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1 Supporting Mathematics
1.1 Special Functions
1.1.1 The Complete Elliptic Integral

The general complete elliptic integral is

/2 2 c 2
cel(kc,p,a,b)z.[ (acos” f+bsin” fB)dp

o (cos® B+ psin® ﬂ)\/cosz ,6’+kc2 sin® B

(1.1.1.1)

We refer to this definition in a number of places in what follows, for example in Section
4.2.1. Some useful relations for cel are:

/2 /2
ap dp )
celte LI = = =K (k%) 1.1.1.2
“[ \/C052ﬂ+kc25in2ﬂ '([ \/l—kzsinzlb’ (1.1.1.2)
K =1-k (1.1.1.3)

/2

cel(k,,1,1,k,)= J.w/l —k*sin® g dpB = E(k*) (1.1.1.4)

where K and E are Legendre’s standard forms of the complete elliptic integrals of the first
and second kind. Some associated elliptic integrals are

" osin?gdf  K-E

o= N-Esin g K = cel(k..1ON) (1.1.1.5)
/2 2 2
cos” B d E-k°K
N kzﬂ. ? 5w o) (1.1.1.6)
0 - Sin

1.1.2 Code for Computing The Complete Elliptical Integral
package teal.math;

public class SpecialFunctions {

/**
* Elliptic integrals:
*  This algorithm for the calculation of the complete elliptic
* integral (CEI) is presented in papers by Ronald Bulirsch,
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Numerical Calculation of Elliptic Integrals and

Elliptic Functions, Numerische Mathematik 7,

78-90 (1965) and Ronald Bulirsch: Numerical Calculation

of Elliptic Integrals and Elliptic Functions III,

Numerische Mathematik 13,305-315 (1969). The definition

of the complete elliptic integral is given in equation (1.1.1.1)

of the document " TEAL Physics and Mathematics Documentation "

¥ ¥k X X ¥ X ¥

*/

public static double ellipticIntegral(double kcc, double pp, double aa, double bb, double
accuracy) {
double ca, kc, p,a, b, e, m, f, q, g;
ca = accuracy;
ke = kec;
p = pp;
a = aa;
b =bb;
if (ke !=0.0)
{
kc = Math.abs(kc);
e =kc;
m=1.0;
if (p>0.)
{
p = Math.sqrt(p);
b =b/p;

else

f = Math.pow(kc,2.0);
q=1.-f;
g=1.-p;
f=f-p;
q = q*(b-a*p);
p = Math.sqrt(f/g);
a = (a-b)/g;
= -q/(p*Math.pow(g,2.0)) + a*p;
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while (Math.abs(g - kc) > g*ca)

{
kc = 2.0*Math.sqrt(e);
e = kc*m;
f=a;
a=Db/p+a;
g = e/p;
b=2.0*(f*g + b);
p=pteg
g=m;
m=m + kc;

}

return (Math.PI / 2.)*(a*m + b)/(m*(m + p));

}

else

{
return 0.0;
§
}

}

1.2 Geometry
1.2.1 Vector Transformations For An EM Object With An Axis Of Symmetry

We frequently want to find the coordinates of an observation point in a “primed”
coordinate system centered on an electromagnetic object that has an axis of symmetry,
with the z prime axis along the axis of symmetry. This occurs, for example, when the
expression for the field of that object takes on an especially simple form in this “primed”
coordinate system (e.g., the field of a point magnetic dipole).

To get the coordinates of an arbitrary observation point in this primed coordinate
system, we do the following. Let M be the symmetry axis of the electromagnetic object
(for example, the magnetic dipole moment vector). Let X be the position of the
object, and X the position of the observation point. Define the vectors

=R-(R-Z)Z' p'=R /R (1.2.1.1)

- perp perp

Z=M/M R=X-X,. R,,
Then if we compute p’-Rand Z'- R, we have the coordinates of our observation point

in a frame in which the electromagnetic object is at the origin, the z prime axis is along
the symmetry axis of the object, and the p prime axis is in the plane defined by the
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symmetry axis M and the direction to the observer R, and perpendicular to the symmetry
axis. We then use these coordinates to calculate by means of relatively simple formulas
the components of the field in this coordinate system, say B ,and B,. We then

reconstruct the field in our “unprimed” original coordinate system using
B=B.7Z'+B,p (1.2.1.2)

1.2.2 Point-Normal Form for a Line in Two Dimensions
1.2.2.1 Defining Equation

Given two endpoints 4 and B (lines do not have endpoints, but this is a typical
application), it is often useful to have a form of the line based on a perpendicular vector
called the normal. The normal specifies the "facing" direction of the line or the inside-
outside half spaces of the line created by the spaces on each side of the line. The normal
is said to be the "front facing" direction of the line or the direction of the "inside" space.
However, the normal can be facing either direction (there are two direction perpendicular
to a line in two dimensions) so the "inside direction" or "front-facing" normal is merely a
convention to be determined by the programmer. The method that follows will be a
consistent representation for all lines and represents the normal as a 90 degree rotation of
the line in a counter-clockwise direction.

A Y

Front Facing
Inside Direction
Backward Facing <//)@
Outside Direction

Figure 1.2-1: Point normal form of equation for line
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The Point-Normal form of a line is n-p = D, where the vector p locates any point
on the line. The normal is simply the direction vector of the line from point 4 to point B
(B—A) rotated 90 degrees in a counter-clockwise direction. The equation n-p =D is

the mathematical statement that the dot product of the normal to the line and any point on
the line equals the distance to the line from the origin along the normal vector (see Figure
1.2-1). To find D, we can use the normal n, the point 4, and the Point-Normal equation
to derive the following expression.

D=h-A=nd +nA, (12.2.1.1)

For clarity, if we expand out the Point-Normal form of the line we will obtain the more
common line equation in the form y=ax+5b

D=n-p=nx+ny = y:—{n—x}c+|:2:l (1.2.2.1.2)

1.2.2.2 Intersection with a Line

A “ray” is defined parametrically by the equation p(¢) =s+d ¢ p(t) where p(?) is a
point on the line at "time" ¢, s is the starting point, and d is the direction vector of the ray
(that is d is a unit vector in the direction of the ray). Thus our “time” t must have
dimensions of distance. For example, the line from A to B can be defined parametrically

(B-A)
[B-A|

from A to B. However, if ¢ is allowed to go beyond these boundaries (in a positive
direction) it will define an infinite ray in the direction from A to B.

as p(t)=A+

t where 0 <=1t <= |B-A| and p(?) are all of the points on the line

We can easily determine the "hit time" ¢ where our general ray intersects a
particular line by substituting the parametric ray function into the point-normal form of
the line. Since p(?) defines a point on the ray at time ¢ and the Point-Normal equation
defines all points p on the line, substituting this value into the Point-Normal equation
results in a function of ¢ that can be used to determine the "hit time" # where the ray's
point satisfies the Point-Normal equation of the line:

D=n-p=n-(s+df)=h-s+n-d¢ (1.2.2.1.3)

Therefore the hit time is given by

by == (12.2.1.4)
n

If n-d =0 the ray and the line (or plane) do not intersect because the ray and the line (or
plane, see below) are parallel since the normal n is perpendicular to the ray direction d.
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Also, if the “hit time” ¢ is negative, the ray has intersected a line or plane in the opposite
direction, which we frequently ignore.

The "hit time" also refers to the distance from the ray's starting point s to the intersection
point. To see this, we can evaluate the parametric function of the ray at the hit time #:

(12.2.1.4)

A

. . . D-n-s
Point of intersection =p(t,,)=s+dt,, =s+d { }

. . . . D-n-
distance from s to point of intersection = |p(t,m) —s| = |d t,m| =f,, = { - Icll s} (1.2.2.1.5)
n .

1.2.2.3 Intersection with a Plane

The point of intersection of a ray with a plane and the distance to the intersection from
the starting point of the ray is determined exactly the same as with a line. The only
difference is that now the Point-Normal form represents a plane instead of a line. That is,
in the equation n-p = D, n is the normal to the plane and D is the distance from the

origin to the plane in the direction along the normal to the plane.

1.3 Flux Functions
1.3.1 General Considerations for Axisymmetric Configurations

When studying field lines in the case of an axisymmetric configuration, i.e., when
the vectors do not depend on the azimuth angle ¢ of the cylindrical coordinate system
(p, @, 2), it is useful to consider their associated flux functions. To this end, consider two
classes of vectors: poloidal vectors, say V, and foroidal vectors, say W. By definition, a
poloidal vector V lies in the p z plane, and thus has two components: V,and V.. In
contrast, a toroidal vector W has only one component, W, pointing along the azimuth ¢,
so that its field lines close on themselves. In other words, W is divergence free. If we
assume in addition that the poloidal vector V is also divergence free, then it is easy to
show that the curl of a toroidal vector generates a poloidal vector (and vice versa), viz.:

V=VxW=VW,x¢+W,Vxp=V p+V.2 (1.3.1.1)
where
ow,(p,z) 1 0
y o =——277 V.=——|poW.(p,z 1.3.1.2
B . g p@p[p (P )] ( )

We now define the scalar flux function F(p,z) of V to be flux of V passing through a
circle of radius p at height z concentric with the z-axis, e.g.
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F(p,2)= [V-dA= [V-2dd= [(VxW)2 d4 (1.3.1.3)

surface surface surface

Using Stokes Theorem, we can transform the surface integral to a line integral, giving

F(p,2)= §W, pdg =27 pW, (1.3.1.4)

line

A surface on which F'is constant is an axially symmetrical shell containing the lines of
force of V. Comparing equations (1.3.1.2) and (1.3.1.4) shows that V is related to its
flux function F by

y =L oFp.2) y -1 oFp2) (1.3.1.5)
r 2np Oz 2mp  Op

1.3.2 The Time Dependence of Field Lines In Magneto-quasi-statics

We discuss the concept of field line motion in magneto-quasi-statics, and how to
define that motion in a physically meaningful, but not unique, way. Consider the
following thought experiment. We have a solenoid carrying current provided by the emf
of a battery. The axis of the solenoid is vertical. We place the entire 9.2ratus on a cart,
and move the cart horizontally at a constant velocity V. Our intuition is that the magnetic
field lines associated with the currents in the solenoid should move with their source, i.e.,
with the cart.

How do we make this intuition quantitative? First, we realize that in the
laboratory frame there will be a "motional" electric field given by E=-VXxB. We then
imagine placing a low energy test electric charge in the magnetic field of the solenoid, at
its center. The charge will gyrate about the field and the center of gyration will move in
the laboratory frame because it ExB drifts (v=ExB/B*) in the =V xB electric field.
This ExB drift velocity is just V. That is, the test electric charge "hugs" the "moving"
field line, moving at the velocity our intuition expects. In the more general case (e.g.,
two sources of field moving at different velocities), the motion we choose has the same
physical basis. That is, the motion of a given field line is what we would observe in
watching the motion of low energy test electric charges spread along that magnetic field
line.

We also use this definition of the motion of file lines in situations that are not
quasistatic, for example dipole radiation in the induction and radiation zones. In this case
(but not in the quasistatic cases) the calculated motion of the field lines is non-physical,
as their speed exceeds that of light in some regions. However, animations of the field
line motion using the definition above are still useful. For example, the direction of the
direction of field line motion so defined indicates the direction of energy flow.
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To calculate field line motion consistent with our definition above, we need to
insure that our velocity field is flux preserving (Stern, 1966; Vasyliunas, 1972; Rossi and
Olbert, 1970). For any general vector field G(x,y,z,¢), the rate of change of the flux of
that field through an open surface S bounded by a contour C which moves with velocity
v(x,,z,t) is given by

iIG-dA=Ié’—(;-dA+I(V-G)v-dA—ﬁE(va)-dl (1.3.2.1)
dtS N d S C

B
If we apply this equation to B(x,,z,7) and use V-B =0 and = -V xE, we have
ijB-dA:—jE(waB)-dl (13.22)
dt v

If we then define the motion of our contours so that the magnetic flux through the
surfaces they bound is constant as a function of time, and consider circular contours and
fields with azimuthal symmetry, then equation (1.3.2.2) guarantees that their motion
satisfies E+ vxB =0, which is the same as v = ExB/B?, assuming that v and B are
perpendicular. We can make this assumption since there is no meaning to the motion of a
field line parallel to itself). This is just the drift velocity of low energy test electric
monopoles that we refer to above. This definition of field line motion is not unique (see
Vasyliunas, 1972).

Figure 1.3-1: A magnet levitating above a disk with zero resistance.
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Field Lines Originating From A Singularity: In the situation that our field lines
originate from a singularity, constructing their time dependence is straightforward.
Consider the motion of the field lines of a magnet levitating above a disk with zero
resistance (Figure 1.3-1). The magnet is constrained to move only on the axis of the disk,
and the dipole moment of the magnet is also constrained to be parallel to that axis. Eddy
currents in the disk will repel the magnet, and at some point there will be a balance
between the downward force of gravity and the upward force of repulsion. We then
consider small displacements about this equilibrium position, which will be periodic.

The field lines themselves are given by Davis and Reitz (1971), and have azimuthal
symmetry. How do we trace the motion of a field line?

We do this by starting our integration very close to the magnet at a constant angle
from the vertical axis, following a given field line out from that point. To animate a line,
we use the same starting angle at every point in the oscillation. The field line traced out
will be different when the magnet is at different distances from the disk. But consider the
flux inside any open surface whose bounding contour is defined by the intersection of a
horizontal plane and the field line when rotated azimuthally. This open surface will have
constant flux inside it, since V-B =0 Since we always start from close to the singularity
at the same angle, this constant flux will be the same for every instant of time. Since the
left hand side of (1.3.2.2) is zero by construction, the right hand side must also be zero,
and by symmetry the integrand must be zero as well. Therefore our field line motion as
we have constructed it reflects the drift motion of low energy test electric charges spread
along it.

Field Lines Not Originating From A Singularity: In this case the construction of
the time evolution of the field lines is more complicated, and we use the flux functions
defined above. Our flux function for the magnetic field

F(p,z,t) = jB(p,z,t)-dA (1.3.2.3)
surface
(cf. 1.3.1.3) is now time-dependent. If we choose successive field lines as time evolves
such that they have the same (constant) value of the flux function, then (1.3.2.2) is again
satisfied, and again in symmetric situations the field line motion so defined is such that
E+vxB =0, orequivalently, v=ExB/B*. Another way of stating this is that if we
look at isocontours of the flux function F(p,z,t), then these isocontours trace out the

time-dependent motion of the field lines.

Although the derivation that we have sketched above is elegant, it is perhaps also
reassuring to do this in a manner that shows the same thing in more detail, although in a
much clumsier way. We construct such a proof in Appendix 8.2.

As an example of this process, consider the time dependence of a field line when
we have two rings of current (Figure 1.3-2) separated by a vertical distance of 10. The
radius of the bottom ring is 10, with a dipole moment vector of 1.0 Z, and the radius of
the top ring is 5, with a dipole moment that varies in time. The innermost field line in
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Figure 1.3-2 corresponds to a dipole moment vector of the top ring of 0.1 Z, at a flux
function value of 0.5. The middle field line corresponds to the same flux function value
of 0.5, but for a dipole moment vector of the top ring of 0.5 z. The outermost field line
is again at the same value of the flux function, but for a dipole moment of the top ring of
1.0 z. The sequence of field lines is what we expect for the time evolution of this field
line as the dipole moment vector of the top ring grows in time from 0.1 z to 1.0 z. That
is, this would be the path traced out by low energy charged particles spread along the
field line as the dipole moment of the top ring grows in time.

Figure 1.3-2: Isocontour levels of the flux functions of two rings

1.4 Rotational Dynamics (N. Derby)
How do we do the dynamics when an object can rotate? Here is an overview.
1.4.1 Choosing a Coordinate System and Specifying the State

Pick a coordinate system fixed in the body with origin at the Center of Mass
(COM): x,,y;,z,. Specify the inertia tensor TB in these coordinates. Pick coordinates

so that it is easy to calculate T »- 1f you choose properly, I » can be diagonal. Compute

and store its inverse I, .

When dealing with a body that can rotate, we specify state of the object by specifying:

position of COM in world coordinates (vector)
linear momentum (vector)

orientation in world coordinates (quaternion)
angular momentum (vector)

=0 T el

1.4.2 Orientation of the Body
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Three numbers are needed to specify the orientation of a body. There are a variety of
ways to express these.

a) These can be three Euler angles, which are convenient for many purposes, but
awkward to describe to the uninitiated.

b) Alternatively, we can describe an orientation by specifying an axis of rotation (a
unit vector ) and an angle of rotation A (using the right-hand rule) about this
axis. This description is redundant since it involves 4 numbers, but only 2 of the 3
components of the unit vector are independent.

c) Finally, orientation can be specified by a 3-by-3 rotation matrix R defined so that
a point in the body (x,,¥;,Z;) has world coordinates:

X X,
y| =Ry, |[+X,, (1.4.2.1)
z Z,

Such a description is redundant since it involves nine quantities, but R is an
orthogonal matrix so not all its components are independent

Method (b) is usually implemented by specifying the four numbers in a unit
quaternion Q. For rotation about a world axis (direction specified by unit vector @) by an
angle A, Q is defined as:

Q= [cos(44), sin(44) 41=10,.0,1= [0,.0..0,,0.] (1.4.2.2)

Once Q is specified, then R can be computed via

1-20° 20  20,0,-20,0. 20,0.+20,0,
R=|20,0,+20,0. 1-20°-20° 20,0.-20,0, (1.42.3)
200.-20,0, 20,0.+20,0, 1-20}-20’

As an example, the quaternion [cos45°, sin45° K =707 [1,0,0,1] represents a 90° rotation
about the z-axis, sending xp into y and yp into —x. If this Q is used to compute R, we get

0 -1 0
1 0 0]
0 0 1

1.4.3 Quaternion Algebra
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For a general quaternion Q, we define the following:

e normofQ =0Q; +QV2 =0, +0; +Qy2 +0;
o multiplication:

Q*Q, = |:Qlo Q,, - le 'szv Qi sz + Q, le + le X sz}

The convenient feature of quaternions for describing rotation is that the orientation of a
body after two successive rotations about two different axes can be specified by a single

quaternion Q,, =Q, *Q, .
For our unit rotation quaternion Q, define a “quaternion angular speed”:

W=[0,0] (1.4.3.1)

Then, it can then be shown that

t—?=1/2W*Q=1/2[—C?) : ﬁsin(%), cos(%)as +sin(%) & x0] (1432)

After orientation has been specified we can compute the moment of inertia in world
coordinates:

I=RI,R" or I""'=RI,'R" (1.43.3)

An angular velocity is defined by @ =@ € , where € is a unit vector and @ represents the

rate of rotation about € (sign determined by the right hand rule). Given an angular
velocity, the angular momentum is defined by

L-i6 (1.4.3.4)

1.4.4 Equation of Motion

The state vector

Y(£) = (1.4.4.1)

O T oM

evolves according to the equation
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S
F
NGO _|, (1.4.4.2)
d | =W*Q
2
- ? -

where T is the torque. So, starting with the current state Y, we carry out the following
steps:

a) compute Vv=p/m
b) normalize Q (so that it continues to represent a true rotation); then compute R.

o) compute I'=R1I," R’
d) compute & =1"L, and then W using (1.4.3.1)

These quantities, combined with the force F and torque 7, specifies the rate of change of
Y. Then we use an ODE solver to evolve the state vector.

2 Electrostatics
2.1 Two Dimensional Electrostatics (and Magnetostatics)
2.1.1 General Considerations

It is well known that in two Cartesian dimensions that solving potential problems
in electrostatics due to a discrete number of line charges has many correspondences with
the theory of analytic functions of a complex variable (Morse and Feshbach 1953). In
particular, consider the analytic (except for a discrete number of singularities at the
location of the line charges) function G(Z) of the complex variable Z = x +iy (Z is not the
spatial z coordinate), where x and y are the Cartesian coordinates of the two-dimensional
problem. If we can find an G(Z) whose real part is the electrostatic potential @ for the

problem, then the electric field lines are given by the isocontours of the imaginary part of
G.

For completeness, we sketch why this is true. Let G(Z)=U(x,y)+i V(x,y), where U
and V are real functions of x and y. For G(Z) to be analytic at a point Z, its derivative
must exist and be the same whether we approach the point Z in the complex plane along
the x-axis or along the y-axis. That is, we must have
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dG(Z) _ . GO+ A y)-Glx,y) o GOy +A4y) - G(x, p)
d(Z) a0 Ax iAy—>0 iAy
Using the definition of G in terms of U and V, and equating real and imaginary parts in
equation (2.1.1.1), we have

(2.1.1.1)

UGy _ el U@y V)]
& » | Lo ox

(2.1.1.2)

from which it can easily be deduced that both U and V" are solutions to Laplace's equation
in two-dimensions, almost everywhere.

Now suppose we find an analytic (except for a discrete number of singularities)
function G(Z) such that the real part of G(Z) is the solution to a two-dimensional
electrostatic potential problem with discrete sources. That is, for this G(Z), our potential

satisfies Re[F]=U =@ . The electric field lines due to this potential are given by

E = -V ¢. Consider the isocontours of Im[F]=V . Let Y(x) be an isocontour of V(x,y).
Then the change in V(x,y) when we move along Y(x) must be zero. That is

dV(x.Y(x) _V  dY _

(2.1.1.3)
dx o a'y dx
which means that
dY ov . oV U dU 7o, o E
= )7 =2 —¢/—¢=— (2.1.1.4)

where we have used equation (2.1.1.2) above to replace the partials of U with partials of
V, the fact that U = ¢ by assumption, and E = -V ¢. Equation (2.1.1.4) is exactly what
we require for a curve defining an electric field line. Thus if the real part of G(Z) is equal
to the electrostatic potential, then the isocontours of the imaginary part of G(Z) are
parallel to the electric field lines.

Note that the scalar function V' (x, y) = Im F(Z) is in some cases related to the
flux function we discussed for example in 1.3, as may be seen from the fact that

E=Vx[ImF(2)z]=Vx[V(x,y) 2] (2.1.1.5)

For example, when the system is symmetric about the y-axis, the imaginary part of G(Z)
is one half of the flux of E passing through a rectangle of width 2x in the x-direction,
located at height y on the y-axis, and centered on that axis, per unit length in the z-
direction. More importantly, as can be shown by explicit construction, the time evolution
of the electric field lines in electro-quasi-statics are the same as the time evolution of the
isocontours of the imaginary part of G(Z). We now give three useful examples of these
functions in two-dimensional electrostatics, and one related example in two-dimensional
magnetostatics.
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2.1.2 The 2D Electrostatic (or Magnetostatic) Dipole and Line of 2D Dipoles

Consider a two-dimensional electric dipole, that is a dipole formed by taking a
line charge + 4 and a line charge - 4 a vector distance d apart, with d pointing from the
negative to the positive line charge. We let d go to zero and A4 go to infinity in such a
way that the product

p=4d (2.1.2.1)
goes to a constant. The quantity p is the two-dimensional electric dipole vector. The

electric potential for a two dimensional electric dipole, assuming the dipole is at the
origin, is

L pX 1 \PATPY 2122
2re, (X +y°) 27g,| (x*+)7) (2.12.2)
where X = xi+ yj. We can write the potential in equation (2.1.2.2) as
1 L —ip )2
= Re| PP (2.1.2.3)
2re, x"+y
Therefore our electric field lines for this problem are isocontours of
1 (p.—ip)Z 1 p.y-p,x 1 [pxX]
V(x,y)=Im S = - = = 2.1.2.4
(x.) {272’80 x'+y° 2me, x*+y° 2me, X’ +)° ( )

These expressions also holds for a two dimensional magnetic dipole.

These expressions can be generalized to a line of 2D dipoles with a given
orientation. Consider the following configuration. A line of dipoles extends along the x-
axis from —d/2 to d/2. Along this line there is a line of two 2D dipoles with dipole

moment per unit length P = PA+p,J. The electric potential for this situation can be
derived by integration of (2.1.2.2) to yield

1 (x—d/2)*+)° dy
D(x,y)=——p.In + p_arctan 1.2
ey)==5 P {(x+d/2)2+y2 Py C ety —d /4 2.1.2.5)
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and the electric field components can be computed by taking the negative gradient of this
function. The field lines for this configuration are isocontours of the following function,
by integration of (2.1.2.4).

d 1 —d/2)*+y?
2 2y 2 +_py1n o )2+y2
X +y —=d /4] 2 (x+d/2)y +y

V(x,y)=p, arctan{ } (2.1.2.6)

2.1.3 Constant Electric Field

As a second example, consider the electric field lines of a constant field E°. The
electrostatic potential in this case is

® = -E°-X = Re|- (E°.x + E°, )| = Re|- (E°, —iE°, )Z] (2.1.3.1)

where again X = xi+ y j, so that the field lines are given by the isocontours of
V(x,y)=Im[-(E —iE®, )Z]=~E°.y+ E°,x =[X xE°], (2.13.2)

If we want to find the field lines of a two-dimensional dipole in a constant field, we
simply add the two functions above appropriate to the two potentials to get the
appropriate function for this case.

2.1.4 Line of Charge

Finally, for our third example, consider the electric field lines of a line charge.
The electrostatic potential for this case is

o=t In(yx* + y*) = Re| — In(Z) (2.1.4.1)
2re, 2re,
so that the field lines are isocontours of
A A
Vix,y)=Im| ———In(Z) | = — 0 (2.14.2)
2re, 2re,

When there are two or more line charges present, one has to be careful using the function
in equation (2.1.4.2) because of the branch cut in #as fruns from 0 to 27 .

2.1.5 Line of Current
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Although strictly speaking we are only considering electrostatics in this section, we point
out that we can do much the same thing in magneto-quasi-statics in two dimensions. If
the current density J is zero except at discrete locations (that is, we have a finite number
of line currents running in the z-direction), then V x B =0 almost everywhere, and we can
write for regions away from the discrete sources that

B=-VO, (2.1.5.1)

where ¢, is the magneto-quasi-static potential. Since V-B =0, we have

VO, =0 (2.1.5.2)

In two dimensions, finding the magnetic field lines in magnetostatic problems with a
discrete number of line currents can be aided by using the theory of complex variables, as
above. In particular, consider the analytic (except for a discrete number of singularities at
the sources) function G(Z) of the complex variable Z = x +iy , where x and y are the
cartesian coordinates of the two-dimensional problem. Just as above, and for the same
reasons, if we can find an G(Z) whose real part is the magnetostatic potential ¢, for the

problem, then the magnetic field lines are given by the isocontours of the imaginary part
of G(Z2).

For example, consider the magnetic field of a line current at the origin. The
magnetostatic potential for this case is

My 1 My 1
O, =—"0=Reli—In(Z
B 2 { 2 ( )} (2.1.5.3)

T
since
1 o ~ gl

B=-vo, = 64! Z =6
2 x4+ y* O 27 p

(2.1.5.4)

where 0 is the unit vector in the azimuthal direction, right-handed about the z axis. Thus
the field lines are given by the isocontours of

i Ml _ M1
V(x,y)—lm{l > 1n(Z)} o In(r) (2.1.5.5)

2.2 Three Dimensional Electrostatics
2.2.1 Point Charge in a Uniform Electric Field
Suppose we have a point charge at the origin of a spherical polar coordinate system.

The electric field of this point charge everywhere except at the location of the charge can
be written as
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B, (r.0) = VX{(I —cos 9)145}

TE sind r

o

(2.2.1.1)

We want to write this expression in a coordinate independent form. To begin with let us
move the point charge up the z-axis by a distance z,. Then

r—zz rcos®—z
cosezi( pA): — L—
‘r—sz‘ \/x +y +(z-z,) (2.2.12)
b= ZXT
and since sin® the expression (2.2.1.1) becomes
l1-cos@
E”Oi"t(r’t):47fg v ( sin @ )\/ 2 21( ) A
0 .x + + zZ—Z
d v 2.2.13)
The constant electric field in the z-direction can be written as
1, . A
E(r,t)=-E, Vx{— (r sin 6’) ¢}
2 (2.2.1.4)
The electrostatic flux function (cf equation (1.3.1.4)) can therefore be written as
F(l", 0) = % (1 — COS echarge )_ T Eo (rcharge Sin echarge)z (22 1 5)

2.2.2 Point Charge Being Charged By a Line Current

We consider the situation where we have a point charge at rest at the origin of our
coordinate system with a charge Q(z) which is varying with time. The increasing charge
is being supplied with current by a line current which is arranged along the —z axis,
carrying current / = dQ/dt. 1In the quasi-electro-static approximation, if ¥ is the
spherical polar unit vector, the electric field is given by

s OO
E(p,z,1) r4wo(zz+p2) (2.2.2.1)

and the magnetic field is given by
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z

ol
B(p,z,0) =gt | 1- — (2.2.2.2)
4z p (Z +p )

We can derive the expression for B given above by considering the line integral of B
around a circle of radius p centered on the z-axis a distance z up that axis, and applying
Ampere’s Law including the displacement current term.

The ExB magnetic monopole drift velocity in these crossed E and B fields is
given by (@1is the spherical polar angle)

ExB .~ 7 dQ|1-cosf
\% iz )=t ——=—0——= 2223
aa(p5D = 0 dt{ sin @ } ( )

The field lines are radial, and since the velocity of the field lines are given by the
equation above, we can write for the & dependence of a given field line that

p40_ 1 dO)1-cost (2.2.2.4)
dt Q dt| sind

This equation can be integrated to show that the time dependence of the angle & denoting
a particular radial field line is given by

O(1)(1—cos (1)) = const (2.2.2.5)

This is not surprising given the flux function in (2.2.1.3) for the point charge.

2.2.3 Flux of a Point Charge through a Loop (following N. Derby)
2.2.3.1 Flux through the Loop

A circular loop of radius a lies in the x-y plane with is center at the origin. A
point charge with charge ¢ is located in the x-z plane at position

Xp(t)=x,X+z,Z2=d(Xsina+Zcosa) (2.2.3.1)

with charge ¢g. The field point is located by the vector r. Let the angles (8, @) be the
usual spherical polar angles for the field point, and (6,,¢,) the usual spherical polar

angles in a coordinate system centered on the point charge, The vector potential for the
point charge is given by (see 2.2.1.1)



Version 1.1 7/27/2008 24

E,, (r)=—2 Vx{(l.cosep) 1# ¢}=VXA

g dre, sin,  r-X,

(2.2.3.2)
Z
Charge
Circle of
radius g
X

Figure 2.2-1: The orientation of the circle with respect to the point charge

By Stokes’ theorem, the magnetic flux of the field of the point charge through the
loop can be expressed as a line integral

= §§A(§)- dl (2.2.3.3)
where the integration is around the loop and

dl=adp ¢=adp[-Xsing+§ cosd| (2.2.3.4)

In the plane of the loop on its circumference the field point can be written as

r=a[Xcos¢+y sing] (2.2.3.5)

and thus

r—x,(1)=[X (acosg—dsina)+y asing—zdcosa] (2.2.3.6)

‘r -X, (t)‘2 =(acosg—dsina)’ +a’sin’ g+d* cos’ a =a’ +d’ —2ad cosgsina (2.2.3.7)
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Cmgpzz(rixiﬁ):_ dcosa (223.8)
‘r—xp(t)‘ \/a2+d2—2adcos¢sina
Moreover,
¢; _ %x(r—iip (t)) _ ix[f( (aCOS¢—aA’Sina)j‘§' asing—z dcosa] (2.2.3.9)
ix(r=%, (1) p(r-%, (1)
. _ [¥ (acosg—dsina) X asing] (2.2.3.10)

p . .
Ja@* +d* sin® & —2ad sin & cos

l—cosﬁp) 1

sin 6’p r—

O =A(%)-di = %

% -ad¢p&y+yx](zzaln
Are, X, "’ P

(chﬁ q {(1005‘9,,) 1 [¥(acosg—dsina)-R asing]

4re, | sind, ‘r—ip‘\/a2+d2 sin® @ —2ad sin a cos ¢

}-a dp[-X sing+ cos |

(223.12)

2z 1—cos@ —d i
= [ dp—1 ( . ) L ala—dcosgsina] (2.23.13)

o 4me, | sind, ‘I’—X,,‘\/a2+d2 sin® & —2ad sin ¢ cos ¢
(I)—Td(ﬁ q (1-cos0,) 1 ala—d cosgsina]

o 4re, (1+0059p) Ja* +d> —2ad cosgsina \Ja* +d’ sin> & — 2ad sin & cos ¢
(2.2.3.14)

(l—cosé’) (\/az+d2—2adcos¢sina+dcosa)
p) _ (2.2.3.15)

(1+cos¢9,,) (\/az +d* —2ad cos gsina —dcosa)

The expression in brackets in (2.2.3.14) is
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(\/at2 +d* —2ad cos¢sina +d cosa

S~——

1 ala—dcosgsina]

(\/a2 +d* —2ad cos gsina —dcosa) Ja* +d* —2ad cos psina \Ja* +d* sin> & — 2ad sin ar cos ¢

(2.2.3.16)

To check some limits before proceeding, take the case where « = 0, and the point charge
is thus on the z axis and a distance d away from the origin. In this limit the integral
(2.2.3.14) becomes

a _q a’+d> +d

o Ame, |\(Vat v d?—d) Vo' v d’ 2, a

(2.2.3.17)

In order to put the integral into ce/ form (see 1.1.1), we introduce a different angular
variable: ¢ =7 —2 /. Then, using cos¢ =sin’> B —cos’ # andsin ¢ = 2 sin 3 cos B, we
write the previous expression as

sin® Blu.z, + p(a—x,)|+cos’ Bl- p.z, +p(a+x,)|+2u,z,sin feos - (4.2.1.7)

Similarly,

|i—iD|2 =x,’ +z," +a’ —2ax, cos$ = sin’ ,B[(xD —a)2 +zDZ]+ cos’ ,B[(xD +a)2 +zDZ].

(4.2.1.8)
After defining the quantities

R’ =(x,taf +z,° and k' =—5<I (4.2.1.9)

the flux through the ring can be written as

27 s > a2 c, cos’ B+c sin’ B+c,sin Bcos
o= A¢ad¢=( J‘“’B 2f " p 2 f‘ - 3/2ﬂ Pap  (42.1.10)
47 ) R, [cos S +k. sin ﬂ]

The last term vanishes because of anti-symmetry and the remaining dimensionless
constants are

C,

_—MZp +,uz(xD +a) and ¢ = H.Zp +ﬂz(a_x0) (4.2.1.11)
ua ua

Thus, the flux integral is
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® = (””jw 72 ¢, cOS ﬂ+c sin ,l?/z dp (42.1.12)
a lcos ﬂ+k sin ﬂJ

Comparing this integral to the definition of the cel function (1.1.1.1), we see that
2
H, | Ha
== cellk ,k°, c,,c 42.1.13
( . j etk e (42.1.13)

The flux thus depends only on the components of vectors lying in the x-z plane as shown
in the figure. All quantities can be interpreted geometrically (see Figure 4.2-2). In
equation (4.2.1.13) we define the quantities

R, =%, *ax=(x, ta)k+z,2 (4.2.1.14)
k. zi 4.2.1.15)
¢, =PXR.Y (4.2.1.16)
Ha
Z
A
L
Ay
c" \
d’ \\
R+ _,"l‘ R \\
rd - b}
.r” ‘\
” %\
,J \\.I .‘ }

i

Figure 2.2-2

3 Magnetostatics
3.1 Magnetic Field Lines of a Point 3D Dipole

The potential and field of a single 3D dipole at the origin with dipole moment m
is given by
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4, M- 4 m-er 4, 3n(m-n)—m
b =L ‘o B:—vq) =L _ ~ J
M 4n 8t 4z »’ M 4x r (3.3.1)

3.1.1 The Vector Potential in Cylindrical Coordinates

Figure 3.1-1: A 3D magnetic dipole

For a point 3D dipole with dipole moment M, the vector potential A is given by

py XXM _ g, Msing _suM __ p (3.1.1.1)

A ,Z - =
(p ) 471_ X3 471_ ZZ + pZ 472_ (Zz n p2 )3/2

3.1.2 Components of the Magnetic Field in Cylindrical Coordinates

B(p.z) =V x|4(p.2)f] (3.1.2.1)
So
__2 _Ho g, 3p2
B,(p,2) = PR [A(p,z)] 47TM(ZZ+,02)5/2 (3.1.2.2)
and
_1a _ My, Q27 -p7)
B.Ap2)= o oA 0] =M Sy (3.1.2.3)

3.1.3 The Flux Function in Cylindrical Coordinates

The flux function for a magnetic dipole (cf. 1.3.1.4 and 3.1.1.1) is

27 M p?
F(p,z)="12 p

3.2 Magnetic Field Lines of A Circular Loop Of Current



Version 1.1 7/27/2008 29

3.2.1 The Vector Potential in Cylindrical Coordinates

Consider a loop with radius a carrying current /, with magnetic dipole moment

M = za’ I. The vector magnetic potential A can be written as (Jackson, Pgs. 178 -
179)

uoda’f cos¢ d¢
4r 0\/a2+22+p2—2a,0008¢ (3.2.1.1)

A(p,2) = A(p,2) = ¢

Figure 3.2-1: Loop of current

where ¢ is the azimuthal angle about the axis of the loop, and p and z are cylindrical
coordinates. If we change variables using ¢ =2 S + 7, and define the normalized
distances z'=z/aand p' = p/a, then this equation becomes

A(p.2) = p, ”jz cos2f dp
2z 7n/z\/12+z’2+p'2+2p’cos2ﬂ (3.2.1.2)

which (using cos2 3 = cos® S —sin’ ) can be written as

Iu, 7 (sin® B —cos’ B) df

A(p,z) =
ﬂ\/z’z +(1+p) 9 \/cosz B+k’sin® B (3.2.1.3)

where
P z?+(1-p")’
T+ p) (3.2.1.4)
For future use, we also define
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4p'
kK*=1-k'=——"F
c ZI2 +(l+p!)2 (3.2.1.5)
With this definition, and using the definition of cel given in (1.1.1.1), we have
A(p,zy =2 2K e -1
A ma” p' (3.2.1.6)

To show the correspondence between this expression and the expression above in
(3.1.1.1) for a point dipole, we take the limit that we are far from the ring, which
corresponds to the limit that &° << 7. In this limit,

T 2
cel(k 1,-1,1)=—k
(k. ) e

(3.2.1.7)
and using this expression it can be shown that (3.2.1.6) reduces to (3.1.1.1).
3.2.2 Components of the Magnetic Field and the Electric Field
The components of the magnetic field are given by
B(p.z) = Vx|d(p.2) §] (3.2.2.1)

The radial component is thus (using (3.2.1.1))

% o\ mla’f cosg d¢
B,(p.2)=-—d(p.2)]=-—
, P> &| 4 {\Jat 12+ p" —2apcosg | (3222)

which after some manipulation can be written as

Tuyz' 7 (sin® B —cos® f) df

ﬂa[z'2 + (1+p,)2]3/2 0 (cos2 ﬂ+kc2 sin’ ,3)3/2 3:223)

B,(p,z)=

Using our definition of ce/ in (1.1.1.1) and (3.2.1.4), and M = za’ I, we can write this as

My M z'k* 1 2
B, (p,2) ~ar s o Ecel(kc,kc ,—L1) (3.2.2.4)

Now, the z component of B is given by
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_12

B.(p,) =~ [pa(p,2)] - {” Tl cosg 49
pop

4 0\/a2+zz+p2—2apCOS¢:l (3.2.2.5)

pop

which after some manipulation can be written as

Mk ! ,
B.(p.2)= %EW{ cel(k L1+ h+x2-(1-£7)p ]cel(kc,kcz,—l,l)} (3.22.6)

To show the correspondence between these expressions and the expressions above in
(3.1.1), we need to take the limit that we are far from the ring, which corresponds to the
limit that & << 7. In this limit, (3.2.1.7) is true, and we also have in this limit that

cel(k,,k,’,~11)= 37 2
16 (3.2.2.7)

Using these limiting expressions it can be shown that our components in (I1.B.2.4) and
(I.B.2.6) reduce to those of a 3D point dipole given in (I[.A.2) far from the loop.

A useful limiting form for 4 (p,z) when &’ is small is

2
A(p,z) =t la L (3.2.2.8)
AT Ja? +2* + p* +2ap 4
In a situation where we have a ring of current moving with velocity v and/or with
a time changing current in the ring, the non-relativistic expressions for the magnetic field
are just those given above, and the electric field is given by the motional electric field and
the induced electric field, e.g.

2
E=—vxB-A_ _yxp-_to 9L 2 L (3.2.2.9)

ot 4r dt \/a2+zz+p2+2ap 4

3.2.3 The Flux Function in Cylindrical Coordinates
The flux function for a circular loop of wire is just (see 1.3.1.4 and 3.2.1.6)

F(p.z) =20 208

and if we use (3.2.1.5) and (3.2.1.7) we see that the above equation reduces to (3.1.3.1)
for a point dipole when we are far from the loop. It is instructive to plot this function in
the plane of the loop, from the center of the loop to close to its radius.

P cel(k,,1,-1,1) = pk I (ap)"” cel(k,,1,~1,1) (3.2.3.1)
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Loop Flux Function forr <a

Flux
[6)]
L
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rla

Figure 3.2-2: Loop flux function for r <a

Figure 3.2-2 gives such a plot, for a dipole moment vector of unity and a radius of unity.
The values of the flux function scale inversely as loop radius for a fixed value of M.

That is, as the radius increases, the value of the flux function decreases in proportion, at a
given value of r/a.

We also show in Figure 3.2-3 the dependence of the flux function on radius in the
plane of the loop for » > a. Figure 3.2-4 shows the field line with a flux function value
of 2.0, for a loop with unit dipole moment and unit radius. This field line crosses the
plane of the loop at » = 0.531 and also at » = 3.26, as we would expect given the flux
curves in Figures 3.2-2 and 3.2-3.

Loop Flux Function forr > a

(o))
'S g

Flux
ol

rla

Figure 3.2-3: Loop flux function for r > a.
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Figure 3.2-4: Field line for a loop with a flux function value of 2.0.

3.3 Magnetic Field of a Line of 3D Magnetic Dipoles
3.3.1 The Potential of a 3D Dipole

The potential and field of a single 3D dipole at the origin with dipole moment m
is given by

[ M-n 4 m-r 4, 3n(m-n)—m
o =t o B=-vVp =t A\ )77
M 472_ rZ 472_ r3 M 472_ r3 (3.31.1)

3.3.2 The Potential of a Line of 3D Dipoles

We assume the line starts at the origin and lies along the x-axis, ending at x = L.

We have (dropping the %)
T

L (mx(x—x')+m y+mzz> ,
®, =£ = +y2y+ 7 dx (3.3.2.1)
e (x—x")dx' ° dx'
D, = mx:[((x_x’)z AR )3/2 +(myy+mzz)£ ((x—x’)2 42 )3/2 (3.3.2.2)
f (x—x")dx' ~ 1 L 1 1

/2 172
(x2 +y zz)

(3.3.2.3)

0 ((x—x')2 +y +2 )3/2 B ((x—x')2 +y* +2° )”2 ‘0 ((x—L)2 +y° +zz)
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Lol o a2
j- dx' _ 1 de/(y +z) 394
o((x—x')z-i-yz-i-zz)y2 (y2+22)0 (x—x')2+1 i (3.3.2.4)
V12
, d dx’
tann = (x—x)/ (" +2°) " cogn C( ;2 )" (33.2.5)
" e M
g ((x_x')z 4y 47 )3/2 == (yz +Zz) tanlx/(y‘[ﬁz)” cos? n(tan2 77+1)3/2 (3.3.2.6)
° dx' _ 1 tanl(x_L)}yZHZ)m cosndn =-— sinz ! -L)/(+27)
? ((x_x/)z +y2 +22 )3/2 (y2 + Zz) tan’lx/(J/z*Zz)m (y2 + 22) tanflx/(yzﬁ—zz)l/z
(3.3.2.7)
sinzg = ! —
\/1+1/772 \/1+772 (3.3.2.8)

L a o1 «x-L) x
0((x_x!)2+y2+22)3/2 (y2+22> \/(X—L)2+y2+22 \/x2+y2+Z2 (3329)

So inserting (3.3.2.9) and (3.3.2.3) into (3.3.2.2)

D, =m, 1 2 1 172
((x—L)2+y2+zz) (x2+y2+22)

3.3.2.
C(myrmz)  c-p R
(y2+22) \/(x—L)2+y2+zz \/X2+y2+22
To check limits, let L go to zero. Then
. g 1 (myy+mZZ)L£ X
Pu = mXLﬁx[(x2+y2+Zz)”2] - (y2+22) ax[ /x2+y2+22]
__ +m_Lx _+(myy+mzz)L 1 ) E
= (x2+y2+22)3/2 (yz_l_Zz) \/m (x2+y2+zz)3/2 (3.3.2.11)

+m L x (myy+mzz)L

) (xz+y2—i—zz)m_-i_(yz+zz)(x2+yz+zz)3/2

[xz +y*+2° —xz}
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(mx x+myy+mzz)L

?, = (x2 e )3/2 (3.3.2.12)

In the limit that L goes to infinity, we have

m, (m y"‘mzz) X
D, =- + [ +@ (33.2.13)

(x2+y2—i-22)1/2 ()’2'*‘22) \/m

We can generalize this to arbitrary orientations of the line. If t is the unit vector along the
direction of the line, and the line begins at the origin, then

(3.3.2.14)

D, =t {m'f}r(m'r_fff'r)(i'm)){h }

M 4r

3.3.3 The Field of a Line of 3D Dipoles along the x-axis

We go back to the expression given in (3.3.2.13) to get the components of the

field.
B, :‘mr;r (33.3.1)
B -_21 n, (erermZZ) * +1
' y (x2+y2+22)1/ (y2+22) \/m
3 m.y B X " m, 2(myy+mzz)y
(x2 +y*+2° )3/2 \/m (yz +Zz) (y2 +z° )2 (3.33.2)
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B :_HZEZ_BH} e, [m. (3 =2")=2m,pz |+
Or all together

b

By:_nﬁy_{§+{hyzjzﬂzP%«zz—yﬂ—2mgy]+

BZ=_n;,§Z_B+1}(y2;2)2 [m. (3 =2%)-2m,pz |+

To put this in coordinate independent form, define

(myy + mzz) xy

3

(y2+zz) r

(m,y+m.z) x

(y2+22) =

eooroi(ir)  my,—m-i(im)
weix[mr,]= ., (i-m)
B.=——t,
%_%_Fgﬂﬁmwi2uﬁnﬁﬁL+ n,mzﬁm&b

eilir)

4

(i)

A 2
w |:t'l’ :||:mitrlt_2rit(rlt'mit):| r.,:
—— +1 =+

36

(3.3.3.4)

(3.3.3.5)

(3.3.3.6)

(3.3.3.7)

(3.3.3.8)

(3.3.3.9)
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[(m-r)fm(f-m)]{He.r}[mﬂrj—zrﬂ(n,-mh)}

(3.3.3.10)

(3.3.3.11)

[(m.r)ml,{rﬁ(e.m)(e.r)(f“.m)}}{Hfl}[mﬂ_2,12(&.%)]

r r

1t

(3.3.3.12)

H,
where we have dropped the 4r factor.

3.4 Two Magnetic Dipoles Interacting

Two magnetic dipoles interact. The torque on a dipole 1 sitting in the magnetic field
B; due to dipole 2 is

T, =m, xB, (3.4.1)

and similarly for the torque on 2 due to the field of 1. The force on dipole 1 sitting in the
magnetic field B, due to dipole 2 is
F, =(m,-V)B, (3.4.2)

which in component form is

F"I{Zm{-%}?{, [=X,0,2, J=X,),Z (3.4.3)

The field B at a point X due to a dipole m, located at X is given by

B= &w where r = X_Xl n= (344)

4 P

and the tensor gradient of B is given by
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VB:57"[%[(m-n)i+mn+nm—5(m-n)nn} (3.4.5)

For two interacting dipoles, equation (2) then becomes

F :f_;zr%[(ml 'Il)mz +(m2 'n)ml +{(m1 'mz) =5 (ml -n)(m2 -n)}n} (3.4.6)

The force on dipole 2 sitting in the magnetic field B, due to dipole 1 is opposite and equal
to the force given above, because of the direction of the normal n reverses when the
index changes.
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4 Faraday’s Law
4.1 The Falling Ring

4.1.1 The Equation of Motion

rT L maghet

Figure 4.1-1: Geometry of the falling ring

We have a 3D dipole with dipole moment £ = #Z . It moves on the axis of a
circular loop of radius a, resistance R, inductance L, with inductive time constant L/R. It
moves downward under the influence of gravity. The equation of motion is

d’z dB.
ma’t2 =—mg+,uE (4.1.1.1)

where By is the field due the current / in the ring (positive in the direction show in Figure
4.1-1)". The expression for B; is

ula’
: :m (4.1.1.2)
so that equation (4.1.1.1) is
d’z uu la® d 1
m—s=—mg+—"———— 4.1.1.3
dr* & 2 dz (a*+2%)" ( )

or

"This is the appropriate equation for both the situation of the ring at rest and the magnet moving, or the
magnet at rest and the ring moving--the mass m switches from the mass of the magnet to the mass of the

ring, depending on the situation.
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d’z 3uu la’ z
mﬁ=—mg— 2 (@ +2)"° (4.1.1.4)

4.1.2 Determining an Equation for I from Faraday's Law

Faraday's Law is

d d dl
§E.dl=—EIB~dA=—EJBdW-dA—LE (4.1.2.1)
and if E = pJ , then
§E.dl=§§pJ~d1=1§pd1/A=1R,with R=§pdz/A (4.1.2.2)
so that
dl d
IR=-L" = [ By -dA (4.1.2.3)

We need to determine the magnetic flux through the ring due to the dipole field. To do
this we calculate the flux through a spherical cap of radius v a’+z° withan opening

angle given @ given by sind =a/~+a’+z’ (this is the same as the flux through the ring
because V-B=0).

Figure 4.1-2: Dipole flux through a polar cap
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The flux through a spherical cap only involves the radial component of the dipole field,
given by

7
B, = £o KO0 (4.1.2.4)
2 r
Our expression for the flux is thus
M, pcos@
I B0 dA = I " 27r’ sin0d @
r
which can be integrated to give
2
JB‘,,, oo dA = —Mjcosé?d cosd = —M(cos2 0—1):Msin2 g =t a 5
i r 2r 2r 2 (a2 + 22)3
(4.1.2.5)
Inserting (4.1.2.5) into (4.1.2.2) yields
2
Re_p YL _dHH_ a _ (4.1.2.6)
dt dt 2 (az +22)’
We assume that 4 is constant, with & =M, so that (4.1.2.6) becomes
R=_% 3AM, 2 (4.1.2.7)

dt 2 (a2 n 22)5/2 dt

Equations (4.1.1.4) and (4.1.2.7) are our coupled ordinary differential equations which
determine the dynamics of the situation.

4.1.3 Dimensionless Form of the Equations

We now put these equations into dimensionless form. We measure all distances
in terms of the distance a, and all times in terms of the time ya/g . Let

] 2
z'zit': ! I':—wherelzmga

s o 4131
a \/a/g 10 lquo ( )
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The time +/@/ g is roughly the time it would take the magnet to fall under the influence
of gravity through a distance a starting from rest. The current /, is roughly the current in

the ring that is required to produce a force sufficient to offset gravity when the magnet is
a distance a above the ring. In terms of these variables, our equations (4.1.1.4) and
(4.1.2.6) are

d*z' 3 Z'T
=]--—— 4.1.3.2
dtlZ 2 (1+ZIZ)5/2 ( )
' 2 ' '
1'=—£Jgd—l+ 3(”"M;’) \/g I (4.133)
RVNadt' 2mga’R \a (l+z'2) dr’

We introduce the four dimensionless parameters

R M M,y L 1
G R e oM, (n, 2 i=— p=|85&%_ 4134
L\g LI a Lmga Ha a R Ao
and we define the reduced flux rate function F(z') as
3 z'
FZ == 4.1.3.5

( ) 2 (1+Z!2)5/2 ( )
Note that we can write the reference current /) as

La' _ mga” 1 4.1.3.6

M, ﬂoMgz A8 (4.1.3.6)

The parameters have the following physical meanings. The quantity « is the ratio of the
free fall time to the inductive time constant--if « is very large, inductive effects are
negligible. The quantity £ is roughly the ratio of the current due to induction alone,

MM,
a

assuming the resistance is zero (P, / L with @, = ), to the reference current

Io. With these definitions, our equations become

d*z' o
" =-1-F()I (4.1.3.7)

A s prn % (4.1.3.8)
dt’ dt'
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If we define the speed V' =dz'/dt’, then we can write three coupled first-order
ordinary differential equations for the triplet (z','V') , as

dz'/dt' =V (4.1.3.9)
dr’ , dz’ (4.1.3.10)
= —al'+ fF 13
dr PR
av'
- FI 4.13.11
=l () CRERT)

4.1.4 Conservation of Energy
d
We assume that y is constant. If we multiply (4.1.1.4) by v= i and (4.1.2.7) by

1, after some algebra, we find that
4 [‘m ‘+m 1L[z]— I*R
b vi+mgz+1 =— (4.1.4.1)

which expresses conservation of energy for the falling magnet plus the magnetic field of
the ring. The dimensionless form of this equation is

d 1,102 ’ 1 12 a 12
dt' {2 " ap 2p ( :

Suppose the resistance of the ring (the superconducting case) is zero (i.e., a = 0).
In this case, (4.1.4.2) becomes, with one integration

rec-—P __ (4.1.4.3)

!

If we impose boundary conditions that /' = 0 when ¢’ = 0, with z'=z,
0, then this is

andv' =v, att'=

. 1
I—ﬂ{(HZ;z)m (1+z'2)3/2:l (4.1.4.4)

Using this equation, (4.1.4.2) for the conservation of energy becomes
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2
' ! 4 1 1
v+ (Z _Zo)+§[(1+ ,2)3/2 _(1+Zr2)3/2:l =0 @.1.4.5)

4.1.5 Numerical Solutions

A magnet falls through a copper ring. At the ring, the speed of the magnet
decreases. When the magnet is through the ring, the magnet resumes free fall. We show
a numerical solution to equations (4.1.3.9) through (4.1.3.11) above, appropriate to this
case. The initial conditions (z',1',v") for the solution plotted below are (2,0,0). The
values of (a,f) are (10,100). Below we plot position as a function of time and current
as a function of time (using our dimensionless parameters).

8
6
4 4+
2
0

. )

o & AN
1

Figure 4.1-3: Numerical Solutions for the Falling Ring Equations

The behavior of these solutions is what we expect. When the magnet reaches a
distance of about a from the ring, it slows down, because of the increasing current in the
ring, which repels the magnet. As the magnet passes through the ring, the current
reverses direction, now attracting the magnet from above, which also slows the magnet.
Finally the magnet falls far enough that the current in the ring goes to zero, and the
magnet is again in free fall.

These are approximate solutions only, using an Excel spreadsheet with an Euler
integration scheme. In the final animations, we a fourth order Runge-Kutta scheme to
integrate the equations with high accuracy.

4.1.6 The Topology of The Field

How do we plot the field configuration given solutions for z"and /? The absolute
current is given by (cf. equations (4.1.3.3) and (4.1.3.4))

1 M
I=11"=—-—I (4.1.6.1)
AP a
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How much freedom do we have in choosing the absolute value of the current once we
have solved our dimensionless equations? And in particular how does that freedom
affect the topology of the magnetic field? One measure of the shape of the total field is
the ratio of the field at the center of the ring due to the ring to the field at the center of the
ring due to the magnet when the magnet is a distance a above the ring, i.e.,

center of ring ul

__2a _la
at center of ring when dipoleata H, M, - M,

2

ring

(4.1.6.2)

27 a

Bdipole

where we are dropping numerical factors. Clearly when this ratio varies the overall shape
of the total field must vary. If we use (4.1.6.1) in (4.1.6.2) we have

center of ring
ring a a1 M, I I
at center of ring when dipoleata M, B M, B a - Ap

~

(4.1.6.3)

Bdipole

The meaning of equation (4.1.6.3) is that the overall shape of the magnetic field topology
is totally determined once we make the one remaining choice of the dimensionless
constant A, defined in equation (4.1.3.4) which up to this point we have not chosen (we
have only picked values of & and Sto solve our dimensionless equation). Once that
choice is made, we have no additional freedom to affect the field topology.

4.2 Magnetic Dipole Moving Near a Circular Conducting Loop (N. Derby)
4.2.1 Flux through the Loop

A circular loop of radius a lies in the x-y plane with origin center at the origin.
A dipole is located at position X, (¢)=x,X + z,2 with magnetic moment ji(¢) with
arbitrary orientation. The vector potential for the dipole is given by (see 3.1.1.1)

AR)= (LJM (4.2.1.1)

— - 3
4 |X_XD|
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P i1

X

Figure 4.2-1: The geometry of the ring and dipole for the flux calculation

By Stokes’ theorem, the magnetic flux of the dipole field through the loop can be
expressed as a line integral

® = fA(%)-dl (42.1.2)

where the integration is around the loop. For integration purposes, express the integrand
in cylindrical coordinates. The unit vectors are:

p=cos¢g X+sing y @=-—sing X+cosg y (4.2.1.3)
y

X=cos¢ p—sing ¢ =sing p+cosg ¢ (4.2.1.4)

The magnetic moment is ji = u P + 1, + .2, where u, =y cos¢+ 1, sin ¢ and
My =—p sing+u cosg. Inthe plane of the loop

X=ap and dl=adg¢ (4.2.1.5)

In the numerator of the flux integrand we have
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In order to put the integral into ce/ form (see 1.1.1), we introduce a different angular
variable: ¢ =7 —2f. Then, using cos¢ =sin® B —cos’ B andsin ¢ =2 sin 3 cos 3, we
write the previous expression as
. 2 2 .
sin ,B[,uxzD + ,uz(a —xD)]+cos ,B[— MH.Z,+ ,uz(a + xD)]+ 2uzpsin feos B (4.2.1.7)

Similarly,

|§—iD|2 =x,’ +z," +a’ —2ax, cos$ = sin’ ,B[(xD —a)2 +zD2]+ cos’ ,B[(xD Jra)2 +zD2].

(4.2.1.8)
After defining the quantities

R’ =(xptaf+z,° and k’="5<I (4.2.1.9)

the flux through the ring can be written as

2 > 72 ¢, cos’ B+c sin® B +c,sin Bcos
cb:jo A¢ad¢:('u°j’ua3 o[ , s : f‘ . 3/2ﬁ Pap  (42.1.10)
4z ) R, " [cos p+k,.sin ﬂ]

The last term vanishes because of anti-symmetry and the remaining dimensionless
constants are

=—,uxZD+,uz(xD+a) and :,UxZD"‘,Uz(a—xD) (4.2.1.11)

c, c_
la La
Thus, the flux integral is
2 2 : 2
@Z(&jlmsj/z c,cos’ B+c_sin ,I?/z ap 42.1.12)
T )R lcos2 B +ksin® ﬂJ

Comparing this integral to the definition of the cel function (1.1.1.1), we see that

2
® :(ﬂj%cel(kc,kf,c“c) (4.2.1.13)
Vi

+

The flux thus depends only on the components of vectors lying in the x-z plane as shown
in the figure. All quantities can be interpreted geometrically (see Figure 4.2-2). In
equation (4.2.1.13) we define the quantities

R, =X, tak=(x, ta)k +z,2 (4.2.1.14)
R

k,=— 4.2.1.15

ay ( )

o, PRy (4.2.1.16)

La
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Figure 4.2-2: Geometric interpretation of R and R.

4.2.2 Limits

For a dipole on and aligned with the z-axis, k. =1 and ¢, =1, so the expression for

the flux reduces to
2
[ A, Ha
o= (TJW (4.2.2.1)
(@2 +2,)

This expression agrees with previous results (see 3.1.3.1).
4.2.3 Equations of Motion

If the initial orientation of the dipole is such that its velocity vector and magnetic
moment lie in the x-z plane, then the force on it will also lie in the x-z plane and the
torque on it will be in the y direction. Thus, the dipole will remain in the x-z plane as it
translates and rotates (assuming that this is a stable situation). In this case the equations
of motion are relatively simple. We must specify as parameters for the dipole its mass
mp, its moment of inertia /p; and the magnitude of its magnetic moment . For the loop
we must also specify a resistance R and self-inductance L.

The state of the magnet and coil can be specified by (i D>V, Q0,1 L), where o 1s
the rotation angle of the dipole about the y-axis and w its angular velocity, and /;.is the
current in the loop. In terms of ¢, the magnetic moment is i =sina X+ cosa Z. Then
the state’s evolution is determined by the following equations:
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Kinematics: Ky _ v, da _ @ (4.2.3.1)
dt dt
Force equation: Dy _ g+ Vol B, (4.2.3.2)
dt mp,
Torque equation: do _RxB, 'y w8 ~1B, (4.2.3.3)
dt I, I
Faraday’s law: dar, = _—1% - £1L (4.2.3.4)
dt L dt L

where @ the flux through the loop due to the dipole, /; the current in the loop, By the
magnetic field of the loop. Expressions for By in terms of /; have already been obtained,
so the derivatives indicated above can be explicitly calculated.

In order to describe more general motion, a more complicated state vector is
required. The moment of inertia must be replaced by an inertia tensor Ip specified in a
coordinate system attached to the dipole; the orientation of the dipole can be specified by

a unit quaternion Q; and the angular momentum L, must be treated as a vector. Initial

orientation of the dipole is written as Q = [cos(%), sin(%) u]=[Q,,Q,,Q,,Q,], where

A = angle of rotation of the dipole body coordinates about u. The state of the magnet and
coil is thus (i 02V, L, 0,1 L) and the evolution of this state is determined by the
following equations:

Kinematics: dj;;D =V, (4.2.3.5)
Force equation: Dy _ g+ Vol B, (4.2.3.6)
dt mp,
1-207 207 20,0,-20,0. 20,0.+20,0,
Rotation matrix: R=1200,6+20,0. 1- 207 -20? 20,0.-20,0,
20,0.-20,0, 20,0.+20,0, 1-20!-20;

(4.2.3.7)
Geometry: I"=RI,'R" (4.2.3.8)
Torque equation: dCII;D =%, =}ixB, (4.2.3.9)
Angular velocity: &=1"L,, W=[0, ®] (4.2.3.10)
Kinematics: Cil—? =vBLW*Q=%[-0-1a sin(%), cos(%)é) + sin(%) ®xu]
4.23.11)

dl, _-1d®(%,) R,

Faraday’s law: —== .
d L dt L

(4.2.3.12)
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where @ the flux through the loop due to the dipole, By the magnetic field of the loop, O
the orientation of the dipole, I, the body-centered inertia tensor of the dipole, 7 the dipole
moment of inertia in world coordinates.

Expressing the constants in cylindrical coordinates,

o tatlpy—mz) mlatpy)Tu,z, (42.3.13)

- Ha Ha

5 Circuits
Under construction.

6 The Displacement Current

Under construction.

7 Radiation
7.1 Electric Dipole Radiation
7.1.1 The Electric and Magnetic Fields

The electric field of a time-varying electric dipole p(t) is given by

E(r,f) = [3i(pi)—p] , [Bia(ph)-p]  @xi)xh
’ Aze,r 4ree cr’ 4rre,rc? (7.1.1.1)

quasi - static dipole  induction  radiation

where the “dot” above a variable indicates differentiation with respect to time, and the
electric dipole moment vector and its time derivative are evaluated at the retarded time

t, =t=r/c_  With some algebraic effort, it can be shown that this expression can be
written as
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E(r,t):Vx{ [3+%}<ﬁ} (7.1.1.2)

dre, lcr r

Now when we are not at the origin we are in vacuum, so that we have

V x B(r.1) :cizaEg”‘) (7.1.1.3)

But if we take the time derivative of (7.1.1.2) and multiply by 1/c°, we easily have

izaE(”):vx{i ! {£+%}xﬁ} (7.1.1.4)

¢ ot cdreler v

Comparing the two equations above, we see that we must have

B(r,t):f—;{£+%} x (7.1.1.4)

cr o r
7.1.2 The Flux Function for a Dipole Oriented Along The Z-Axis

If the dipole moment p is always in the z-direction, we can write the electric field
as

E(r,f) = lg VX{[p(t —rie)  pu _f/c)} sin@ qB} (7.1.2.1)

dre, cr r

Equation (7.1.2.1) and the development in 1.3 above imply that the electric field lines of
a simple radiating electric dipole system in this case are given by the isocontours of

2

F(r,0.1) = 27 rsin 0.A(r, 0.1) = 277 rsin 6 — {p(t_r/c)+p(t_r/c)}sine}(7.1.2.2)
4re, cr r

or

F(r.0.0) =— {p(t_r/c) + p(t_r/c)} 27zsin® @ (7.12.3)
dre, c r

and this is the flux function for such a dipole, in the sense defined in 1.3. If we define the
dimensionless variables

= =L (7.1.2.4)

we can rewrite (7.1.2.3) as
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F(r,0,1) =Li{ Pt =" +p(t—_”} 27sin” 0 (7.1.2.5)
dre, cT '

r

where now the “dot” above a variable indicates differentiation with respect to the
dimensionless time variable.

7.1.3 An Oscillating Electric Dipole

Let us consider a particular case of the situation above. Suppose the dipole moment
is a constant plus a sinusoidally varying function of time, with period 7. That is,

p(t) = {po + plcos(%)} (7.1.3.1)

in which case (7.1.2.3) becomes

2 . (2n(t—r/c) 2n(t—r/c)
. —7p1s1nf po+plcosf
Fr0.0 =

+ 27sin* 0
e c r

o

(7.1.3.2)
or in terms of our dimensionless variables

F(',0,t") = ;{2—7[[— 2mp, sin(2m(t' — ')+ (p.+p, COS(,zn(t — )))} sin’ 0}
dre, | cT r

(7.1.3.3)

Figure 7.1-1 below shows the field lines for at # = 0 as defined by (7.1.3.3), for two
values of the flux function, -3 and +3.
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Figure 7.1-1: Field lines and flux function of an oscillating electric dipole.

7.1.4 A Rotating Electric Dipole

Let is look at the electric and magnetic fields of a rotating electric dipole which is
oriented perpendicular to its axis of rotation. We have

p(1)=p,[coswt X +sinaor §| (7.1.4.1)
p(t)=wp,[-sinwtX+cos ot §| (7.1.4.2)
p(t)=—0p,[coswt X +sinawr ] (7.1.4.3)

We are going to look at the fields only in the xy plane at z= 0. Thus
(7.1.4.4)

n=cosgX+singy
Using the expressions for p and n above, we easily have that

p-n=p, [coswtX+sinor |- [cosgX+sing §]= p, cos(p—ar) (7.1.4.5)
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p-n=wp,[-sinwX+coswr §]-[cosgX+sing §]| = wp, sin(¢—wr) (7.1.4.6)
pxn=owp, [-sinwtX+coswt §|x[cosgX+sing §|=—-wp, Zcos(p—wr)  (7.1.4.7)

pxn=-w’p, [coswtX+sinor §]x[cospX+sing §|=—a’p, Zsin(p—wr)  (7.1.4.8)

[3f(p-i)—p]= |:3p0 cos(¢p—awr)(cosgX+sing §)— p, (cos wt X +sin ot &)} (7.1.4.9)

[30(p-n)—p] = p,X[3cos(¢—wr)cosg—coswt |+ p,§[3cos(¢— wr)sin g —sin o]
(7.1.4.10)

[30(p-A)-p]= [a)po sin(¢ — wr) (cospX +sing §)— wp, [-sin ot X+ cos ot )7]] (7.1.4.11)

[30(p-0)—p| = wp,x[3sin(¢— wr)cos ¢ +sin ot |+ wp,y [3sin(¢— wr)sin g —cos wx|

(7.1.4.12)
[ x A) x A]=-0’p, 2sin(¢— wt) x| (cospx +sing §)] (7.1.4.13)
[(p x ) x f] =’ p, sin(¢—wr)[singX—cosP §| (7.1.4.14)

So we have for the electric field

p,X[3cos(p—wr)cosg—coswt]|+ p,§[3cos(p— wr)sin g —sin wx|

E(r,t) =
(.0) Az e’

N @p, X [3 sin(¢ — wt) cos ¢ + sin wt ] +op,y [3 sin(¢ — wt) sin ¢ — cos a)t]

dre,cr’
.\ @’ p, sin(p—wt)[singX—cosg ¥]
4r g rc’
(7.14.15)
B(r,))=— s0p, {“’Sin@_“”) A Ui “”")} (7.1.4.16)
4 cr r

7.2 Linear Antenna (S. Olbert and N. Derby)
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7.2.1 Notations, Definitions, Basics

Following common conventions let E, B, A, @, p. and j stand, respectively, for
electric field, magnetic field, vector potential, scalar potential, charge density and electric
current density. Let us also introduce D and H such that

D=¢E H= B (7.2.1.1)
H,
Recall that the speed of light ¢ is related to &, and x4, by
c= !
NEoH,
With these notations Maxwell Equations acquire the compact form
V-D=p, V-B=0 (7.2.1.2)
VxE:—a—B VxH:@+j (7.2.1.3)
ot ot
Let’s define vector and scalar potentials A and ¢ such that
A
E=—-V 7.1.1.4
o ¢ ( )
B=VxA (7.1.1.5)
With the auxiliary condition
¢
V- A+egu,——=0 7.1.1.6
oo ( )
imposed, one can then readily show that Maxwell’s Equations lead to
o’y p
Vg—¢ =—-=< 7.1.1.7
P—ett,—3 : ( )
> o’
VA - L=—pu J. 7.1.1.8
i T Gobly 2 = Ho; ( )

where the subscript i indicates one of the Cartesian components of A or j. To prove the
above, one needs the identity

V(V-A)-Vx(VxA)=V’A (7.1.1.9)
By virtue of equations (7.1.1.2), (7.1.1.3), (7.1.1.4) and (7.1.1.9), one has
JE J°A
—=cV(V-A)- 7.1.1.10
ot V-4) or’ ( )
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In order to find the electric field for a given current system it is mathematically more
expedient to solve first equation (7.1.1.5) for A and then use equation (7.1.1.10) to work
out the expression of E. In fact, the general solution of equation (7.1.1.5) is known to be

,u 3.0 rj(xlatl) i
A= =25t - d.1.11
where
3 _|x—x'
by =1 = (7.1.1.12)

1s the retarded time.
Center-fed Linear Antenna: Vector Potential

Lay a linear antenna of length / along the z-axis with its center at the origin of a Cartesian
coordinate system. Let the charge be fed through center harmonically so that we can put
for the current density in the antenna

Jo=J,=0

. 7.2.1.13
j.= Isin(%kl —k|Z |j5(x')5(y')e"‘” ( )
where @ is the circular frequency and £ is the wave number so that
k=9 (7.2.1.14)

C

We choose the phase of the physical current density so that it is the imaginary part of
(7.2.1.13).

Inserting equation (7.2.1.13) into equation (7.2.1.11) yields

4,=4,=0
/2 _ 7.2.1.15
A, _Ho g J- dz'sin(lkl—klz' |j—exp( za)’tm) ( :
4z 5, 2 |x—x'|

To simplify notation it is convenient to replace time and space variables, ¢ and x, by
corresponding dimensionless quantities, to wit:

a :%kl (7.2.1.16)

wt—t; kx—>x; k' —>x .

With the dimensionless cylindrical coordinates p and ¢ such that

x = pcos(g) y = psin(¢)
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we then have for our geometrical setup

A4 =

o 1{dz' sin(a—|2'|) exp( ity ) (7.2.1.17)
472- iy \/,02 +(Z_Zl)2
Because of the mirror symmetry about the (x'y)-plane, we can convert the integration in

equation (7.2.1.17) to the positive half above this plane, (z'> 0). With proper adjustments
of signs we thus can replace equation (7.2.1.17) by

A, =2 f¢' [ d2' sin(a-2') CXPUR,) | eXpUR.) (7.2.1.18)
A7 ) R R

+

where we have put for short
R.=+p*+(z%2); pr=x"+)’ (7.2.1.19)

Center-fed Linear Antenna: Cylindrical Components of E
We are now ready to work out explicit expressions of £, and £, .

Using equations (7.2.1.18) and (7.2.1.10) and taking advantage of axial symmetry, (Es =
0), we get

iE. O’ A,

Sema - (7.2.1.20)
.E 2

By T4 (7.2.1.21)
@ ozdp

Consider some function K containing in its argument (z + z'); clearly, differentiating with
respect to z can be exchanged with that with respect to z, viz.,

OK(z%2) _ | OK(z%2) (7.2.1.22)
oz )4

With this in mind, one can show that differentiating an integral expression of the form

F(z)= jdz'sin(a ~K(z+z2)+K(z-2")] (7.2.1.23)

leads to the following results
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Z—F = j dz' cos(a—2)K(z+2")-K(z—2')] (7.2.1.24)
z
O°F
F+ = =K(z+a)+K(z—a)-2 cosa K(z) (7.2.1.25)
z

Applying this to equation (7.2.1.20) we find, with some surprise, that the z-component of
E reduces to the elementary form

E —iEe" expli(D, —r)] N exp[i(D_—r)] 2cosa (7.2.1.26)
D, D r
where
E():M' T=t-r, D, =+p’ +(z+a); r=qp’+z° (7.2.1.27)

A’

Unfortunately, the p-component of E is not reducible to an elementary expression.

Carrying out the differentiation in equation (7.2.1.21) first with respect to z, then making
use of relation (7.2.1.24) and the fact that

IR, _p

op R

we find the following integral expression for £,

E, =iEe" pj dz' cos(a - 2')[G(R,) — G(R.)] (7.2.1.28)
where we have put for short
G(&)= %glf)(iaf ~1) (7.2.1.29)

In practical applications we need only the real (or imaginary) parts of equations (7.2.1.26)
and (7.2.1.28). Doing the necessary algebra, we arrive at desired answer

E. = EO(Q1 sint — (O, cos T)+ z'EO(Q1 cos7 + Q, sin r) (7.2.1.30)
E,= —E (Psint + P,cost)—iE, (P, cost — P,sint) (7.2.1.31)
where

P= pjdz' cos(a—z") [g,(R,.,r) - g,(R_,r)] (7.2.1.32)
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with
,(5,7) = Esin(& —r) j cos(&—r)
4
and
P, = p| d cos(a ) [g,(R..r) - (R )
with

F)= Ecos(E—r) 3— sin(§ —r)

2,(S, :

Note in passing that g, (§ , r) = % and g, (§ , r) = —8gé—(§,r) . Finally
r s

_cos(D, —r) N cos(D_-r) ,cosa
D D_ r

+

@)

_sin(D, —r) N sin(D_—r)
D D

+ —

0,

Center-fed Linear Antenna: Asymptotic Expressions

59

(7.2.1.33)

(7.2.1.34)

(7.2.1.35)

(7.2.1.36)

(7.2.1.37)

It is of some interest to work out asymptotic expressions for equations (7.2.1.30) and

(7.2.1.31). We have for

r — o: R, —r=~=z'cosd, D,~=xacosl ;
where
zZ .
cosf =—; sm6’=£.
r r

Retaining only the leading term in powers of (1/7) we find

N 2sin @

r

A

The integral is elementary; integrating by parts one gets

¢ N il ot _ cosd
L dz'cos(a —z")sin(z'cos @) = m[eos(a cos#)—cos a]

Next, we find that

Ioa dz' cos(a—2z") sin(z'cos ) P, =0.
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o z%[cos(acosé’)—cosa]; 0,~0
r
and, therefore,
E,=-E cotd; E =2F, [cos(acosH)—cosa] sint=r) .
r

We can convert these results to spherical coordinates » and 6. The components of E-field
in these coordinates are related to those given in cylindrical coordinates by

E, =E sin0+E, cost
E,=E, cosf—-E_ sinf

so that

cos(acos®) —cosa |sin(t —
Eg——zEu{ (acos0) }M ,
sin @ r >

which agrees with formulas found in the literature (see, e.g., J. D. Jackson, page 402).

7.2.2 Flux Function for Linear Antenna

Recall that one of the Maxwell equations in a current-free region is

”;—EzczvXB or  E=c'Vx[diB (72.2.1)
1

Axial symmetry of the antenna makes B a toroidal vector; hence, according to
equation(1.3.1.4), the flux of the E-field, F, is

F(p,z,t) =27 p|dtB,(p,z,1) (7.2.2.2)
Furthermore, recalling that the B-field is derivable from the vector potential A
B=VxA
and that for a linear antenna
A=41z
we have
B, =—0’)AZ B.=B,=0 (7.2.2.3)
p
where, in terms of reduced (dimensionless) variables defined in (7.2.1.16),
4, =2 fe " [dz'sin(a - ) CXPUR,) , SXpUR) (7.2.2.4)
4z . R, R

Introducing Hertz’s Superpotential Z defined by
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Z(p,z,t) ==[dtA.(p.z,t) = =i A.(p,z,0) (7.2.2.5)

we thus have for the flux of the electric field of the antenna
oz (7.2.2.6)

F=c2np—=
Pé,p

and for the components of the electric field
—_2oF (7.2.2.7)

C
r 2mpck
_ o oF (7.2.2.8)
27pcp

Note that
E-VF=0

which shows that the lines of the E-field are defined by the equation

F(p,z,t) = constant.

7.2.3 Singular Points of E-Field of Linear Antenna

Using cylindrical coordinates and dimensionless variables (p, z) with the antenna along

the z-axis, we have for the z-component of the electric field
(7.2.3.1)

E =Q cost+0,sint

where
T=t—r, r=+p> +2° (7.2.3.2)

0 - cos(D, —r)  cos(D_~r) _,cosa (7.2.3.3)
D, D r
sin(D, —r) sin(D_-r)
_ L) 7234
Q2 DJr D7 ( )
(7.2.3.5)

D, =+ p° +(zia)2

and again a = 277[ (antennczz Zength) . In the equatorial plane of the antenna, (z = 0),
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1 _ cos(D—p) _ cosa

-0,

2 D P (7.2.3.6)
lQ _ sin(D - p)

2772 D

where D =+/p” +a’ . (7.2.3.7)

Note that £, may be re-written as

E. =0’ +0,’(sinScost +cosSsinz) =0 + 0, sin(z +5)  (7.2.3.8)

where o = arctan[%} . (7.2.3.9)

2

In the equatorial plane, z= 0, E  vanishes everywhere, so singular points occur at values

of p for which E; = 0 since bEf = % there. The condition £, = 0 occurs when the phase

P
of E; is a multiple of 7, that is, when 7+ =nx for any integer n. Thus, the locations of
the of the singular points satisfy the equation

t= p—arctan[g]ﬂwz (7.2.3.10)

2

Typical graphs of 7 (for n=0) as a function of p for values of a between 0 and n/2 are
shown in Figure 7.2-1. Note that in general, ¢ has one maximum and one minimum. Since

t depends only on the ratio of Q; to Oy, the O;’s can be replaced by Q. = UQ,, where U is

. D
any non-zero function of p. We choose U = 'DT so that

0, = D-p)-D
% pcf)s( p)=Deosa (7.2.3.11)
0, =psm(D—p)

The resonant antenna (a=/2) deserves special attention. Since cos a = 0, we have
t=p-— arctan(%j +nmr=p— arctan(cot(D - p))+ nwr=p-— [% - (D - p)} +nrw
2

(7.2.3.12)
so that
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2
T , (7 s
t=D——+nr= +|—| ——+nrx 7.2.3.13
5 p (J > ( )

or inverting this to get p as a function of ¢,
p=At{+7) (7.2.3.14)

where ¢ =t—nrx . So, at t = 0, the singular points are at p= 0, \/572' , etc.

1.8

1.6 1 p - arctan(Q,/Q5)

1.4 A

1.2 a=.001

0.8 4

0.6

0.4

0.2

Figure 7.2-1 tvs p(a=.001, n/4, n /2)

Computing the phase velocity

Consider some constant value of the phase (¢ +&). Then,

i(r+5)=o (7.2.3.15)
dp
yields the expression for the phase velocity. In detail, we have
t=p— arctan(%) (7.2.3.16)
2
and its total derivative with respect to ¢:
l=p l—iarctan(gJ (7.2.3.17)
dp 0,

or
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1
120,00
le"'Qz2

(7.2.3.18)

vphase = p =

For the special case of the resonant antenna (a=7/2) we can resort to the formula
p =+Jt(t + ) which yields

v phase = /0

1+[21j . (7.2.3.19)
P

Note that in general when
W(0.,0,)=0,0, -00, = le + sz (7.2.3.20)

the phase velocity v , ~— o (or dt/dp = 0). This happens at a well-defined place p = p.

phase
and time ¢ = ¢.. In Figure 7.2-1, the graph of ¢ reaches its minimum value #. at p = p..

The sign of v,4s can be used to define two regions, an outer region (o > p.) where Vyjase
is positive and an inner region (p < p.) where Vi 18 negative (so that points of constant
phase move toward the antenna). The topology of the electric field near the singular
points in the inner region (p < p.) is different from the outside region (p > p.). By
analyzing the “slope” equation of a singular point, viz.

E, _dz _ Qcost+Qysinz 0 (7.2.321)

E, dp —RBcost+Psint 0

one can show with the help of L’Hospital’s rule that the singular points in the inner
region are X-points and those in the outer region are O-points.

General Discussion of Singular Points

The field line equation for a two-variable case is

dz _E.(p.z) (7.2.3.22)

dp E,(p.z)
Assume that there are points S in the (p,z) ‘plane’ where both E. and E,, vanish at the
same time making equation (7.2.3.22) an indeterminate form. To ascertain the shape of

the field lines near these singular points, expand E. and £, in power series in dp and dz

about a given singular point S = (ps,zs ) The increments
dp=p-p,
dz=z-z,

(7.2.3.23)

are taken to be of the first order. Thus,
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(ZE] dp+(aaEzj dz +...
(ﬂl _\ P s ? /s (7.2.3.24)
P s (aE”j dp+( E’Jj dz +...
P s % )
so to first order
J E_, + EZ’Z(ZZJ
(d—zj _ j s (7.2.3.25)
0 /4
s Epp Ep’z(dpj
S
where, for brevity,
£ =% (7.2.3.26)
" ox,
J

Solving (7.2.3.25) for z' = [j—zj , we get

N

E Z'2+(Ep,p—Ez,z)Z'—E =0 (7.2.3.27)

p.z z,p

or

2
E,,-E E, -E
Z,ZEI o e \/[ e j +E,E., (7.2.3.28)

Assuming that all the derivatives of E are well-behaved, then, if the discriminant

E pp E 2,z ’
A= S +E, E_, (7.2.3.29)
is positive, the singular point S is called an X-point since the field lines appear to cross
each other in the limit of small dp and dz; otherwise it is called an O-point since the lines
form infinitesimal loops (or possibly spirals) encircling the point S.

Singular Points of the Linear Antenna

The above discussion is quite general for a two-variable (two-‘dimensional’) topology.
Turning to the specific case of a linear antenna, we immediately realize that there are an
infinite series of singular points, both along the z-axis (the polar axis of the antenna) and
along the p-axis (the equatorial plane of the antenna).
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Along the Polar (z) Axis of the Antenna

Inspection of the expression for £, shows that £, is an odd function in both p and z, so
that we may put

E,=pz ¥(p,z.t) (7.2.3.30)

where ¥is even in both p and z and is well-behaved everywhere outside the antenna.
More explicitly, we have

¥(p,z,t)="¥,(p,z)cost + ¥,(p,z)sint (7.2.3.31)
Moreover, inspection of £, shows that it is an even function of both p and z
E =0/(p,z)cost+Q,(p,z)sint (7.2.3.32)

Now, along the z-axis, E , =0 for p = 0. Thus, wherever E.=0, that is, at all values of z
for which

tan(t—|z|)=% (7.2.3.33)

there is a singular point.

Examine (7.2.3.28) near such a singular point on the z-axis. That is, let p =& where ¢ is
assumed to be of second order so that £ <<dp. Since E, is even in p, E. , goes to zero as
p goes to zero. Furthermore,

E, =¢¥(0,z,1) (7.2.3.34)

sothat £ _E_  inequation (7.2.3.29) is of second order compared to

Pz z,p
2
E -E
"> E(%J (7.2.3.35)

provided 7 is finite and well-behaved as p = 0. This is so for the linear antenna.
Thus, equation (7.2.3.29) reduces to

R
z

= 7.2.3.36
£¥(0,2,1) ( )

which implies that in the limit £ = 0, z' = 0 or . In other words, the singular points

along the z-axis are X-points with two separatrix lines crossing at 90°, one line horizontal
and the other vertical.

Along the Equatorial Plane (z = 0)
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For finite values of p,as z= 0, £, = 0 so, whenever E; = 0, there is a singular point.

This will happen whenever

tan(f — p):% (7.2.3.37)

Now, for z=0, E by =0 and E, . = 0 (because E; is even in z). Therefore, equation
(7.2.3.28) reduces to
E

2=+ |Zz2 (7.2.3.38)
[ Ep’z Jzéo

It remains to work out in detail the two derivatives at z = 0.

Using equation (7.2.3.32) we have for constant #:

E. = HQI' _o, QJ cos 7+ (Ql or_ Qz'] sin z‘} (7.2.3.39)
o %
with Ql.’ = [%] .
ap z=0
Since aa_r =1 and, by virtue of equation (7.2.3.37),
0
COST :L SinN7T = ——— (7.2.3.40)

-9,
Joi +0; Jol+o

equation (7.2.3.39) becomes

! !
X

00, 00, [7 2
Joivo . (7.2.3.41)
VO +0)

Numerical calculations show that for small p, £

EZ

.., 1s negative and becomes positive for

p > p., where p. is determined from the condition £, ;= 0. Moreover, one finds that £ .

is negative for all p < p. and beyond. Thus, equation (7.2.3.41) implies that for all
p < p., the singular points in the equatorial plane of the antenna are of the X-type and
become O-points for p > p..

Figure 7.2-2 shows these two classes of singular points for the resonant antenna case.
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Figure 7.2-2: Singular points for the resonant antenna.
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8 Appendices
8.1 What is new in Version 1.1 compared to Version 1.0?

We have added an extensive discussion of the mathematics of the linear antenna,
see Section 7.2.

8.2 Time Evolution of Field Lines Using Flux Functions

This appendix extends considerations in 1.3.2 above. We use spherical
coordinates here, instead of cylindrical coordinates as in the main text, with no loss of
generality. Suppose that we have a scalar function A(7,@,7) such that the components of
the magnetic field are given at all times ¢ by

B(r,0,t) =V x(A(r,0,1)d) (9.2.1)

or

1 2. _ 10
Br(r,ﬁ)—m[smHA(r,@)]anng(r,@)— mr[rA(r,e)] (9.2.2)

If we define the flux function F'(7,8,t) = 27 rsin @ A(r,0,t) (cf. 1.3.1.4), then

i% =r’sin@B,(r,0,t) iw =-rsin@B,(r,0,t) (9.2.3)

We want to determine the time evolution of field lines in this case. That is, how does one
make the correspondence between a field line at one time and the "same" field line at a
different time?

First of all, suppose that the curve R(6,7,) at time 7 satisfies

F(R(0,t,),0,t,)) = F,. Then we can show that R(0,?,) is a field line at that time, as

follows. If we look at the variation in the flux function as we vary the spatial values at a
given time, we have

F o
F(r+or,0+060,t))=F, +—or+—050 2.
(r+or 0) 2Tt (9.2.4)

If R(0,t,) is such that it exhibits constant flux levels at time 7, along its length, we must
have that

F F
—O0R+—00=0 9.2.5
or o0 ( )
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but this is simply

r

r50  rdd & B,

(9.2.6)

This is the equation defining a field line, so that atz, R(6,7,) is a field line.

Now, let that field line evolve in time in the manner we have defined in 1.3.2. We
then assert that at time ¢ this "same" field line is given by R(6,t), where R(8,t) satisfies

the equation F(R(6,t),6,t) = F, . That is, the evolution of the field line in time can be

traced by solving F'(R(6,1),0,t) = F, , where the same constant F, characterizes the
"same" field line at all times ¢.

To show this, we first review how we define the motion of field lines. For
magnetic field lines, we follow the evolution of a field line by following the motion of a
low energy particle gyrating about the field line as time progresses. Physically, we trace
our field lines by tracing the motion of particles attached to the field lines. We know that
this motion is given by the ExB drift. That is, low energy particles of either sign will

move in a time-changing magnetic field at a velocity given by v=ExB/B">.

To calculate this drift velocity, we need E. How do we calculate E in this
situation? Faraday's Law and (9.2.1) tell us that

JB OA ~
VxE=—""=Vx ———
> { P ¢j (9.2.7)
so that we have
OA ~
E=—"
> ¢ (9.2.8)

and therefore, using (9.2.8) in v=ExB/B*, we have

oA, |iB,+08,| o4|-B,+08,]

V= 0x = 9.2.9
ot 82+B}] ot |B +B)] ©-29)
or, using (9.2.3)
1 1 F A1 1
. f—Z i
oal-iB,+08] o4 | 27rsin0a 21 7 sin0 o
V= r = (9.2.10)

oulBr+Bl] o [1 ! o”F)Z 11y
27 1’ sin@ 56 27 rsin@ or
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\
Now we know what our drift velocity is in terms of the flux function. We can thus define
the way a given point (x,y) on a field line “drifts” or evolves in time. Let or be the
distance a point (x,y) on a given field line moves in time 6¢. Then we want (using
F(r,0,t)=2x rsin0A(r,0,t))

O | el
OF {d” r 30

SEERE)

Note that or-B is zero, meaning that a field line moves perpendicular to itself in time.
This is not a problem, since there is no physical meaning to a field line moving parallel to
itself, so that we may take any parallel motion to be zero.

. OF Alé’F}

or = vot =— ot (9.2.11)

Now, we want to show that as we follow a field line in time using (9.2.11), then
that field line always has the same value of the flux function F'(R(6,1),0,t). Let F be

the value of F at (r,0,t). Then at (r+0r,60 +86,t+ t), we have

F F F
F(r+or,0+00,t+6t)=F +—0r+—00 +—ot 2.
(r+or ) 5 4 P P (9.2.12)

which means that for those points (r +dr,0 +00,t + ot) that preserve Fy,

F . F . aF
—O0r+—00+—0ot=0 2.1
a’ "% " a (9.2.13)

With no loss of generality, we can assume that our displacement Or = 67 T+ ro6 0 is
perpendicular to the field (see above), which means that

IR Y )

16r B,  2xmindd _ 45

s e T (9.2.14)
27 sin0d0 A0

where we have used (9.2.3). Now, (9.2.13) and (9.2.14) can be considered as two
equations for the two unknowns Jr and 66. Solving for these gives

OF 1 0F
| Lt
OF | & roo

ey [Wj2+l (ﬁFJZ (9.2.15)
a) oo

S5t =0rt+ ro00=— 5t
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But this equation, which preserves the value of F as the field line evolves in time, is the

same as equation (9.2.11) above, which describes the ExB drift of the field line.
Therefore, the ExB drift of the field line points also conserves the value of the flux
function, as was to be demonstrated.
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