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The Illiquidity of Corporate Bonds

JACK BAO, JUN PAN, and JIANG WANG∗

ABSTRACT

This paper examines the illiquidity of corporate bonds and its asset-pricing impli-
cations. Using transactions data from 2003 to 2009, we show that the illiquidity in
corporate bonds is substantial, significantly greater than what can be explained by
bid–ask spreads. We establish a strong link between bond illiquidity and bond prices.
In aggregate, changes in market-level illiquidity explain a substantial part of the
time variation in yield spreads of high-rated (AAA through A) bonds, overshadowing
the credit risk component. In the cross-section, the bond-level illiquidity measure
explains individual bond yield spreads with large economic significance.

THE ILLIQUIDITY OF THE U.S. corporate bond market has captured the interest
and attention of researchers, practitioners, and policy makers alike. The fact
that illiquidity is important in the pricing of corporate bonds is widely recog-
nized, but the evidence is mostly qualitative and indirect. In particular, our
understanding remains limited with respect to the relative importance of illiq-
uidity and credit risk in determining corporate bond spreads and how their
importance varies with market conditions. The financial crisis of 2008 has
brought renewed interest and a sense of urgency to this topic, as concerns over
both illiquidity and credit risk intensified at the same time and it was not clear
which factor was the dominating force in driving up corporate bond spreads.

The main objective of this paper is to directly assess the pricing impact of
illiquidity in corporate bonds, at both the individual bond level and the aggre-
gate level. Recognizing that a sensible measure of illiquidity is essential to such
a task, we first use transaction-level corporate bond data to construct a simple
yet robust measure of illiquidity, γ , for each individual bond. Aggregating this
measure of illiquidity across individual bonds, we find a substantial level of
commonality. In particular, the aggregate illiquidity comoves in an important
way with the aggregate market condition, including market risk as captured by
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the Chicago Board Options Exchange Volatility Index (CBOE VIX) index and
credit risk as proxied by a credit default swap (CDS) index. Its movement dur-
ing the crisis of 2008 is also instructive. The aggregate illiquidity doubled from
its pre-crisis average in August 2007, when the credit problem first broke out,
and tripled from its pre-crisis average in March 2008, during the collapse of
Bear Stearns. By September 2008, during the Lehman default and the bailout
of AIG, it was five times its pre-crisis average and over 12 standard deviations
away. It peaked in October 2008 and then started a slow but steady decline
that coincided with fund injections by the Federal Reserve and improved mar-
ket conditions.

Using the aggregate γ measure for corporate bonds, we set out to examine
the relative importance of illiquidity and credit risk in explaining the time
variation of aggregate bond spreads. We find that illiquidity is by far the most
important factor in explaining the monthly changes in the U.S. aggregate yield
spreads of high-rated bonds (AAA through A), with an R2 ranging from 47%
to 60%. Adding an aggregate CDS index as a proxy for aggregate credit risk,
we find that it also plays an important role, as expected, increasing the R2 by
13 to 30 percentage points, but illiquidity remains the dominant force. Despite
the significant positive correlation with the aggregate illiquidity measure γ ,
the CBOE VIX index has no additional explanatory power for aggregate bond
spreads. We also find that while during normal times, aggregate illiquidity and
aggregate credit risk are equally important in explaining yield spreads of high-
rated bonds, with an R2 of roughly 20% for illiquidity alone and a combined R2

of around 40%, illiquidity becomes much more important during the 2008 crisis,
overshadowing credit risk. This is especially true for AAA-rated bonds, whose
connection to credit risk becomes insignificant when 2008 and 2009 data are
included, whereas its connection to illiquidity increases significantly. Relating
this observation to the discussion on whether the 2008 crisis was mainly a
liquidity or credit crisis, our results suggest that as far as high-rated corporate
bonds are concerned, the sudden increase in illiquidity was the dominating
factor in driving up the yield spreads.

Given that γ is constructed for individual bonds, we further examine the
pricing implication of illiquidity at the bond level. We find that γ explains the
cross-sectional variation of bond yield spreads with large economic significance.
Controlling for bond rating categories, we perform monthly cross-sectional re-
gressions of bond yield spreads on bond illiquidity and find a positive and
significant relation. This relation persists when we control for credit risk us-
ing CDS spreads. Our result indicates that for two bonds in the same rating
category, a one standard deviation difference in their bond illiquidity leads to
a difference in their yield spreads as large as 65 bps. Given that our sample
focuses exclusively on investment grade bonds, this magnitude of economic sig-
nificance is rather high. In contrast, other proxies of illiquidity used in previous
analysis such as quoted bid–ask spreads or the percent of trading days are ei-
ther insignificant in explaining the cross-sectional average yield spreads or
show up with the wrong sign. Moreover, the economic significance of γ remains
robust in magnitude and statistical significance after controlling for a spectrum
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of variables related to the bond’s fundamentals as well as bond characteristics.
In particular, other liquidity-related variables such as bond age, issuance size,
and average trade size do not change this result in a significant way.

Our empirical findings contribute to the existing literature in several im-
portant ways. In evaluating the implication of illiquidity on corporate bond
spreads, many studies focus on the credit component and attribute the unex-
plained portion in corporate bond spreads to illiquidity.1 In contrast, our paper
uses a direct measure of illiquidity to examine the pricing impact of illiquidity
in corporate bond spreads, both in aggregate and in the cross-section. We are
able to quantify the relative importance of illiquidity and credit and examine
the extent to which it has varied over time, including the 2008 crisis.

Several measures of illiquidity have been examined for traded securities in
previous work. One frequently used measure is the effective bid–ask spread,
which is analyzed in detail by Edwards, Harris, and Piwowar (2007).2 Although
the bid–ask spread is a direct and potentially important indicator of illiquidity,
it does not fully capture many important aspects of liquidity such as market
depth and resilience. Alternatively, relying on theoretical pricing models to
gauge the impact of illiquidity allows for direct estimation of its influence on
prices, but suffers from potential misspecification of the pricing model. In con-
structing a measure of illiquidity, we take advantage of a salient feature of
illiquidity. In particular, the lack of liquidity in an asset gives rise to transitory
components in its prices, and thus the magnitude of such transitory price move-
ments reflects the degree of illiquidity in the market.3 Because transitory price
movements lead to negatively serially correlated price changes, the negative
of the autocovariance in relative price changes, which we denote by γ , gives a
meaningful measure of illiquidity. Roll (1984) first considered the simple case in
which the transitory price movements arise from bid–ask bounce, where 2

√
γ

equals the bid–ask spread. But in more general cases, γ captures the broader
impact of illiquidity on prices, above and beyond the effect of bid–ask spread.
Moreover, it does so without relying on specific bond pricing models.

Indeed, our results show that the lack of liquidity in the corporate bond mar-
ket is substantially beyond what the bid–ask spread captures. Estimating γ

1 For example, Huang and Huang (2003) find that yield spreads for corporate bonds are too high
to be explained by credit risk and question the economic content of the unexplained portion of yield
spreads. Collin-Dufresne, Goldstein, and Martin (2001) find that variables that should in theory
determine credit spread changes in fact have limited explanatory power, and again question the
economic content of the unexplained portion. Longstaff, Mithal, and Neis (2005) use CDS as a
proxy for credit risk and find that a majority of bond spreads can be attributed to credit risk and
the nondefault component is related to bond-specific illiquidity such as quoted bid–ask spreads.
Bao and Pan (2010) document a significant amount of transitory excess volatility in corporate bond
returns and attribute this excess volatility to the illiquidity of corporate bonds.

2 See also Bessembinder, Maxwell, and Venkataraman (2006) and Goldstein, Hotchkiss, and
Sirri (2007).

3 Niederhoffer and Osborne (1966) are among the first to recognize the relation between negative
serial covariation and illiquidity. More recent theoretical work in establishing this link includes
Grossman and Miller (1988), Huang and Wang (2009), and Vayanos and Wang (2009), among
others.
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for a broad cross-section of the most liquid corporate bonds in the U.S. market,
we find a median γ of 0.56. In contrast, the median γ implied by the quoted
bid–ask spreads is 0.026, which is only a tiny fraction of the estimated γ . Con-
verting these numbers to the γ -implied bid–ask spread, our median estimate
of γ implies a bid–ask spread of 1.50%, significantly larger than the median
quoted bid–ask spread of 0.29% or the estimated bid–ask spread reported by
Edwards, Lawrence, and Piwowar (2007) (see Section IV for more details).

Finally, our paper also adds to the literature that examines the pricing impact
of illiquidity on corporate bond yield spreads. Using illiquidity proxies that in-
clude quoted bid–ask spreads and the percent of zero returns, Chen, Lesmond,
and Wei (2007) find that more illiquid bonds have higher yield spreads.4 We
find that γ is by far more important in explaining corporate bond spreads in
the cross-section. In fact, for our sample of bonds, we do not see a meaning-
ful connection between bond yield spreads and quoted bid–ask spreads or the
percent of nontrading days (either statistically insignificant or with the wrong
sign). Using a alternative illiquidity measure proposed by Campbell, Gross-
man, and Wang (1993), Lin, Wang, and Wu (2011) focus instead on changes
in illiquidity as a risk and find that a systematic illiquidity risk is priced by
the cross-section of corporate bond returns. Given the relatively short sample,
however, we find the bond returns to be too noisy to allow for any meaningful
test in the space of risk factors.5 Their results are complementary to ours in
the sense that their results connect risk factors to risk premiums whereas ours
connect characteristics to prices.

The paper is organized as follows. Section I summarizes the data, and Section
II describes γ and its cross-sectional and time-series properties. In Section III,
we investigate the asset-pricing implications of illiquidity. Section IV compares
γ with the effect of bid–ask spreads. Further properties of γ are provided in
Section V. Section VI concludes.

I. Data Description and Summary

The main data set used for this paper is the Financial Industry Regulatory
Authority’s (FINRA) TRACE. This data set is a result of recent regulatory ini-
tiatives to increase price transparency in secondary corporate bond markets.

4 Using nine liquidity proxies including issuance size, age, missing prices, and yield volatility,
Houweling, Mentink, and Vorst (2003) reach similar conclusions for euro corporate bonds. de Jong
and Driessen (2005) find that systematic liquidity risk factors for the Treasury bond and equity
markets are priced in corporate bonds, and Downing, Underwood, and Xing (2005) address a similar
question. Using a proprietary data set on institutional holdings of corporate bonds, Nashikkar et al.
(2008) and Mahanti, Nashikkar, and Subrahmanyam (2008) propose a measure of latent liquidity
and examine its connection with the pricing of corporate bonds and CDS.

5 Adding National Association of Insurance Commissioners (NAIC) data to the Transaction Re-
porting and Compliance Engine (TRACE) data, Lin, Wang, and Wu (2011) have a longer sample
period. However, we find the NAIC data to be problematic. For example, a large fraction of trans-
action prices reported there cannot be matched with the TRACE data for our sample. In addition,
whereas Lin, Wang, and Wu (2011) report that insurance companies own about one-third of cor-
porate bonds outstanding, Nashikkar et al. (2008) note that insurance companies are typically
buy-and-hold investors and have low portfolio turnover. These issues make the construction of a
reliable illiquidity measure using NAIC data difficult.
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FINRA, formerly the National Association of Securities Dealers (NASD), is
responsible for operating the reporting and dissemination facility for over-the-
counter corporate bond trades. On July 1, 2002, the NASD began Phase I of
bond transaction reporting, requiring that transaction information be dissem-
inated for investment grade securities with an initial issue size of $1 billion
or greater. Phase II, implemented on April 14, 2003, expanded reporting re-
quirements, bringing the number of bonds to approximately 4,650. Phase III,
implemented completely on February 7, 2005, required reporting on approx-
imately 99% of all public transactions. Trade reports are time stamped and
include information on the clean price and par value traded, although the par
value traded is truncated at $1 million for speculative grade bonds and at $5
million for investment grade bonds.

In our study, we drop the early sample period with only Phase I coverage. We
also drop all of the Phase III only bonds. We sacrifice in these two dimensions
to maintain a balanced sample of Phase I and II bonds from April 14, 2003
to June 30, 2009. Of course, new issuances and retired bonds generate some
time variation in the cross-section of bonds in our sample. After cleaning up
the data, we also take out the repeated interdealer trades by deleting trades
with the same bond, date, time, price, and volume as the previous trade.6 We
further require the bonds in our sample to have frequent enough trading so that
the illiquidity measure can be constructed from the trading data. Specifically,
during its existence in the TRACE data, a bond must trade on at least 75% of
its relevant business days to be included in our sample. To avoid bonds that
show up just for several months and then disappear from TRACE, we require
the bonds in our sample to be in existence in the TRACE data for at least one
full year. Finally, we restrict our sample to investment grade bonds as the junk
grade bonds included during Phases I and II were selected primarily for their
liquidity and are unlikely to represent the typical junk grade bonds in TRACE.

Table I summarizes our sample, which consists of frequently traded Phase
I and II bonds from April 2003 to June 2009. There are 1,035 bonds in our
full sample, although the total number of bonds varies from year to year. The
increase in the number of bonds from 2003 to 2004 could be a result of how
NASD starts its coverage of Phase III bonds, although the gradual reduction in
the number of bonds from 2004 through 2009 is a result of bonds that mature
or are retired.

The bonds in our sample are typically large, with a median issuance size
of $750 million, and the representative bonds in our sample are investment
grade, with a median rating of 6, which translates to Moody’s A2. The average
maturity is close to 6 years and the average age is about 4 years. Over time, we
see a gradual decrease in maturity and increase in age. This can be attributed
to our sample selection, which excludes bonds issued after February 7, 2005,
the beginning of Phase III.7

6 This includes cleaning up withdrawn or corrected trades, dropping trades with special sale
conditions or special prices, and correcting for obviously misreported prices.

7 Below we discuss the effect, if any, of this sample selection on our results. An alternative
treatment is to include in our sample those newly issued bonds that meet the Phase II criteria,
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Given our selection criteria, the bonds in our sample are more frequently
traded than a typical bond. The average monthly turnover—the bond’s monthly
trading volume as a percentage of its issuance size—is 7.51%, and the average
number of trades in a month is 208. Across bonds, the median average trade size
is $324,000. For the whole sample in TRACE, the average monthly turnover is
3.71%, the average number of trades in a month is 33, and the median trade
size is $65,000. Thus, the bonds in our sample are also relatively more liquid.
Given that our focus is to study the significance of illiquidity for corporate
bonds, such a bias in our sample toward more liquid bonds, although not ideal,
will only help to strengthen our results if they show up for the most liquid
bonds.

In addition to the TRACE data, we use CRSP to obtain stock returns for
the market and the respective bond issuers. We use FISD to obtain bond-level
information such as issue date, issuance size, coupon rate, and credit rating, as
well as to identify callable, convertible, and putable bonds. We use Bloomberg to
collect the quoted bid–ask spreads for the bonds in our sample, from which we
have data for 1,032 out of the 1,035 bonds in our sample.8 We use Datastream
to collect Barclays Bond indices to calculate the default spread and returns
on the aggregate corporate bond market and also to gather CDS spreads. To
calculate yield spreads for individual corporate bonds, we obtain Treasury bond
yields from the Federal Reserve, which publishes constant maturity Treasury
rates for a range of maturities. Finally, we obtain the VIX index from CBOE.

II. Measure of Illiquidity and Its Properties

A. Measuring Illiquidity

Although a precise definition of illiquidity and its quantification will depend
on a specific model, two properties are clear. First, illiquidity arises from market
frictions, such as costs and constraints for trading and capital flows; second, its
impact to the market is transitory. We thus construct a measure of illiquidity
that is motivated by these two properties.

As such, the focus, as well as the contribution, of our paper is mainly empir-
ical. To facilitate our analysis, however, let us think in terms of the following
simple model. Let Pt denote the clean price—the full value minus accrued in-
terest since the last coupon date—of a bond at time t, and pt = ln Pt denote the
log price. We start by assuming that pt consists of two components:

pt = ft + ut . (1)

The first component ft represents its fundamental value—the log price in the
absence of frictions, which follows a random walk; the second component ut

but this is difficult to implement because the Phase II criteria are not precisely specified by
FINRA.

8 We follow Chen, Lesmond, and Wei (2007) in using the Bloomberg generic bid–ask spread.
This spread is calculated using a proprietary formula that uses quotes provided to Bloomberg by
a proprietary list of contributors. These quotes are indicative rather than binding.
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comes from the impact of illiquidity, which is transitory (and uncorrelated with
the fundamental value).9 In such a framework, the magnitude of the transitory
price component ut characterizes the level of illiquidity in the market. The
measure of illiquidity γ is aimed at extracting the transitory component in the
observed price pt. Specifically, let �pt = pt − pt−1 be the price change from
t − 1 to t. We define γ by

γ = −Cov (�pt,�pt+1) . (2)

With the assumption that the fundamental component ft follows a random
walk, γ depends only on the transitory component ut, and it increases with the
magnitude of ut.

Several comments are in order before we proceed with our empirical analysis
of γ . First, we know little about the dynamics of ut, other than its transitory
nature. For example, when ut follows an AR(1) process, we have γ = (1 − ρ)σ 2/

(1 + ρ), where σ is the instantaneous volatility of ut, and 0 � ρ < 1 is its
persistence coefficient. In this case, although γ does provide a simple gauge of
the magnitude of ut, it combines various aspects of ut (e.g., σ and ρ). Second,
for the purpose of measuring illiquidity, other aspects of ut that are not fully
captured by γ may also matter. In other words, γ gives only a partial measure
of illiquidity. Third, given the potential richness in the dynamics of ut, γ will
in general depend on the horizon over which we measure price changes. This
horizon effect is important because γ measured over different horizons may
capture different aspects of ut or illiquidity. For most of our analysis, we will
use either trade-by-trade prices or end of the day prices in estimating γ . Con-
sequently, our γ estimate captures more of the high frequency components in
transitory price movements.

Table II summarizes the illiquidity measure γ for the bonds in our sample.
Focusing first on Panel A, in which γ is estimated bond-by-bond using either
trade-by-trade or daily data, we see an illiquidity measure of γ that is important
both economically and statistically.10

For the full sample period from 2003 through 2009, the illiquidity measure
γ has a cross-sectional average of 0.63 with a robust t-statistic of 19.42 when

9 Such a separation was considered by Niederhoffer and Osborne (1966), Roll (1984), and Gross-
man and Miller (1988), among others. It assumes that the fundamental value ft carries no time-
varying risk premium. This is a reasonable assumption over short horizons. It is equivalent to
assuming that high frequency variations in expected returns are ultimately related to market
frictions—otherwise, arbitrage forces would have driven them away. To the extent that illiquidity
can be viewed as a manifestation of these frictions, price movements giving rise to high frequency
variations in expected returns should be included in ut. Admittedly, a more precise separation of ft
and ut must rely on a pricing theory incorporating frictions or illiquidity. See, for example, Huang
and Wang (2009) and Vayanos and Wang (2009).

10 To be included in our sample, the bond must trade on at least 75% of business days and at
least 10 observations of the paired price changes, (�pt, �pt−1), are required to calculate γ . In
calculating γ using daily data, price changes may be between prices over multiple days if a bond
does not trade during a day. We limit the difference in days to 1 week though this criteria rarely
binds due to our sample selection criteria.
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Table II
Measure of Illiquidity γ = −Cov (pt − pt−1, pt+1 − pt)

This table reports estimates of the illiquidity measure, γ . At the individual bond level, γ is calcu-
lated using either trade-by-trade or daily data. Per t-stat � 1.96 reports the percentage of bonds
with statistically significant γ . Robust t-stat is a test on the cross-sectional mean of γ with stan-
dard errors corrected for cross-sectional and time-series correlations. At the portfolio level, γ is
calculated using daily data and the Newey–West t-statistics are reported. Monthly quoted bid–ask
spreads, for which we have data for 1,032 out of 1,035 bonds in our sample, are used to calculate
the implied γ .

2003 2004 2005 2006 2007 2008 2009 Full

Panel A: Individual Bonds

Trade-by-Trade Data
Mean γ 0.64 0.60 0.52 0.40 0.44 1.02 1.35 0.63
Median γ 0.41 0.32 0.25 0.19 0.24 0.57 0.63 0.34
Per t � 1.96 99.46 98.64 99.34 99.87 99.69 98.80 97.98 99.81
Robust t-stat 14.54 16.22 15.98 15.12 14.88 12.58 9.45 19.42

Daily Data
Mean γ 0.99 0.82 0.77 0.57 0.80 3.21 5.40 1.18
Median γ 0.61 0.41 0.34 0.29 0.47 1.36 1.94 0.56
Per t � 1.96 94.62 92.64 95.50 96.26 95.57 95.41 97.59 98.84
Robust t-stat 17.28 17.88 18.21 19.80 14.39 7.16 8.47 16.53

Panel B: Bond Portfolios

Equal-weighted −0.0014 −0.0043 −0.0008 0.0001 0.0023 −0.0112 −0.0301 −0.0050
t-stat −0.29 −1.21 −0.47 0.11 1.31 −0.26 −2.41 −0.71
Issuance-weighted 0.0018 −0.0042 −0.0003 0.0007 0.0034 0.0030 −0.0280 −0.0017
t-stat 0.30 −1.14 −0.11 0.41 1.01 0.06 −1.97 −0.20

Panel C: Implied by Quoted Bid–Ask Spreads

Mean implied γ 0.035 0.031 0.034 0.028 0.031 0.050 0.070 0.034
Median implied γ 0.031 0.025 0.023 0.018 0.021 0.045 0.059 0.026

estimated using trade-by-trade data, and an average of 1.18 with a robust t-
statistic of 16.53 using daily data.11 More importantly, the significant mean
estimate of γ is not generated by just a few highly illiquid bonds. Using trade-
by-trade data, the cross-sectional median of γ is 0.34, and 99.81% of the bonds
have a statistically significant γ (t-statistic of γ greater than or equal to 1.96);
using daily data, the cross-sectional median of γ is 0.56 and over 98% of the
bonds have a statistically significant γ .

For each bond, we can further break down its overall illiquidity measure γ

to gauge the relative contribution from trades of various sizes. Specifically, for
each bond, we sort its trades by size into the smallest 30%, middle 40%, and

11 The robust t-statistics are calculated using standard errors that are corrected for cross-
sectional and time-series correlations. Specifically, the moment condition for estimating γ is
γ̂ + �pi

t�pi
t−1 = 0 for all bond i and time t, where �p is demeaned. We can then correct for

cross-sectional and time-series correlations in �pi
t�pi

t−1 using standard errors clustered by bond
and day.
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largest 30% and then estimate γ small, γ medium, and γ large using prices associ-
ated with the corresponding trade sizes. The results are summarized in the
Appendix. We find that our overall illiquidity measure is not driven only by
small trades. In particular, we find significant illiquidity across all trade sizes.
For example, using daily data, the cross-sectional means of γ small, γ medium,
and γ large are 1.58, 1.06, and 0.64, respectively, each with very high statistical
significance.12

As a comparison to the level of illiquidity for individual bonds, Panel B
of Table II reports γ measured using equal- or issuance-weighted portfolios
constructed from the same cross-section of bonds and for the same sam-
ple period. In contrast to its counterpart at the individual bond level, γ at
the portfolio level is slightly negative, rather small in magnitude, and sta-
tistically insignificant. This implies that the transitory component extracted
by the γ measure is idiosyncratic in nature and gets diversified away at
the portfolio level. It does not imply, however, that the illiquidity in corpo-
rate bonds lacks a systematic component, which we will examine later in
Section II.C.

Panel C of Table II provides another and perhaps more important gauge of
the magnitude of our estimated γ for individual bonds. Using quoted bid–ask
spreads for the same cross-section of bonds and for the same sample period,
we estimate a bid–ask implied γ for each bond by computing the magnitude of
negative autocovariance that would have been generated by bid–ask bounce.
For the full sample period, the cross-sectional mean of the implied γ is 0.034
and the median is 0.026, which are more than one order of magnitude smaller
than the empirically observed γ for individual bonds. As we show later in the
paper, not only does the quoted bid–ask spread fail to capture the overall level
of illiquidity, but it also fails to explain the cross-sectional variation in bond
illiquidity and its asset-pricing implications.

Although our focus is on extracting the transitory component at the trade-
by-trade and daily frequencies, it is interesting to provide a general picture
of γ over varying horizons. Moving from the trade-by-trade to daily horizon,
our results in Table II show that the magnitude of the illiquidity measure γ

becomes larger. Given that the autocovariance at the daily level cumulatively
captures the mean reversion at the trade-by-trade level, this implies that the
mean reversion at the trade-by-trade level persists for a few trades before fully
dissipating, which we show in Section V.A. Moving from the daily to weekly
horizon, we find that the magnitude of γ increases from an average level of 1.18
to 1.44, although its statistical significance decreases to a robust t-statistic of
9.50, and 74.76% of the bonds in our sample have a positive and statistically

12 The γ measure could be affected by the presence of persistent small trades, which could be a
result of the way dealers deal bonds to retail traders. We thank the referee for raising this point.
Such persistent small trades will bias γ downward. In other words, the γ measures would have
been larger in the absence of such persistent small trades. Moreover, it will have a larger impact
on γ measured using prices associated with small trade sizes. We find significant illiquidity across
all trade sizes.
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significant γ at this horizon. Extending to the biweekly and monthly horizons,
γ starts to decline in both magnitude and statistical significance.13

As mentioned earlier in the section, the transitory component ut might have
richer dynamics than what can be offered by a simple AR(1) structure for ut. By
extending γ over various horizons, we are able to uncover some of the dynamics.
We show in Section V.A that at the trade-by-trade level ut is by no means a
simple AR(1). Likewise, in addition to the mean reversion at the daily horizon
that is captured in this paper, the transitory component ut may also have a
slow-moving mean reversion component at a longer horizon. To examine this
issue more thoroughly is an interesting topic, but requires time-series data for
a longer sample period than ours.14

B. Illiquidity and Bond Characteristics

Our sample includes a broad cross-section of bonds, which allows us to exam-
ine the connection between the illiquidity measure γ and various bond charac-
teristics, some of which are known to be linked to bond liquidity. The variation
in γ and bond characteristics is reported in Table III. We use daily data to con-
struct yearly estimates of γ for each bond and perform pooled regressions on
various bond characteristics. Reported in square brackets are the t-statistics
calculated using standard errors clustered by year.

We find that older bonds on average have higher γ , and the results are robust
regardless of which control variables are used in the regression. On average, a
bond that is 1 year older is associated with an increase of 0.19 in its γ , which
accounts for more than 15% of the full-sample average of γ . Given that the
age of a bond has been widely used in the fixed-income market as a proxy for
illiquidity, it is important that we establish this connection between γ and age.
Similarly, we find that bonds with smaller issuance tend to have larger γ . We
also find that bonds with longer time to maturity typically have higher γ . We do
not find a significant relation between credit ratings and γ , and this can be
attributed to the fact that our sample includes investment grade bonds only.

Given that we have transaction-level data, we can also examine the con-
nection between γ and bond trading activity. We find that, by far, the most
interesting variable is the average trade size of a bond. In particular, bonds

13 At a biweekly horizon, the mean gamma is 1.32 with a t-statistic of 5.24, and 40.89% of the
bonds have a significant gamma. At the monthly horizon, gamma is 0.90 with a t-statistic of 2.61
and only 17.19% are significant. In addition to having fewer observations, using longer horizons
also decreases the signal to noise ratio as the fundamental volatility starts to build up. See Harris
(1990) for the exact small-sample moments of the serial covariance estimator and of the standard
variance estimator for price changes generated by the Roll spread model.

14 By using monthly bid prices from 1978 to 1998, Khang and King (2004) report contrarian
patterns in corporate bond returns over horizons of 1 to 6 months. Instead of examining autoco-
variance in bond returns, their focus is on the cross-sectional effect. Sorting bonds by their past
monthly (or bimonthly up to 6 months) returns, they find that past winners underperform past
losers in the next month (or 2 months up to 6 months). Their result, however, is relatively weak
and is significant only in the early half of their sample; it goes away in the second half of their
sample (1988 to 1998).
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Table III
Variation in γ and Bond Characteristics

This table reports panel regressions with annually estimated γ as the dependent variable.
T-statistics are reported in square brackets using standard errors clustered by year. Issuance
is the bond’s face value issued in millions of dollars. Rating is a numerical translation of Moody’s
rating: 1=Aaa and 21=C. Age is the time since issuance in years. Maturity is the bond’s time
to maturity in years. Turnover is the bond’s average monthly trading volume as a percentage of
its issuance. Trd Size is the average trade size of the bond in thousands of dollars of face value.
#Trades is the bond’s average number of trades per month. beta(stock) and beta(bond) are obtained
by regressing weekly bond returns on weekly returns on the CRSP value-weighted index and the
Barclays U.S. bond index. Quoted BA γ is the γ implied by quoted bid–ask spreads. CDS Dummy
is one if the bond has CDS traded on its issuer. CDS Spread is the spread on the 5-year CDS of the
bond issuer in percent. Data are from 2003 to 2009 except for regressions with CDS information,
which start in 2004.

Cons 2.28 2.02 3.27 0.95 1.13 1.85 1.86
[2.58] [2.37] [2.95] [1.35] [2.64] [2.48] [2.94]

Age 0.19 0.14 0.10 0.17 0.13 0.16 0.08
[2.98] [2.83] [2.29] [3.49] [4.01] [3.23] [2.69]

Maturity 0.05 0.11 0.11 0.11 0.05 0.11 0.13
[2.18] [5.56] [5.74] [5.46] [2.95] [4.88] [2.97]

ln(Issuance) −0.56 −0.46 −0.20 −0.57 −0.35 −0.49 −0.39
[−2.26] [−2.23] [−1.08] [−2.59] [−2.39] [−2.13] [−2.22]

Rating 0.15 0.21 0.24 0.20 0.14 0.22 −0.05
[1.42] [1.44] [1.67] [1.42] [1.38] [1.36] [−0.96]

beta (stock) 2.14
[1.88]

beta (bond) 1.01
[1.79]

Turnover −0.03
[−1.13]

ln(Trd Size) −0.56
[−4.39]

ln(Num Trades) 0.31
[2.89]

Quoted BA γ 23.09
[2.27]

CDS Dummy 0.07
[0.87]

CDS Spread 1.45
[5.26]

Obs 4,261 4,860 4,860 4,860 4,834 4,116 3,721
R2 10.61 7.02 7.71 7.15 13.11 6.53 23.07

with smaller trade sizes have higher illiquidity measure γ . We also find that
bonds with a larger number of trades have higher γ and are less liquid. In
other words, more trades do not imply more liquidity, especially if these trades
are of small size.

To examine the connection between γ and quoted bid–ask spreads, we use
quoted bid–ask spreads to obtain bid–ask implied γ ’s. We find a positive relation
between our γ measure and the γ measure implied by the quoted bid–ask
spread. It is interesting to point out, however, that adding the bid–ask implied
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γ as an explanatory variable does not alter the relation between our γ measure
and liquidity-related bond characteristics such as age and size. Overall, we find
that the magnitude of illiquidity captured by our γ measure is related to but
goes beyond the information contained in the quoted bid–ask spreads.

Finally, given the extent of CDS activity during our sample period and its
close relation to the corporate bond market, it is also interesting for us to explore
the connection between γ and information from the CDS market. We obtain
two results. First, we find that whether a bond issuer has CDS traded on it does
not affect the bond’s liquidity. Given that our sample includes only investment
grade bonds and over 90% of the bond-years in our sample have traded CDS,
this result is hardly surprising. Second, we find that, within the CDS sample,
bonds with higher CDS spreads have significantly higher γ ’s and are therefore
less liquid. This implies that even at the issuer level, there is a close connection
between credit and liquidity risks. We now move on to the aggregate level to
examine whether this liquidity risk has a systematic component and explore
its relation with systematic credit risk.

C. Aggregate Illiquidity and Market Conditions

Next, we examine how the illiquidity of corporate bonds varies over time.
Instead of considering individual bonds, we focus on the comovement in their
illiquidity. For this purpose, we construct an aggregate measure of illiquidity
using the bond-level illiquidity measure. We first construct, at a monthly fre-
quency, a cross-section of γ ’s for all individual bonds using daily data within
that month. We then use the cross-sectional median γ as the aggregate γ mea-
sure.15 If the bond-level illiquidity we have documented so far is purely driven
by idiosyncratic variations, then we would not expect to see any interesting
time-series variation in this aggregate γ measure. In other words, a system-
atic component of bond illiquidity can only emerge when many bonds become
illiquid around the same time.

From Figure 1, we see that there is indeed a substantial level of commonal-
ity in bond-level illiquidity, indicating a rather important systematic illiquid-
ity component. More importantly, this aggregate illiquidity measure comoves
strongly with the aggregate market condition at the time. The 2008 subprime
crisis is perhaps the most prominent event in our sample. Before August 2007,
the aggregate γ was hovering around an average level of 0.30 with a standard
deviation of 0.10. In August 2007, when the credit crisis first broke out, the
aggregate γ doubled to 0.60, and in March 2008, during the collapse of Bear
Stearns, the aggregate γ jumped to 0.90, which tripled the pre-crisis average
and was the all-time high at that point. In September 2008, during the Lehman
default and the bailout of AIG, we see the aggregate γ reaching 1.59, which
was over 12 standard deviations away from its pre-crisis level. The aggregate

15 Compared with the cross-sectional mean of γ , the median γ is a more conservative measure
and is less sensitive to those highly illiquid bonds that were most severely affected by the credit
market turmoil.
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Figure 1. Monthly time-series of aggregate illiquidity. The top panel is for the whole sample,
and the bottom panel focuses on the pre-2008 period.

γ peaked in October 2008 at 3.37, indicating a worsening liquidity situation
after the Lehman/AIG event. After the illiquidity peak in October 2008, we see
a slow but steady improvement in liquidity, which coincided with the funding
injection provided by Federal Reserve and the improved condition of the overall
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market.16 The connection between the aggregate γ and broader market condi-
tions indicates that although the aggregate illiquidity measure is constructed
using only corporate bond data, the aggregate illiquidity captured here seems
to have a wider reach than this particular market. Indeed, as reported in
Table IV, regressing monthly changes in aggregate γ on contemporaneous
changes in the CBOE VIX index, we obtain a slope coefficient of 0.0468 with
a t-statistic of 6.45, and the R2 of the OLS regression is over 67%. This result
is not driven just by the 2008 subprime crisis: excluding data from 2008 and
2009, the positive relation is still robust—the slope coefficient is 0.0162 with a
t-statistic of 2.87 and the R2 is 33%.

The fact that the aggregate illiquidity measure γ has a close connection with
the VIX index is a rather intriguing result. Although one measure is captured
from the trading of individual corporate bonds, to gauge the overall liquidity
condition of the market, the other is captured from the pricing of S&P 500 index
options, often referred to as the “fear gauge” of the market. Our result seems
to indicate that there is a nontrivial interaction between shocks to market
illiquidity and shocks to market risk and/or risk appetite.

Also reported in Table IV are the relation between the aggregate γ and other
market-condition variables. As a proxy for overall credit risk, we consider an
average CDS index, constructed as the average of 5-year CDS spreads covered
by CMA Datavision in Datastream.17 We find a weak positive relation between
changes in aggregate γ and changes in the CDS index. Interestingly, if we
exclude 2008 and 2009, the connection between the two is stronger. We also
find that lagged bond returns are negatively related to changes in aggregate γ ,
indicating that, on average, negative bond market performance is followed by
worsening liquidity conditions. Putting VIX into these regressions, however,
these two variables become insignificant. The one market condition variable
that is significant after controlling for VIX is the volatility of the Barclays U.S.
Investment Grade Corporate Bond Index, but this is only true if crisis period
data are included.

The analysis above leads to three conclusions. First, there is substantial
commonality in the time variation of corporate bond illiquidity. Second, this
time variation is correlated with overall market conditions. Third, changes in
the aggregate γ exhibit strong positive correlation with changes in VIX.

16 By focusing only on Phase I and II bonds in TRACE to maintain a reasonably balanced sample,
we do not include bonds that were included only after Phase III, which was fully implemented on
February 7, 2005. Consequently, new bonds issued after that date are excluded from our sample,
even though some of them would have been eligible for Phase II had they been issued earlier. As
a result, starting from February 7, 2005, we have a population of slowly aging bonds. Because
γ is positively related to age, it might introduce a slight overall upward trend in γ . It should be
mentioned that the sudden increases in aggregate γ during crises are too large to be explained
by the slow aging process. Finally, to avoid regressing trend on trend, the time-series regression
results presented later in this section are based on regressing changes on changes. In a robustness
check, we construct a subsample of bonds with less of the aging effect, and we find that our
time-series results in this section remain the same.

17 For robustness, we also consider a CDS index using only the subset of names that correspond
to the bonds in our sample and find similar results.
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Table IV
Time Variation in Aggregate γ and Market Variables

This table reports monthly changes in γ regressed on monthly changes in the bond index volatil-
ity, VIX, CDS index, term spread, default spread, and lagged stock and bond excess returns.
Newey–West t-statistics are reported in square brackets. Regressions with CDS Index do not
include 2003 data.

Panel A: Full Sample

Cons 0.0003 0.0036 −0.0027 0.0020 0.0061 0.0078 0.0096 0.0014
[0.03] [0.13] [−0.15] [0.07] [0.21] [0.27] [0.40] [0.12]

� VIX 0.0468 0.0497
[6.45] [3.58]

� Bond 0.0411 0.0303
Volatility [1.82] [2.92]

� CDS Index 0.2101 −0.0408
[1.91] [−0.64]

� Term 0.3610
Spread [1.01]

� Default −0.0038
Spread [−0.04]

Lagged Stock −0.0082
Return [−0.94]

Lagged Bond −0.0506 0.0039
Return [−2.35] [0.17]

Adj R2 (%) 67.47 3.31 12.77 6.38 −1.41 0.46 13.57 70.01

Panel B: 2003–2007 Only

Cons 0.0012 0.0018 0.0014 0.0050 0.0011 0.0116 0.0029 0.0128
[0.19] [0.21] [0.32] [0.60] [0.19] [1.22] [0.36] [2.42]

� VIX 0.0162 0.0108
[2.87] [2.21]

� Bond −0.0038
Volatility [−0.43]

� CDS Index 0.3640 0.1213
[2.94] [1.51]

� Term 0.1204 0.1020
Spread [2.76] [2.87]

� Default 0.2362
Spread [1.35]

Lagged Stock −0.0103 −0.0068
Return [−3.27] [−2.74]

Lagged Bond −0.0127 −0.0039
Return [−4.22] [−0.94]

Adj R2 (%) 33.11 −1.51 37.76 8.87 10.82 18.00 6.98 55.11

III. Illiquidity and Bond Yields

Having established the empirical properties of the illiquidity measure γ , we
now explore the connections between illiquidity and corporate bond pricing. In
particular, we examine the extent to which illiquidity affects pricing, both in
the time series and in the cross-section.
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A. Aggregate Illiquidity and Aggregate Bond Yield Spreads

We use the Barclays U.S. Corporate Bond Indices (formerly known as the
Lehman Indices) and the 5-year Treasury Constant Maturity series to measure
aggregate bond yield spreads of various ratings. We regress monthly changes in
the aggregate bond yield spreads on monthly changes in the aggregate illiquid-
ity measure γ and other market-condition variables. The results are reported
in Table V.

We find that the aggregate γ plays an important role in explaining the
monthly changes in the aggregate yield spreads. This is especially true for rat-
ings A and above, where the aggregate γ is by far the most important variable,
explaining over 51% of the monthly variation in yield spreads for AAA-rated
bonds, 47% for AA-rated bonds, and close to 60% for A-rated bonds. Adding the
CDS index as a proxy for credit risk, we find that it also plays an important
role, but illiquidity remains the dominant factor in driving the yield spreads for
ratings A and above. On the other hand, the CBOE VIX index does not have any
additional explanatory power in the presence of the aggregate γ and the CDS
index. This implies that despite their strong correlation, the aggregate γ is far
from a mere proxy for VIX. Rather, it contains important information about
bond yield spreads whereas VIX does not provide any additional information.

Overall, our results indicate that both illiquidity, as captured by the aggre-
gate γ , and credit risk, as captured by the CDS index, are important drivers of
high-rated yield spreads. During normal market conditions, these two compo-
nents seem to carry equal importance. This can be seen in Panel B of Table V,
where only pre-2008 data are used. During the 2008 crisis, however, illiquidity
becomes a much more important component, overshadowing the credit risk
effect. This is especially true for AAA-rated bonds, whose connection to credit
risk is no longer significant when 2008 and 2009 data are included.18 At the
same time, its connection to illiquidity increases rather significantly. In par-
ticular, in the univariate regression, the R2 doubles from 25% to 52% when
2008 and 2009 are included. Pre-crisis, a one standard deviation increase in
monthly changes in aggregate γ (which is 0.06) results in a 3.5 bp increase
in yield spreads for AAA-rated bonds. After including 2008 and 2009, a one
standard deviation increase in monthly changes in aggregate γ (which is 0.27)
results in a 24 bp increase in yield spreads.

Applying this observation to the debate on whether the 2008 crisis was a liq-
uidity crisis or credit crisis, our results seem to indicate that as far as high-rated
corporate bonds are concerned, the sudden increase in aggregate illiquidity was
a dominating force in driving up the yield spreads.

Our results also show that although aggregate illiquidity plays an important
role in explaining the monthly changes in yield spreads for high-rated bonds, it
is less important for junk bonds. For such bonds, credit risk is a more important

18 We construct the CDS index using all available CDS data from CMA in Datastream. For
robustness, we further construct a CDS index using only CDS’s on the firms in our sample. The
results are similar and our main conclusions in this subsection are robust to both measures of CDS
indices.
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component. This does not mean that junk bonds are more liquid. In fact, they
are generally less liquid. Given the low credit quality of such bonds, however,
they are more sensitive to the overall credit condition than the overall illiquidity
condition. This is also consistent with the findings of Huang and Huang (2003).
Pricing corporate bonds using structural models of default, they find that, for
the low-rated bonds, a large portion of their yield spreads can be explained by
credit risk, whereas for the high-rated bonds, credit risk can explain only a tiny
portion of their yield spreads.

B. Bond-Level Illiquidity and Individual Bond Yield Spreads

We now examine how bond-level γ can help explain the cross-section of bond
yields. For this purpose, we focus on the yield spread of individual bonds,
which is the difference between the corporate bond yield and the Treasury bond
yield of the same maturity. For Treasury yields, we use the constant maturity
rate published by the Federal Reserve and use linear interpolation whenever
necessary. We perform monthly cross-sectional regressions of the yield spreads
on the illiquidity measure γ , along with a set of control variables.

The results are reported in Table VI, where the t-statistics are calculated
using the Fama–MacBeth standard errors with serial correlation corrected us-
ing Newey and West (1987). To include callable bonds in our analysis, which
constitute a large portion of our sample, we use a callable dummy that is set
to one if a bond is callable and zero otherwise.19 We exclude all convertible and
putable bonds from our analysis. In addition, we also include rating dummies
for A and Baa. The first column in Table VI shows that (controlling for calla-
bility), the average yield spread of the Aaa and Aa bonds in our sample is 129
bps, relative to which the A bonds are 61 bps higher and the Baa bonds are 176
bps higher.

As reported in the second column of Table VI, adding γ to the regression
does not bring much change to the relative yield spreads across ratings. This
is to be expected because γ should capture more of a liquidity effect, and less
of a fundamental risk effect, which is reflected in the differences in ratings.
More importantly, we find that the coefficient on γ is 0.17 with a t-statistic
of 9.60. This implies that for two bonds in the same rating category, if one
bond (presumably less liquid) has a γ that is higher than the other by 1.0, the
yield spread of this bond is on average 17 bps higher than the other. To put an
increase of 1.0 in γ in context, the cross-sectional standard deviation of γ is on
average 3.84 in our sample. From this perspective, the illiquidity measure γ is
economically important in explaining the cross-sectional variation in average
bond yield spreads.

To control for the fundamental risk of a bond above and beyond what is cap-
tured by the rating dummies, we use equity volatility estimated using daily
equity returns of the bond issuer. Effectively, this variable is a combination of
the issuer’s asset volatility and leverage. We find this variable to be important

19 In Appendix Table A.I, we also report results with callable bonds excluded.
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in explaining yield spreads. As shown in the third column of Table VI, the slope
coefficient on equity volatility is 0.02 with a t-statistic of 3.36. That is, a 10
percentage point increase in the equity volatility of a bond issuer is associated
with a 20 bp increase in the bond yield spread. Although adding γ improves
the cross-sectional R2 from a time-series average of 19.00% to 30.27%, adding
equity volatility improves the R2 to 25.97%. Such R2s, however, should be in-
terpreted with caution because they are time-series averages of cross-sectional
R2s, and do not take into account the cross-sectional correlations in the regres-
sion residuals. By contrast, our reported Fama–MacBeth t-statistics do and
γ has a stronger statistical significance. It is also interesting to observe that
by adding equity volatility, the magnitudes of the rating dummies decrease
significantly. This is to be expected because both equity volatility and rating
dummies are designed to control for the bond’s fundamental risk.

When used simultaneously to explain the cross-sectional variation in bond
yield spreads, both γ and equity volatility are significant, with the slope co-
efficients for both remaining more or less the same as before. This implies a
limited interaction between the two variables, which is to be expected because
equity volatility is designed to pick up the fundamental information about a
bond whereas γ is designed to capture its liquidity information. Moreover, the
statistical significance of γ is virtually unchanged.

Taking advantage of the fact that a substantial subsample of our bonds have
CDS traded on their issuers, we use CDS spreads as an additional control for
the fundamental risk of a bond. We find a very strong relation between bond
yields and CDS yields: the coefficient is 0.69 with a t-statistic of 12.94. For
the subsample of bonds with CDS traded, and controlling for the CDS spread,
we still find a strong cross-sectional relation between γ and bond yields. The
economic significance of the relation is smaller: a cross-sectional difference in
γ of 1.0 translates to a 12 basis point difference in bond yields.

Given that both bond age and bond issuance are known to be linked to liquid-
ity,20 we add these bond characteristics as controls and find that the positive
connection between γ and average bond yield spreads remains robust. Further
adding the bond trading variables as controls, we find that these variables
do not have a strong impact on the positive relation between the illiquidity
measure γ and average yield spreads.

We also examine the relative importance of the quoted bid–ask spreads and γ .
As shown in the last three columns of Table VI, the quoted bid–ask spreads are
insignificantly related to average yield spreads. Using both the quoted bid–ask
spreads and γ , we find a robust result for γ and a statistically insignificant
result for the quoted bid–ask spread. This aspect of our result is different from
Chen et al. (2007), who find a positive and significant relation between the
quoted bid–ask spreads and yield spreads. This discrepancy is mainly due to
the recent crisis period. There is, in fact, a significant relation between quoted
bid–ask spreads and yield spreads before 2008. However, this does not affect
our results for γ , which remain economically and statistically significant even

20 See, for example, Houweling, Menting, and Vorst (2003) and additional references therein.
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if only pre-2008 data are used. Chen, Lesmond, and Wei (2007) also use zero-
return days as a proxy for illiquidity.21 As zero-return days are meant to be
a proxy for nontrading while we directly observe trading, we instead use the
percent of days with trading. When we include this measure in the regression,
it comes in significant, but with the wrong sign.

IV. Illiquidity and Bid–Ask Spread

It is well known that the bid–ask spread can lead to negative autocovariance
in price changes. For example, using a simple specification, Roll (1984) shows
that when transaction prices bounce between bid and ask prices, depending on
whether they are sell or buy orders from customers, their changes exhibit neg-
ative autocovariance even when the “underlying value” follows a random walk.
Thus, it is important to ask whether the negative autocovariances documented
in this paper simply reflect bid–ask bounce. Using quoted bid–ask spreads,
we show in Table II that the associated bid–ask bounce can only generate a
tiny fraction of the empirically observed autocovariance in corporate bonds.
Quoted spreads, however, are mostly indicative rather than binding. Moreover,
the structure of the corporate bond market is mostly over-the-counter, mak-
ing it even more difficult to estimate actual bid–ask spreads.22 Thus, a direct
examination of how bid–ask spreads contribute to the illiquidity measure γ is
challenging.

We can address this question to a certain extent, however, by taking advan-
tage of the results of Edwards, Harris, and Piwowar (2007) (EHP hereafter). Us-
ing a more detailed version of the TRACE data that includes the side on which
the dealer participated, EHP provide estimates of effective bid–ask spreads for
corporate bonds. To examine the extent to which γ can be explained by the
estimated bid–ask spread, we use γ to compute the implied bid–ask spreads
and compare them with the estimated bid–ask spreads reported by EHP. The
actual comparison will not be exact because our sample of bonds is different
from theirs. Later in this section, we discuss how this could affect our analysis.

It is first instructive to understand the theoretical underpinning of how our
estimate of γ relates to the estimate of bid–ask spreads in EHP. In the Roll
(1984) model, the log transaction price pt takes the form of equation (1), in which
p is the sum of the fundamental value (in log) and a transitory component.
Moreover, the transitory component is equal to 1

2 s qt in the Roll model, with s
being the percentage bid–ask spread and qt indicating the direction of trade.
Specifically, q is +1 if the transaction is buyer initiated and −1 if it is seller
initiated, assuming that the dealer takes the other side. Thus, in the Roll model,

21 See Bekaert, Harvey, and Lundblad (2007) for a discussion of when the zero-return measure
is appropriate.

22 The corporate bond market actually involves different trading platforms, which provide liq-
uidity to different clienteles. In such a market, a single bid–ask spread can be too simplistic in
capturing the actual spreads in the market.
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Table VII
Implied and Estimated Bid–Ask Spreads

This table reports γ -implied bid–ask spreads. The bid–ask spreads are calculated using log prices
and are reported in percentages. The EHP bid–ask spread estimates are from Table 4 of Edwards,
Harris, and Piwowar (2007), and the EHP subperiod is Jan. 2003 to Jan. 2005. Our bid–ask spreads
are obtained using Roll’s measure: 2

√
γ . The sample of bonds differs from that in EHP, and our

selection criteria biases us toward more liquid bonds with smaller bid–ask spreads.

Full Sample Period EHP Subperiod

γ -Implied γ -Implied EHP Estimated

trade size #bonds Mean Med #bonds Mean Med EHP Size Mean Med

� 7,500 1,005 2.20 1.82 858 2.02 1.80 5K 1.50 1.20
(7500, 15K] 1,017 1.96 1.67 922 1.90 1.77 10K 1.42 1.12
(15K, 35K] 1,020 1.78 1.43 933 1.72 1.53 20K 1.24 0.96
(35K, 75K] 1,009 1.56 1.22 861 1.38 1.22 50K 0.92 0.66
(75K, 150K] 962 1.23 0.95 790 1.01 0.92 100K 0.68 0.48
(150K, 350K] 908 0.89 0.75 752 0.71 0.67 200K 0.48 0.34
(350K, 750K] 861 0.72 0.59 649 0.49 0.51 500K 0.28 0.20
> 750K 930 0.77 0.59 835 0.53 0.54 1,000K 0.18 0.12

we have

pt = ft + 1
2 s qt . (3)

If we further assume that qt is i.i.d. over time, the autocovariance in price
change then becomes −(s/2)2, or γ = (s/2)2. Conversely, we have

sRoll = 2
√

γ , (4)

where we call sRoll the implied bid–ask spread.23

EHP use an enriched Roll model that allows the spreads to depend on trade
sizes. In particular, they assume

pt = ft + 1
2 s(Vt) qt , (5)

where Vt is the size of the trade at time t.24 Because the data set used by EHP
also contains information about qt, they directly estimate the first difference of
equation (5), assuming a factor model for the increments of ft.

Table VII reproduces the results of EHP, who estimate percentage bid–ask
spreads for average trade sizes of $5K, $10K, $20K, $50K, $100K, $200K,

23 In general, the spread st can be time dependent on qt and qt can be serially correlated (see,
for example, Obizhaeva and Wang (2009) and Rosu (2009)). It then becomes harder to interpret γ

as simply a reflection of actual bid–ask spreads. Of course, we can still use equation (4) to define
an implied spread.

24 The model EHP use has an additional feature. It distinguishes customer–dealer trades from
dealer–dealer trades. The spread they estimate is for the customer–dealer trades. Thus, in (5),
we simply do not identify dealer–dealer trades. This decreases our estimate of γ relative to EHP
because we include interdealer trades, which have a smaller spread than customer–dealer trades.
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$500K, and $1M. The cross-sectional medians of the percentage bid–ask
spreads are 1.20%, 1.12%, 96 bps, 66 bps, 48 bps, 34 bps, 20 bps, and 12
bps, respectively. To compare with their results, we form trade size brackets
that center around their reported trade sizes. For example, to compare with
their trade size $10K, we calculate γ conditional on trade sizes falling between
$7.5K and $15K and then calculate the implied bid–ask spread. The results
are reported in Table VII, where, to correct for the difference in our respective
sample periods, we also report our implied bid–ask spreads for the period used
by EHP. For the EHP sample period, the cross-sectional medians of our implied
percentage bid–ask spreads are 1.80%, 1.77%, 1.53%, 1.22%, 92 bps, 67 bps, 51
bps, and 54 bps, respectively. As we move on to compare our median estimates
to those in EHP, it should be mentioned that this is a simple comparison by
magnitudes, not a formal statistical test.

Overall, our implied spreads are much higher than those estimated by EHP.
For small trades, our median estimates of implied spreads are over 50% higher
than those by EHP. Moving to larger trades, the difference becomes even more
substantial. Our median estimates are close to double theirs for the average
sizes of $100K and $200K, close to two-and-a-half times theirs for the average
size of $500K, and more than quadruple theirs for the average size of $1M. In
fact, our estimates are biased downward for the trade size group around $1M
because our estimated bid–ask spreads include all trade sizes above $750K,
including trade sizes of $2M, $5M, and $10M, whose median bid–ask spreads
are estimated by EHP to be 6 bps, 2 bps, and 2 bps, respectively. We have
to group such trade sizes because in the publicly available TRACE data, the
reported trade size is truncated at $1M for speculative grade bonds and at
$5M for investment grade bonds. Though we only use bonds when they are
investment grade, TRACE continues to truncate some bonds at $1M even after
the bond is upgraded to investment grade.

In addition to differing in sample periods, which is easy to correct, our sample
is also different from that used in EHP in the composition of the bonds that
are used to estimate the bid–ask spreads. In particular, our selection criteria
bias our sample toward highly liquid bonds. For example, to be included in
our sample, the bond has to trade at least 75% of business days, whereas the
median frequency of days with a trade is only 48% for the bonds used in EHP.
The median average trade size is $462K in 2003 and $415K in 2004 for the
bonds used in our sample, compared with $241K for the bonds used in EHP;
the median average number of trades per month is 153 in 2003 and 127 in 2004
for the bonds in our sample, whereas it is 1.1 trades per day for the bonds used
in EHP. Given that more liquid bonds typically have smaller bid–ask spreads,
the difference between our implied bid–ask spreads and EHP’s estimates would
have been even more drastic had we been able to match our sample of bonds
to theirs. It is therefore our conclusion that the negative autocovariance in
price changes observed in the bond market is much more substantial than
the bid–ask effect alone, and hence γ captures the impact of illiquidity in the
market more broadly.
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Finally, one might be curious as to what is the exact mechanism that drives
our estimates apart from those of EHP. Within the Roll model as specified in
equation (4), our estimates should be identical to theirs. In particular, using
equation (3) to identify bid–ask spread, s implies regressing �pt on �qt. But
using our model specified in equation (1) as a reference, it is possible that the
transitory component ut does not take the simple form of 1

2 s qt. More specif-
ically, the residual of this regression of �pt on �qt might still exhibit a high
degree of negative autocovariance, simply because ut is not fully captured by
1
2 s qt. If that is true, then γ captures the transitory component more completely:
both the bid–ask bounce associated with 1

2 s qt and the additional mean rever-
sion that is not related to bid–ask bounce. Overall, more analysis is needed,
possibly with more detailed data as in EHP, to fully reconcile the two sets of
results.25

V. Further Analysis of Illiquidity

A. Dynamic Properties of Illiquidity

To further examine the dynamic properties of the transitory component in
corporate bonds, we measure the autocovariance of price changes that are
separated by a few trades or a few days:

γτ = −Cov (�pt,�pt+τ ) . (6)

The illiquidity measure we have used so far is simply γ 1. For τ > 1, γ τ measures
the extent to which mean reversion persists after the initial price reversal at
τ = 1. In Table VIII, we report the γ τ for τ = 1, 2, 3 using trade-by-trade data.
Clearly, the initial bounce back is the strongest although the mean reversion
still persists after skipping a trade. In particular, γ 2 is on average 0.12 with a
robust t-statistic of 13.76. At the individual bond level, 72% of the bonds have
a statistically significant γ 2. After skipping two trades, the amount of residual
mean reversion decreases further in magnitude. The cross-sectional average
of γ 3 is only 0.030, although it is still statistically significant with a robust
t-statistic of 10.04. At the individual bond level, fewer than 14% of the bonds
have a statistically significant γ 3.

The fact that mean reversion persists for a few trades before fully dissipating
implies that autocovariance at the daily level is stronger than at the trade-by-
trade level as it captures the effect cumulatively, as shown in Table II. At the
daily level, however, the mean reversion dissipates rather quickly, with an
insignificant γ 2 and γ 3. For brevity, we omit these results here.

25 In general, liquidity in the market depends who is trading, why, and how. The additional
information in the data used by EHP allows for more differentiation of these factors. The TRACE
data, however, are more coarse and do not allow us to fully identify the source of the difference
between γ -implied spreads and the estimated spreads of EHP.
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Table VIII
Dynamics of Illiquidity: γ τ = −Cov (pt − pt−1, pt+τ − pt+τ−1)

This table reports, for each bond, its γ τ , τ = 1, 2, 3, calculated using trade-by-trade data. Per t-stat
� 1.96 reports the percentage of bonds with statistically significant γ . Robust t-stat is a test on
the cross-sectional mean of γ with standard errors corrected for cross-sectional and time-series
correlations.

2003 2004 2005 2006 2007 2008 2009 Full

τ = 1 Mean γ 0.641 0.601 0.522 0.396 0.440 1.016 1.350 0.628
Median γ 0.407 0.319 0.250 0.195 0.243 0.568 0.632 0.337
Per t � 1.96 99.46 98.64 99.34 99.87 99.69 98.80 97.98 99.81
Robust t-stat 14.54 16.22 15.98 15.12 14.88 12.58 9.45 19.42

τ = 2 Mean γ 0.081 0.044 0.062 0.026 0.077 0.393 0.645 0.124
Median γ 0.033 0.018 0.021 0.017 0.046 0.198 0.244 0.051
Per t � 1.96 27.25 19.90 33.99 33.47 54.56 78.84 76.83 72.46
Robust t-stat 9.13 7.06 9.01 4.42 9.74 11.09 7.83 13.76

τ = 3 Mean γ 0.013 0.021 0.017 0.025 0.025 0.079 0.128 0.030
Median γ 0.005 0.004 0.003 0.004 0.006 0.017 0.028 0.006
Per t � 1.96 5.10 5.65 6.47 8.40 6.76 11.18 11.34 13.62
Robust t-stat 3.30 4.34 5.55 6.29 5.66 5.73 4.83 10.04

B. Asymmetry in Price Reversals

One interesting question regarding the mean reversion captured in our main
result is whether the magnitude of mean reversion is symmetric in the sign
of the initial price change. Specifically, let γ − = −Cov(�pt, �pt+1|�pt < 0) be
a measure of mean reversion conditioning on an initial price change that is
negative, and let γ + be the counterpart conditioning on a positive price change.
In a simple theory of liquidity based on costly market participation, Huang
and Wang (2009) show that the bounce-back effect caused by illiquidity is more
severe conditioning on an initial price movement that is negative, predicting a
positive difference between γ − and γ +.

We test this hypothesis in Table IX, which shows that indeed there is a
positive difference between γ − and γ +. Using trade-by-trade data, the cross-
sectional average of γ − − γ + is 0.1190 with a robust t-statistic of 9.48. Skipping
a trade, the asymmetry in γ 2 is on average 0.0484 with a robust t-statistic of
10.00. Compared with how γ τ decreases across τ , this measure of asymme-
try does not exhibit the same dissipating pattern. In fact, in the later sam-
ple period, the level of asymmetry for τ = 2 is almost as important for the
first-order mean reversion, with an even higher statistical significance. Using
daily data, the asymmetry is stronger, incorporating the cumulative effect from
the transaction level. The cross-sectional average of γ − − γ + is 0.23, which is
close to 20% of the observed level of mean reversion. Skipping a day, however,
produces no evidence of asymmetry, which is expected because there is very
little evidence of mean reversion at this level in the first place.



The Illiquidity of Corporate Bonds 939

Table IX
Asymmetry in γ

This table reports the asymmetry in γ based on the sign of the initial price change. Asymmetry
in γ is measured by the difference between γ − and γ +, where γ − = −Cov(�pt+τ , �pt|�pt < 0)
measures the price reversal conditioning on a negative price movement. Likewise, γ + measures
the price reversal conditioning on a positive price movement. Robust t-stat is a pooled test on the
mean of γ − − γ + with standard errors clustered by bond and day. CS t-stat is the cross-sectional
t-statistic.

τ 2003 2004 2005 2006 2007 2008 2009 Full

Panel A: Using Trade-by-Trade Data

1 Mean 0.1454 0.0547 0.0012 0.0439 0.0808 0.2474 0.3983 0.1190
Median 0.1370 0.0282 0.0041 0.0285 0.0662 0.1577 0.1978 0.0817
CS t-stat 8.69 3.34 0.10 4.03 5.43 8.57 7.95 11.19
Robust t-stat 6.85 3.09 0.10 3.93 5.27 7.51 6.43 9.48

2 Mean 0.0307 0.0253 0.0336 0.0343 0.0488 0.0604 0.1680 0.0484
Median 0.0145 0.0072 0.0096 0.0168 0.0275 0.0579 0.0648 0.0205
CS t-stat 4.89 4.15 8.11 8.96 11.28 2.88 3.11 11.25
Robust t-stat 4.85 3.71 7.49 7.92 9.42 2.71 3.06 10.00

Panel B: Using Daily Data

1 Mean 0.3157 0.1639 0.1059 0.1710 0.2175 0.2991 0.8360 0.2326
Median 0.1983 0.0447 0.0228 0.0553 0.1276 0.2595 0.4160 0.1258
CS t-stat 8.72 3.85 4.62 7.62 6.37 1.35 1.61 6.16
Robust t-stat 8.11 3.64 4.26 7.28 5.97 1.21 1.59 5.59

2 Mean −0.0112 −0.0118 0.0044 −0.0024 −0.0088 0.0874 −0.0097 −0.0030
Median 0.0022 −0.0000 −0.0006 0.0005 −0.0025 0.0325 0.0256 0.0029
CS t-stat −0.97 −0.94 0.45 −0.36 −0.70 1.21 −0.07 −0.27
Robust t-stat −0.90 −0.85 0.39 −0.34 −0.60 0.67 −0.08 −0.17

C. Trade Size and Illiquidity

Because γ is based on transaction prices, a natural question is how it relates
to the size of these transactions. In particular, are reversals in price changes
stronger for trades of larger or smaller size? To answer this question, we con-
sider the autocovariance of price changes conditional on different trade sizes.

For a change in price pt − pt−1, let Vt denote the size of the trade associated
with price pt. The autocovariance of price changes conditional on trade size
being in a particular range, say, R, is defined as

Cov(pt − pt−1, pt+1 − pt, | Vt ∈ R) , (7)

where six brackets of trade sizes are considered in our estimation: ($0, $5K],
($5K, $15K], ($15K, $25K], ($25K, $75K], ($75K, $500K], and ($500K, ∞), re-
spectively. Our choice of the number of brackets and their respective cutoffs is
influenced by the sample distribution of trade sizes. In particular, to facilitate
the estimation of γ conditional on trade size, we need to have enough transac-
tions within each bracket for each bond to obtain a reliable conditional γ .
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Table X
Variation of γ with Trade Size

This table reports γ estimated by trade size. Trade size is categorized into six groups with cutoffs
of $5K, $15K, $25K, $75K, and $500K. γ = −Cov(pt − pt−1, pt+1 − pt). γ is calculated conditioning
on the trade size associated with pt. Bonds are sorted by their “unconditional” γ into quintiles,
and the variation of γ by trade size is reported for each quintile group. The trade-by-trade data
are used in the calculation.

γ Quint Trade Size = 1 2 3 4 5 6 1–6

1 Mean 2.46 1.93 1.76 1.59 1.24 1.07 1.28
Median 2.08 1.67 1.55 1.43 1.08 0.71 1.20
Robust t-stat 10.71 10.58 10.05 10.22 8.83 5.75 5.86

2 Mean 0.95 0.79 0.69 0.60 0.38 0.24 0.72
Median 0.87 0.72 0.63 0.54 0.36 0.19 0.65
Robust t-stat 9.75 13.29 13.57 14.51 16.27 9.67 7.45

3 Mean 0.53 0.42 0.35 0.29 0.18 0.10 0.44
Median 0.50 0.40 0.34 0.27 0.18 0.09 0.40
Robust t-stat 8.46 10.98 11.09 11.50 13.10 10.73 7.25

4 Mean 0.34 0.26 0.21 0.16 0.09 0.04 0.29
Median 0.31 0.24 0.20 0.16 0.09 0.04 0.27
Robust t-stat 8.05 12.34 13.12 13.49 15.00 10.86 7.20

5 Mean 0.21 0.15 0.11 0.08 0.04 0.02 0.19
Median 0.19 0.15 0.11 0.08 0.04 0.02 0.17
Robust t-stat 10.08 14.34 16.04 15.49 17.64 12.73 9.29

For the same reason, we construct our conditional γ using trade-by-trade
data. Otherwise, the data would be cut too thin at the daily level to provide
reliable estimates of conditional γ . For each bond, we categorize transactions
by their time-t trade size into their respective bracket s, with s = 1, 2, . . ., 6,
and collect the corresponding pairs of price changes, pt − pt−1 and pt+1 − pt.
Grouping such pairs of price changes for each size bracket s and for each bond,
we can estimate the autocovariance of the price changes, the negative of which
is our conditional γ (s).26

Equipped with the conditional γ , we can now explore the link between trade
size and illiquidity. In particular, does γ (s) vary with s, and how? We answer
this question by first controlling for the overall liquidity of the bond. This
control is important as we find in Section II.B that the average trade size of a
bond is an important determinant of the cross-sectional variation of γ . We thus
first sort all bonds by their unconditional γ into quintiles and then examine
the connection between γ (s) and s within each quintile.

As shown in Panel A of Table X, for each γ quintile, conditional γ decreases
with increasing trade size and this relation is monotonic for all γ quintiles.
For example, quintile 1 consists of bonds with the highest γ , that is, the least
liquid bonds in our sample. The mean γ is 2.46 for trade size bracket 1 (less

26 Specifically, we compute six conditional covariances for each bond, one for each size bracket.
The negative of these conditional covariances is our conditional γ .
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than $5K) but it decreases to 1.07 for trade size bracket 6 (greater than $500K).
The mean difference in γ between trade size brackets 1 and 6 is 1.28, with a
robust t-statistic of 5.86. For quintile 5, which consists of bonds with the lowest
γ measure, that is, the most liquid bonds, the same pattern emerges. The
average value of γ is 0.21 for the smallest trades and decreases monotonically
to 0.02 for the largest trades. The difference between the two is 0.19, with
a robust t-statistic of 9.29, indicating that the conditional γ between small
and large trades remains significant even for the most liquid bonds. To check
the potential impact of outliers, we also report the median γ for different
trade sizes. Although the magnitudes are slightly smaller, the general pattern
remains the same.

Overall, our results demonstrate a clear negative relation between trade size
and γ .27 The interpretation of this result, however, requires caution. It would
be simplistic to infer from this pattern that larger trades face less illiquidity
or have less impact on prices. It is important to realize that trades size and
price are both endogenous variables. Their relation arises from an equilibrium
outcome in which traders of different types optimally choose their trading
strategies, taking into account the dynamics of the market, including their
actions and those of others. Noncompetitive factors such as negotiation power
for large trades can also contribute to the relation between trade size and γ .

VI. Conclusions

The main objective of our paper is to gauge the level of illiquidity in the
corporate bond market and to examine its general properties and, more impor-
tantly, its impact on bond valuation. Using a theoretically motivated measure
of illiquidity, namely, the amount of price reversal as captured by the negative
of the autocovariance of prices changes, we show that this illiquidity measure
is both statistically and economically significant for a broad cross-section of
corporate bonds examined in this paper. We demonstrate that the magnitude
of the reversals is beyond what can be explained by bid–ask bounce. We also
show that the reversals exhibit significant asymmetry: price reversals are on
average stronger after a price reduction than a price increase.

We find that a bond’s illiquidity is related to several bond characteristics. In
particular, illiquidity increases with a bond’s age and maturity, but decreases
with its issuance size. In addition, we find that price reversals are inversely
related to trade size. That is, price changes accompanied by small trades exhibit
stronger reversals than those accompanied by large trades.

Furthermore, the illiquidity of individual bonds fluctuates substantially
over time. More interestingly, these time fluctuations display important
commonalities. For example, the median illiquidity over all bonds, which rep-
resents a market-wide illiquidity, increases sharply during periods of market
turmoil such as the downgrade of Ford and GM to junk status around May of

27 In the Appendix, we consider an alternative method of examining γ by trade size, simply
cutting the data into trade size brackets and calculating γ separately for each bracket. We find a
similar negative relation between trade size and γ using this methodology.
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2005, the subprime market crisis starting in August 2007, and in late 2008
when Lehman filed for bankruptcy. Exploring the relation between changes in
market-wide illiquidity and other market variables, we find that changes in
illiquidity are positively related to changes in VIX and that this relation is not
driven solely by the events in 2008.

We find important pricing implications associated with bond illiquidity. We
show that the variation in aggregate liquidity is the dominant factor in explain-
ing the time variation in bond indices for different ratings (with an R2 around
20%), exceeding the credit factor, for all ratings of A and above. Aggregate illiq-
uidity becomes even more important if the crisis period is included (with an R2

around 50%). At the individual bond level, we find that γ can help explain an
important portion of the bond yield spread. For two bonds in the same rating
category, a one standard deviation difference in their illiquidity measure would
set their yield spreads apart by 65 bps. This result remains robust in economic
and statistical significance after controlling for bond fundamental information
and bond characteristics including those commonly related to bond liquidity.

Our results raise several questions concerning the liquidity of corporate
bonds. First, what are the underlying factors that give rise to the high level of
illiquidity? This question is particularly pressing when we contrast the magni-
tude of the illiquidity measure γ in the corporate bond market against that in
the equity market. Second, what causes the fluctuations in the overall level of
illiquidity in the market? Are these fluctuations merely another manifestation
of more fundamental risks or a reflection of new sources of risks such as liq-
uidity risk? Third, does the high level of illiquidity for corporate bonds indicate
any inefficiencies in the market? If so, what would be the policy remedies? We
leave these questions for future work.

Appendix

Cross-sectional Determinants of Yield Spreads

In Table A.I, we consider only the subset of noncallable bonds. Within this
subset of bonds, we find similar results to Table VI.

Gamma by Trade Size

In Table A.II, we consider γ calculated using only trades of certain sizes.
First, we take all trades for a particular bond and sort these trades into the
smallest 30% of trade size, middle 40%, and largest 30%. We then calculate γ

using only trades from a given bin to estimate small trade, medium trade, and
large trade γ ’s. These results are supplemental to those presented in Table X,
but provide an additional robustness check as these γ ’s are calculated solely
with a subset of trades of a given size rather than conditioning on the trade size
at t as in equation (7). Furthermore, the size of trades is now grouped relative
to a bond’s other trades rather than with respect to a fixed cutoff.
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Table A2
γ by Trade Size

This table reports γ calculated using only trades of sizes in the smallest 30%, middle 40%, or
largest 30% for each bond. Per t-stat � 1.96 reports the percentage of bonds with statistically
significant γ . Robust t-stat is a test on the cross-sectional mean of γ with standard errors corrected
for cross-sectional and time-series correlations.

Trade
Size 2003 2004 2005 2006 2007 2008 2009 Full

Panel A: Using Trade-by-Trade Data

Small Mean γ 1.02 0.91 0.72 0.59 0.64 1.28 1.58 0.87
Median γ 0.66 0.50 0.37 0.30 0.36 0.69 0.75 0.48
Per t � 1.96 91.05 90.48 95.57 94.38 91.30 90.49 86.88 99.42
Robust t-stat 12.66 14.03 15.34 13.43 13.64 12.30 9.78 18.55

Medium Mean γ 0.68 0.62 0.55 0.40 0.41 0.86 1.16 0.60
Median γ 0.44 0.36 0.28 0.19 0.20 0.48 0.53 0.32
Per t � 1.96 96.50 95.27 97.80 97.87 97.95 94.61 92.56 99.32
Robust t-stat 12.54 16.49 15.13 15.14 13.86 12.38 8.96 19.14

Large Mean γ 0.31 0.30 0.29 0.20 0.23 0.69 0.90 0.35
Median γ 0.10 0.08 0.07 0.05 0.07 0.25 0.31 0.10
Per t � 1.96 90.59 87.75 90.34 85.71 86.73 84.77 82.72 96.23
Robust t-stat 10.65 12.05 12.46 10.39 10.70 8.46 8.02 14.34

Panel B: Using Daily Data

Small Mean γ 1.45 1.14 1.03 0.82 1.05 3.45 5.23 1.58
Median γ 0.90 0.63 0.51 0.43 0.68 1.93 2.25 0.84
Per t � 1.96 84.76 85.71 89.81 87.84 90.03 87.24 84.11 96.80
Robust t-stat 18.03 17.05 18.41 18.15 18.09 9.95 10.02 14.61

Medium Mean γ 1.00 0.81 0.76 0.50 0.63 2.59 4.21 1.06
Median γ 0.57 0.44 0.34 0.24 0.30 1.14 1.47 0.50
Per t � 1.96 90.09 89.89 94.69 92.64 92.56 88.31 88.14 97.97
Robust t-stat 16.50 19.21 17.77 17.39 15.85 8.85 9.24 17.42

Large Mean γ 0.53 0.46 0.43 0.29 0.38 1.92 3.01 0.64
Median γ 0.16 0.11 0.09 0.06 0.11 0.54 0.78 0.16
Per t � 1.96 70.19 70.04 77.46 77.32 77.00 73.51 77.07 87.67
Robust t-stat 10.24 12.42 13.00 10.60 10.56 5.62 5.99 12.69
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