i  = [[v,"];[ul:] ;~; ,~],t E N, i = 1,2. Let z, = [A';z,;z,] 
for t E l a n d  z, = [zl;z2] for t E N. Let z, = [o , ;~ , ] .  Then the problem 
conforms to boundary value problem, equation (A5). Let w, = 1.Existence of 
z(t,O,w,) is given by Proposition 1(see Appendix D), Lemma B.3, and Lemma 
B.1. We first note that  in the case of asymmetric information, i and z are 
related implicitly: 0 = F(i,z;O,w), Vt E [ tk ,nk] .  By the Implicit Function 
Theorem (see, e.g., Protter and Morrey (1991)), F defines an implicit func- 
tion: i = f(z;O,w) if V i F  is nonsingular. For w, = 1and 0, = [0.001,1000,1/ 
4,1/2,1,1,7,7,1,1/2,0,1/2,1/2], det(ViF) f 0. By Lemma A.4, i = f(z;0,w) 
exists generically. I t  remains to verify that z(t;O,wo) is an isolated solution. 
This is equivalent to showing that m(O,w,) = Vzg(zo)+ Vzg(zT)exp{J~,~Tzf) 
is nonsingular (see Keller (1992, p. 191)). Clearly, m(O,w,) is analytic. I t  is 
easy to show that det[m(0,,w0)] f 0. By Lemma A.4, m(O,wo) is generically 
nondegenerate. By Lemma A.2, Theorem 1holds. Q.E.D. 

Appendix D. Proofs of Propositions 1-4 

Under symmetric information, the state vectors of investors are given by 
X,,, = X,,, = [I, Y,,,, Y,,,]'. So, using the notation in the proof of Lemma 3, 
we now have vi is 3 x 3 for t E l a n d  4 x 4 during the night; vl" = ~ ~ , ( l : , ~ , , l : , ~ , ) ,  
u~ = v .L,(7n,,l:n,),and u ? , ~= vi,(,L,,, 1, where mi= 4 for i = 1,2 and ni  = 3 for 
i - 1,2. 

Proof of Proposition 1: When K,,  = 1, Yl,, = Y,,, = Y,, and Oi,, = 1, i = 1,2. 
Thus P, = F, - (A, + AY,) and A, and A are constants. Given that  the two 
investors are identical, we can drop the index i. Let 8 equal v for t E l a n d  
v" for t E N. Equation (Blld) then reduces to the following: 
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where A = [A,, A ,  A] and 6 = 2 ( p - r logr - r). Given A, the equation for 6 has 
only two roots, one positive and one negative. The positive root corresponds 
to the optimal solution of the investors' control problem since it gives higher 
expected utility. 1; and A" can then be solved from 0,,, = 1. Q.E.D. 

Proof of Proposition 2: From Proposition 1,it is easy to show that u; = 

ry[O,h,O], uz = ry[O,O,;?_l,and u; = ry2[e$ + (h)2a$]. Next h (T )  = -h/h,. 
Given the definition of h stated in Proposition 2 and h and h, from Propo- 
sition 1, it is straightforward to show that h/h, < hi. Next, A, is given 
by rho - A, = ry@$, with &(T) = h,, which has the solution A,(t) = 

(h, + ye;. Ao( t )  is strictly increasing over time. Q.E.D.
-

Proof of Proposition 3: Given the periodicity in equilibrium, E[Pt,,] = 

-A,(O) and E[P,,,<] = A,(T), independent of k = 0,1,. . . . Thus EIRoO] = 

E[Rcc] = 0. Furthermore, E[Rc"] = A,(T) - A,(O) = E I R o c ] .  For A,(O) < 
A,(T), we have E[Rc"] > 0 > EIRoc]. Q.E.D. 

Proof of Proposition 4: Since P, = Ft - A,(t) - A(t)Y, for t E I, we have 

R , ,  = J dD,dr + (F,-Ft)- [A(s)Ys- A(t)Y,]. 
t 

Note that Y, = + J;eparr(s-')bydw,. I t  then follows that epa~(sp t )Y,  var-
[R""] - var[Rcc] = [h2(0)- h2{T)]var[~, Yo] > 0 for A(0) > A(T) and -

var[Roc] var[RcO]= 0. Q.E.D.-

Appendix E. Numerical Procedure 

We briefly discuss the numerical procedure used to solve for the periodic 
equilibrium. We use the Newton-Kantorovich method to solve this problem 
numerically (see, e.g., Kubicek (1983)). This recursive method linearizes the 
system and the boundary conditions around a conjectured solution to the 
nonlinear problem a t  a discrete number of points in the interval [t,,n,]. 
Since the system is linearized, it is easy to calculate an updated solution 
that satisfies the linearized system and boundary conditions from the con- 
jectured solution. The updated solution is then used as the conjectured so- 
lution to start  the next recursion. I t  can be shown that  the limit of this 
recursion converges to the solution of the nonlinear problem given that the 
initial conjectured solution is not too far away from the true solution. 

This method requires a sufficiently accurate initial guess of the true so- 
lution. We obtain such a guess by starting the recursion a t  w = l for any 
given set of parameters since a solution exists at  w = 1. In order to calculate 
a solution a t  w, < 1, we begin by using the solution at  w = 1as the initial 
guess to find a solution for an w close to one and we repeat the same pro- 
cedure to move toward w,. 
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Since we have no knowledge on the uniqueness of the solution, the above 
procedure also guarantees that we stay on the same branch of solutions. In 
particular, the solution gives the expected results when we take the limit 
w + 1. We have also checked the solution by taking other limits in the 
parameter space such as u, + 0 and have obtained the expected results. 
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