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1 Fields and their Depiction
1.1 Learning objectives

The learning objectives for this section are first to get an overview of
electromagnetism and how it changed the way we view the world. | then discuss the
way | present the material in this course, and how it differs from the traditional
treatments. | will tell you why | choose to teach topics in this order, and why I think this
organization will help you get a deeper feel for electromagnetic theory, rather than you
becoming lost in the mathematics.

1.2 Maxwell’s electromagnetism as a fundamental advance

Classical electromagnetic field theory emerged in more or less complete form in
1873 in James Clerk Maxwell’s A Treatise on Electricity and Magnetism. Maxwell’s
treatise had an impact for electromagnetism similar to that of Newton’s Principia for
classical mechanics. It not only provided the mathematical tools for the investigation of
electromagnetic theory, but it also altered the basic intellectual framework of physics, in
that it finally displaced action at a distance and substituted for it the concept of fields.

What is action at a distance? It is a world view in which the interaction between
two material objects requires no mechanism other than the objects themselves and the
empty space between them. That is, two objects exert a force on each other simply
because they are present. Any mutual force between them (for example, gravitational
attraction or electric repulsion) is instantaneously transmitted from one object to the other
through empty space. There is no need to take into account any method or agent of
transmission of that force, or any finite speed for the propagation of that agent of
transmission. This is known as action at a distance because objects exert forces on one
another (action) with nothing but empty space (distance) between them. No other agent
or mechanism is needed.

Many natural philosophers, including Newton (1693)*, criticized the action at a
distance model because in our everyday experience, forces are exerted by one object on
another only when the objects are in direct contact. In the field theory view, this is
always true in some sense. That is, objects that are not in direct contact (objects
separated by apparently empty space) exert a force on one another through the presence
of an intervening medium or mechanism existing in the space between the objects. The
force between the two objects is transmitted by direct contact from the first object to an
intervening mechanism immediately surrounding that object, and then from one element
of space to a neighboring element, in a continuous manner, until it is transmitted to the

L eThat Gravity should be innate, inherent and essential to Matter, so that one body may act upon another at
a Distance thro” a Vacuum, without the Mediation of anything else, by and through which their Action and
Force may be conveyed from one to another, is to me so great an Absurdity, that | believe no Man who has
in philosophical Matters a competent Faculty of thinking, can ever fall into it.”
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region of space contiguous to the second object, and thus ultimately to the second object
itself.

Thus, although the two objects are not in direct contact with one another, they are
in direct contact with a medium or mechanism that exists between them. The force
between the objects is transmitted (at a finite speed) by stresses induced in the
intervening space by the presence of the objects. The field theory view in classical
electromagnetism thus avoids the concept of action at a distance and replaces it by the
concept of action by continuous contact. The contact is provided by a stress, or field,
induced in the space between the objects by their presence.

This is the essence of field theory, and is the foundation of all modern approaches
to understanding the world around us. Field theory has of course evolved far beyond
these beginnings. In the modern view, every aspect of reality is due to quantized fields:

In its mature form, the idea of quantum field theory is that quantum fields are the
basic ingredients of the universe, and the particles are just bundles of energy and
momentum of the fields.

Weinberg, 1999

Our task here is to understand electromagnetism, before quantization, with emphasis on
the energy and momentum carried by fields. This is of interest in itself, and will also
give us insight, by analogy, into aspects of “matter fields”, and how they can carry energy
and momentum in their quantized, particle-like realizations.

1.3  Why this course is different
1.3.1 The profound parts of E&M first

The standard way to approach this subject is to present the various topics in
electromagnetism in the historical order in which they were developed—e.g.
electrostatics first, then magnetostatics, then Faraday’s Law, and finally the displacement
current and radiation, followed by special relativity and the manifestly covariant form of
Maxwell’s equations. Although there is much to recommend this approach, and perhaps
it is the best one to follow in a course that spans two or more semesters, | do not follow it
here.

The reasons are as follows. At MIT, Electromagnetism Il, 8.07, is a one term
course on a semester system, and thus the course is approximately 12 weeks or 37 one
hour classes long. | have taught this course many times at MIT, and invariably with the
traditional organization | get to the most interesting and profound material near the end of
that 12 weeks , when the students (and myself) are exhausted. In contrast, | traditionally
have spent a lot of time at the beginning on material which is mathematically difficult but
not profound, that is electrostatics and magnetostatics. | count the most profound aspects
of classical electromagnetism to be as follows:
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The existence of fields which carry energy and momentum

How these fields mediate the interactions of material objects, especially the fact
that the shape of the fields is predictive of the stresses they transmit.

The nature of light and of the radiation processes by which it is created.

Maxwell’s equations contain the way that space and time transform.

In this course | propose to address the above, more profound, aspects of
electromagnetism first. | begin with general solution for the electromagnetic fields given
known sources of charge and current density. 1 will apply these solutions to many
different cases, the first of which will be to consider in a relatively brief treatment the
static solutions far from sources which do not vary in time. Then | will immediately
move on to find the fields far from a spatially localized set of sources which slowly vary
in time. Then I discuss the conservation of energy and momentum at length. 1 then
address special relativity. At the end of the course | return to statics and also consider the
effects of the presence of material media.

1.3.2 The easy E&M and the hard E&M

Another reason that | depart from the traditional sequence is that there is an
“easy” electromagnetism and a “hard” electromagnetism. The first occurs when the
behavior of the sources of electromagnetic fields, that is, charges and currents, is given,
and that behavior cannot be influenced by the fields that they produce. The second
occurs when the behavior of the sources of the fields can be affected by the fields that
they produce.

It is in this second situation that electromagnetism becomes difficult, and in many
situations intractable--when the fields that are produced by sources can affect the sources
that produce them. When we are dealing with linear dielectric or magnetic material
media, this situation obtains, but because of the linearity there are straightforward ways
to deal with it. But in other contexts there is no good analytic approach. For example, in
the traditional approach to the subject the really hard E&M appears almost immediately,
in boundary value problems in electrostatics, and much effort is expended in
investigating the details of solutions to these difficult kinds of problems, which is in
parallel with the historical development of the field.

However, it turns out that looking at the easy part of E&M first is more than
enough to show you the nature of fields, the energy and momentum that they carry, the
nature of radiation, and the way in which space and time transform. For that reason, I
prefer to separate the treatment of electromagnetism into the easy part and the hard part,
doing the easy part first. This allows me to spend more time addressing the profound
issues, leaving the less profound (and frequently more mathematically difficult) issues
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until later. The question of the effects of material media can also be grouped with the
“easy” electromagnetism, but there are a number of (not so profound) complexities in
this, and | therefore leave this subject to the end of my treatment.

1.3.3 Energy and momentum in fields

One of the many amazing things about classical electromagnetic fields is that they
carry energy, momentum, and angular momentum just as “ordinary matter” does, and
there is a constant interchange of these quantities between their mechanical forms and
their electromagnetic field forms. Although all texts in electromagnetism make this
point, and derive the appropriate conservation laws, actual examples showing the
interchange are rare. In this text | put a lot of emphasis on the processes by which energy
and momentum are created in fields and the manner in which that energy and momentum
flows around the system, to and from the fields and particles, thereby mediating the
interaction of the particles.

For example, consider the electromagnetism of the head-on collision of two
charged particles of equal mass and charge. In this process, energy is stored in the field
and then retrieved, electromagnetic momentum flux is created at the location of one
charge and momentum flows via the electromagnetic field to the other charge, in a
dazzling array of interaction between matter and fields. But this problem is almost never
discussed in these terms. 1 will try in all circumstances in this text to describe how the
field mediates the interaction of material objects by taking up energy and momentum
from them and by transferring this energy and momentum from one particle to the other.
This is a different emphasis than the traditional approach, and one which illustrates more
clearly the essence and the importance of fields.

1.3.4 Animations and visualizations

In order therefore to appreciate the requirements of the science [of
electromagnetism], the student must make himself familiar with a considerable
body of most intricate mathematics, the mere retention of which in the memory
materially interferes with further progress.

James Clerk Maxwell (1855)

I will spend some time on vector fields and examples of vector fields, and the
methods we will use to visualize these fields in the course. The mathematics | delve into
is fierce, and as is well known, the level of the mathematics obscures the physical reality
that the equations represent. The quote from Maxwell above is from one of his first
papers on the subject. 1 try to offset the tyranny of the mathematics by using many visual
depictions of the electromagnetic field, both stills and movies, and also interactive
visualizations, as appropriate to the topic at hand.
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1.4 Reference texts

There are many excellent electromagnetism texts available, the most popular being
the text by Griffiths (1999), which is the course textbook. I will also refer to a number of
other classic texts in this area, most notably the various editions of Jackson (1975), but
also to texts by Panofsky and Phillips (1962), Hertz (1893), Jefimenko (1989) and others.
If you are interested in the history of electromagnetism, the book | would recommend if
you read only one is The Maxwellians by Hunt (2005).

1.5 Representations of vector fields

1.5.1 The vector field representation of a vector field

A field is a function that has a value at every point in space. A scalar field is a
field for which there is a single number associated with every point in space. A vector
field is a field in which there is a vector associated with every point in space—that is,
three numbers instead of only the single number for the scalar field. An example of a
vector field is the velocity of the Earth’s atmosphere, that is, the wind velocity.

Figure 1-1-1 is an example of a “vector field” representation of a field. We show
the charges that would produce this field if it were an electric field due to two point
charges, one positive (the orange charge) and one negative (the blue charge). We will
always use this color scheme to represent positive and negative charges.

In the vector field representation, we put arrows representing the field direction
on a rectangular grid. The direction of the arrow at a given location represents the
direction of the vector field at that point. In many cases, we also make the length of the
vector proportional to the magnitude of the vector field at that point. But we also may
show only the direction with the vectors (that is make all vectors the same length), and
color-code the arrows according to the magnitude of the vector. Or we may not give any
information about the magnitude of the field at all, but just use the arrows on the grid to
indicate the direction of the field at that point.
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Figure 1-1-1: A vector representation of the field of two point charges.

Figure 1-1-1 is an example of the latter situation. That is, we use the arrows on the
vector field grid to simply indicate the direction of the field, with no indication of the
magnitude of the field, either by the length of the arrows or their color. Note that the
arrows point away from the positive charge (the positive charge is a “source” for electric
field) and towards the negative charge (the negative charge is a “sink” for electric field).
In this case the magnitude of the positive charge is five times the magnitude of the
negative charge.

1.5.2 The field line representation of a vector field

There are other ways to represent a vector field. One of the most common is to
draw field lines. To draw a field line, start out at any point in space and move a very
short distance in the direction of the local vector field, drawing a line as you do so. After
that short distance, stop, find the new direction of the local vector field at the point where
you stopped, and begin moving again in that new direction. Continue this process
indefinitely. Thereby you construct a line in space that is everywhere tangent to the local
vector field. If you do this for different starting points, you can draw a set of field lines
that give a good representation of the properties of the vector field. Figure 1-1-2 below
is an example of a field line representation for the same two charges we used in Figure
1-1-1.
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o b

Figure 1-1-2: A vector field and field line representation of the same field.

The mathematics of constructing field lines follows directly from the description
above. Let us parameterize a line in space by the arc length along the line, s, where the

line goes through a point in space r, = (xo, Y, zo) and we measure arc length along the

field line from the point r,. A field line going through r, of the vector field F is a line in
space r(s) = (x(s), y(s), z(s)) that satisfies at every point along the line the equations in
Cartesian coordinates

ix(s) _F, dyes) _F,

dz(s) :i (15.1)
ds F ds F ds F

In some situations we can solve (1.5.1) for the equation describing the field lines
analytically, but we can always generate them numerically using this definition.

1.5.3 Line integral convolution representations

The final representation of vector fields is the line integral convolution
representation (LIC). The advantage of this representation lies in its spatial resolution.
The use of field lines has the disadvantage that small scale structure in the field can be
missed depending on the choice for the spatial distribution of the field lines. The vector
field grid representation has a similar disadvantage in that the associated icons limit the
spatial resolution because of the size of the icons and because of the spacing between
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icons needed for clarity. These two factors limit the usefulness of the vector field
representation in showing small scale structure in the field.

In contrast, the LIC method of Cabral and Leedom (1993) avoids both of these
problems by the use of a texture pattern to indicate the spatial structure of the field at a
resolution close to that of the display. Figure is a LIC representation of the electric field
for the same charges as in the earlier Figures. The local field direction is in the direction
in which the texture pattern in this figure is correlated. The variation in color over the
figure has no physical meaning; the color is used simply to give visual information about
the local field direction. This LIC representation gives by far the most information about
the spatial structure of the field. By its nature it cannot indicate the direction of the field:
the texture pattern indicates either the field direction or the direction 180 degrees from
the field direction.

Figure 1-3: A LIC representation of the same field as in earlier figures

The complexity of vector field topologies can be amazing. For example, in
Figure 1-4 we show the LIC representation of the vector field

F(r) =sin(y*)X+cos(x’)y (15.2)
Although this is a simple analytic form for a vector field, the visual representation of the

field is complex. This vector field has zero curl, as is apparent from looking at the
representation below.
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Figure 1-4: A LIC representation of a vector field with no sources

19
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2 Conservations Laws for Scalar and Vector Fields
2.1 Learning objectives

The learning objectives for this handout are to get a feel for the mathematics of
vector fields, using fluid flow as an example. We also introduce various nomenclatures
that were first introduced in the study of fluids (e.qg., flux, sources, sinks) and
subsequently taken over to electromagnetism. We learn here what mathematical form
we expect to see for conservation of both scalar (e.g. mass) and vector (e.g. momentum)
quantities. We then introduce the properties of an important “improper” function, the
Heaviside-Dirac delta function. Finally, we discuss briefly the topic of complete sets of
functions.

2.2 Conservation laws for scalar quantites in integral and differential form
2.2.1 Density and creation rate of a conserved scalar quantity

Much of the terminology we use in electromagnetism comes from the theory of
fluids, and fluid flow represents a tangible example of a vector field which is easily
visualized. We thus briefly review the properties of fluid flow. We particularly focus on
conservations laws, since we will see many such laws in electromagnetism, and
understanding the meaning of these laws is a central part of understanding the physics.

Consider conservations laws for scalar quantities first. Suppose the mass per unit
volume of the fluid at (r,t) is given by p, .. (r,t) and the velocity of a fluid element at

(r,t) is given by v(r,t). Suppose also that mass is being created at (r,t) at a rate given

by s,.(r,t) (units of s are mass per unit volume per unit time). Consider an arbitrary

closed surface S containing a volume V, as shown in Error! Reference source not
found.. We assume that the surface and the enclosed volume are fixed in space and time
(e.g. the surface of the volume is not moving). At time t, the amount of mass inside of
the closed surface is given by the volume integral of the mass density, and the rate at
which matter is being created inside the volume is given by the volume integral of the
mass creation rate per unit volume. On physical grounds, it is obvious that the time rate
of change of the amount of matter inside of the volume is given by the rate at which it is
being created inside the volume minus the rate at which matter is flowing out through the
stationary surface of the volume. That is,

%Ipmass (r,t)d’x= Ismass (r,t)d°x—rate of mass flow out of volume (2.2.1)
\

\
2.2.2 The flux and flux density of a conserved scalar quantity

What is the rate at which mass is flowing out of the volume? Consider a
infinitesimal surface element on the surface hda, where nda is the local normal to the
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surface, defined so that it points away from the volume of interest (in this case outward).
The rate at which mass is flowing through this surface element at time tis p, . v-nda.

To see this, imagine that you are an observer sitting on da and you measure the total
amount of matter which flows across da in a time dt. This amount is the volume of the

matter that will cross da in time dt, [v -nda dt] , times the mass density, that is,
Prass | V-Adadt]. Note that the dot product of v and f in this expression is very

important. If there is no component of the flow velocity along n, there is no matter flow
across da.

To find the rate of matter flow we simply divide this amount of matter in time dt
by the infinitesimal time dt, giving us p, . v-nda. If we want the total rate at which

mass if flowing through the entire surface S we integrate this quantity over the entire
surface. Then (2.2.1) becomes

%meass (r,t)d3x = Ismms (r,t)d3X— 's“pmassv] -Ada (222)

\

”~

N

da

S

Figure 2-1: A closed surface S with enclosed volume V

We call I [ Pass V]- N1 da the flux (flow) of matter through the surface S. This quantity is a
S

scalar. A point of frequent confusion is that the vector quantity p, ..V is sometimes also
called the flux. In these notes we will always call quantities like p, v the flux density

(a vector), and reserve the use of flux to mean the scalar we get from integrating the flux
density over a specific surface.
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The more standard way of writing (2.2.2) is to bring the flux to the left and side,
that is,

%jpmass (r,t)d3x+j[pmassv]-ﬁ da= _[smass (r,t)d*x (2.2.3)
\ S \

2.2.3 Gauss’s Theorem and the differential form

We now want to write (2.2.3) in differential form. To do this we invoke one of
the fundamental theorems of vector calculus, the divergence theorem. This theorem
states that if F is a reasonably behaved vector function, then the surface integral of F over
a closed surface is related to the volume integral over the volume that surface encloses of
the divergence of F

jF-ﬁda:jv-Fdsx (2.2.4)
S \%

where in Cartesian coordinates

oF,  oF, OF
=—*+—L+
oXx oy oz

V-F (2.2.5)

If we use (2.2.5) in (2.2.3), and use the fact that our surface S is arbitrary, we see that we
must have for the conservation of mass in differential form the equation

P 9 0] = (226)

2.3 Conservation laws for vector quantities in integral and differential form

Above we were talking about the conservation of a scalar quantity, e.g. the scalar
field p,.(r,t). However many of our conserved quantities in electromagnetism are

vector quantities, for example electromagnetic momentum. To see how we handle
conservation laws involving vector quantities, let us first consider the fluid context,
specifically the conservation of the momentum density of the fluid. The momentum
density of the fluid is a vector, and is given by the mass density of the fluid times the
vector velocity of the fluid element, that is p, v . If the momentum of fluid is a

conserved quantity, we should have a statement similar to (2.2.1), that is

d .
p I PrasV X = I[creatlon rate of momentum|] d°x —rate of momentum flow out of volume
\ \

(2.3.1)
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Note now that our creation rate of momentum is a vector quantity, as is the rate at which
momentum flows out of the volume through da. In analogy with the mass flowing out of

the volume through nda, the momentum flowing out of the volume as carried by the
flow is [pp.V]V-fida. Thatis, we take the density of momentum, [ p,...v], multiply it

by the volume of the fluid which flows across da in time dt, v-Adadt, and divide by dt

to get the rate. Thus (2.3.1) becomes (bringing the flux of momentum to the left hand
side),

%Ipmvde - I[pmassv] v-hda = I[creation rate of momentum] d°x (2.3.2)
\ S \

So the quantity “PmassV] v-nda is the flux of momentum through the surface S, and the
S

flux density of momentum is a second rank tensor, p,..vVV. This makes sense because
the flux of a scalar quantity like mass is a vector, e.9. p,..V , and therefore the flux of a

vector quantity like momentum must be more complicated than a vector, just as a vector
is a more complicated object than a scalar. We only mention second rank tensors in
passing here. Later we will consider them in detail.

In differential form, the conservation for momentum is written as

%[pmassv] +V [ PassV V] = [ vOlume creation rate of momentum ]| (2.3.3)

3 The Dirac delta function and complete othorgonal sets of fucntions
3.1 Basic definition
One of the functions we will find indispensable in proving various vector theorems

in electromagnetism is the Dirac? delta function. In one dimension, the delta function is
defined by

o(x)=0 x=0 (3.1.1)
T o(x)dx=1 (3.1.2)

From (3.1.2) we see that the one-dimensional delta function must have the dimensions of
one over the dimensions of its argument. To get an intuitive feel for this “improper”

2 Although this function is usually attributed to Dirac, it was first introduced by Heaviside, and is a good
example of the zeroth theorem of the history of science: a discovery named after someone often did not
originate with that person. See Jackson (2008).
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function, it is probably best to think of it as the limit of a sequence of proper functions.
There are many sequences which in a limit become delta functions, for example the
function

H, (X) _ L e (3.1.3)
av

It is easy to show that H, (x) satisfies (3.1.1) and (3.1.2) in the limit that a goes to zero.

Our intuitive picture of a delta function is thus a function which is highly peaked around
x = 0, with unit area under the function. It is then plausible that if we take a well-
behaved continuous function f (x) , we have

T S(x) f (x)dx = f(0) (3.1.4)

In higher dimensions we define the delta function as a product of one-dimensional delta
functions, e.g.

6°(r)=48(x) 6(y) 5(z) (3.1.5)

with
5*(r)=0  |r[=0 (3.1.6)

and
j 5%(r)d®x =1 (3.1.7)

all space
One of the relations that we will find most useful in this course is the following:

1,1
5 (r)=——-V?=
(r) Pkl (3.1.8)

To prove this relation, we first note that it is easy to show that v? 1_ 0 forr=0. To
r

see that (3.1.7) holds, we use the divergence theorem (2.2.4)

j VZ%d3x: j v-{vﬂd&: j {vﬂ-ﬁdaz

all space all space surface sphere

[ g ]

surface sphere surface sphere

(3.1.9)
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3.2 Useful relations

From the definitions above, there are a number of useful relations for the delta function
which we list here

T S(x—a) f(x)dx = f(a) (3.2.1)

T&’(x—a)f(x)dx:—f’(a) (3.2.2)

zf(x)é[g(x)]dx=% where g(a)=0 (3.2.3)
2 1 3 r

v |r_r¢|:_4775 (r-r) (3.2.4)

3.3 Complete sets of orthorgonal functions on a finite interval

A denumerably infinite set of functions{ f, (x)}|(:_0 of the interval [-1,1] is orthorgonal if
for any nand m,

[ f,(0f, (x)dx=C6,, (3.3.1)

1 n

Here djn is the Kronecker delta (gjn is 1 if j = n and O otherwise). The set is complete is
for any “nice” function g(x) defined on [-1,1], we can expand g(x) as

g(x)zzan fn(x) (3.3.2)

where {a, } :;O

is a set of constants. We can use the orthogonality property of our

complete set of functions by first multiplying (3.3.2) by f,, ()

«Q
—~~
>
~—
—h
3
—~
>
~
I
[
QD
=1
—n
=1
—~
>
~
—
3
—~
>
~

(3.3.3)

n=0

and then integrating (3.3.3) from -1 to 1, yielding
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1 x 1 o0

[0 £, (x)dx= Z(;a [ 1,00 £ (x)dx= ;ancnénm (3.3.4)
I thus find that my constants are given by
1 ¢

a, =C—mf_19 (x) £ (x)dx (3.3.5)

If for every m, C_, =1, then my set of functions is said to be orthonormal.

3.4 Representation of a delta function in terms of a complete set of functions

Suppose my function ¢ (x) is a delta function; that is, suppose

g(x)=5(x-x,) (3.4.1)
Then from (3.3.5) | have
am:—J’_ll§(x—xo)fm(x)dx:cifm(xo) (3.4.2)
and if I insert this into (3.3.2) | find that
5(x—x0):iw (3.4.3)
n=0 n

Thus | have a representation of a one dimensional delta function for every complete set of
functions, and there are literally an infinite number of complete sets of function on any
finite interval.

4 Conservation of energy and momentum in electromagnetism
4.1 Learning objectives
In Section 2 above | talked about the general form of conservation laws for scalar
and vector quantities. | now turn to the question of the energy flow and momentum flow

in electromagnetism. | introduce the Poynting flux vector and the Maxwell Stress
Tensor.
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4.2  Maxwell’s Equations

Electric and magnetic fields are produced by charges and currents, and Maxwell’s
equations tell us how the fields are produced by the charge density p and current

density J. Maxwell’s equations relating the fields to their sources are

v.E=L (4.2.1)

80
vxE=_8 (4.2.2)

ot
VxB=uJd+ s, %E (4.2.3)
V-B=0 (4.2.4)

4.3 Conservation of charge

If | take the divergence of (4.2.3) and use (4.2.1), | obtain the differential equation for
the conservation of charge (that is, Maxwell’s equations contain charge conservation)

%P.v.3=0 (4.3.1)
ot

If I consider (4.3.1) in light of our treatment of conservation laws for a scalar quantity in
Section 2.2 above, | see that J is the flux density of charge and that the volume creation
rate for charge is zero, that is, electric charge is neither created nor destroyed.

4.4 Conservation of energy

If I use a vector identity in the first step below, and then use Maxwell’s equations
(4.2.2) and (4.2.3) in the second step, | easily have

V-(EXBJ:i(B-VxE—E-VxB):i(B-(—%j—E-(,quhuogO%D
Ho ) Ho Ho 4.4.1)

_1 BB 5 EE
2u, ot 2 ot

This can be re-written as

2
oL e B v BB g (4.4.2)
x| 2% "o "
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From the general form of the conservations laws | considered above, | see that | can
2
interpret %gOE2 +ZB_ as the energy density of the electromagnetic field (joules per
Hy
. ExB . . .
cubic meter), as the flux density of electromagnetic energy (joules per square
Hy
meter per second), and —E-J as the volume creation rate of electromagnetic energy
(joules per cubic meter per second).
4.5 Conservation of momentum and angular momentum
| define the Maxwell Stress Tensor T as
'T'zg{EE—ETEZ}+i{BB—1TBZ} (4.5.1)
2 H, 2
In Problem Set 1, you proved the vector identity
V-{AA—%TA2}=A(V~A)+(V><A)><A (4.5.2)
Using this identity and Maxwell’s equations, | have
V-T= gov-[EE—li E2}+iv-[BB—1T Bz}
2 M, 2
=€OEV-E+€O(VxE)xE+iBV-B+i(V><B)xB (4.5.3)
Hy Hy
O0(ExB
- Ep+go(—@ij+JxB+gOExB _ pE+3xB+s, JEXB)
ot ot
Rearranging terms gives me the following equation
0 -
E[gOExB]+V-(—T):—[pE+J><B] (4.5.4)

Given my general form of a conservation law for a vector quantity, equation

(2.3.3), l identify ¢, ExB as electromagnetic momentum density, —T as the flux density

of electromagnetic momentum, and —[ pE +Jx B] as the volume creation rate of
electromagnetic momentum. Let me show that these three quantities have the

appropriate units, e.g. momentum per cubic meter, momentum per square meter per sec,

and momentum per cubic meter per sec, respectively.
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The relation between the units of E and the units of B is E = B L/T (I know this
because the force on a charge is q (E+V>< B)). Therefore the units of ¢ EB are the

units of ¢, E°T /L, and since ¢,E? is an energy density, it has units of energy/L*. But
energy has units of force times distance, and force has units of momentum/T, so energy
density has units of momentum /TL?. So the units of &,EB are momentum/L>, as desired.
The tensor T has units of energy density, and energy density has units of momentum
/TL?, or momentum flux density. The units of —[,oE +Jx B] are force per unit volume,

and since force is momentum over time, this has units of momentum per cubic meter per
sec, as | expect for a creation rate for electromagnetic momentum density.

If I look at (4.5.4) in integral form, | see that for any volume V contained by a
closed surface S, I have

%HEOEXB]d?’Hj(—T)-ﬁda:—j[pE+JxB]d3x (4.5.5)

The corresponding equations for angular momentum are

%rx[goExB]+V~(—rxT)=—rx[pE+JxB] (4.5.6)

and

%IFX[EOEX B]d3x+I(—rxT.ﬁ)da=_Irx[pE+JXB]dsx (4.5.7)
v S ;

45.1 The Maxwell stress tensor in statics

To get some idea of the properties of the Maxwell stress tensor, I first look at it in
cases where this is no time dependence, that is in electrostatics and magnetostatics. In
this case, (4.5.5) can be written as

j[pE+JxB]d3x:ﬁ-ﬁda (4.5.8)
S

\

The term on the left above is the volume force density in electromagnetism, integrated
over the volume, so it is the total electromagnetic force on all the charges and currents
inside the volume V. What (4.5.8) tells me is that | can compute this force in two
different ways. First | can do it the obvious way, by sampling the volume, looking at the
charge on each little volume element, and adding that up to get the total force. The right
hand side says that | can do this calculation a totally different way. | do not ever have to
go inside the volume and look at the individual charges and currents and the fields at the
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location of those charges and currents. Rather | can simply move around on the surface
of the sphere containing the charges and currents, and simply look at the fields on the

surface of that sphere, calculating T-Ada at each little area element, and noting that this
depends only on the fields at that area element. Isn’t that amazing?

Well actually it is not so amazing, because it is exactly what | should expect for
any decent field theory. Remember the fields are the agents which transmit forces
between material objects and | should be able to look at the fields themselves and figure
out what kind of stresses they are transmitting. As an analogy to illustrate this point,
consider the theory of pegboards interacting via connecting strings, as illustrated in
Figure 4-1. The right pegboard exerts a net force on the left pegboard because the strings
connecting the pegs carry tension. | can calculate the force on the left pegboard in two
ways. | can move around in the interior of the pegboard, find each peg, and the strings
attached to it, and add up the total force for that peg, and then move on to the other pegs
and thus compute the total force on the left pegboard. This process is analogous to doing
the volume integral of the electromagnetic force density in (4.5.8).

Or, I surround the left pegboard by an imaginary sphere, as shown in Figure 4-2,
and simply walk around on the surface of that sphere, never looking inside the volume it
contains. Whenever | see a string piercing the surface of the sphere, |1 know that that
sting is transmitting a force across the imaginary surface and | can measure the direction
and magnitude of that force. | explore the entire surface, add up the tension due to all the
strings, and then have the total force on the left pegboard. This is analogous to doing the
surface integral on the right side of (4.5.8)

Forces between
Pegboards

The String Field Model

Figure 4-1: Two pegboards interacting through strings attached to the pegs
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Calculate F on the left board

by looking at the surface of
an enclosing sphere

Figure 4-2: Enclosing the left pegboard by a sphere and exploring its surface.

45.2 Calculating T-nda

So this sounds neat, let me see what is actually involved in calculating T-Ada in
electrostatics, for example. Figure 4-3 shows a surface element and the local electric
field. Unless E and n are co-linear, they determine a plane. Let the x axis in that plane
be along the n direction, and the y axis be perpendicular to the A direction and in the E-
n plane. Let E make an angle & with A.
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Figure 4-3: The relation between the directions of E, n, and T-A

In this coordinate system, | thus have the components of E as

E=EcosdXx+Esinfy (4.5.9)

and A=X. If I look at the definition of T, and the definition of T-fA , I see that T-A is
a vector with components

(T-A) =Tyn, =T, (4.5.10)

and therefore
(T-A)=TX+T,9+T,2=¢, (EXEX —%EzjfugoExEyf/ (4.5.11)
If I insert the values of the components of E into (4.5.11), and use some trig, | have
TA :goEz(cos2 9—%)§<+30E23in 0 cos 6y
(4.5.12)

:%gOEZ(C0829§(+Sin299)

So that I can conclude the following about T-f :
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1. T-A lies in the plane defined by E and 1.
2. If 1 go an angle 6 to get to E from A, | have to go an angle 26 to getto T-A,
in the same sense.

3. The magnitude of T-f is always %goE2

Since T is has the same form for E and B, the only change in these rules for B is that the
magnitude of T-A is B>/ 24,

Let me take some particular configurations of E and i and see what these rules
tell me. Figure 4-4 shows various configurations. From studying this figure, I conclude
that if E and n are parallel or anti-parallel, the E field transmits a pull across the surface

(T-A isalong A and thus out of the volume of interest). If E and f are perpendicular,
the E field transmits a push across the surface (T -A is oppositefi and thus into the

volume of interest). For other orientations T -f is a combination of a push or a pull and a
shear force.

Note that there is no force exerted on da. | am just evaluating the force
transmitted by the field across da, just as | was looking at the force transmitted across da
in our pegboard string field model above.

I conclude this discussion with an actual calculation for two opposite charges.
Two charges with equal magnitude g but with opposite signs are located a distance 2d
apart, one along the positive x-axis a distance d from the origin, and the other along the
negative x-axis also a distance d from the origin. The charges are glued in place (that is
there is a mechanical force on each that keeps them from moving under the Coulomb
repulsion). | enclose the charge on the negative x-axis inside a cube of side H, with H
going to infinity. One of the faces of the cube lies in the z-y plane at x = 0, as shown in
Figure 4-5.
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Tn n
E

Figure 4-4: Orientation of T-A for various orientations of i and E.

34
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Figure 4-5: An electrostatics problem

If I look at the field configuration on the right zy face of the cube, it is parallel or
anti-parallel to the normal to that face, and therefore the electrostatic force is exerting a
pull across the cube’s surface (that is, a force in the positive x direction). | can calculate

that pull by integrating %gOE2 over that surface, using the solution to this simple

electrostatics problem, and | show that explicit calculation below. | find that the force is
q2
4re,(2d)

other faces goes to zero as H goes to infinity.

a force of attraction is >, as | expect. The integral of the stress tensor over the

P
d X

Here is the explicit calculation of the force. If I look at any face of the cube
except the yz face at x = 0, the stress tensor on that face (which goes as the square of the
electric field) will fall off as one over distance to the fourth power and the area will only
grow as distance squared, so | will get no contribution from these faces as H goes to
infinity. 1 need only need to evaluate the stress tensor at x = 0, so I only need the electric
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field in the yz plane at x = 0. This electric field is always perpendicular to the x-axis in
this plane, and has magnitude

q 1 P
45.13
4rg, d° + p? \/d2+p2 ( )

where pis the perpendicular distance from the x-axis to a given point in the yz plane. In
our stress tensor calculations I need to calculate the following integral:

yz plane 0 0 0
2

e Fodp| AP 9

_ﬁgo!PdP 27, (d2+,0 )3/2 47&90_([ 42
T pdp :w pdp 2 _p t_lw pdp -_ 1 OO 1 45.14
!(dzﬂ?z)a l(d2+/32)3p gl 2! (a2 +p7) 4dept), 40 o
So

2
J. l<90E2da= a L :
yz plane 2 47[80 (Zd)

From the properties of the stress tensor, | see that on the yz face at x = 0, since the electric

field is perpendicular to the local normal, T-f is a push on the cube, and a push is the
negative x direction. Therefore

-[ ) 1 - q2 1

2
cube surface yz plane [¢] (Zd )

Therefore the total electromagnetic momentum flux out of the cube surrounding the left
charge is

2
I (—'T'-ﬁ)da:+>“< @ 1 .
cube surface 472-‘90 (Zd)
You may well ask how there can be a flux of electromagnetic momentum when the
density of electromagnetic momentum (&,ExB)) is zero. Consider the example of a
current carrying wire. The positive ions are at rest and the electrons are moving. So
there is no net electric charge, but there is a flux of electric charge (a current).
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If we ask about the total rate at which electromagnetic momentum is being
created in the cube, it is

2
- 1
_pE)dx = +% 3
cubevolume( P ) 472.80 (2d)2

(4.5.15)

and thus | see from the last two equations that electromagnetic momentum is being
created at exactly the rate at which it is leaving the cube, as | expect, since this is a static
situation.

Physically what is happening is the following. Some external agent (the glue
holding the left charge down) is applying a force that exactly balances the electrostatic

force of repulsion on the positive charge on the negative x-axis, that is there is a
2

q
4, (2d )
external agent is creating momentum at this rate. But the charge is not moving because
the electrostatic force just balances this mechanical force. Since | cannot locally put the
momentum into the charge, what happens is that the mechanical force is creating
electromagnetic momentum, which then flows away from the charge on the left out of the
volume containing it, and ultimately to the charge on the right. There it is absorbed by
the mechanical force on the charge on the right, which is a sink of momentum in the +x
direction.

mechanical force in the +X . A force is a momentum per time, and thus the

5 The Helmholtz Theorem
5.1 Learning Objectives

We continue on with the theory of vector fields, particularly as applied to fluids. In
this handout, the most important thing that we learn is that under certain assumptions
about behavior at infinity, a vector field is specified uniquely by its divergence and curl.
We then consider various flow fields derived from specific sources, to get some
familiarity with vector fields given their divergence and curl.

5.2 The Helmholtz Theorem

If we specify both the curl c(r,t) and the divergence s(r,t) of a vector function
F(r,t), and postulate that these functions fall off at least as fast as1/ r? at infinity, and
that F(r,t) itself goes to zero at infinity, then that function F(r) is uniquely determined.

This is known as the Helmholtz Theorem. To prove this theorem, we first construct a
function that has the given divergence and curl, and then we show that this function is
unique.
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5.2.1 Construction of the vector function F

We construct the following function using our given curl and divergence
functions.

' K ’ 3y
Fry=—v— [ SCHdx o 1 crihdx (5.2.1)
47[ all space |r_r 47[ all space |r_r |
The divergence of this function is given by
i 3y’ ' 3y’
V~F(r,t)=—V2i .[ MJFLV. V x j M (5.2.2)
all space |r —r 47[ all space |r —r
The divergence of the curl of any function is zero, and we can switch the order of
integration and differentiation in (5.2.2) and use (3.2.4), giving
1 ’ 2 l 3y’ ' 3 nA 3y’
V-F(rt)=—— j s(r',t)V Wol X' = j s(r' )8 (r-r)d*x =s(r,t) (5.2.3)

all space all space

Thus the vector we have constructed with (5.2.1) has the divergence that we desire. In a
similar fashion we can show that the curl of this vector field (5.2.1) is c(r,t). It can be

shown that our construction in (5.2.1) is unique as long as the divergence and curl fall off
at least as fast as1/ r” at infinity.

5.2.2 The inverse of the Helmholtz Theorem

The theorem above has the two important corollaries. If we have a function
F(r,t) which falls off faster than 1/ r at infinity, then

VxF=0 = F=-Vg(rt) (5.2.4)
or

V.F=0 = F=VxA(,t) (5.2.5)

5.2.3 The Helmholtz Theorem in two dimensions

For future reference, we note that if the vector function F is entirely within the x-y
plane and does not depend on z, that is

F(r.t) =F (X y,)X+F,(x,y,1)¥ (5.2.6)

then (5.2.1) becomes
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F(x, y,t)=—V2i J. s(x/, y”t)ln[\/(x—x’)z+(y_y’)2}dx’dy'

xy plane

+V><2i I c(x’,y’,t)ln[\/(x—x’)z+(y—y’)1dx’dy'

xy plane

(5.2.7)

This can be shown to be the correct construction of F (that is, that it has the proper
divergence and curl) by using the two-dimensional version of (3.1.8),

S5(05(y) = —— {a g }In\/xﬁyz (5.2.8)

+
27 | X% oy’

5.3 Examples of incompressible fluid flows

We consider here some incompressible fluid flow examples where the divergence
and curl of the flow is given, and we proceed to construct the flow itself using the
Helmbholtz construction in (5.2.1). Incompressible means that the density p,..(r,t) is

constant in time and space at p;., so that for incompressible flows the flow velocity v
satisfies (see equation (2.2.6))

(5.3.1)

5.3.1 Irrotational flows

Let us look at some examples of irrotational flows. An irrotational flow is a flow
which satisfies

Vxv=0 (5.3.2)
As a first example, consider an irrotational flow whose source function s is given by
s(rt) = 5,8°(r) = 5,6(x)5(y)5(2) (5.3.3)

Since the overall dimensions of the creation rate s(r,t) must be mass per unit time per

unit volume, and 5°(r) has the dimensions of inverse volume, the dimensions of s, must

be mass per time. Equation (5.2.1) and (5.3.1) tell us that the vector field v is given by
1 5,0°(r')d°x’ S s,f

V(r)=_VE -[ |r—rl| - 47[pr?1assr ) 47[’0r?]a55r2

(5.3.4)

0
all space ,0 mass
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This is just a radial outflow from the source at the origin, with the flow velocity
decreasing in magnitude as inverse distance squared. Note that the total rate at which
mass is flowing out through a sphere of radius R (the flux of mass through the sphere) is
given by

~ o s,T .
I[pmassv]'ndazfpmass [mj'nda: So (535)
S S mass

This is what we expect to see because the rate at which matter is being created within the
sphere is given by

_[sdsx:jso53(r)d3x:so (5.3.6)
\ \
and so s, should be the rate at which we see matter flowing out through the surface of the

sphere.

As a second example consider the source function for an irrotational flow given
by

s(r,t) =s,0°(r)—s,0°(r—L2) (5.3.7)

This represents a source of fluid at the origin of strength s, along with a sink of fluid of
strength s,at Lz. Using (5.2.1), we can easily find that in this case

v =|-v—2 4y % || & SZ(r_LZ)3 (5.3.8)
47[pmass r 47Tpmass |r -Lz | 4'7z'pmassr 47[,0::1355 |r -LzZ |

Note that the total rate at which mass is flowing out through a sphere (the flux of mass
through the sphere) of very large radius R >>d is given by

_[[pmassv]-ﬁdaz s,—S, (5.3.9)

S

This is what we expect to see because the rate at which matter is being created within this
sphere is given by

jsd3x:sl—sz (5.3.10)
\

If s, =5s,, then the velocity field topologically has the same form as the field plotted in
Figure 1-1-1 and Figure 1-1-2 above.
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5.3.2 Flows with rotation

Finally let us consider two flows where the curl of the flow is not zero. The first is a
“sourceless” flow, that is V-v =0, but one for which the curl is given by

Vxv=[5(x)8(y —100) - 25(x)5(y +140)]2 (5.3.11)

Figure 5-1: A flow with no source but with rotation
To see a movie of this kind of sourceless flow, follow the link below

://web.mit.edu/viz/EM/visualizations/vectorfields/FluidFlows/FluidFlowCurlCurl02/ffcu
ricurl02.htm

The second example of a flow with rotation is a flow with the same curl as (5.3.11)
but now instead of a zero divergence, a divergence given by

V-v=5(x-250)5(y) (5.3.12)


http://web.mit.edu/viz/EM/visualizations/vectorfields/FluidFlows/FluidFlowCurlCurl02/ffcurlcurl02.htm�
http://web.mit.edu/viz/EM/visualizations/vectorfields/FluidFlows/FluidFlowCurlCurl02/ffcurlcurl02.htm�
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Figure 5-2: A flow with a source and rotation
There are a number of movies of different kinds of flows at the link below

://web.mit.edu/viz/EM/visualizations/vectorfields/FluidFlows/

6 The Solution to the Easy E&M
6.1 Learning Objectives

In this handout, I dive into electromagnetic theory and write out explicitly the
solutions to the easy electromagnetism. By easy electromagnetism | refer to the situation
where the sources of electromagnetic fields are known for all space and time. The
sources of electromagnetic field are charges and currents (““‘currents” are moving
charges). “Known for all space and time” means that someone gives us those functions,
and your task is to deduce the electric and magnetic fields that these sources produce.
This task is “easy” in that | can immediately write down a solution for E and B which can
be solved with a straightforward and perfectly well defined algorithmic procedure.

6.2 The Easy Electromagnetism
6.2.1 The Solution to Maxwell’s Equations

To solve the equations given in Section 4.2 for E and B given p and J, | first

introduce the vector potential A. Because the divergence of B is zero, we know from the
Helmhotz theorem that B can be written as the curl of a vector, the vector potential A.

B=VxA (6.1.1)


http://web.mit.edu/viz/EM/visualizations/vectorfields/FluidFlows/�
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If we insert (6.1.1) into (4.2.2), we have that

v{aﬁ}:o (6.1.2)
ot

Since the curl of the vector E +% IS zero, we can write it as the gradient of a scalar

function, which we will denote by ¢, so that

E:—V¢—% (6.1.3)

If we insert (6.1.1) and (6.1.2) into (4.2.3), we have

o oA
VXVXxA=ud+ue —| V-2 6.1.4
xVxA=p, uoéoat{ ¢ 8t} (6.1.4)
or
2
V(V-A)-VA= 4] —,uogov%—,uogo %A (6.1.5)
If we let
2=t (6.1.6)
Ho&,
then
1 0 1 o¢
Ve —— |A+V|V-A+—"2|=—uJ 6.1.7
{ 2 at2:| ( 2 8'[] H, ( )

We still have the freedom to specify the divergence of A, since up to this point we have
only specified its curl, and we choose the divergence of A so that it satisfies

199 _

V-A+ =0 (6.1.8)

This is knownas the Lorentz gauge condition, although it should be more properly called
the Lorenz gauge condition (see Jackson (2008)).
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With (6.1.8), (6.1.7) becomes

1 ¢
|:V2—?¥j|A:—/JOJ (619)

And we can easily show by inserting (6.1.3) into (4.2.1) and using (6.1.8) that
2
[vz —ia—}ﬁ: _P (6.1.10)

6.2.2 The free space-time dependent Green’s function

To solve (6.1.9) and (6.1.10), we first need to solve the equation

» 1 0* o3
[v —?E}G(r,t)—é (r)s(t) (6.2.1)

The function G(r,t) is the response of the system to a point disturbance in space and

time. Once we know this we can write down a general solution for sources distributed in
space and time. The solution to (6.2.1) is

G(r,t)= _LM (6.2.2)
Az r
which can be verified by direct substitution, as follows. First, we have
S(t-1)
% ¢ ost-Oyviilvse-H=—se-HL - Fse-h
r cr r C cr° ocr C
(6.2.3)

Dotting V into (6.2.3) gives
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st-5 st-5
C

=V-V
r r

vz

cr

- —V-{é‘(t—i)iz+i5'(t—£)}
cr C

=—i3[5(t——) —5'(t—1)}
reor c
=—4ms(t—5)53(r) 5(t—£)——5(t——) —5"(t )
C C
r 3 " r
=-Ano(t——)o0 (r)+ 5 (t——)
¢ c (6.2.4)
But
r wee T
cZat’| r c’r
(6.2.5)
Subtracting the two expressions (6.2.4) and (6.2.5), we have
1 22 ot—-) r
{VZ__Z 2} € |=—45%(r)5(t—=) = -475°(r) 5(t)
c” ot r c
(6.2.6)

where the last form on the right hand side is true because the delta function in r means
that we only have a contribution when r = 0, so we can take r to be zero in the argument
of the delta function in time.

Then, we see (by shifting the origin of space and time by r"and t") that

2
[Vz—iza—z}G(r,r’,t,t’)=53(r—r’)5(t—t’) (6.2.7)
c” ot
where

1 ot-t' —|r—r'
G(r,r’,t,t'):—E( |r—|r’|

(6.2.8)
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6.2.3 The solution for (¢, A) given (p,J) for all space and time

We now assert that the solution to (6.1.9) is

A(rt)=—g, [ d [ G(rrtt)3(rt)dx (6.2.9)

alltime all space

To see that this is indeed the solution to (6.1.9), we apply the operator

D°=V?-—— (6.2.10)
to equation (6.2.9), yielding (using (6.2.7))

D' A(rt)=—g, [ dt' [ ©°G(r,rtt)3(r,t)d

alltime all space

=—g, [ St-t)dt [ & (r-r)I(r,t)d*x =—gJ(r.t)

alltime all space

(6.2.11)

where we have used the delta functions to carry out the time and space integrations. Our
solution (6.2.9) can thus be written as (using (6.2.8))

A(rt)=2o [ | J(rrt)dt'é(t t—[r—r|/c)d’ (6.2.12)
T

alltime all space |

If we use the delta function in time to do the t’ integration in (6.2.12) we have finally

j ("8 ) oy (6.2.13)
[r-r'|
where
v ot r;r (6.2.14)
and similarly we have
p(rt)=—" p(r’tfet)oﬁx' (6.2.15)
4r g,

6.3 What does the observer see at time t?

The prescription as to how to do the spatial integrals in (6.2.13) and (6.2.15) using
the definition of retarded time (6.2.14) is unusual. Because of the finite propagation time
from source to observer at the observer’s time t, the spatial integrals are sampling what
happened in sources more distant from the observer at an earlier time than the sources
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closer to the observer. That is, the value of t’ . depends on the distance from the a source

ret

to the observer. Although we are integrating over all space in the equations above, we
are adding up contributions from different volumes of space at different times in the
observer’s past.

6.3.1 The collapsing information gathering sphere

One way to understand this sampling (Panofsky and Phillips (1962)) is to consider
what information is seen by an observer located at the origin at t = 0. The information
that arrives at the observer at the origin at t = 0 has been collected by a sphere of radius
r'=—ct’ that has been collapsing toward the observer at the speed of light since time
began, as shown in Figure 6-1. The observer at time t will see all the light collected by
this information collecting sphere. The center of the sphere is at the location of the
observer at time t, and the sphere has been contracting since the beginning of time with a
radial velocity ¢ such that it has just converged on the observer at timet. The time t’ at

ret
which this information-collecting sphere passes a source at r’at any point is space is then
the time at which that source produced the effect which is seen by the observer at time t.

Information
gathering sphere

\l/

—p Observer €—
Yl ; e

Figure 6-1: The information gathering sphere collapsing toward the origin
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6.3.2 The backward light cone

Another way to envisage this process is to look at a space-time diagram. In such
a diagram, we plot ct along the vertical axes and two spatial coordinates (say x and y)
perpendicular to this axis. An ‘event” in space-time, say a firecracker exploding, is
located by its time of occurrence and the place at which it occurred. A burst of light
emitted by the observer at the origin at t = 0 in this diagram propagates outward at the
speed of light in all directions, and the locus of space-time points on that outwardly
propagating sphere is represented by the forward light cone shown in Figure 6-2. The
forward light cone is a cone whose apex is at the origin and whose opening angle is 45
degrees. Only observers at points in space-time lying on the forward light cone will see
the burst of light emitted by our observer at t = 0. Similarly, the light seen by our
observer at the origin at t = 0 must have originated at some point in space-time on the
observer’s backward light cone, since for only those points will the radiation just be
arriving at the observer’s position at t = 0.

Future

Figure 6-2: The observer’s forward and backward light cone

7 E and B far from localized static sources
7.1 Learning objectives

We first investigate the form of the electric and magnetic fields far from localized
sources, assuming that these sources do not vary in time. *“Localized” means that our
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sources vanish outside of a sphere of radius d. “Far from” mean we are at radii such thar
r >>d. Our major goal here is to show that everything “looks” the same if you get far
enough away, and to introduce the idea of moments, that is, dipole moments, quadrupole
moments, and so on.

7.2 A systematic expansion in powers of d/r

Observer

pir), Jir)

Figure 7-1: An observer far from a localized distribution of static sources.

In Figure 7-1, we show a distribution of time independent charges and currents
which vanish outside a distance d from the orgin. | want to look at (6.2.13) and (6.2.15)
when there is no time dependence and under the assumption that | am far away from the
sources compared to d. For no time independence, | have

M 1 (1)
A(r)_4ﬂj|r_r,| d®x (7.2.1)
and
— 1 p(r,) 3y
;75(r)_47w0 =g d>x (7.2.2)

Let’s look at the |r—r'| term in (7.2.2), assuming that the angle between rand r'is &'.
| have

|r—r'

“=(r=r)-(r=r)=r?+(r')’ —2rr'cos ¢’ (7.2.3)
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| define

! 2 ! 1 ’
77=(r—j —2r—cose’=(r—J(r——ZcosH'j (7.2.4)
r r r)\r

and | assume that r >>r', since | am taking the distance r of the observer large compared
to d, and the r"value in the integral in (7.2.3) can always be assumed to be less that d,
since the sources vanish outside of d. Then it is clear that 7 is a small quantitiy, and

12 | rj.r’ 1(1+77)71/2 (7.2.5)

|r—r' ==
"

=r(1+7)

| can expand (L+7) " in a Taylor series, since | always have 7 <<1, giving

1 - 1 1 3 5
mz?(ﬂﬂ) 1/2=?(1—E77+§772—En3+...j (7.2.6)

If 1 use the definition of nin (7.2.4) in equation (7.2.6), and gather terms in powers of

(r—j, | find that
r

1 L A ' 2 (7.2.7)

lr=r| r (r'jz (50053 9'—30030')
+ JR—
2

’ ’ 20 _
1+ (r_} cosé' + (r—jz M

+...
r

If 1 look back at the Legendre polynomials | found in Problem Set 1, | have

0 ! I
% _L (r?j R (cosd')

(7.2.8)
Putting this into (7.2.1) and (7.2.2), | have
1&(rY
A(r):ﬂIJ(r’){—Z[—j P (cose’)} d3x’
4 Pkt (7.2.9)

ﬂO o 1 !’ ’ ! !
:Eg rl+1J'J(r )(r') P (cos®) d*x
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and
1 ks 1 ’ nl ’ 3y’
¢(r):_4”g Z _rm_[o(r)(r) P,(cose)d X (7.2.10)

We have in (7.2.9) and (7.2.10) what we wanted to achieve, an expansion in powers of

d . . . d
(—j , SO that each successive term is smaller than the preceeding by a factor of — << 1for
r r

a distant observer.
7.3 The magnetic dipole and electric dipole terms

The first term in the sum in (7.2.9) is

/ ;uo 1 ! 3!
e er P, (cos¢') d*x E?JJ(r)d X (7.3.2)

In Problem Set 3 you will show that this term vanishes in the time independent case. The
second term in (7.2.9) is

Iuo l !
EFJJ(r)( ")P,(cos@’) d 4“ jJ )(r'cos0") d*x (7.3.2)

If n=r/risaunit vector which points from the origin of our coordinate system to the
observer at r, then r'cos® =n-r’, and

47” jJ )(r'cos 6 dx—47” [a(r) d3x’ (7.3.3)

In Problem Set 3, you will show that this can be written as

1 - mxn
e IRy a2 (7.3.4)

where | have defined the “magnetic dipole moment” m by
1 ' ' 3y’
m:EIrxJ(r)d X (7.3.5)

Note that once you are given J(r), this moment is a fixed constant vector! If | take the

curl of (7.3.4), | find that the magnetic field associated with the first non-vanishing term
in(7.2.9) is
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o [30(m-7) ~m] (7:36)

Bdipole (r) = E r.3

Now let us turn to the expansion of the electric potential in (7.2.10). The first
non-vanishing term in the sum is

l 1 ’ ’ 3y
it p(r')R(cosd')d’x’ =

1
dre, 1

' ’ 1 0
p(r ) d3X = @QT (737)

where Q, is the total charge of the static distribution. This is just the potential of a point
charge, and the associated electric field is that of a point charge. The next term is

1 1 ! ! ’ 3yl l l ! ’ ’ 37
Iz, Ffp(r )(r')P,(cos@') d°x’ = ypos Fjp(r )(r'cos ') d°x
1 1 1 Ap (7.3.8)
= - Yr-Addx =——F
4rg, 1? (r)r-fd’ drg, 1
where we have defined the electric dipole moment p as
p=[rp(r)d* (7.3.9)

If we take the gradient of (7.3.8) to find the electric field corresponding to this term, we
have

1 [3A(p-A)-p] (7.3.10)

e, r

Edipole (r) = 4
7.4  Properties of a static dipole
Both the magnetic and electric dipole fields have the same form. 1 discuss the

relevant properties of an electric dipole oriented along the z-axis. If p is along the z-axis,
then

2pcosf .. psing -
E(rp= 74.1
P 4r g 1’ r+ 4r g 1’ ( )

In spherical polar coordinates, our differential equations (1.5.1) for the field lines
becomes

dr(s) _ E,

rdé(s) E

=0
ds E ds E

(7.4.2)
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or we can write the differential equation r(&) for a given field line by dividing the first
equation in (7.4.2) by the second to obtain

1dr(9) :5: 2c.:os€ (7.4.3)
r d¢ E, siné

If we gather the terms involving r and the terms involving @ in (7.4.3), we have

ar —Zcos‘gde:z;—em(sine) (7.4.4)

r sin@

which can be integrated to give the equation for a dipole field line.
r=>Lsin*@ (7.4.5)
The parameter L characterizing a given field line is the equatorial crossing distance of

that field line. Figure 7-2 shows a family of such field lines with equatorial crossing
distances equally space.

Figure 7-2: The field lines of a static dipole

7.5 The electric quadrupole term

If we go to the third term in the sum given in (7.2.10) for the electric potential, |
can show that this term has the form

1

3 3
Are, Fzz Q=

S 4rg, 2r°

t 1 A-Q-h (7.5.1)
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where the electric quadrupole tensor Q is given by

(@] =[[3xx;=(r')’ & ] p(rya>x (7.5.2)

ij
8 Sources varying slowly in time
8.1 Learning objectives

I now turn to the time case where our sources are localized and now are not static,
but vary in time, but slowly, in the sense that any time dependence is slow compared to
the speed of light travel time across the source, d/c. When 1 do this I will uncover the
details what is arguably the most fundamental of all electromagnetic processes, the
generation of electromagnetic waves. My major goal in this section is to show you how
to systematically expand the solutions (6.2.13) and (6.2.15) in small parameters to get E
and B for sources which vary slowly in time in the above sense. As | expect, | recover
the static fields I have already seen above, but I also find much much more.

8.2 E and B fields far from localized sources varying slowly in time

Observer
' 'Y -_—
Ll L F

L

-
"

Figure 8-1: An observer far from a localized distribution of currents and charges

Suppose we have a localized distribution of charge and current near the origin,
described by sources p(r',t") and J(r’,t") (Figure 8-1). The sources have a characteristic
linear dimension d, such that the charge and current densities are zero for r' >d. Letthe
length of time for significant variation in the charge and current densities be T. We want
to investigate the electromagnetic fields produced by these currents and charges as
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measured by an observer at (r,t) located far from the sources, assuming that the sources
vary slowly in time.

Again, as above, “far from”” means that the observer's distance from the origin, r,
is much greater than the maximum extent of the sources, d. *“*Slowly in time”” means that
the characteristic time T for significant variation is long compared to the speed of transit
time across the sources, that is, T >> d/c. Under these two assumptions (far from in
distance and slowly in time), we can develop straightforward expansions for E(r,t) and
B(r,t) to various orders in the small quantities d/r and d/cT. Note that we have made no

assumption as of yet about how the distance r compares to cT, and in fact we will be
interested below in three very different cases: r<<cT, r=cT,and r >>cT , the so-
called near, intermediate, and far zones (also called the quasi-static, intermediate, and
radiation zones). The solutions to our equations look quite different in these three
regimes.

To obtain the electromagnetic fields at (r,t), we first calculate the
electromagnetic potentials. We have the exact solutions for ¢(r,t) and A(r,t) atany
observation point (r,t)

1 Loy dx _ My Co a3
Hrn) =g | PG ARD = ] W (8.2.1)
t, =t—|r-r'|/c (8.2.2)

For an observer far away (r >> d ), | make the approximation that (see (7.2.3))

' 2 ' 2 r'r,
|r—r|= r’=2rr'+r? ~r[1-2—
r

~ (1—r'rj:r—ﬁ-r’+...., ﬁ:r/|r|

(8.2.3)

’

i . (r i
where | now go only to terms of first order in (—j as opposed to keeping all orders, as |
r

did above in (7.2.7). 1 also have

. (8.2.4)

[r—r

Using (8.2.3) in (8.2.2) gives

t'. =t-r/c+n-r'/c (8.2.5)

ret —
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Expanding the exact solutions given in (8.2.1) is complicated for time varying
sources because of the finite propagation time from field point to observation point. As
we saw before, events which are recorded at the observation point at (r,t) are due to time

variations in the source at r' atatime t/, =t—r/c+n-r'/c, where t'rt depends on r'. It
is worth emphasizing this point.

Because of the finite propagation time from source to observer, at time t we are
sampling what happened in parts of the source more distant from the observer at an
earlier source time than parts of the source closer to the observer!

Thus to find ¢(r,t) and A(r,t), we have to add up source variations which occur
at different points in the source at different retarded times. Our basic assumption here is
that the sources vary slowly enough in time that we can expand p(r’,t,,) as follows

pr' it )=p(' t—rlc+n-r'/c+..)

A 8.2.6
p(r',t;et);p(r’,t—r/C)+%%p(r’,t—rlc)+.... (8.2.6)

This is just a Taylor series expansion about t—r/c, where r/c is the propagation time
from the center of the source region to the observer. Such an expansion will be good as
long as the first term on the right hand side of equation (8.2.6) is much larger than the
second, i.e.,

nrilo <<1 (8.2.7)
c pot

But —% is 1/T, where T is a characteristic time for significant variation in p. Since |r'|

P
is less than d, the maximum extent of our localized source region, for our approximation
in (8.2.6) to be valid, we need

d <<T  Electric Dipole Approximation  (8.2.8)

C

This approximation is known as the electric dipole approximation. For expansion (8.2.6)
to hold, we must require (8.2.8) to hold, which says that the time required for light to
propagate across our source must be small compared to characteristic times for
significant variation in the source. Thus if we assume that

r>>d and E<<T (8.2.9)
C

then using (8.2.4) and (8.2.6), we can expand our exact solutions (8.2.1) to first order in
the small quantities d/r and d/cT as
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A !

n-r' o2 1 n-r

- Ep(r',t’) + } [?(1+T+ﬂ (8.2.10)

J(r',t") +1i
r c ot’

é(r,1) :ﬁjdﬁ*x' [p(r’,t')+

A(r,t):%jd"‘x’\](r',t’Hﬁj(ﬁ-r’)[ J(r’,t’)}d3x’+.... (8.2.11)

where
t'=t-r/c (8.2.12)

We could keep higher order terms in (8.2.10) and (8.2.11), but we will find that
what information we need is contained in the orders we've kept. These terms will allow
us to look at the properties of electric dipole radiation, magnetic dipole radiation, and
electric quadrupole radiation. We define the electric monopole, electric dipole moment,
magnetic dipole moment, and electric quadrupole moment of our sources by the
equations

q(t) = [ p(r', t)d*x’ =Q, (8.2.13)
p(t") =fr’p(r'.t')d3X’ m(t’) =%jr’xJ(r',t’)d3x' (8.2.14)
[(“g(t')]ij = [ [3x;x; —(r'y’ 5”.] o(r,t)d3x (8.2.15)

These are exactly analogous to our definitions in the static case, except now these vectors
guantities vary in time. Note that since charge is conserved and our sources are localized
(in particular there is no current flow to infinity), the total charge q(t') is constant in time

and equal to Q.
8.3 Electric dipole radiation

We gather all terms in A and ¢ which are proportional to Qq, p or dp/dt. From
(8.2.10) we have

P(r,t) = 1 &, 1 %ﬁ-jr’p(r',t’)dsx# L iﬁ-'[r’

Are, v Ame,r dre, Ccr

d
r,t)d’x (8.3.1
oM ) ¢ (B3)

Using the definition of p(t) in (8.2.14), we have
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1 Q 1 1. ., 1 1. dp(t)
rt)= =24 =n-pt)+——n-—=
A1 dre, r Are, r? p(t) dre, Cr dt (8.3.2)
wheret'=t-r/c
What about A? In Problem Set 3 you showed that
jJ(ﬂiﬁd%(:—jﬂ[V“JUQVﬂd3% (8.3.3)
and thus the first term in (8.2.11) becomes
Aum);—iﬁljdfrxthuar» (8.3.4)
dr v

Remember that charge conservation in differential form is
! ! r é’ ! !
VeI ) +— p(r',t') =0 (8.3.5)
ot
so that the term in A proportional to dp/dt’ is

A(r,t) ;+ﬂlm t'=t-r/c (8.3.6)
4z r dt’

The other terms in (8.2.11) are proportional to electric quadrupole or magnetic dipole
moments, as discussed later, so we for the moment ignore those terms and concentrate
only on the terms that involve p(t") and its time derivatives. We define p(t’) to be
dp(t)/dt’, P(t") tobe d?p(t’)/dt’?s and so on. Since B =VxA we have using (6.1.1)
that

B X&l. , :,uol Bt Ho oty 1
B(r,t)—v[mp(t)} e Lgp(e) 4ﬁp(t>v[r} 63.7)

Tr

Obviously, Vl = —izﬁ , and for functions of t-r/c,
r r

A

n dg(t’
vogt-r/c)=—— =2 3.
a( ) Pl (8.3.8)
so that
con A
and thus

B(r,t):f—;{rﬂﬁg}xﬁ evaluatedatt'=t—r/c (8.3.10)
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What about E? Well E=-V¢ —i—?so from (8.3.2) and (8.3.6)

Er, t)——ﬁv{%iﬁ p(t)+—n p(t)} 2 p(t) ©.3.11)

0

. . n-p(t’ n-p(t’
We can derive expressions for V[—n pz(t ) }and V[—‘?( )} as follows
r

(IO)

v -P(t) ig (8.3.12)

[P—3(p-M)A]-

vk =i2[p 2(p-A)A]- (h-p) p)A (8.3.13)

Inserting these into equation (8.3.11) gives us

1 Q . [3(p-f)—p] . 1 [3f(p-A)- p] 1 (PpxA)xA
Az e, 1 s 4r &, cr’  Are, s dre,  (8.3.14)
quasi-static induction radiation

E(r,t)=

evaluated at t'=t—r/c. Inthe limit of no time variation, E is just a static monopole
field and dipole field, and B is zero. If p is varying slowly in time, the static dipole field
becomes quasi-static (slowly varying in time, but with the same mathematical form). In

addition, there are terms proportional to p/cr?® (the induction terms) and terms
proportional to P/c’r (the radiation terms).

9 Examples of electric dipole radiation
9.1 Learning objectives
We look at the solutions for electric dipole radiation for specific cases. We consider two
different kinds of time behavior for the electric dipole moment, and define the near,
intermediate, and far zones.

9.2 Dipole moment vector p varying in magnitude but not direction

We want to look at some specific cases so that we can understand what equations
(8.3.10) and (8.3.14) mean. To do this we first assume that we have a dipole moment
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vector p that is always in the same direction but with a time varying magnitude p(t) , that
is

pPt) =2 p(t) (9.2.)

If we insert (9.2.1) into the expressions for E and B above, we find that

3" ’\." _’\ . 3" ""‘ _" o ~ ~ A
E(r,t):%[ n(Z n) Z] + p2[ n(Z n) Z]+l2(zxn)xn (922)
r 4r g, cr 4r g, rcc 4re,
M| PP |5, 4
B(r,t)=—"| —+—1(zZXxn
(r,t) 4ﬂ{r2 CJ (9.2.3)

Remember that Ais just T, pointing from the source located at the near the origin to the
observer far from the origin. Let us specify the direction of n=r/r in spherical polar
coordinates by the polar angle @ and the azimuth angle ¢, as shown in Figure 9-1.

‘Z

Observer

Figure 9-1: The vector to the observer
Thus we have

5-A=cos®  Zxfp="sino ExA)¥A ="sing (9.2.9)

S0 (9.2.2) and (9.2.3) become

2c0s0 . ¢ sin@ ~ ¢ p
E(rﬂ)=4_r(g+c%j+_ (ﬁLLj 0.25)

TE, \r dr e, \r
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sind(p B ).
B(mt)z'uoT{rﬂszC—prj (9.2.6)

9.3 The near, intermediate, and far zones

If I ask which terms are the dominate terms in equation (9.2.5), I must ask about the
magnitude of r compared to cT , where T is a characteristic time scale for variations in
the sources. To see this, we re-write (9.2.5) as follows in order of magnitude

. oe . 2 ..
£t (£3+L2+Tp]zL£3 1 IR TP (9.3.1)
Ar e \r° cr° cr) 4dreg,r cp cp

Inowset p~p/Tand p~ p/T?,sothat (9.3.1) becomes

2
Ert Pl T 0 (9.3.2)
Are, r cT |cT

There are three different possibilities:

(1) r<<cT STATIC OR NEAR ZONE. The dominant term in (9.3.2) is the first one,
which represents the quasi-static dipole electric fields, varying in time, but in essence just
a dipole field with E falling off as 1/r3.

(1) r>>cT RADIATION OR FAR ZONE. The dominant term in (9.3.2) the last

one, and it falls off as 1/r, and these are the radiation fields. As we will see below, these
terms carry energy to infinity, that is energy that is lost irreversibly and cannot be
recovered.

(111) r~cT INDUCTION OR INTERMEDIATE ZONE, all of the terms in (9.3.2)
are of comparable importance.

9.4 Examples of electric dipole radiation in the near, intermediate, and far zones

In the sections below, | look at a examples of the time behavior of p(t), each chosen
to illustrate various features of (9.2.5) and (9.2.6). The examples can all be grouped into
time behaviors of two general types. The first type of behavior is a sinusoidal time
dependence, that is

p(t) = p, + p, cos wt (9.4.1)
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The second type of time behavior is an electric dipole which has been constant at one
value of the dipole moment, po, up to time t = 0, and then smoothly transitions to another
value of the dipole moment, p;, over atime T. In this type of behavior, | take the time
dependence of p(t) to be

P, fort <O
t) t) t)
t) = +p,| 6| =| -15| = | +10| — forO <t <T 9.4.2
o0 o{2 (1) (2] 042
P, + P, fort > T

The time dependence of this function and its first and second time derivatives is shown in
Figure 9-2. In the case plotted the dipole moment increases by 25% from its initial value.
For clarity, so that they are more easily seen, | have multiplied the first and second
derivatives of the dipole moment as a function of time by a factor of 10 in Figure 9-2.

Figure 9-2: The time dependence of a dipole changing in time T

In each of the examples | show below, I will also show movies in class that
animate the radiation time sequence at the three different scales for that example. The
field lines and texture patterns move in these movies, with a velocity at each point in time
given by

Vfield Iine(r’t) =C Ez(r,t)

(9.4.3)
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I will justify the use of this velocity for a moving electric field line later on in the course.
For the moment, the only thing you need to know is that this velocity is in the direction of
the local value of E(r,t)xB(r,t) at every point in space and time, and that this vector
represents the direction of electromagnetic energy flow, as we discuss at length soon. So
motion in these movies represents direction of electromagnetic energy flow, and you
should view these movies in this light.

9.4.1 Dipole moment varying sinusoidally with total reversal, in the near zone

In this case we set p,to zero in equation (9.4.1). Figure 9-3 shows the field line

configuration at a time near the maximum value of the dipole moment, in the near zone.
Successive figures show this pattern at different phases in the dipole cycle.

Figure 9-3: An oscillating dipole at the maximum of the dipole moment, in the near
zone.
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Figure 9-4: An oscillating dipole just after of the dipole moment has reversed, in the
near zone.

Figure 9-5: An oscillating dipole as the dipole moment approaches its maximum, in
the near zone.

9.4.2 Dipole moment with total reversal, in the intermediate zone
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Now we look at exactly the same thing as above, but we include distance further
from the origin. The pattern changes qualitatively. The figures below show various
phases.

Figure 9-6: An oscillating dipole at the maximum of the dipole moment, in the
intermediate zone

7 A

\§ 7

Figure 9-7: An oscillating dipole just before the dipole moment reverses, in the
intermediate zone

9.4.3 Dipole moment varying sinusoidally with total reversal, in the far zone
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Now we show the pattern even further out, and we see the characteristic electric
dipole radiation pattern.

Figure 9-8: An oscillating dipole at the maximum of the dipole moment, in the far
zone

Figure 9-9: An oscillating dipole at the zero of the dipole moment, in the far zone
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Figure 9-10: An oscillating dipole as the dipole moment approaches its downward
maximum, in the far zone

9.4.4 Dipole moment increasing 50% over time T, in the near zone

Now I look at the behavior described by equation (9.4.2), in the case where the
dipole magnitude increases by 50% over time T and then remains constant, first in the

{=06 T

Figure 9-11: Dipole increasing over time T in the near zone
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9.4.5 Dipole moment increasing over time T, in the intermediate zone

Now we look at the pattern in the intermediate zone.

=16 L

Figure 9-12: Dipole increasing over time T in the intermediate zone

9.4.6 Dipole moment decreasing by 33% over time T, in the near zone

Now we repeat the same sequence as above, except for the case that the dipole is
decreasing in magnitude by 33% over time T.
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Figure 9-13: Dipole decreasing over time T in the near zone
9.4.7 Dipole moment decreasing over time T, in the intermediate zone

Figure 9-14: Dipole decreasing over time T in the intermediate zone.
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9.5 Conservation of energy

Let us consider how the conservation of energy applies to our solutions above.
First of all, our solutions above are only good for r > d, that is we are outside the source
region containing charges and currents. Therefore in the region in which they apply,
there are no sources or sinks of electromagnetic energy. We simply have energy flowing
to fill up space with the local energy density of the electromagnetic field.

Second, we can calculate an expression for the flux of electromagnetic energy,
that is rate at which total energy flows across a sphere of radius R, per second. To get

some feel for this, | consider the second type of time dependence for the dipole moment |
considered above, when the dipole moment starts out at one value of the dipole moment,

say p,,and changes over a time T to another value of the dipole moment, say p,. If we
want to calculate the total amount of energy that has moved across a sphere of radius R,

in this process, we simply calculate the area integral over the surface of the sphere as
follows:.

Energy through R, = I dtj ExB ‘hda (9.5.1)
Lo Hy
If I refer to equations (9.2.5) and (9.2.6), | see that
ex (Ef®E, B, ~ (EB, -8B, )
Ho Ho Ho ©95.2)

-2 . o . . R - . . o
_ ng[ﬂZJrij(ﬁﬁ%Jer)_ M(ﬂs+%j[ﬁz+£J
(47;) g, \I" Ccr)ir cro cr (477) & r’ cr r- cr

(o]

Since we are considering a spherical surface of radius R, n=t, and we have

< % ExB
Energy through R, = I dtJ' ExB FridQ= I dtj-g r’dQ (9.5.3)
—o0 /’lo —o0 /JO

With a little work (which you will do on a problem on Problem Set 4) this can be shown
to be

2_n2) w2
Energy through R :i( P~ R )+ I P 5
67 g,C

12 4z &R’ a (5.54)

—00

Note that the second term on the right side of this equation is independent of R,. This

term represents the energy radiated away to infinity, and this is an irreversible process.
We can easily see that the instantaneous rate at which energy is radiated away is
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o2

Power in radiation (joules per sec) = P 5 (9.5.5)
67 g,C

and this is known as Larmor’s formula. What does the first term in (9.5.4) represent?
Let’s calculate the total amount of energy in an electrostatic dipole outside of a sphere of
radius R,. Using (7.4.1), you will show the following. The electrostatic energy of an

electric dipole in the volume external to a sphere of radius R, is given by

2

. . . 1 p
Electrostatic energy of dipole outside R, =— 9.5.6
gy ordip T 1247 &R (956

and thus we see that the first term in (9.5.4) represents the electrostatic energy needed to
change the field from a dipole moment of p, to a dipole moment of p,. Note that this
can be positive or negative, depending on the relative sizes of these dipole moments, so
that energy flows either inward or outward, depending on whether these quasi-
electrostatic fields are being destroyed are created.

We can also compare the energy radiated away to the energy stored in or taken
out of the electrostatic field, by looking at the ratio second to the first term in (9.5.4). If

we take R, to be the size of our source region, d, then we find that

Radiated energy _ p°T /i(pzz— p;) ~8d3(p2/T4)T N{iT ©95.7)
Stored energy 67 s,c° 12 4z, d®  c*(pi-pf) LcT o

Since our entire derivation above assumes the electric dipole approximation, that is

d/cT <<1, we see that the radiated energy is always a small fraction of the energy that is
stored or taken out of the electrostatic energy. Thus the irreversible energy loss due to
radiation is small compared to the reversible energy storage in the electrostatic field.

Our course our whole expansion scheme rested on assuming d < cT so that
although you might thank that Eq. (9.5.7) implies that as d become larger than cT the
radiated energy would exceed the stored energy by an arbitrarily large amount, in fact Eq.
(9.5.7) is not valid when d becomes comparable to cT, so we can conclude nothing about
the ratio of radiated to stored energy in such a case. A much more difficult and much
more complicated calculation that does not make the electric dipole approximating in fact
shows that when d becomes comparable to cT or greater, the radiated and stored energy
are in fact exactly the same. | do not do that calculation here but | show a graph of the
result of that calculation in Figure 9-15. For small values of d/cT we recover the electric
dipole approximation result given in (9.5.7), but as d/cT approaches or exceeds one the
radiated energy just equals the stored energy.
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9-15: Energy radiated to stored energy as a function of d/cT
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10 The General Form of Radiation E and B Fields
10.1 Learning Objectives
We stop and consider the general form of E and B radiation fields
10.2 General expressions for radiation E and B fields

I look at the terms in (8.3.10) and (8.3.14) which are a pure radiation field, that is
the terms which carry energy off to infinity. These terms are the 1/r terms, and are given
for electric dipole radiation by

Ho | PxN
= dm(”ﬁa{?}

. (10.2.1)

Ar g,

1 . . 4 R
Eogp () = F(pXﬂ)Xﬂ:CBemipxn

Before proceeding, | pause for a moment and consider the generalization of the form of
the expressions in equation (10.2.1). As a general rule, whenever | deal only with
radiation fields (terms falling off as 1/r) of any kind (electric dipole, magnetic dipole,
electric quadrupole, etc.), if we ignore everything except terms falling off as 1/r , we will
always have

xA and E_ =(A_xA)xA=cB_,xA (10.2.2)

rad rad

B., = 1A
C
These equations follow from assuming that the radiation part of the vector
potential A(r,t) in (8.2.1) is 1/r times some function of t/, =t—r/c, and dropping
everything but 1/r terms after taking derivatives. With this approach, it is clear that
B =VxA leads to the expression for B, in equation (10.2.2). What about the

expression for E_, in (10.2.2)? We appeal to the fact that outside the sources, where

2 170 i .
J=0,wehave VxB =y, &, ﬁE =c_ZEE' Using the expression in (10.2.2) for the
- . . . - 170
radiation B, field, and again dropping non-radiation terms, VxB = c_ZEE tells us that
we must have
1r. R . 17
C—ZI:Arad X nj‘ Xn= C—ZE Erad (1023)

Integrating (10.2.3) with respect to time, we recover the expression for the radiation E,,

field in (10.2.2) . We see that these equations are in particular appropriate for electric
dipole radiation by inserting equation (18) into (23) and comparing to (22). Note that
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E...: B, and n are all mutually perpendicular, and ¢B,, =E,,,. This later equality

means that the energy density in the magnetic field is equal to the energy density in the
electric field.

rad *

10.3 Radiation of energy and momentum in the general case

What is the energy flux radiated into unit solid angle for the general radiation fields
givenin (10.2.2). From (10.2.2), we have for the radiation fields that

1 C

L (i ¥Brag) = (¢ (B xA)xB oy ) =A-S-B2, — (B, - ) B
o O O O (10.3.1)

Since B,,, and nare perpendicular for the radiation fields, we have in general that
L€ xB )-nlp (10.3.2)

0 (o]

Now, suppose we take a very large sphere of radius r centered at the origin, and consider
a surface element nda on that sphere at a point (r,#,¢), with

Nda=r?dQr=r’sinddadegt (10.3.3)

In the context of the energy conservation law that we have developed, we know that the

(ExB)

quantity ———=-nda dt represents the amount of electromagnetic energy dW in joules

(o]

flowing through nda inatimedt:

dW:i(ExB)-ﬁdadt: L(ExB)-(erQf) dt (10.3.4)
My M,
or
dw c ’ a
= —(ExB)-(r°'r 10.3.5
G0 d- u E¥Bh (1035)

Equation (10.3.5) is a general expression, good for any r and for any fields (quasi-static,
induction, or radiation fields). However, it is clear that if we consider only the energy per
second radiated to infinity, we need only include terms in E and B which fall off as 1/r,
since terms which fall off faster than this in the expression (10.3.5) for dW will vanish as
r goes to infinity, and therefore carry no energy to infinity. Thus the electromagnetic
energy radiated to infinity per unit time per unit solid angle is given by
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2

2 A 2p 2 r Ara Xn
dw M"(Erag XBrag) N _CI'Byy _ d (10.3.6)

dQdt o Ho HoC

rad __ rad

where we have used equation (10.2.2) and (10.3.2) to obtain the various forms in (10.3.6)

In the context of the momentum conservation law that we have developed, we
know that the quantity ~T-Adadt represents the amount of electromagnetic
momentumdP,_, flowing through fAda in atime dt. As above, the momentum radiated
per unit time per unit solid angle is thus

Py _ 2. (10.3.7)
dt dQ

>

Again, if we are only interested in the momentum radiated to infinity, we see that we

need only consider terms in T which fall off as 1/ r?, since terms which fall off faster
than this will vanish as r goes to infinity, and therefore carry no momentum to infinity.

Since T involves the square of the fields, we need only keep the radiation terms in
calculating the momentum radiated to infinity.

11 Another Example of Electric Dipole Radiation

11.1 Moving non-relativistic point charges

I first point out one general expression for the amount of power radiated in electric
dipole radiation. Using equation (10.2.1) and equation (10.3.6), | have for electric dipole
radiation that

= —sin® 6
(47)°c (11.1.1)

dW,, iy _ cr? {&pXﬁT _ M, P’

dQdt u, |4z cr

where ¢ is the angle betweenp and fi. If | integrate this expression over solid angle,
taking p to lie along the z-axis for convenience, | obtain the expression for the total
energy per second radiated in electric dipole radiation,

dWe i 2155 2 1 2155 2 dW . 9 2
Vs _ 14, 2P _ L Maw _ 1 2% (11.1.2)
dt 47 3¢  4re, 3c dt 4re,3 c°

In the last form in equation (11.1.2), we have given an expression appropriate for
the specific case where the radiation is due to a single point charge of charge q which is
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at R(t) at time t. It is clear that in such a situation, p(r’,t'") =qd&°(r'—R(t"), and that
therefore, using p(t") =jr’p(r’,t')d3x', that p(t)=q R(t) and p(t)=q R(t)=qa(t),
where a(t) is the acceleration of the particle at time t.

Thus for a single particle, the instantaneous rate at which it radiates electric dipole
energy is proportional the square of its charge and the square of its instantaneous
acceleration. Note that if the particle is moving a speed V , it will travel across a region
of length d =VT intime T. Thus if T is the time it takes for the speed V to increase
significantly, our requirement that d / cT be small compared to one for our expansion to
be valid becomes for particle motion the requirement that d /cT =VT /cT =V /c be
small compared to one, i.e. that the particle speed be non-relativistic. Indeed, the
radiation patterns for relativistic particles look nothing like the simple dipole and
quadrupole radiation patterns we will derive here.

We now look at a specific example of electric dipole radiation, by looking at the
fields of two point charges. We emphasize, however, that the methods we develop here
can be applied in much more general situations than just individual point charge motions.
All we need to do to apply them is to compute the overall moments of the charge and
current distributions, as in equations (8.2.13) through (8.2.15).

Consider the following time varying source functions. We have two point
charges, one at rest at the origin, with charge -qo, and one moving up and down on the z-
axis, with charge +qo, and with its position described by

r'ty=z R, cosa,t’ (11.1.3)

z (r, 8,4 o

2t = R coswt’ 4 +0y

®

Figure 11-1: An electric dipole formed by moving point charges

We want to find the electric and magnetic fields appropriate to this source, including
quasi-static, induction, and radiation fields. The charge density is given by the charge
* (o times three dimensional delta functions at the positions of the charges. The charge
density is thus
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p(r' t) =0, 5(x)3(y)8(2' ~R, cos o) 0, () 3(y)8(z)  (11.1.4)

This charge distribution has no net charge. The electric dipole moment is (cf equation
(8.2.14))

p(t) = [r'p(r' t)d’x' =
g, j r'[8(x)5(y)8(z' R, cosat) — 5(x) 5(y) 5(z))] d°X’ (11.1.5)

or
p(t)=q,R,cosmt’ Z=p,cosmyt’ Z (11.1.6)

with p, =q,R,po. From (8.3.10) and (8.3.14), with this expression for p(t), and defining
k=a,/c, we have for E and B the expressions

2 -
B(r.1) = _é¢f_; p,C krsmé?

1 2p, cosé
Ar r

(o}
~ 1 p,sing
+e, ————
Are, 1

[coswo(t—r/c)+—sma)"(kt_rlc)}

E(r,t) =8, [cose,(t—r/c)—krsina,(t—r/c)] (11.1.7)

[(1— k*r*)cosa,(t—r/c)—krsina,(t—r/ c)]

Terms in equation (11.1.7) like cos, (t —r/c) represent traveling waves moving away
from origin with a frequency o, and a wave length 4 =2xz/k, with period T =27/ o, .

Note that our conditions in equation (8.2.9) are now r >>d and A >>d (this requirement
on A is equivalent to the requirement that the maximum speed of the moving charge be
small compared to the speed of light, as we saw above). Note however that we have
made no requirement on r as compared to A, only that both be much greater than d.

We now restrict ourselves to the radiation terms in equation (11.1.7), that is the
terms that go to zeroas 1/r as r —oo. Inthe limit that kr >>1, the dominant terms in
these equations are the radiation terms,

R k?sin
B(I‘,t)z—%f—;’z—c P, rSI 0

2 2 o}
E(r,t)=—é6::; C pokr sind

cosa,(t—r/c)
(11.1.8)

cosa,(t—r/c)



Version Date, December 6 2010 78

where to get the form for the electric field in (11.1.8), we have used the fact that
1
2

CcC =
Hy &,

11.2 Energy and momentum flux

The energy radiated into a solid angle dQ is just the Poynting flux into that solid
angle, that is

MWeas _ | Braa XBraa | 51240 (11.2.1)
dt My
or

) A

dWrad — r (Erad XBrad) n (1122)
dQ dt M,

Using the radiation fields in (11.1.8) in (11.2.2), we have

AWy n 1 c p,’k*sin*@ cos* w, (t—r/c) (11.2.3)

dQdt  (47)%e,

The radiation electric field E for electric dipole radiation is polarized in the plane of i
and p, and the radiation magnetic field B is out of that plane.

If we average over one period T and integrate over all solid angles, we find the total
energy flux per second (in ergs/sec) is

dW\ _cp’k' 1 2g/°<a’> (11.2.4)
dt 12re, 4re, 3 c° o

where <a2> is equal to the value of the square of the acceleration averaged over one
period (the average square of the acceleration is just one-half of the square of the peak
acceleration). Compare equation (11.2.4) to equation (11.1.2) for the instantaneous rate
at which energy is radiated.
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So equation (11.2.4) gives the rate at which energy is radiated away. What about
momentum? We use equation (10.3.7) We need to compute —T-A. The j-th component
of —T-A is given by

(-=T-n); =-T;n, =-T,, since N=F (11.2.5)

Since By = 0, we have
~-T-A :—[goEEr —%ér(goEerBz/yo)} (11.2.6)
But E Ey is proportional to 1/r3, so we can drop this first term, and only keep radiation

fields in the ¢ E*+B®/ u, term, so that equation(10.3.7) becomes

dPrad 1
=+
dtdQ (47)%e,

é k*p,2sin® @ cos® w,(t—r/c) (11.2.7)

This vector is radial and in magnitude is just 1/c times the energy per unit time passing
through nda (cf. equation (11.2.3)). A photon has energy #» and momentumzw/c.

We can time average APy over one cycle, but if we integrate AP over dQ2we get a
dtdQ dtdQ

net of zero (to do this must first express ;P% in Cartesian components, and then

integrate over d£2).

12 Magnetic Dipole and Electric Quadrupole Radiation
12.1  Learning Objectives

We now consider the properties of magnetic dipole radiation and electric
quadrupole radiation.

12.2 Magnetic dipole radiation

In looking at electric dipole radiation, we have just scratched the surface of the
radiation produced by time varying sources. Electric dipole radiation is the dominate
mode of radiation, but if it vanishes there are other modes we now review. We only want
to consider two other characteristic forms of radiation, which for d/cT << 1 turn out to be
important only if the electric dipole moment vanishes. Consider the higher order terms in
equation (8.2.11) for A(r,t):
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A ! OF) (Y 3y’
A(r,t) = py J'(n r')J(r',t')dx +4;rcj'(n~r)ﬁ\](r,t)d X (12.2.1)

By using your results on Problem 3-1(c) of Problem Set 3, this can be written as

J.Kr’x iJJx ﬁ} d*x’
8rrc ot

+8:r j[r(n N +J (A r)]dx+8 - j{

A(r,t) =

1) | 6o

(12.2.2)

Let us first treat the first two terms in (12.2.2), which will give us magnetic dipole
radiation.. With the definition m(t") = %jr'x\](r',t’)d?’x' from (8.2.14), we have for the

magnetic dipole part of A:

m@) | m(t’)}x - (1223

_ M
Anag p (1:1) = 47; { r? cr
The first term here is just static magnetic dipole vector potential. To get the full B, we
must compute Vx A. This is messy, and we can avoid the work by noting that outside

the source, we have from Maxwell's equations in vacuum that

170 0
VxB=——E and VxE=-—B
X C2 Of)t X é)t (12.2.4)

In particular, the first equation on the left in (12.2.4) must be true for the electric dipole B
and E given in (8.3.10) and (8.3.14) above. Thus

r2

vy to {L_'_p}(ﬁ} 1 a{[sn(p A)—p] [3(p-)-p]  (BxA)xh

Ar ¢ ot dmer’ 4recr’ ax g,rc

} (12.2.5)

Since% = % , We can integrate both sides of equation (12.2.5) with respect to t' to

obtain

wlp  ploal 1 [[3A(p-A)—p] [3A(p-A)-p] (BxA)xA
VX{=| —+= | XN == + + 2
{47[ {cr I‘z} } c? { 4rre, 1’ 4re,cr’ 4r g,r (12:2.6)

If we just let p go to m this equation tells us what the curl of A(t") is in equation (12.2.3).
Thus, we have the expression for B for terms proportional to m and its time derivatives:
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B(r,t):i‘—;{r—ls[m(m-ﬁ)—m] +$[Bﬁ(m-ﬁ)—m]+r%(r’hxﬁ)xﬁ

} (12.2.7)

quasi-static induction radiation

Again, we see that we have the quasi-static magnetic dipole term, plus induction and
radiation terms.

What about E for the terms involving m? Well, we could go back and pull it out
oA . : .
of E(r,t)= —V¢—E, but this is not necessary since we can again use Maxwell's

equations. We know (12.2.5) is true, and it is just as true if we replace p(t') in that

equation with m(t'). That is, we must have (usingc® = 1
nomj| . 3n(m-n)-m] [3A(m-n)—-m]| (MmxA)xA
vx ol M M4 _ 2 [3A( )3 ], [3n( )2 ]+(mxn)z<n
4z |lcr r ot A r Adrcr 4 rc

But the term in brackets on the right hand side of this equation is just the B field which
involves magnetic dipole terms, so that

M, lm m| . o
vx{@{c_ﬁr_z}( n}zﬁB (12.2.8)
o
But we know from Maxwell's equations that the E field must satisfy VxE= _EB :

Comparing this equation with equation (12.2.8), we see that the E field for terms
involving m and its time derivatives must be given by

Lo|m o mj .
E(r,t)=——>| —+— |Xn
(r,t) e Lr rz} (12.2.9)
If we abstract from equations (12.2.7) E

and (12.2.9) the radiation terms, we have the
expressions for magnetic dipole radiation:

Y7 A
Bmagdip(r,t):T;Cz(mxn)xn

Moo oA
Emagdip(r,t):— Korcm XN

(12.2.10)
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For magnetic dipole radiation, B is in the plane of n and m and E is perpendicular to
that plane, just the opposite of the situation for electric dipole radiation. The angular
distribution of the power radiated per unit solid angle is the same as for electric dipole
radiation. That is, it goes as sin2@, where @ is the angle between n and m .

The total energy per second radiated is given by a form similar to equation
(11.1.2), with P replaced by m/c, that is

dWma i /Uo 2 mz
s 2 w2211

It is important to note that for particle motion, J in equation (8.2.14) defining mis a
charge density times a velocity V of a particle, and simple dimensional analysis leads to
the conclusion that:

For non-relativistic particle motion, we always have that the ratio of the power radiated
into magnetic dipole radiation to that radiated into electric dipole radiation is (V /c)?,

unless |p| happens to be zero.

12.3 Electric quadrupole radiation

We now turn to electric quadrupole radiation, which we can obtain from the 3"
and 4™ terms in equation (12.2.2). This is complicated mathematically, and let us start
out by stating what the important points are.

The energy radiated into electric quadrupole will be down by a factor (d/1)2 compared to
that radiated into electric dipole radiation. Thus, unless the electric dipole moment is
zero, electric quadrupole radiation is an unimportant addition to the radiated energy for d
<< A. Also, the frequency that emerges if we use the oscillating charge example of
Section V above is twice the frequency wg with which the charge oscillates (see Section
VIII below).

The following is an identity for the current density J

(A A ' 3y _ (A ' é’ (Y 3y’
[[r'(@-3)+3(-r)]d* =+[r (A-r)—= p(r',t) dX (12.3.1)
Using this equation, we can write the electric quadrupole part of A in (12.2.2) as

_ Ho (A ! Of’p(rl!t’) 3! Ho (A ¢! Of’zp(rzt!) 3y
Aelquad(r,t)—WJA{r (nr)T:|d X +mj|:r (n'r)T d°x

(12.3.2)
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From now on, we drop all but the radiation terms in our expressions, since if we keep the
full expansion, things get really messy. Thus we drop the first term in (12.3.2) So

2

d ' (A r I &/ !
Adss (1) = [ (A7) p(r )] X (1233)

For the moment, we define the 2" rank tensor H(t') by the equation

W d2 Ry '
H(t') = 7 J'[r'r’p(r’,t')]dsx':I[r’r’p(r )] d*x (12.3.4)
Then
Ay g (1, 1) =—2—A-A(t) (12.3.5)
8zcr
and thus
4, A-Fit)
Bl quad (rit)=VxA, quag =V X mCr (12.3.6)
_ 4, 2 nH,
(V X A quad )J. =€ 87c ox I (12.3.7)
M, N O 7 o X
VxA =g, —>—1—H +& 2> H —— 12.3.8
( el quad )j jkl 87Z'C r &Xk il jkl 87Z'C il &Xk r2 ( )

The second term on the right side of equation (12.3.8) is proportional to 1/r2, and
since we are keeping only radiation terms, we drop it. Using our prescription for taking
gradients of functions of t' =t - r/c, we have

ﬁ-lil(t’)}
Ho n r]i 1 A Ho |:
B =—¢j 87 C2 kr Hy or Bggu =—Nx 87 C2 . (12.3.9)
Using the definition of H(t'),
— luo ﬁ "' Pl ! 4! '
Bl quaa (1) = {—Sﬂcz r}{n [[rr p(r,t)]dr} (12.3.10)

which can be written as

ﬁ 0’73 ~ r ot 1 ’ Y ’
Be|quad(r,t)={gfgz ?}(at'{n'j{r r —gl(r )2}p(r,t)df} (12.3.11)
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where we have added a term involving the identity tensor. The term that we have added
is proportional to A x A and is therefore zero. Using (8.2.15) for the definition of the
quadrupole moment, we have

1. [a =
Bei quaa (1) = —Zﬁz—"cz?n x [n -Q} (12.3.12)

For quadrupole radiation, then, using equation (10.3.6) and (12.3.12), the energy flux into
unit solid angle is given by
2

dw

el quad /UO

dQdt  (24)z%c?

i [n(g} (12.3.13)

A tedious integration of equation (12.3.13) over all solid angles gives the total radiated
power

dqu d M 3. 3., ... 2
e L " 12.3.14
dt  720xc? i_l,-z_;'|Q” | ( )

12.4 An Example Of Electric Quadrupole Radiation

We take the same problem as for the electric dipole example above, except now

we compute the quadrupole radiation. What is Q ? Well, using the definition in equation
(8.2.15) and the charge density in equation Error! Reference source not found., we
have Q,, =Q,, =Q,, =0 . Moreover,

Q, ()= qo_[ﬁ(x’) 5(y)5(z'-R, cosa,t’) [3x’2 —(X*+y?+ 2’2)} d3x’
Qu (1) =—0q,R,?cos’ mt' =Q,, (")

Q, ()= qOJ'5(x') 5(y)5(z' - R, cosa,t’) [32’2 —(X?+y°+ z’z)] d3x’
Q, (t") =+2q,R,>cos’ m,t’

If we use the trig identity cos® @,t’ =1 (1+cos2wm,t") we can write Q as

-1 0

0
Qt)=q,R*(L+cos2mt)| 0 -1 0 (12.4.1)
0 0 1

Note that we now have a time variation at a frequency of 2wg. This is because the
quadrupole goes as the square of the position of the charge. Higher moments, which go
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as higher powers of the position of the charge, will for that reason exhibit time variations

at higher multiples of my. Note also that the trace of Q is0, as it must be. Taking the
appropriate derivatives, we have

-1 0 0
-3 0 (12.4.2)
0 1

O(t') =8q,R. 2w, sin 2a,t’| 0
0
Let's look at the angular distribution of this radiation. From (12.3.12), we see that

we first need to compute ﬁ-@. First of all, n is the unit vector in the radial direction,
and in Cartesian coordinates that vector is N =€ =sindcos¢e, +sindsinpé, +cosde,,
Now,

|:ér Q:| = zeerji =e,Q; (12.4.3)
i =
since Q is diagonal, so that

8 .Qt) = C(t)| —4sinOcosgé, —1sindsin gé, +cos 08, |

(12.4.4)
where C(t") =8q,R,’®,’sin 2m,t’

We want to express this vector in spherical components, using the standard relationships:

€, =sindcos e, +cosdcospé, —sin e,
€, =singsin g€, +cosfsinge, +Ccospe, (12.4.5)
€

=C0s0€, —sind e,

This gives
+8, (cos® @ —1sin® @ cos’ g—Lsin® sin® @)
é -6(t') =C(t")| +€,(-sin & cos @ —1sin O cosdcos® g—1sincosGsin’ ¢) (12.4.6)
+€,,(55in @cos ¢sin ¢ —3sin & cos gsin ¢)
or
8 .Ot)=C(t) [ & (cos® 0—4sin® 0)—&, sinOcos O | (12.4.7)

and finally we have

ﬁx[ﬁ-

!

Ot

] =€, X [ér (3] =-3sinfcosfdCe, x &,
(12.4.8)

o
o

6] =—3sinfcosdCe,
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From (12.4.8), we see that B is in the €, direction, and thus E is in the e, direction, for
this radiation field. From (12.3.13), we have that

dw.
elquad _ luoz SCZ(t’)sinZQCOSZH
dQ dt 256 7 C

X (12.4.9)
- Z‘O—iquOZRO“ sin? 2e,t' sin? @ cos? 6
T
Time averaging over one period gives the average power radiated per solid angle

dw 3
< dg;'qduid >: ‘8‘002 k°g,°R,*sin? @cos’ & (12.4.10)
7T

The angular distribution of this radiation is shown in the sketch.
z

Note that if we compare this to the amount of power radiated into electric dipole
radiation by this same system (equation (11.2.3)), we see that the ratio of quadrupole to

dipole radiated power goes as k’R,>~ R,/ A* <<1 , by assumption. So the power

radiated into quadrupole radiation is unimportant under this assumption, unless the
electric dipole moment is identically zero.

Note: in this example, the quadrupole radiation is emitted at an angular frequency of

2w, , and not @, , the frequency at which electric dipole radiation is emitted. In general,
the oscillation of a charge as in this example here will result in radiation of @, , 2w, ,
3w, ..., that is all harmonics of @, . If the electric dipole approximation is not satisfied,

the radiation emitted will emerge at higher and higher multiples of the fundamental.
Sychrotron radiation of relativistic particles is a good example, where the radiation

emitted extends up to 7’w, .

We go to no higher orders. To properly treat the expansion to all ordersin d /4 |
we need to introduce vector spherical harmonics (e.g., see Jackson, Classical
Electrodynamics, Chapter 16).
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13 Special Relativity
13.1 Learning Objectives

We discuss the Principle of Relativity and the conundrum facing the late 1800’s
physicist.

13.2 Co-moving frames
13.2.1 Setting up the unbarred coordinate system

We first discuss how space-time events are measured in different, co-moving
coordinate frames, and how to relate the measurements made in one frame to the
measurements made in another, co-moving frame. Let first describe how we set up a set
of observers in a given coordinate system, and how we record events in that system.

To construct a set of observers for a given coordinate system, we do the
following. We get together a large number of people at some place (“the origin) far
back in the past. They all are given identical clocks and rulers, and we make sure that the
clocks are synchronized and that the rulers are of the same length by direct comparison.
They agree upon a set of Cartesian coordinate directions in space, and some central
authority assigns a position in space for each observer, using distance along these
coordinate directions to specify positions. Each observer is also given a lab book. They
then start out from the origin and take up their assigned positions in space, using their
standard rulers to measure the distance as they go. They do this arbitrarily slowly, so that
their clocks have an arbitrarily small difference due to time dilation (we consider this in a
bit). At the end of this process, they are all at rest with respect to one another, observing
what is happening right where they are, and nowhere else.

Once they are in position, we are can now record how an event or sequence of
events "actually” happens. Assume that we have enough observers that they are densely
spread in space. Then something happens, for example a particle moves through space.
Each observer only records in her lab book the events which happen right at her feet.
Thus one observer might say, "I saw the particle at my feet at my time t according to my
clock, and I am located at position r . Because the event happens right at that observer's
feet, there is no worry about the time it takes the information to propagate from the event
itself to that observer (they are all infinitesimally small). So we have an true measure of
when the event occurs. All the observers involved faithfully record everything that
happens right at their feet, and nowhere else, for the duration of the event or sequence of
events.

Then, after the event is over, all the observers return to the origin, and all the lab
books are collected. The event is then analyzed, by reconstructing what happened at
every point in space, at every time, by someone who was right there when it happened.
When the reconstruction is finished, we have a description of the event or sequence of
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events as they actually happened, the same description an omnipotent all-seeing all-
knowing deity would give.

For example, we have a record of the position of a point particle as a function of
coordinate time t, say X(t). From that record of position, we can calculate the particle's
velocity at time t, by simply calculating the vector displacement Ar Ar = X(t + At) — X(t)

in spatial coordinates from t to t + At, and setting v(t)=Ar/At. And so on. This is the
way that we measure what "actually” happened in this system--we do not rely on having
to stand at one point and "watch™ what happens to something far from us. We use an
infinite number of observers who record only what happens right where they are, and
thus do not have to rely on information propagating to them at finite speeds.

Now, we need only add one requirement--we want this system to be an "inertial"
coordinate system. It will be an inertial system if a particle in motion, left to itself,
remains in motion at the same velocity. That is, if no forces act on the particle, we
observe that the particle moves at constant velocity in this system. Then our system is
inertial.

13.2.2 Setting up a co-moving inertial frame--the barred coordinate system

Now, we set up another inertial system, with another infinite set of observers,
using exactly the same procedure as above, and using the same brand of rulers and
clocks. However, in this new system (the barred system), the set of observers, when they
are in place and ready to record a set of space-time events, are all observed (in the
manner described above) by our observers in the first (unbarred) system to move at a
constant velocity v . For convenience, we assume that

V=VX . (13.2.1)

We now observe an event in space-time, or a sequence of events, in both
coordinate systems. After the observations are made, the observers in both frames all
return to some agreed upon point in space, and all the lab books are collected, for
observers in both frames. The event is then analyzed, in both frames, by reconstructing
what happened at every point in space, at every time, in both frames, by someone who
was right there when it happened. When the reconstruction is finished, we have a
description of the event or sequence of events as they happened, in both frames. Now the
question is the following. How are the coordinates recorded for an event in space-time in
the unbarred frame, (X,y,z,t) related to the coordinates recorded for that same space-

time event in the barred frame, (X,Y,Z,t) ?

13.2.3 Selecting a common space-time origin for the co-moving frames

To find that relationship, let us first redefine the origins in space-time for the
barred and unbarred frames, so that they coincide. To do that, let us pick a particular
event in space-time, say the birth of a future MIT student at Massachusetts General
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Hospital. Suppose the observer in the unbarred frame who was right there at the moment

of birth is located at (X, Yy:Zy,t,) in space-time. We use these coordinates to redefine
this event as the origin of coordinates for the unbarred system--that is, we go back to our
unbarred notebooks and we subtract from all our space-time observations at (X, Y, z,t)
the coordinates of this particular space-time event, that is, we re-compute locations in

space and time as (X=X, Y = ¥, 2= 2,,t=t,) .

Similarly, suppose the observer in the barred frame who was right there at the

moment of birth of our potential student is located at (X, ¥,.Z,,%,) .. We use these
coordinates to redefine this event as the origin of coordinates for the barred system--that
is, we go back to our barred notebooks and we subtract from all our space-time
observations at (X ¥,.Z,,t,) the coordinates of this particular space-time event, that is,

we re-compute locations in space and time as (X =%, Y = ¥,,Z=Z,,T =%) . Our co-
moving coordinate systems after this process now have the same point in space-time as
their common origin, which is the birth of our future MIT student. We will always
assume that this process has been carried out, so that the spatial origins of our two co-
moving coordinate systems coincideat t =1 =0.

13.2.4 The Galilean transformation

Now, what is the prescription or mapping that takes us from the coordinates of a
given space-time event in the unbarred frame to the coordinates of that same space-time
event in the barred frame? The Galilean mapping, or transformation (which turns out to
be incorrect), when the barred frame is moving with velocity v =VvX with respect to the
unbarred frame, is as follows:

|
I

t
vt

x|
Il

X= (13.2.2)
y
z

N <
Il

Note that we have built into this transformation the condition that the spatial origins
coincideat t=t =0 .

Let us be really clear about what this mapping means, by selecting a specific
example. Suppose that the velocity of the observers in the barred frame as measured in
the unbarred frame is v =1meter/year X , and that the unbarred frame is at rest with
respect to MGH. Suppose that at the age of 10, our future student has a minor accident
and is wheeled into the same room at MGH in which he was born exactly 10 years
earlier. The coordinates of this “return” event in the unbarred system, which we assume
is at rest with respect to MGH, are (0,0,0,10 years). The coordinates of this event in the
barred system are, according to out mapping rules given in (13.2.2), (-v x 10 years, 0,0,10
years) = (-10 meters, 0,0,10 years). What does this mean? It means that the observer in
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the barred frame who observes the student being wheeled into the same room, observes
this at a time t =10 years at a position located X =—10 metersdown the X axis. Note

that the origin of the barred system at this time is located at this time a distance +10
meters up the x axis. Just as we expect.

13.3 Gravitational interactions invariant under Galilean transformation

The Principle of Relativity has been around for a long time, long before Einstein,
and was first set out in the context of mechanics. Quite simply, the Principle of
Relativity says that there is no physical measurement we can make that can determine the
absolute speed of the coordinate system in which we are making the measurement. An
equivalent statement is that the form of physical laws must be the same in all co-moving
frames. Newton's most striking success, the equations describing planetary motion, are a
good example of the Principle of Relativity in mechanics. We review that example, so as
to get some idea of the context in which the equations of electromagnetism emerged
many years later.

Consider two particles interacting gravitationally, as seen in two different co-
moving frames, where the prescription for going from the coordinates of one event in
space-time to that same event as seen in the co-moving frame is given by (13.2.2). We
want to show in the context of Newtonian mechanics and the Galilean transformation,
that we cannot make any measurements of the interaction of these particles that will
determine the relative velocity of the two co-moving frames.

Suppose the trajectory of particle 1 with mass my is X,(t) , and the trajectory of

particle 2 with mass my is X, (t). We take as given that in the unbarred frame, the
equations of motion describing the gravitational interaction of these two particles are

mld—zle(t) _ G m, m, . Xl(t) - X2 (t) (13.3.1)
dt [X,(0) = X, () X, () =X, (1)

m, d_22X2 (t)=- o m M 2 20240 (13.3.2)
dt |X2(t)—X1(t)| |X2(t)_xl(t)|

Now we ask the following questions. Given the equations above and the Galilean
transformation, can we determine the equations of motion for the particles as they would
appear in the barred frame? The answer to this equations is yes, as we demonstrate.

First of all, what is the trajectory of the two particles as seen in the barred frame?
Pick a given time t in the unbarred frame. At that time, particle 1 is at X,(t). The

particle being at position X,(t) at time t is an event in space-time. What are the
coordinates of that space-time event in the barred frame? Using (13.2.2), the coordinates
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are T =t and X, (t) = X,(t)—Vvt. Thatis, we have that the trajectory of particle 1 as seen
in the barred frame is given by

X, (1) = X, (t) - vt (13.3.3)
or
X, (t) = X, (T) + vt (13.3.4)

Using these equations, and similar equations for particle 2, we can easily see that

X, (1)~ X, (1) = X, (F) - X, (F)

d d —
— X t)=—X (T)+Vv 13.3.5
i (0 it () + ( )
d? d

— X (t
dt? ()=

In equations (13.3.5), we have all that we need to find the equation of motion for particle
1 in the barred frame, assuming that (13.3.1) is true. That is, we easily have that if
(13.3.1) istrue and if the Galilean transformations (13.2.2) hold, then in the barred
frame,

2

(13.3.6)

m,

< %, ([) = Gm,m, ):<1(t_
|X(t) X a)||X(

with a similar equation for particle 2. Thus the equations in the barred system have
exactly the same form as the equations in the unbarred system. This means that we
cannot do any experiment in the barred system that will tell us the relative velocity
between the two systems. Let's be really precise about what we mean by this statement.

13.4 What does it mean for mathematical equations to have the same form in co-
moving Systems?

Here is one way to state the Principle of Relativity. You are put inside a closed
metal box that is at rest in the barred frame and therefore moving at constant velocity v in
the unbarred frame. You cannot look outside of the metal box, or interact with objects
outside of the metal box. For example, you cannot look out of the box at some observer
at rest in the unbarred frame through a window in the box. Or, you cannot stick your
hand outside the box and touch something that is moving by you, at rest in the unbarred
frame. However, you are allowed to have any measuring equipment you wish inside of
the box. In fact, you are given the entire contents of Junior Lab, and you can do any
physical experiment you want inside the box, to arbitrary precision. Then the Principle of
Relativity states that there is no experiment you can do inside the box that will determine
your velocity v with respect to the unbarred frame, or with respect to any other inertial
frame, for that matter.
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Mathematically, what this means is that the equations that describe the laws of
physics must have the same form in different co-moving frames. In the above example of
two co-moving frames, that means that the equations of motion in the two frames must
contain no terms which refer to the relative velocity between the frames. If the equations
of motion did contain such terms, then the motion of the gravitationally interacting
particles in your box would reflect that difference, and that would be an observable
difference between an experiment performed inside your box, in the barred frame, and
the same experiment performed in the unbarred frame. But since the equations (13.3.1)
and (13.3.6) describing the gravitational interaction in the two systems contain no such
terms (they have the same form), any experiment you perform will yield results
independent of the relative velocity. Therefore any such experiment will tell you nothing
about your velocity with respect to the unbarred frame.

13.5 Sound waves under Galilean transformations

Instead of gravitational interaction, let us turn to an example where there is a
preferred frame. Consider the equations describing the propagation of sound waves in
air. For sound waves, there is in fact a preferred frame in which the equations assume a
particularly simple form--the rest frame of the air. This is because we are talking about a
fluid--a set of particles interacting frequently via collisions, which therefore have a
common motion. Consider variations in time and the x direction only. In the rest frame
of the air, the equations describing the velocity of a element of the air w(x,t) =Xw(x,t)

at (x,t) with mass density p...(X,t) at (x,t) and gas pressure p(x,t) are the
momentum equation

5‘(@ é’pmass (X't)

0 ~ O
X, t)—w(Xx,t) =-Vp(x,t) =—X—p(Xx,t) =—
Prass ( )O,,t (x,1) p(x,t) axp( ) 2 ox

(13.5.1)

where we have assumed that there is a unique relation p(p,..) between the mass density
and the pressure, and the conservation of mass equation,

%pmass +v'(pmassw):0 (1352)

0
We define the "speed of sound" to be s? = 0,,—2 . Further more, we drop second order

terms in (13.5.1) and (13.5.2). That is, if Ppae (Xi1) = P s T 0 Prass (X, 1), and if wis
. . J o O .
already considered first order small, then pmass(X,t)EW(X,t) =P mass EW(X"[) to first

order in small quantities. With these approximations, equations (13.5.1) and (13.5.2)
become
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i , O

% s — W(X,t)=5"—06 X, t 5.

P s (x,1) 3 Prnass (X, 1) (13.5.3)
0 i

—0 X, 1) 4+ 0° ass — W(X,1) =0 5.

pn Prass (X, 1) + p 5x( ) (13.5.4)

and with a little manipulation, we can find an equation for w(x,t) that is

o 1 0

(W_s_zﬁ) w(x,t) =0 (13.5.5)

This is just the wave equation in the rest frame of the air, which tells us that in this frame,
sound waves propagate at the speed s.

Now, the obvious question is, what does equation (13.5.5) look like in a co-

moving frame, assuming that the Galilean transformation (13.2.2) holds. In particular,
2 2

- g 2
IR é’tz) transforms under (13.2.2)? Well, suppose we

have a scalar function G(x,t). Using the chain rule for partial derivatives, with
G(x,1) =G(x(X,T),t(X,T)) =G(X,T) , where we have put a bar on G because the
functional form of G(X,1)is different from that of G(x,t), we have

how does the operator (

G 0Got 6Gox oG oG | 0O o |=
=== t——=-——-Vv—=—-Vv—|G (13.5.6)
ot ot Jdt X ot Ot oX |0t X
where we have used (13.2.2) to conclude that VT —V. Also, we have
/G 0G ot 0GIx 4G
= + = (13.5.7)

OXx OTOX OXOx OX

Now, we similarly have that

2.0G |2 _Vé? o _Va9 G- o° oy ok +V2§2 S 1358
ot ot |0t ox||ot  AX ot? otox O X2 (13.5.8)

°G oG
ox: Ix?

(13.5.9)
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2
~) becomes in the barred coordinates

52
2§ ot

2 )V o° 1 0"2 -

_ G 13.5.10
s otox s° at ( )

so that the operator (

G T I S
ox* s ot?
This equation certainly does not have the same form in the co-moving frame under the
In fact it has two extra terms, which make a lot of sense

Galilean transformation. i
Suppose that we are looking for solutions to the wave equation in the barred frame, that
is, a solution which makes (13.5.10) zero. Try a solution of the form
‘ (13.5.11)

G(Y,t_) — el(kx at)

If this is to be a solution the "wave" equation in the barred frame, then @and k must
(13.5.12)

satisfy
vii—, v-—_ 1_
(1_5_2)k + —2k _S_Z = O
With a little manipulation, this can be written as
(3-vk) -sk?=0 (13.5.13)
(13.5.14)

w
==ViS
k

or

Remember, the ratio = is the speed at which you see this pattern propagate in

.
' k
the barred frame in the X direction, and it is not s. This is exactly the behavior our

everyday experience predicts. In frames other than the rest frame of the air, we see a
sound wave move at different speeds than s, and the difference is just what you would
expect, V=VX. So in this case, the equations describing the physical laws do have a

particularly simple form in one frame--the rest frame of the fluid. If we measure the
speed of sound in different directions in any other frame, we can indeed determine the

velocity of that frame with respect to the frame in which the air is at rest
But it is clear why that is a preferred frame, and it is clear that this does not

violate the Principle of Relativity. What we are measuring if we do this is the relative

velocity between the barred frame and the rest frame of the air. But this is like sticking

our hand out of the moving metal box and feeling the air blowing past, or touching a table
at rest in the unbarred frame and feeling the frictional force--we are not allowed to do
that. If we are confined to the inside of the box, measuring the speed of sound inside the
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box will not give us the speed with which we are moving with respect to the unbarred
frame, because our air inside the box is carried along with the box.

13.6 The dilemma of the late 1800's physicist

Let's just pose in a simple way the dilemma that many physicists faced in the late
1800's and early 1900's. It was well known of course that Maxwell's Equations yielded a
wave equation with a propagation speed of the speed of light, c. The physics and
mathematics of sound waves was also well known, so that everyone was aware that under
Galilean transformations, the wave equation had the form (13.5.5) only in one frame--the
rest frame of the medium in which the wave propagates. In other frames, the equations
would be different--just as our wave equation in the barred frame (13.5.10) is different
from (13.5.5). Which led most physicists to two conclusions. First, that Maxwell's
Equations as we have written them down must only be correct in the rest frame of the
medium in which light propagates (that medium was thought to be the ether). Therefore,
if we want to write them down in other frames, they must have a form that is a different
form from the form we have been studying.

Second, and more importantly, just as for a sound wave in air, it was thought that
one could measure our speed with respect to the ether by just measuring the speed of light
in different directions. That is, in your metal box with the junior lab equipment, you
could measure the speed of the box in an absolute sense by measuring the speed of a light
beam in different directions, without every looking out the window or interacting with the
world outside the box.

Of course, the problem was that this experiment was done in the late 1800's by
Michelson and Morley, and there was no discernible difference in the speed of light in
different directions, even though the Earth moves around the Sun at 25 km/sec, and the
Sun moves around the Galaxy at 200 km/sec, and so on. This experiment validated the
Principle of Relativity, but no one could understand how this could be. There were lots
of different ways to try to get around this conundrum (the mistaken belief that any wave
motion must have a preferred frame) such as the "ether drag", and the Lorentz-Fitzgerald
contraction, etc., but nothing that hung together until Einstein came along. Here were his
choices

Choice 1 Choice 2 Choice 3
Newton's Laws OK OK Need to be modified
Galilean OK OK Need to be modified
Transformations
Principle of OK for mechanics | OK for mechanics, | OK for mechanics
Relativity & E&M not for E&M & E&M
Maxwell's Need to be modified OK OK, same form in
Equations in some way every inertial frame

He of course choose the last column, i.e., that Maxwell's Equations have the same form in
every frame, and therefore satisfy the Principle of Relativity. But in choosing this
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alternative, not only do we need to find an alternative to the Galilean transformations, but
we need to modify Newton's Laws to make sure that they preserve the Principle of
Relativity under whatever transformation we decide is the right one.

13.7 The transformation of space and time

The Principle of Relativity says that the laws of physics should be the same in all
inertial frames. In mathematical terms, this translates into the statement that the form of
the equations of physics should be the same in all co-moving frames. We have shown
above that the laws of gravitational interaction as set down by Newton are the same in co-
moving frames if the Galilean transformation holds. In fact, this transformation is
incorrect, although it is a good approximation for V <<c.

What is the correct transformation? We deduce in this section the correct
transformation laws for space and time by requiring that Maxwell's Equations have the
same form in both our barred and unbarred frames. For the moment, we let this be a
purely mathematical exercise, and ignore the physics. Griffiths takes exactly the opposite
tack, concentrating first on the physics, and less on the actual structure of Maxwell's
Equations. These approaches complement each other, and you should read and
understand both.

First, before asking what the correct transformation is, it is clear that Maxwell's
Equations do not remain the same in form under Galilean transformations, because the
wave equation for light does not remain the same under Galilean transformations, as we
demonstrated above. But we know that the Galilean transformations must be valid for
speeds small compared to the speed of light, from experience. Therefore, we try to find a
transformation that is close to the same form as the Galilean transformation. We try the
form

t=ay,t+ayX

X=a,t+a,X (13.7.1)
y=y
Z=12

where the four unknown coefficients here can be functions of the relative velocity
v=VX. There is in fact a relation between ajg and a;; which must hold, namely that

Bo _

-V 13.7.2
o, (13.7.2)

Why must this be true? Because the origin of the barred frame is moving at velocity
v = vX With respect to the unbarred frame. Since the origin or the barred frame is at

X=a,t+a;, Xx=0 those points (x,t) in the unbarred frame which map into the origin
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of the barred frame satisfy X = —%t , but they must also satisfy X =Vt therefore
1

(13.7.2) must hold.

Now, with this assumed form for the transformation, we can easily derive, in the
same manner as (13.5.6) above, that

i_é’o” 6 OX o ., 0 1373
o AT ot oxX ot a“m‘ alOé’Y (13.7.3)
i_aaﬁam_ 0 ,, 0 1374
ox T Ox X Ax a‘”&t— a“ﬁ (13.7.4)
9 _0 o_0 1375
oy 2y o1 07 (13.7.5)

o? 0 0 o o é’z o? ’ o?
=| Ay + % Ay Of,t—"'aioé, aoo +2aooa10 %0 +a10 o7°

ot? ot
(13.7.6)
ﬁz = £+ ﬁ i+ i =a 2§_2+2a ﬁz + 2 az
x| Fmor Ty || fmor Ty | T G T ey T G
(13.7.7)
so that the wave equation becomes in the barred system is
1 0°
Ve )=
( c? ﬁtz)
1 o* 9 1 o? 1 o?
|:(a112 —7 ) X2 572 + O 72 +2(a01a11_c_2310a00)ﬁ_c_2(a002 _C2a012)ﬁ}

(13.7.8)

Now, if we want the form of this equation in the barred system to be unchanged,
then we clearly must have

1 1
(a,’ _C_Zaioz) =1 (agay, _C_2310a00)20 (8" —Cay,") =1 (13.7.9)

which together with (13.7.2) gives us
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. 1r 1 B A%
&y =y _\/ 2 _\/1_182 =7 & =7V a01__c_2 (13.7.10)
1-=
C
and our equations (13.7.1) become
- v
t = ]/(t iy X)
C
X =y (-vt+X) (13.7.11)
y=y
=1

These equations define the Lorentz transformations®. They reduce to the Galilean

transformations for v/c <<1. If we define the coordinate x° =ct, then this
transformation can be written in the matrix form

Y (7 B 0 0)x
x| |- vy 0 0|x
2l o o 1ol (13.7.12)
x° 0 0 0 1)(x°
or
3
Xr/tzzA,uv X"
= (13.7.13)

*There is an excellent collection of papers in a book “The Principle of Relativity" by Lorentz, Einstein,
Minkowski, and Weyl, Dover, 1952, including Lorentz's original paper where he derives this
transformation, another paper by Lorentz discussing the Michelson-Morley experiment and his contraction
hypothesis, and Einstein's original 1905 paper, among others.
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14 Transformation of Sources and Fields
14.1 Learning Objectives

Having derived the way that space and time transform, we now derive the way that
the potentials, fields and sources transform. Again, our only guide in this is the
requirement that the form of Maxwell’s equations be the same in co-moving frames.

14.2 How do p and J transform?

Now that we know how space and time transform, let us inquire about how the
fields the sources p and J transform, again approaching this from the mathematical
requirement that the form of Maxwell's Equations be the same in different inertial frames.
With (13.7.12), (13.7.3) and (13.7.4) become

o_,0 9 ot
ot 7ot ox (14.2.1)
LA R A 14.2.2
ox ot Tox (14.2.2)
With these relations, charge conservation (4.3.1) (%DJFVJ =0)is
o 23, dI, 23,
—p+ + + =
ot ox oy 01
2 o v O o Z NN |
——WN— |p+| V5 ——=+y—— |t —+—% 14.2.
(7/& yﬁ?jp (7&5 7&7}* oy o7 (1423)
174 v 17 od, 23
=— ——=J [+—7(J, ~vp)+—L+—2=0
aty[p czjﬁiy(x P) oy 07

But if the conservation of charge is to hold in the barred frame, we expect that in that
. J _ == . :
frame we will also have Ep +V-J=0. If we look at the last line of equation (14.2.3),

this means that we must have
_ v - - -
pzy(p—c—z\]xj Jo=7(3,—Vp) J, =1, J, =7, (14.2.4)

14.3 How do E and B transform?
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So we know how the sources transform. How about the fields? With (14.2.1) and
(14.2.2), equation (4.2.1) (V-E=p/¢, ) becomes

é’EX_FO”Ey_{_ﬂEZ— — l£+ ﬁ E +@+£—£ 14.3.1
ox oy o1 | et Tox) oy ot (14.3.1)
and the x-component of equation (4.2.3) becomes
ﬂBz_o”By_ J+iﬁEx_ J+i i—viE 1432
oy oz T o Mt Tar ax ) (14.32)
_ JE, .
If we solve equation (14.3.2) for 7 op e obtain
o ,[ 0B, OB JE
—E =c*| —=——|-c’ud +| yv—=
Lo o2 (] e
Inserting (14.3.3) into (14.3.1) gives
Ve 28, 98, —eud 4| v x| |+ 5EX+§EV+5JEZ—£ 14.3.4
| \oy oz ) T\ ok )T ex T oy e e, (14.34)
which with a little rearrangement can be written as
10E, 72 p Vv
——*+—E,-VvB,)J+—(E,+VB |=—-—=—2 14.3.5
y dX é’V( Y Z) Z( ’ y) g, ¢’ g, ( )
or
JE, O 7 7y %
- +5—7[7/(Ey —vBZ)]+E[7(EZ +VBy):|_8_0(p_C_2‘]x) (14.3.6)

but we know that if Maxwell's Equations have the same form in the barred system, then
we must have

JE, p
- (14.3.7)

oxX oy 0T g,

which means that if (14.3.6) holds, the electric field components in the barred frame must

be related to those in the unbarred frame by

E,=E E =y(E,-vB,) E =y(E +vB)) (14.3.8)

X X
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and that the charge density in the barred frame must be related to quantities in the
unbarred frame via

_ \Y
P =7(p—c—2~1xj (14.3.9)

But (14.3.9) is nothing new, it is just the first equation in (14.2.4).

How does the magnetic field transform? Well, consider (4.2.4) (V-B=0).
Using (14.2.2), we have

aBX+§By+é’BZ— LY ., 8 +é’By+@—0 14.3.10
ox oy o1 | T@ot Tox) ey oz (14.3.10)
and with the x-component of (4.2.2) (VxE = —%) and (14.2.2), we have
BB [ e 14.3.11
oy o1 ot Vot Tox ) (14.3.11)
_ OB, .
and if we solve (14.3.11) for 7 op e obtain
OB, V&BX +§EZ _0E, 14310
ot Vox oy oz (14.3.12)
If we insert (14.3.12) into (14.3.10), we obtain
v V&BX+5EZ_5Ey N 5Bx+5By+é’Bz_o 14313
c? oX Oy o7 "% oy I (14.3.13)
or
B, 0O Y o Vv
L+—|y|B,+=E, ||[+—| y(B,——E,) =0
T 57{7( VT3 ﬂ ﬁ[y( T y)} (14.3.14)
As above, this means that since V-B =0 in the barred frame, we must have
- - v - v
B,=B, B,=y By+c—2Ez Bz=y(BZ—C—2Ey) (14.3.15)

14.4 How do the potentials transform?
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What about the potentials? Well, if we define the four-vector current by
J“=(cp,Jd,,3,,3,) (14.4.1)

then (14.2.4) tells us that this four-vector transforms the same way that x“ does.
Moreover, if we define the four-vector potential by

AY = (% ALA, A) (14.4.2)
then we know that
, 1 77 u u
(V —C—ZE)A :_:uo‘] (1443)

Therefore, since the differential operator in (14.4.3) does not change form, and J4
transforms as x“ , then A* must also transform the same way.

We have therefore derived the transformation properties of space and time, and of
all the electromagnetic quantities that appear in Maxwell's Equations, simply by
assuming that Maxwell's Equations must have the same form in co-moving systems. In
particular, the way we have derived the transformation properties of the fields is that used
by Einstein in his original paper.

15 Manifest Covariance
15.1 Learning Objectives

We look at how to write Maxwell’s Equations in “manifestly covariant” form. This
means that at a glance we can tell that Maxwell’s Equations have the same form in all co-
moving frames.

15.2 Contra-variant and covariant vectors

To write Maxwell's Equations in a "manifestly covariant” form simply means that
we write them in a way such that at a glance they can be seen to be covariant--it is
"manifest”. By covariant, we mean that they have the same form in all inertial frames.
We already know that they are covariant of course--we showed that in the previous
section, but we want to demonstrate this in a more elegant way.

To do this, we need to define contra-variant and co-variant four vectors. A four
vector is contra-variant if it transforms like x“, that is, if
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x* =(x%, x5, x%, x¥) = (ct, X, ¥, 2) (15.2.1)
then
x° y =B 0 0)(x°
| |- v 0 0|x
X2 | 0 0 1 0fx? (1522)
x? 0 0 0 1){x°
or
y - 00
3
- y - v 00
x“=3 A“ x A" = 15.2.3
VZ:(; Y 0 0O 1 0 ( )
0 0 01
As an example of a contra-variant four vector, consider J*
3 =(p,3,,3,,3,) (15.2.4)
Rewriting equation (14.2.4) slightly, we have
_ v - v - -
CP=7(C,0_E‘]XJ ‘]x zy(Jx_Eij ‘]y =JY JZ =JZ (1525)

and that therefore J# transforms like a four vector.

Any set of four things that transform in this manner we call a contra-variant four
vector, and we denote such vectors by using a superscript for the index x, which runs
from 0 to 3, denoting the time and the three spatial components, in that order.

In contrast, we define a covariant four vector as any set of four things that
transform as

Ss) (7 78 0 0)(S,
S| |7 v 00]s
S0 o 1 ofs, (15.2.6)
S. 0 0 0 1/lS

w
w
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and we denote such vectors by using a subscript for the index g, which runs from 0 to 3.
For example, consider the vector X, , defined by

X, = (X, X3, X5, X3) = (=Ct, X, ¥, Z) (15.2.7)

(that is, all we have done is to change the sign of the time component). Then this set of
four things transforms according to (15.2.6), and not according to (15.2.2).

Thus given a contra-variant four vector, we can always define a covariant
counterpart of that vector by simply changing the sign of the time component. We

always have that S* and S  are related by

SO _SO
st| | s,
s | s, (15.2.8)
53 83

Another example of a covariant vector is the differential operator 2, , defined by

“ooxt CaxY T oxt axE axt cot' dx Ay Az (15.2.9)

7 2
If we look at equations (14.2.1) and (14.2.2), and solve them for ot and ax we have

o fo,,0 o _fvo. e
ot ot ax) M T @ ot ax (15.2.10)

or in matrix form

i i
ox° O x°

% y w00

oxt | |y 0 0] ox

110 0 10| ¢ (15.2.11)
oX? 0 0 0 1)|ox

i i

ox? ox®
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which means that this is a covariant vector. In contrast, if we define the differential
operator 2“ by

o oJ J 0
é’”zé’ =G )=o) (15.2.12)
X, OX 0% X% X ot dx Jdy 0z

o o o o o, 1
C

then it transforms as a contra-variant vector.

15.3 The invariant length of a four vector, and the four *'dot product™

Just as a three vector A has a length squared A’ =A’+A?+A? that is invariant

under ordinary spatial rotations, a four vector (contra-variant or covariant) has a "length”
that is invariant under Lorentz transformations. The invariant "length™ squared of a

contra-variant four vector S* is —(SO)2 +(Sl)2 +(Sz)2 +(S3)2. The invariant "length”

squared of a covariant four vector S is [—(30)2 +(S,)" +(S,) +(53)2} , which in light

of (15.2.8), is exactly the as the length squared of the corresponding contra-variant
vector. In fact, we have what corresponds to a four "dot product” of a four vector with
itself,

s's =Ys¢s, =[—(s°)2 (st +(s?) +(s3)1:[—(30)2 +(8,)"+(8,) +(S,)' |

u=0

(15.3.1)

which does not change from system to system. Given any contra-variant vector a* and
covariant vector b, the four dot product is defined by

a'b, =a b* =-a’h’ +a'b' +a’h’ +a’h’ = -ajb, +ahb +a,b, +ab, (15.3.2)

Again, this four dot product yields the same value no matter what frame it is calculated
in--it is a "Lorentz invariant"”, as can be shown directly by plugging in the
transformations properties of the vectors. Note that in equation (15.3.2), we are using the
following convention.

Whenever we have a contra-variant index and a covariant index repeated, there is
an implied summation over that index from 0 to 3

Note that if we look at the differential operator 7“ and its covariant counterpart J,, we
have for the four dot product 0“2, that
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1 o7 o° o° o° 1 57
o', =————+ + + V- — 15.3.3
Lot ott oxt oyt o1’ c? ot? ( )

which since it is the form of a four dot product, must be the same in every Lorentz frame.
Of course, we know that already, since we explicitly constructed the Lorentz
transformation to guarantee that this is true.

15.4 Second rank four tensors
Just as in three dimensions, we can define second rank four tensors. Remember

the way we defined a second rank tensor in three dimensions. If a three vector A
transformed under spatial rotations like (see Problem 1-2 of Assignment 1)

A =R,A (15.4.1)

then we defined the a second rank three tensor Tjj as any nine things which transformed
as

-F“ = Rim RjnTmn (1542)
The easiest way to construct an object that transforms as a second rank three tensor is of
course to take any two three vectors A and B and form a second rank tensor Tj; by setting

Tij = AijBj. This set of nine objects clearly transforms as (15.4.2) demands.

As we have seen over and over again since we first defined second rank three
tensors, their main utility is that

If T isasecond rank (three) tensor and C is any (three) vector, the dot product of C
with T "from the left" is a vector,C- T, and is given by (C"T')j =C;T;. The dot product
of C with T "from the right" is a vector, T-C, and is given by, (T-C), =T,C,_ If T is
a symmetric these are the same vector.

We define second rank four tensors in a very analogous fashion. We define a

second rank contra-variant four tensor as any set of sixteen objects H*® which transform
as

H =A%, A7, HY (15.4.3)

The easiest way to construct an object that transforms as a second rank contra-variant
four tensor is to take any two contra-variant four vectors A* and B¢ and form a second

rank tensor H”? by setting H*” = A*B° . This set of sixteen objects clearly transforms
as (15.4.3) demands.
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Just as in the three tensor case, the main utility of second rank four tensors is
statements like

If H* isasecond rank contra-variant four tensor and C, is any covariant four vector,
then the four dot product of C, with H**, C,H*" is a contra-variant four vector with

contra-variant index o. Again, we can define the four dot product from the left or the
right, but for symmetric second rank four tensors, the result is the same, and we will only
encounter symmetric tensors in electromagnetism.

15.5 The field tensor F*° and the transformation of E and B

We can define the four-vector potential A“ by (see (14.4.2))

A =(%,&,Ay,Aj (15.5.1)

Consider the second rank contra-variant four tensor defined by
F“=0"A" -0" A" (15.5.2)
What is this tensor? Well, if we write out the components of this tensor, we have for F*

FOl— 50AL — A1 AD =_1£AX_£!:E (15.5.3)
cot X ¢ C

A .
where we have used the fact that E = —V¢—E. What about components like F*2?
0

F12=0»‘>1A2_0f)2A1=iAy_
O X oy

A =B, (15.5.4)

where we have used B =VxA. Proceeding in this way, we find that

0 E/c Elc E,lc

X y

E -E/c 0 B, -B, (15.5.5)
-EjJc -B, 0 B, o
-E/c B, -B, 0

Thus we see that the electric and magnetic fields transform as the components of a
second rank four tensor, that is, in the manner described by given by (15.4.3). If we write
this equation in the following form
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Emv_ A”A AVO_ =R zz AylFla (Atranspose )GV (1556)
o 4

where A"™"P** s the transpose of the matrix given in (15.2.3) , then this looks like matrix
multiplication. In fact, we have

w _ X . z Y
~Efc -B, B,
~Ec B, -B 0
y =y 0 0 0 Efe EJc Efe)( y -y 0 0
- y 0 0|-E/lc O B, -B, |- » 00
o o 10||-E -B, 0 B |0 0 10
o o o1)-E B -B 0Jlo 0 01
y -y 0 0 —yBE,[c yE,lc E/Jc E,lc
- vy 00 —yE,lc yPE,lc B, -B,
|0 0 1 0|-yEfc+yBB, yBEJc-yB, 0O B,
0 0 0 1)\-yEfc—y8B, yBEJc+yB, -B, 0

72 (BEJc—pEJe) (7 —7r*f°)Edc  y(E,Je-1pB,) 7(EJc+ypB,)
~(y*-7*B*)EJc ¥’ (BEJc-BE,Jc) —yBElc+yB, —yBE,jc—yB,

-yE,lc+yBB, 7PE, lc—yB, 0 B,
—yE,lc—ypB, yBE,lc+yB, -B, 0
0 E,/c y(E~vB,Je  y(E~+VB,)c
— —E,lc 0 +7(B,~VE,/c?) —y(B, +VE,/c?)
~7(E,~VB, Je, -y(B,-VE,/c*) 0 B,
~7(E+VB, e y(B,+VE,/?) -B, 0

(15.5.7)

and if we just pick off the components of the first and last matrices in (15.5.7) we have

E =E E =r(E,-vB,) E =y(E +vB)) (15.5.8)

X X
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\' = \'
Bx = Bx By = }/(By +C_2Ezj Bz = y(Bz _C_zEy) (1559)

which is the same as we obtained before using Einstein’s approach. These equations
can also be written as

E, =y(E, +vxB) (15.5.10)

jou}
I

= 1
I B|| BLZV(BL—?VXEJ (15511)

where parallel and perpendicular refer to the direction of the relative velocity v =vX

We can also define the covariant second rank four tensor F,, =2, A -J,A,,
which has the form in terms of E and B

0 -Eflc -Elfc -E,lc

z

+EJc 0 B, -B

F = ‘ Y 15.5.12
“ | +Elc  -B, 0 B, ( )
+E,/Jc B, -B, 0

Just as in three space, we can define the totally anti-symmetric forth rank four tensor

vA
ghe

+1if uvAo is an even permutation of 0123
& ={ —1if uvio is an odd permutation of 0123 (15.5.13)
0 otherwise

The dual tensor G** to the field tensor F** is defined by G** =%5”V*"FM. This has the
form (cf. page 501 of Griffiths)

0 B, B, B,
-B, 0 -Ei/c Ejlc
G" =
-B, E,lc 0 -El

y

-B, -E/c Elc 0

(15.5.14)

15.6 The manifestly covariant form of Maxwell’'s Equations
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First, consider the four divergence of F*", thatis J,F*". We have from (15.2.9)
and (15.5.5) that

0 E lc Ey/c E lc

X z

a#FﬂV:(li,ﬁ,i,ﬁ “Efe 0 BB, (15.6.1)
cot ox dy dz’'|-EjJc -B, 0 B,
“Ejc B, -B, 0
or
V.E
o
10E, 08B, 08B,
5 Em - ¢ ot ay oz 1_;OEOCV.E - (Cp] (15.6.2)
“ 10E, 0B, 0B, | | 55--VxB Hol g >
¢ At Ox Oz
10E, 0B, 28,
¢t ot Ix oy

so that we see that two or our four Maxwell's equations are contained in the following
manifestly covariant equation

O F" =—p,d" (15.6.3)

This is “manifestly covariant” because it is a relationship between four vectors, and the
equation has this form regardless of the system, because of the way four vectors
transform. We find the other two Maxwell's Equations are contained in the equation

é’ﬂG”V =0 (15.6.4)
since

0 B, B, B,
-B 0 -E,)c E,c
2,G" = (lﬁ,i,ﬁ,ﬁ " ‘ ’ (15.6.5)
cit ox dy 71| -B, E,lc 0 -El

y

-B, -E/Jc Elc 0

z

or
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-V-B

1(oB, /oE, CJE,

cl ot Jdy Oz -V-B 0
o,G" = = = 15.6.6
# 1 é’BX—aEZ+é’EX 1 @+VXE 0 ( )

cl dt JIx Oz cl ot 0

1 5BX+5Ey_5EX

cl Jdt  Jx 2y

What about our other equations? Well, charge conservation in four vector form is
2,3 =0 (15.6.7)
and the Lorentz gauge condition equation (6.1.8)on the four vector potential is
oA =0 (15.6.8)
where of course (cf. (23)) the four vector potential satisfies
50, N =—puJ" (15.6.9)

All of these equations are manifestly covariant--that is, they have obvious transformation
properties that guarantee that they will remain the same in form from one inertial frame
to the next.

15.7 The conservation of energy and momentum in four vector form

We can define the contra-variant second rank four tensor ®*" by

(e, E*+B*Iy,) SJc Sjc Sl

X y z

O = Sx/C _Txx _Txy _sz (1571)
S,lc -T, -1, -T,
S,lc T, T, -T,

where S is the Poynting vector, S =%, and T is the Maxwell stress tensor. If we
Hy
take the four divergence of this four tensor, we have
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+(&,E*+B’/u,) SJc Sjc S,

X y 2
@@W — (1£1£1£,£) S,lc T _Txy T (15.7.2)
cot dx 2y 0z S, lc T, -T, -T,
S,lc T, T, -T,
%%%(50E2+le,uo)+vTS JE
00" = P ) = c (15.7.3)
E(SOEXB)JrV-(—T) —(pE+JxB)

where we have used the conservation of energy and momentum that we have previously
derived to arrive at the last expression. However, we have

0 El Elc EJc\-cp

X y
ey | B0 BB | g | [ ZE 574
"“|-Ejc -B, 0 B B . (15.7.4)

Jy
x E+JxB
“Ejc B, -B, 0 J| J (o )

y z

It is clear that conservation of energy and momentum in four vector form is expressed by
the equation

0,0 =—F"J, (15.7.5)

16 Relativistic Particle Dynamics
16.1 Learning Objectives
We now then turn to the question of relativistic particle dynamics.
16.2 Now for something completely different

So far, we have made Maxwell's Equations look a lot prettier, but we have added
no new information by introducing our manifestly covariant formulation.

However, we noted above that Newton's Laws preserved the Principle of
Relativity under Galiliean transformations, but they do not preserve that principle under
Lorentz transformations. How do we reconcile this with Special Relativity? What we
need to do is to try to modify Newton's Laws so that they transform correctly under
Lorentz transformations. We do this by requiring that our equations for particle motion
be manifestly covariant--that is, that they can be written in four vector form. Moreover,
they must reduce to the familiar form at small velocities compared to c.
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We can in fact find such equations, without a lot of trouble. This shows the
power of the covariant formulation. It will tells us how to change Newton's Laws so that
they are correct for relativistic motion, merely by requiring that the form of the equations
be covariant.

Consider a single charged particle moving with mass m and charge q in given
electric and magnetic fields. Let X(t) be the spatial position of the particle at time t. For
a given space-time experiment, we measure X(t) at time t using our infinite set of
coordinate observers, as described previously. In the non-relativistic world, we used to
say that once we have made a set of measurements for the particle motion in given fields,
those measurements will satisfy the differential equation

ma= m%X(t) =q(E+uxB) (16.2.1)
where
_dX(t) _du(t)  d?X(t)
u(t) =4t and a(t) = it - 4 (16.2.2)

The vector u is the ordinary three space velocity--the velocity your infinite grid of
observers compute from their observations of particle position X(t) versus coordinate
time t. To be absolutely clear about this, consider how we would compute u(t) at time t;

along the trajectory of the particle X(t):

(16.2.3)

u(tb) = lim Mz lim X(ta +At)—X(ta)

b —ta tb _ta At—0 At

Where At =t —t,. Thatis, once we have collected all our observer notebooks after a

given experiment is over, we reconstruct what X(t) was during the experiment, and we
also calculate things like u(t), or the ordinary three space acceleration a(t), by performing
computations on our data like (16.2.3), as well as like

u(t)-u(t) _ o ult,+AD-u,) (16.2.4)

a(t.)=Ilim
(t) t, —t, AL50 At

t, >ty

Now, we want to write equation (16.2.1) in a properly covariant form. The
problem is that even though this equation involves basic observables in a given inertial
frame, things like ordinary velocity u have terrible transformation properties from one
inertial frame to another. Why? Because when we compute u in any given frame for
some time interval At, we are differentiating with respect to the change in coordinate time
At in that frame, and this changes from one co-moving inertial frame to another, because
of the way that space and time transform.
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There is however a time-like measure of the separation between two space-time
events a and b on which observers in all inertial frames will agree. This is the
combination

C’Ar’ =c’AtP - AX* =AYy’ -AZ" =—(b,-a,)(b" -a*)
_ . _ (16.2.5)
=C’AT*-AX*-Ay*-A7’=—(b,-a,)(b“-a*)

where a,, is the four vector location of event a as seen in the unbarred frame, and b, is
the four vector location of event b as seen in the unbarred frame, etc. The Lorentz
transformation leaves this quantity invariant, so that no matter who calculates it in what
inertial frame, the answer is always the same. In differential form, we have

dx?+dy®+d z? dx?+dy?+d z? 2
dZ‘Z:dtz—( CZ )—dtz[l( CZdytz )]—dtz(lucg)j(m.zﬁ)

or

CZ

dr=dt (1— uz(t)J (16.2.7)

Clearly this is the time like parameter we want to differentiate with respect to get nice
transformation properties. Physically, the proper time dz separating eventsaand b,
assuming that event b occurs very close to event a, corresponds to the amount of time
that would be measured in that inertial frame at which the particle appears to be

instantaneously at rest at time t, that is an inertial frame moving at speed v =u(t,) .
This proper time zis also the time that would pass if you were riding with the particle.

16.3 The four velocity and the four acceleration

We now are in a position to define the four velocity and four acceleration. The
space-time trajectory of the particle X*(t) is given by

XA (t) = [;(tt)) (16.3.1)

2
. u-(t
But since we have dz =dt [1—#} , We can compute how t and rare related--that
C

is, we can find t(z) or. In practice this can be quite difficult (we give a specific example
later), but in principle it is clear that we can do this. So we can treat X“(t) as a function

of roroft, thatis X*“(z) = X“(t(z)). We can define the four velocity n* by the
equation:
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nu:ixﬂ(r):i( ct(r) j: 1 _d ( ct J:( 7uC ] (16.3.2)

dr dr | X(t(r)) /1_5 dtl X)) Lpu(t)
CZ

u(t)?

C2

Where y,(t)=1/,/1-

. We use the subscript on y,(t) to remind us that this is not

the constant gamma associated with going from one inertial frame to another via a
Lorentz transformation. This gamma is a function of time, and is based on the time
varying particle velocity u(t). Also, in the third step in equation (16.3.2), we have used
the differential relation (16.2.7) to convert from the derivative with respect to proper time
to the derivative with respect to coordinate time. Similarly, we can define the four

acceleration Z“ as

C
=H =i,7ﬂ =;iﬂﬂ - 1 i ! ( J (16.3.3)
dr u?(t) dt u?(t) dt u?(t)? \u(t)
1-—; 1-—+= 1-—~—
C c C

Taking the t derivatives in (16.3.3), we obtain

(16.3.4)

16.4 The equation of motion

Now, given these four vectors, let us see if we can find a manifestly covariant
equation that reduces to (16.2.1) for small velocities compared to c. Well, if we use
equations (15.5.5) and (16.3.2), we have the suggestive result that

0 EJc Elc Elc\(-yc

e -EJc 0 B, -B,|u, ¥, — 1641
=] _ _ = c A
Ey/C BZ 0 BX }/u Uy }/u(E"FUXB)
-E,,c B, -B 0 Nrnu,

y X

In we compare (16.2.1) and (16.4.1), we see that the covariant equation

mdinﬂ = qF*n, (16.4.2)
T
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will reduce to (16.2.1)in the limit of small velocities compared to the speed of light.
Writing this out component by component, we have

E-u
C C  —
mdi[ Yo ' ]zmyudi( Yo . J:q e (16.4.3)
T yuu() t }/uu() VU(E'FUXB)
The time component of (16.4.3) is
im;/uc2 =gE-u (16.4.4)
dt
and the spatial component of (16.4.3) is
im;/uu(t):q(E+u><B) (16.4.5)

dt

This is really quite amazing. We have not only found a dynamic equation (16.4.2) that
reduces to Newton's form at low speeds, but we have also ended up with something in
(16.4.4) that is totally different than anything we have seen before. The right side of
equation (16.4.4) is clearly the rate at which work is being done on our charge by the
electric field, so the left hand side of (16.4.4) must be the time rate of change of the
energy of the particle. Therefore we must have

2

Energy of particle=my,c’ = me =~ mc? +%mu2+... for u<<c (16.4.6)
u
e
Something totally different.
16.5 An example of relativistic motion
In Eq. (16.4.3), we found that
d c d c E
md—( Yo ]:myud—( Yo J:q e (16.5.1)
T ]/UU(t) t }/uu(t) yu(E+UXB)

Let's look at a specific example of particle motion using (16.5.1). Specifically, let's
consider the motion of a charge in a constant electric field E = E, X, with B = 0. Assume

that at t = 0, the charge is at rest at the origin. We want to find its subsequent motion.
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We can do this two different ways. We can either solve for things as a function of
coordinate time t, or as a function of proper time z. Let's first do it in terms of coordinate
time. With this electric field and initial conditions, u =u X, the spatial part of (16.5.1) is

d
—my u=gE 16.5.2
prillb ARt ( )

The speed is zero at t = 0. The solution of this equation for u(t) is given below in
(16.5.3). Also, we give the limits for small times and for large times.

u gkt

ut)=——"_ = . (16.5.3)

If we integrate our expression in (16.5.3) once more with respect to time to obtain x(t),
we find the expression given in Eq., and we also give expressions for x(t) for small and
large time limits, as above.

T T | ot <
x(t) = ¢ 1+£q °tj 1= 1% (16.5.4)
qE mc mc
0 ct t>—
qE,

Lets do this another way. We solve this problem from scratch as a function of
proper time z. If we look at the space and time components of (16.5.1), we can derive a
second order differential equation for y,(z). This equation, and its solutions given our

initial conditions, is as follows:
d qE

E]/u :TOQ/UU (1655)
d E
7= qmo v, (16.5.6)
d2 E Y
Pl =[%) ”. (16.5.7)
qE
7, =cosh| —>7 (16.5.8)
mc

We can now get t as a function of zby using dt =y,dz, as follows:
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dt = y,dz =cosh (q—E"Tjdr (16.5.9)
mc
Et =sinh (q—E"rj (16.5.10)
mc mc

For short times, t << m_Ec we have u << c, and the proper time zand the coordinate time
qc,

: mc . : :
t are equal. For longtimes t >> G u is about c, and the relation between proper time
0o

and coordinate time is

9E, ,
E_Lfw Eeoon[2E] sy
mc 2 mc mc

17 Radiation by a charge in arbitrary motion
17.1 Learning Objectives

We consider time dilation and space contraction. We then return to the subject of
radiation, and look at the radiation emitted by a charge in arbitrary motion, including
relativistic motion.

17.2 Time dilation and space contraction
17.2.1 Time dilation

Moving clocks run slower. To see this consider a clock at rest in our barred
system. Let one point in space-time be (ct,X,V,Z) =(0,0,0,0) and another point in
space-time be (ct,X,y,7Z) =(cAt,0,0,0). Then using the Lorentz transformation that
takes us from the barred to the unbarred frame, that is

y w00
3
H_ A—l'u Va4 “1\# — }/ﬂ 7/ 0 O 2.
X Z;( )Vx (A) 0 0 10 (17.2.1)
0 0 01

we have that the origin in the barred frame transforms into the origin in the unbarred
frame, and that (cAt,0,0,0) transforms into (cy At,y vAt,0,0). Thus the time interval
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of At =y At in the unbarred frame looks like a longer time as compared to the barred

frame, i.e. the clock at rest in the barred frame is running slower as observed in the
unbarred frame. That is, time is dilated.

17.2.2 Space Contraction

Moving rulers are shorter. To see this consider a ruler at rest in our barred
system. Let the left end of the ruler be located at (ct,X,y,Z)=(0,0,0,0) and the right

end at (ct,X,y,Z) =(ct,L,0,0) (in a minute you will see why we leave the timet

unspecified). Then using the Lorentz transformation that takes us from the barred to the
unbarred frame we have that the origin in the barred frame transforms into the origin in

the unbarred frame, and that (ct,L,0,0) transforms into (cyt + SyL+,yvi +7L,0,0). If

we want to know the length of this moving ruler as seen in the unbarred frame, we must
measure the position of the left end at the same time as we measure the position of the

right end in the unbarred frame, which requires that cyT + ByL =0, or that we must take

¢t =—p4L. When we make sure we are measuring the position of the left and right end
at the same time in the unbarred frame, we thus measure a distance

Wt +yL = yv(—Eﬂ/C)+7/E = y(—fﬁ2)+ yL = ;/E(l—ﬂz) =L/y (17.2.2)

Thus a ruler at rest in the barred frame with length L has a shorter length L=L/y as
seen in the unbarred frame. That is, length in the direction of motion is contracted.

Space contraction can help us understand in part the way that sources and fields
transform. Consider for example a line charge along the x-axis at rest in the unbarred
frame with charge per unit length A, due to elemental charges of charge +e spaced a
distance AL apart. So we have A =e/AL. If we make the assumption that the elemental
charge +e is a Lorentz invariant, then in the barred frame the charge per unit length 4

will be larger, because space contraction will lead to AL = AL/ y, and therefore

A =el AL = y AL . This explains the way the fields transform in this case (see (15.5.8))
as well as why the sources transform the way they do in this case (see (15.2.5).

17.3 The Lienard-Wiechert potentials

I want to find the electromagnetic fields associated with a point charge in
arbitrary motion (even relativistic). Let us first return to the general solution to the time-
dependent equations of electromagnetism that I arrived at in (6.2.12), which I reproduce
below.

p(r,t)= [ ot p dt’5(t t—|r-r|/c)d®x  (17.3.1)

47[ 80 alltime all space
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A(r,t)=4e j dt’ j L’rt)olt'5(t—t'—|r—r'|/c)o|3x' (17.3.2)

!
472. alltime allspace| - |

When | was applying equations (17.3.1) and (17.3.2) to the radiation from extended
sources of charge and current, | first used the delta functions to do the dt" integrations,
with the result that we ended up with expressions that looked like

p(rt)=—1 P ) oy (17.3.3)
47[ 50 all space | r-r
where
ty =t=|r—r'|/c (17.3.4)

Then | carried out the d*x’ integrations over the extended sources, and that occupied a
large fraction of the effort leading to formulas like those for electric dipole radiation, and
so on. However, when | am considering from the outset point sources, it is more
appropriate to insert the charge density and current of a point charge into equations
(17.3.1) and (17.3.2), and then do the d®x’ integrations using the delta functions
associated with the point charge.

Consider a point charge whose position in space as a function of time is given by
X(t") . We can easily define its “ordinary” velocity and acceleration (see the discussion

in Section 16.2 above) by

i =320 g e -du0 _TXO

dt dt dt?

(17.3.5)

The charge and current densities associated with this point particle are then given by
PP =08 =XE) It =quit) FE-XE)  (17.36)
If we now insert these expressions into (17.3.1) and (17.3.2), we obtain

(t—t’—|r—r’|/c)
[

1 i 3y’ 3! i 5
mnozzzgjmjdxqa(r—xa» (17.3.7)

and
(t—t’—|r—r’|/c)

r—r'

We now use the 5°(r’' = X(t")) delta functions to do the d3x’ integrations, giving for
¢(r,t), for example

5
A(r,t) = f—ﬂ j dt’ j 43X q u(t)S3(r' = X(t)) (17.3.8)




Version Date, December 6 2010 121

S(t—-t'—|r=X()|/c)
r-r

1 1
#(r,1) —mfdt q (17.3.9)

0

Note that | have in one fell swoop gotten rid of all the pain that | went through in
considering electric dipole radiation, for example, when | was dealing with d®x’
integrations over spatially extended sources. However, | have exchanged one form of
pain for another, because I still have to do (and interpret) the remaining integral in
(17.3.9).

This integral, because of the | r—X(t)

in the argument of the delta function, is of
the form J'dn f(n7) 6(A(n)). If I change variables and integrate with respect to A instead
of n, | have

d di
Jan 1) ot = [a4) 2 1r(2) 00 = 1) |7

(17.3.10)

n=1y

where 7, is a zero of A(n), thatis A(r,) =0. The absolute value signs appear in
(17.3.10) for reasons which are explained fairly clearly in Griffiths..

So, | need to evaluate

%[t—t'—| r-X@)|/c]|= ‘—1—%| r—X(t" |‘ =1- [rc_|>r<(_tl)x]('tlf)(|t') (17.3.11)
I define the unit vector from the particle to the observer at time t’ to be
n(t’) =% (17.3.12)
and the vector B(t") to be
B(t) = u(:) (17.3.13)
then (17.3.11) becomes
%[t—t'—| r-X(t)|/c]|=1-A@)-B(t) (17.3.14)

and equation (17.3.9) becomes, in light of equation (17.3.10)
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1 q 1

0 R 8] e, [T X

(17.3.15)

where t;,, is the zero of the argument of the delta function in equation (17.3.9), and
therefore satisfies

C(t—t)=[r=X(t)| or to=t=[r=X(t)|/c (17.3.16)
Similarly, the vector potential is given by

1 omaug) 1 ugy
A= R Be] 4 rx@y] ¢ 7Y

(17.3.17)

These are the famous Lienard-Wiechert potentials.
17.4 The electric and magnetic fields of a point charge

We can obtain the fields from the potentials in the usual manner, that is by taking
differentials in space and time with respect to the observer's coordinates, r and t. This is
complicated, as we have seen before, because not only are there explicit dependences in
¢and A on the observers coordinates, but there are implicit dependencies through the

retarded time. It is clear from equation (17.3.16) that there is a complicated (and
generally transcendental) relationship between t, r, and t;,. Thatis, t/, depends both on
t and r, so the derivatives with respect to any function of t/, are involved. The treatment

of Griffiths is the standard one, and we quote only the result here. The electric fields of a
point charge in arbitrary motion are

E(r,t) =| —J np_ } +! q lﬁx{(ﬁfﬁ)fﬁq (17.4.1)
dre, y2(1-n-B)°R . | 4re, ¢ (-n-B)R .

and
B(r,t) = %[ﬁ xE] (17.4.2)

where
B(t)——B(t) a(t) =|r—X(t')|,andy§:1/[1—l;—jj (17.4.3)

For velocities small compared to the speed of light (£ small compared to 1), we recover
the non-relativistic results we expect..
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We emphasize that all of the derivatives in (17.4.1) are taken with respect to the
particle's coordinate time , t', and not the observer's coordinate time, t, (both measured
in the same coordinate system), and then the various terms are evaluated at the retarded
time tj, =t—|r—X(t.,)|/c.. Toshow how different this is from taking the time
derivatives with respect to the observer’s time, consider the expression for E(r,t) due
originally to Heaviside and rediscovered and popularized by Feynman

E(rt)=——| —+——fA+

g [f, 1d; 1d; (17.4.4)
dre,|R® Redt  c*dt® | o

Amazingly enough, equation (17.4.4) is equivalent to equation (17.4.1) (which you can
show after about 10 pages of equations). The difference is that the time derivatives in
equation (17.4.4) are taken with respect to the observer's time t, and then evaluated at the

retarded time t/,., whereas those in equation (17.4.1) are taken with respect to the particle
time t' and then evaluated at the retarded time t;,,. Clearly, there must be a complicated
relationship between the observer's time and the retarded time, which we explore below.

But first, let us quote a few results for the rate at which energy is radiated using
these fields. The angular distribution of the energy radiated into solid angle d<2, per unit
time observer time t, is given by (compare equation (10.3.6), and using (17.4.1))

» ~ . 2
dWrad _ r.z(Erad )(Brad)'f:l —_ r2Erazd — r2 q 1 nx {(n _B) x B} (17 4 5)
dQ dt 4, Ci, cu, | 4re, ¢ (1-n-B)°R o

or

aw, gt |Ax[G-p)xp]|
det_(4ﬁ)2cgo (1-A-B)° (17.4.6)

Comparing this expression to (11.2.3), we see that in the non-relativistic limit we recover
the dipole radiation rate per unit solid angle, as we expect.

Another expression we will need is the expression for the angular distribution of
the energy radiated into solid angle d£2, per unit time along the particle trajectory time
t’, which is given by

~ ~ . 2
rad  _ derad ﬂ_ q2 ‘nx[(n_B)XB:H
dQdt’ dQdtdt’ (4z)cs,  (L-A-B) (17.4.7)

dw
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The (1-n-B) term appears to the fifth power instead of the sixth power, because we
need to multiply (17.4.6) by a factor of (1-n-B) to convert from rate with respect to t to

the rate along the particle trajectory t', as explained in more detail below. The total
energy radiated into all solid angles, again per unit time along the particle's trajectory,
can be found by integrating (17.4.7) over solid angle, giving

d\;\i,f - 4;;1 p 23(12 7 UBF - Bﬂ (17.4.8)

This quantity turns out to be a Lorentz scalar, and ¢?y° [|[3|2 —|B X Bﬂ is the square of the

acceleration of the charge in its instantaneous rest frame (see Section 17.7).

The (1-f-B)° in the denominator of equation (17.4.7) causes a distortion in the
radiation pattern we have previously seen for non-relativistic particles. Figure 17-1 gives
examples of this. Figure 17-1(a) is just our familiar non-relativistic angular distribution
of radiation.. The particle is at rest, and the acceleration is upward, and we get a
distribution of radiation that is proportional to the square of the sine of the polar angle. In
Figure 17-1(b), the acceleration is again upwards, but now there is a velocity of 0.3 the
speed of light, also upwards. We see an enhancement of the radiation along the direction
of the velocity. In Figure 17-1(c), the acceleration is still upwards, but the velocity is 0.1
the speed of light to the right, perpendicular to the acceleration. Again we see an
enhancement along the direction of the velocity. As the velocity becomes closer and
closer to the speed of light, the radiation is more and more beamed into the direction of

the velocity. This happens because of the factor of (1-N-B) to the fifth power in the
denominator of (17.4.6). What is the physical origin of this beaming?

Figure 17-1: The radiation pattern for a charge in arbitrary motion

17.5 Appearance, reality, and the finite speed of light

There are two approaches to understand physically what is going on with this
extreme emphasis on the forward direction (that is, the direction along the velocity
vector) when the motion is relativistic. First, there is the effect of how the differential
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time dt is related to dt’. Remember that equation (17.3.16) holds, and if we differentiate
this equation, we obtain

or
%:Hﬁ. B% (17.5.2)
which can be written as
d;ftet = (1_%_[3) (17.5.3)
and also as
dt=(@1-n-B)dt,, (17.5.4)

What does equation (17.5.4) mean? Remember, this has nothing to do with time
as measured in different co-moving frames. We are measuring all these times in one
coordinate frame. What (17.5.4) means is the following. The observer is sitting and
watching the particle move in space, and recording what appears to happen. This is very
different from using our infinite grid of observers who essentially function as all-seeing
and all-knowing . When we limit ourselves to one observer and ask what that one
observer "sees" as a function of time, then we get the effects of the finite propagation
time for light to go from source to observer, and that is what (17.5.4) encompasses.

For example, suppose a particle is moving straight toward our observer at speed
V, and emitting a "beep" of radiation every At'seconds, which spreads out at the speed of
light from the place where it was emitted. What will the observer say is the time interval
between these beeps when they arrive at her position? Well, consider two beeps.
Assume that the first beep is emitted at t = 0. Suppose also at time t = 0 that the observer
and the source are separated by a distance D (see Figure 17-2)

source D observer
t=0 o+ o
t =At' VAL' o— o
source D-VaAu observer

Figure 17-2: Beeps emitted by source as seen by the observer
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The observer will see the first beep arrive at a time t, = D/c. How about the second

beep? Well, if it is emitted a time At’ after the first beep, and the source is assumed to be
moving directly toward the observer at speed V, the source will be only a distance
D-VAt" from the observer when the second beep is emitted (see Figure 17-2). The

second beep will then arrive at the observer ata timet, = At'+(D -V At')/c after the

first beep. Since the time difference between beeps as seen by the observer is At=t, —t,,
we have

At=t,—t =[At'+(D-VAt)/c]-D/c=(1-V/c)At (17.5.5)

This makes perfect sense. When the observer records the arrival of the beeps at her
position, she finds a time interval between their arrival that is shorter than the time
interval between the times that they were actually emitted along the particle's trajectory,
because the second beep was emitted closer to her than the first beep, and therefore
arrives sooner than one would expect based on the time At between the emitted times at
the source.

Furthermore, this is exactly the effect predicted by equation (17.5.4) (remember
the unit vector N points from source to observer). One can generalize this argument for
any angle between n and the velocity of the source, and obtain the result (17.5.4) as a
general result. For example, if the source is moving directly away from the observer, the
time between beeps as recorded by the observer will be (1+V /c)At’, that is, the beeps

will arrive further apart in time than At’ , and that is again exactly what one expects

from simple arguments like the one leading to (17.5.5). There is nothing fancy here to do
with time dilation or times measured in different frames--all these times are measured in
the same frame, we are just talking about the time separation between events on the
particle's trajectory as it appears to an observer relying on information propagating at
finite speeds.

Moreover, it makes sense that this effect will give a peak of emission rates in the
forward direction. Suppose the beeps above were not light pulses, but pulses from a laser
cannon on board the Enterprise, and the observer is not a Course 8 major but a Klingon

warship at rest. Picard has accelerated the Enterprise up to (1—10*6) of the speed of

light, and is heading directly toward the Klingon warship, firing his laser cannons at a
rate one per second, as seen by our infinite grid of observers at rest with respect to the
Klingon war ship (how fast Picard sees his cannons firing is a different question, which
involves going from one co-moving frame to another). When these pulses reach the
Klingon warship, they hit at a rate of 106 per second! Why? Because Picard is laying
down these bursts in space one right behind the other, since the Enterprise is moving
almost as fast as the bursts. He has an opportunity to lay down a huge number of them in
the space in front of the Enterprise, and all of these bursts arrive at the warship in a very
short time compared to the time Picard has been laying them down. This is all as seen in
the same coordinate time, the time as measured a coordinate system at rest with respect to
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the Klingon warship. This is exactly the advantage a supersonic jet attack--if you rely
only on sound to tell you that an attack is under way, then as soon as you hear that they
are coming, they are already there.

17.6 How Nature counts charge

There is another way to get some physical understanding of why the factor
(1-n-B) pops up all over the place. We have already discussed this in part in Section

6.3. This perspective is also discussed at length in Griffiths, Section 10.3, and is in fact
the way he comes to this factor in the Lienard-Wiechert potentials (we in contrast have
given the standard mathematical derivation above).

First of all, let's introduce the notion of a space-time diagram (see Figure 17-3).
In this kind of diagram, the vertical axis is the time axis, converted to distance by
multiplying by the speed of light. The two horizontal axes are spatial axes. Any event in
space-time can be described by the spatial coordinates at which it happened, and the time
at which it happened, and is a point in this diagram. The motion of any physical object
can be represented by a trajectory in space-time. If you are sitting at rest at the spatial
origin, your space-time trajectory is simply a vertical line through the origin. If you are
moving in the x-direction at a constant speed close to the speed of light, your space-time
trajectory is a straight line in the ct-x plane at an angle just greater than 45 degrees to the
x-axis. In Figure 17-3, we show two space-time trajectories. The one on the right is

spacetime ct

Figure 17-3: The space-time diagram

the trajectory of a particle moving in a circle in the x-y plane at a constant angular speed,
with a speed around the circle of close to the speed of light. In a space-time diagram, this
trajectory is just a spiral upwards. In the space-time diagram trajectory on the left, we
have a particle meandering about at sub-light speeds.
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Now, suppose that we are an observer sitting at the origin of space-time. What is
it we see at a particular time, say t = 0? Well, what we see is all the things in the past
which emitted radiation which has just arrived at the origin at t = 0. That is, we will see
back in time to all events in space-time whose times t < 0. and positions (x,y) satisfy

r=.(x*+y?) =—ct (17.6.1)

This equation defines the backward light cone (see Figure 17-4 and also Figure 6-2). The
backward light cone is a cone of events in this space-time diagram defined by the above
equation. At any given instant in time t < 0, the cross-section of this cone in ordinary
space (the x-y plane) is a circle of radius -ct. A signal radiated at t < 0 from any source
on this circle of radius r = -ct will reach the origin precisely att = 0. . Conversely, any
signal that is traveling at the speed of light and reaches the origin at precisely t = 0 must
have been radiated from a source in space and time located somewhere on the backward
light cone, and only on the backward light cone. Thus what the observer at the origin of
space receives via radiation at t = 0 is information about all events in space and time
located on his backward light cone, and no others. When you look around you, you are
looking into the past, and what you "see" are things in the past that happened on your
backward light cone.

observer

hackwar‘d Ilghlzcnne

Figure 17-4: The observer’s backward light cone.

Moreover, with a little thought you can see that if we plot the trajectory of a
radiating charge in space-time, the condition that links the observers time t to the retarded
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time t;,, (see equation (17.3.16) ) is, for the case that the observer is at the origin at t = 0,

t, = —|X(t;et)| /c. But this is just saying that at the retarded time the particle's space-time

trajectory lies on the observer's backward light cone. We illustrate this for a particular
space-time trajectory in the above diagram. At a given observer time, the observer will
"see" radiation from that point along the space-time trajectory of the charge which
intersects or "cuts" his backward light cone. It is fairly easy to see geometrically that as
long as the charge's speed is everywhere less than the speed of light, the space-time
trajectory of the charge can intersect the observers backward light cone at one and only

one point in space-time, and this happens at the time t/,, ..

There is another way of defining the things that one “sees" at a given instant of
time, as we discussed in Section 6.3.1, due to Panofsky and Phillips, and this is the
concept of the information gathering, sphere collapsing toward the observer’s position at
the speed of light. Everything that you "see™ at some time t, say t = 0, is gathered by an
information collecting sphere centered on your position at t = 0, that has been collapsing
toward that you at the speed of light since the beginning of time. For example, tonight
you can go out and look up at the night sky and see the Andromeda galaxy and Saturn at
the same time. Both of these are on your backward light cone when you do this--with the
information about Andromeda being collected about two million years before you look
up, and the information about Saturn collected 90 minutes before you look up, with all of
this information arriving at your eye just as you look up, dutifully carried by the
information gathering sphere which has been collapsing toward you at the speed of light
for long time in the past, which passed through the Andromeda galaxy three million years
before you looked up. .

The interesting thing about this view of things is that we can use it to get some
feel for the strange way that Nature presents us with information collected in this way, in
particular about the amount of charge on a moving particle. Let us forget about point
charges for the moment and return to extended distributions of charge. We have seen that
the potential due to a finite distribution of charge is given by equation (6.2.15)

(17.6.2)

where again we emphasize that everything is measured in the same coordinate frame, and
where (for a spatially extended distribution of charge) t, =t—|r—r'|/c. Now, suppose
our charge is distributed on a a rod lying on the x-axis, carrying a charge per unit length 4
with length L, with total charge go = AL.* The rod is moving at some speed V along the
x-axis, directly toward the observer. The observer sits on the x-axis at x = 0, calculating

the potential there at t = 0 using the prescription in (17.6.2).  The potential that the
observer calculates according to this prescription (assuming the rod is far away) is

*In the rest frame of the rod, the charge per unit length of the rod is A/yand the length is ¥ L, where Error!
Objects cannot be created from editing field codes. , and therefore the product AL = qgq is a Lorentz
invariant (the same in all co-moving frames).
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d 1 ! ! !
= [ A(X,t;, ) dx (17.6.3)

1 X'
0,0)=—— | A(X 1, =
#(0.0) 47[80'[( ) X| 4reg,D

How do we do the integral on the right in equation (42)? We know from the
above discussion that evaluating A(X',t;,,) at t;,, give us zero if no part of the rod is on

the backward light cone of the observer, and A if any part of the rod is on our backward
light cone. This means that we should add up the charge per unit length times dx’ for all
the space-time points on the rod which lie on the backward light cone of the observer
sitting at the origin at t = 0.

That is, the instruction given in the integral on the right of the above equation is to
find the charge on the rod by taking its the apparent length as seen by the collapsing,
information gathering sphere as it moves though the distributed charge at the speed of
light, and multiplying that apparent length times A. What will that give us?
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Figure 17-5: Sampling a line charge moving toward the observer.
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Consider Figure 17-5. In the top diagram, we show space at the instant of time
t'< 0. At this time, our information gathering sphere collapsing toward the origin at the
speed of light has just encountered the right end of the rod, also moving toward the
origin, but at speed V < c. In the bottom diagram, we show space at the time t'+ At". At
this time, our information gathering sphere has just left the left end of the rod, heading
toward the origin to deliver the information about how much charge it saw when it passed
through the rod. The time At’ is thus the length of time that the rod is on the backward
light cone of the observer. How long is At"? Well, in time At’, the rod moved toward the
origin a distance V At’, so that the total distance between when the sphere first
encountered the rod to when if last encountered the rod is L +V At" = cAt’. Solving this

equation for At" gives L/(c—V). The distance Ax'on the backward light cone that the
sphere was in contact with the rod (Ax" = L+V At' = cAt") is therefore given by
AX'=cAt'=L/(1-V /c). This is the length over which the integral in equation (17.6.3)
will be non-zero, so that we have

1 1 AL 1 q
0,0 g /1 X"t, dX*: — 0
#(0.0) Ar e, D I (X ta) 4z g, D {(1—V /C)} Ar e, D [1—V /C} (17.6:4)

Thus the potential we are instructed to calculate by equation (17.6.3) is that due to
a larger charge than is actually on the rod, by a factor of L/(1-V /c). This can be a
huge factor if V is close enough to c. Furthermore, since the dimensions of the rod have
disappeared from our final result in (17.6.4), this "enhancement™ of charge will be true
for a point charge moving directly toward the observer as well. In the more general case,
the charge in (17.6.4) will be g, / (1—n-B) , so that the way the information gathering

sphere estimates charge can either be an overestimate (the case above) or an
underestimate (for example, the rod moving directly away from the observer). The
space-time diagram below in Figure 17-6 illustrates these two cases for a rod moving
directly toward the origin along the x-axis at 0.8 c, and for another rod moving directly
away from the origin along the negative y-axis at 0.8 c. Clearly the distance over which
the backward light cone intersects these two moving rods varies dramatically, which

leads to the dramatic variation in the Lienard-Weichert potentials with (1-n-p) .
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Figure 17-6: Two charges cutting the backward light cone of the observer.

You may think that this is really a strange way to decide how much charge is out
there, and in fact Panofsky and Phillips offer the following analogy to show how strange
itis. Itis as if we were taking a census in a city to determine the total population in the
following way. The census takers form a circle around the outskirts of the city, and then
begin to converge toward the center of the city moving at some predetermined speed.
They count the number of people in the following way. They observe the density of
people around them, and then they multiply that density by the area they cover in a given
time to get the number of people they have seen in that time.

Clearly this is a bad way to do a census, because if all the people are moving in
toward the center of the city, the census takers will overestimate the number of people.
For example, if there are only 1000 people in the city, but all 1000 gather in a circular
ring that includes the census taking circle, and move along with the census takers at the
same velocity, the census takers will count an enormous number of people, because the
local density of people will stay the same for a really large distance. And vice versa--if
people are moving out, they will undercount. This is no way to take a census, but it is
precisely the way that Nature instructs us to figure out how much charge is out there.
And this method really gives a lot of weight to charge moving toward us at near the speed

of light. Hence the factor of 1/ (1-A-B) in the Lienard-Wiechert potentials.
17.7 Synchrotron radiation

To show how dramatic this enhancement in the forward direction can be, let us
suppose we have a charged particle moving in a circle or radius a in the x-y plane with
angular frequency o,and speed V, = w,a (see Figure 17-7). The particle's position X(t")
IS given by
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X(t") =a [Xcos(w, t') +Ysin(w, t')] (17.7.1)

and the period T =27/ w,. The figures on the next page show the intensity of radiation

as seen at a given instant of time by observers in the x-y plane at z = 0, for different
values of the speed of the particle. The enormous change in the distribution as the speed
approaches the speed of light is all due to the enhancement of the radiation in the forward
direction. Essentially, at very relativistic speeds, the observers in the x-y plane only see
radiation when the velocity vector of the particle is pointed right toward them (at the
retarded time, of course). Otherwise, they see very little radiation, and if they are not in
the x-y plane, they never see very much, because the velocity vector never points directly
towards them.

Figure 17-7: A charge moving in a circle in the x-y plane
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Figure 17-8: The spatial distribution of synchrotron radiation in the x-y plane.
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It is interesting to look at the radiation electric fields as seen by a single observer
as a function of retarded time. Suppose we have an observer far out on the positive x
axis, at a distance D >> a. In this case, we have

t, =t—|DX—X(t),)|/c=t —1\/(D —acos(a,t!,))’ +a’sin(a,t!,)’ (17.7.2)
c

ret

and if we keep terms only to order a/D, this equation can be written
D a
t, =t——+—cos(o,t,) (17.7.3)
cC ¢
If we differentiate equation (17.7.3), we find that

a .
“’C sin(e,t.,)) (17.7.4)

dt=dt,

ret

@+

or that

1-A-p) =+ 2

sin(a,t,,) = (L+ B, Sin(@,tl,)) (17.7.5)

This expression for (1—N-B) is smallest when @t/ is 3n/2, that is, when the velocity
vector is pointed along the positive x-axis, directly toward our observer (see Figure 17-7).

Now, what electric fields does this observer along the x-axis see? Well, we have
equation (17.4.1) and we deduce that the radiation field has only a y component. If we

plot Ey as a function of t/,, we get curves that look like those in Figure 17-9, for various

ret !
values of £, . We have adjusted the normalization at each value of A3, so that the
electric field is a maximizes at unity. In fact, there is a tremendous enhancement of the
electric field for the same acceleration as £, approaches unity.
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Figure 17-9: E, as a function of time for various values of V,/c.

One final point about the amount of radiation this accelerating charge radiates.
The four acceleration defined by (16.3.4) has the following Lorentz invariant length

ey {_(%2 (ED + (a(t) +7,2U (u_zajj } =7, |:|a|2 -
c c

But we know that in the instantaneous rest frame of the charge, the form for

! (: O

2 u-a rest frame
a(t)+y,u (C_z

axu

(1]

2
} (17.7.6)
=H

is

]

(1]

=V

rest frame

rest frame

Equations (17.7.6) and (17.7.7) tell us that if we measure the three acceleration and three
velocity in any frame, we can compute the acceleration in the instantaneous rest frame of
the particle by computing the following quantity

axu

c

T (17.7.8)

3> ) a2_
rest frame _j/u

This looks familiar. If you look back at equation (17.4.8), we had

i [l (17.7.9)
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but using (17.7.8), this is just

rest frame

- 3
re, 3¢ (17.7.10)

aw,, 1 29* , |V|z_|v><\'l|2 1 297,
d'  4rze, 3¢ | ¢ |

17.8 The Radiation Reaction Force

We now turn to a self force term that we have so far neglected. An accelerating
charge must feel a “back reaction force” due to its own self-fields. This form of this
force is generally written as

- _ 1 2¢°d%V
radiation reaction 472'80 3 C3 dtZ

(17.8.1)

This is the force that must be exerted on the charged object due to the fact that it is
radiating and losing energy irreversibly to infinity due to that radiation. Something must
be providing energy to power the radiation, and it is either coming from the kinetic
energy of the charge, or if the charge is not losing kinetic energy, it must be coming from
an external agent which is doing work at a rate sufficient to account for the radiation. In
any case there must be an electric field at the charge due to the fact that it is radiating,
and the force associated with that electric field has to have the form given in (17.8.1).

The standard way to get a form for this radiation reaction force for a point charge
is to say that whatever the form of this force F Frr, if we are going to maintain

radiation reaction

constant kinetic energy of the charge, the rate at which we do work against it to offset its
effects is given bY —F_iion reaction * V » Where v is the velocity of the charge. This energy

must eventually end up as energy radiated away, so that if we compute the total work we
do over all time, conservation of energy demands that we must have

dWrad dt —
dt

J- 1 29%°

W :_J-F".V dt:j 4re, 3 c°

us

dt (17.8.2)

In arriving at the last term in (17.8.2), we have used the standard form for the rate at
which energy is radiated into electric dipole radiation by a non-relativistic charge, and we
are integrating over all time in equation (17.8.2). If we assume that the particle is at rest
at the endpoints of our integration, we can integrate the right side of equation (17.8.2) by
parts to obtain the form we want for F

radiation reaction

1 2g%’ 1 2q°. . 1 2q°..
z dt=|—=Vv.-vdt=—| —="V.vdt 17.8.3
J 4re, 3 C° J 47, 3 ¢° J Az, 3 ¢ e
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If we compare equation (17.8.2) and (17.8.3), it is natural to conclude that
2 T 2
F =V =—m 2V==mrz, V 17.8.4
radiation reaction 472'8 3 C3 3 e C 3 e’e ( )

where

I
== 17.8.5
= (17.85)

is the speed of light transit time across the classical electron raduis. This is the form we
have in (17.8.1).

It is important to emphasize that the radiation reaction force represents an
irreversible loss of energy to infinity. We never get this energy back, it disappears
forever from the system.

18 Basic Electrostatics
18.1 Learning Objectives

We first motivate what we are going to do in the next four or five sections. We then
go back to the origins of electromagnetism—electrostatics, and spend some time going
through the classic aspects of this subject, including the energy we put into assembling a
configuration of charges.

18.2 Where are we going?

In Section 1.3.1, I enumerated what I consider to be the profound part of classical
electromagnetism, which | repeat here.

1) The existence of fields which carry energy and momentum, and the ways
in which they mediate the interactions of material objects.

2) The nature of light and the radiation process.

3) The explicit prescription for the way that space and time transform which
is contained in Maxwell’s equations.

We have finished with (2) and (3) above, and we have touched on various aspects of (1).
We now focus our attention on (1). In particular we will be looking at the
electromagnetic interactions of particles and fields in the “near zone”, where we neglect
the effects of radiative losses, and look at the reversible exchange of energy, momentum,
and angular momentum between charged particles and fields, and how that proceeds.

As a preview of the sorts of things we want to explore, consider the application
showing the interaction of charged particles, as shown in Figure 18-1 and Figure 18-2.
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Charges in the application interact via the Coulomb force, with a Pauli repulsive force at
close distances, plus a damping force proportional to velocity. The Pauli repulsive force
goes at inverse radius to the sixth power, so it is very “stiff”. That is it either dominates
the interaction or it is more or less negligible compared to the Coulomb force. So as you
watch the charges in the application interact, they “bounce” at close distances, when the
Pauli repulsion very quickly overpowers any Coulomb attraction between charges. The
damping proportional to the velocity allows our particles to settle down to a meta-stable
configuration. If we did not have the damping there would be a continuous interchange
of energy between the kinetic energy of the charges and the energy stored in the field.
The damping allows us to drain away that Kinetic energy so that the particles end up in a
meta-stable state with zero kinetic energy and a local minimum in the electrostatic
energy.

=] n = |[1a

Figure 18-1: An applicaton showing charges interacting via Coulomb’s Law
:/lweb.mit.edu/viz/EM/visualizations/electrostatics/InteractingCharges/



http://web.mit.edu/viz/EM/visualizations/electrostatics/InteractingCharges/�
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Figure 18-2: The same application as above except with a “grass seeds”
representation of the electric fields

So the non-relativistic equations we are soving in this application, assuming we
have N interacting charges {qi}iN= , With masses {mi}iN= . and frictional damping rates

{7} located at positions {r,(t)}" , with velocities {u; (t)} ", are

u.(t)=dr.(t)/dt (18.2.1)
du(t) <& 0iq; (ri_ri) S (ri_rj)
m——== —_— P —M.y.u.
'odt ;4@, r-r,| " ,Zi' - T (18.2.2)
J# j#i

Coulomb force  Pauli repulsion drag

This is a system of first order differential equations which in two (three)
dimensions has 4 (6) dependent variables for each particle (a position vector and a
velocity vector) and thus a total of 4N (6N) dependent variables. For the system shown
in Figure 18-1, where we have eight particles, this is 32 dependent variables. Solving this
set of coupled dependent variable equations as a function of the independent variable t
can be carried out by standard numerical techniques, for example fifth order Runge-
Kutta. The first term on the right in (18.2.2) is either repulsive or attractive depending on
whether the signs of the ith particle and that of the jth particle are the same or opposite,
and goes as inverse distance squared between the charges. The second term is always
repulsive, and goes as inverse distance to the sixth between the charges. The third term is
dissipative, that is it always drains kinetic energy from the charges unless they are
stationary.
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As can be easily explored by playing with this application, there is an enormous
wealth of complex intereactons between charged particles when their interaction is
governed by the Coulomb interaction. The particles initially rapidly try to form electric
dipoles, that is a positive charge in close proximity to a negative charge. Once dipoles
form, the forces between dipoles is greatly reduced, and therefore the time scale for
changes in position is greatly reduced, because the dipole fields fall off as inverse
distance cubed rather than inversed distance squared. Eventually the charges will
aggregate into a clump, forming stable “crystals”.

These behaviours mimic what we see in the real world, where the everyday
interactions between matter are dominated by electrostatic forces. Even though we can
solve for the dynamics of our charges in this application simpy using the Coulomb
repulsion or attraction (along with the Pauli repulsion at small distances and the frictional
damping), that calculation hides an enormous amount of the physics. What is not
apparent when we these dynamical calculations is the complex exchange of energy
between field and charges as these interactions proceed. We will really not be able to
explain the complexity of this exchange until we also consider magnetostatics, because
we need B as well as E to understand the flow of energy in these interactions via the
Poynting flux ExB/ g,. But that is where we are going.

First though we need to explore the electric fields of stationary particles, as we do
in the present section. Then we will look at the magnetic fields generated when we allow
electric charges to move. Then we consider the electric fields that are present whenever
we see time changing magnetic fields—that is, Faraday’s Law. Then will come back and
try to understand the complexity of the interactions shown in the application. There is far
more than meets the eye here, which we will discuss eventually, but first we look at
electrostatics.

18.3 The electric field E and potential ¢ of a set of point charges

The force F on a test charge Qlocated at r due to a charge q located at r’ is
given by

Fo9Q r-r 4 A (18.3.1)
Are, | r—r| 4re, | r_r’|

where as always, the unit vector n points from the source to the observation point, that is

(18.3.2)

This force is attractive if the two charges have the opposite sign. It is repulsive if the two
charges have opposite signs.
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We define the electric field E at r to be the ratio of the force on the test charge to
the test charge Q. That is, the electric field is given by

q r-r

F
E(r)=—= (18.3.3)

Q Az, [r-rf

. . r-r' 1 .

Since we can write | s=-V |r = , we can also write (18.3.3) as
r-r' -
q 1 q 1
E(r)=-V|————[=-V¢(r) where ¢(r)=————+Constant (18.3.4)
Arg, |r-r| 4zs, |r—r]

where ¢(r) is the electrostatic potential of a point charge. We will discuss the physical

meaning of the electrostatic potential below. The unit of the electric field are thus
Newtons/Coulomb.

If we have a set of charges {q }|N:1 located at positions {ri'}i'il, then the electric

field of this collection of charges is simply the sum of the electric field of each individual
charge, that is

E(n = ZN:L e -Vg(r)  where  ¢(r) = ii; +Constant
2 dae, [rr 2 e, Tr 7]

0

(18.3.5)

We note that since the curl of any gradient of a scalar is zero, we have for electrostatic
fields that

VxE(r)=0 (18.3.6)
18.4 The electric field E and potential ¢ of a continuous charge distribution

Suppose we have a continuous distribution of electric charge defined by a volume
change density p(r") . Then the amount of charge in an infinitesimal volume element

d3x’ is dg’ = p(r’)d*x’, and our sums in (18.3.5) go into integrals, as follows.

EN= | G L Ul B (18.4.1)
all space 47[‘90 | r— r' |3
B p(rd’x" 1
o= | = ] (18.4.2)

all space o]
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We can get the second equation for electrostatics from (18.4.1) by taking the
divergence of (18.4.1), which yields

' 3y’ r 3y’
V-EM--vign--v: | LOEX L1 pdXg 1 g5y
all space 47[50 | r-r | all space 47[‘90 | r-r |
But of course we have V* | L T =—475°(r—r'), and using this to do the integral in
r—r
(18.4.3) yields
V-E(r) = p(r)/ e, (18.4.4)

18.5 The physical meaning of the electric potential ¢

In an early problem in our problem sets, we showed that if E(r)is a vector function

which has zero curl, then the scalar function —'[ E(r')-d ", which is the line integral of E

fo

along any path connecting a fixed reference location r, and the observer’s position r, is
independent of the path taken. Therefore this scalar function is a single valued and
unique function given E and the reference location r,. We also saw how to get E given

—I E(r')-d 1" by looking at, for example

o

r+AxX

- | E(r)-dI'~-AxE, (18.5.1)
If we generalize (18.5.1) to all three components we have
E=-V j E(r)-dI (18.5.2)

o]

Comparing (18.5.2) to (18.4.2) or (18.3.5), we see that we must have

#(r) = E(r)-d 1 (1853
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where we are free to choose the “reference” point r,. If possible we will choose that

point to be at infinity, but that is not possible in some situations. So we now know that
E(r) and ¢(r) are related not only by E(r) = -V ¢(r) but also by (18.5.3).

Equation (18.5.3) allows us to interpret the meaning of #(r) in physical terms.
To do so we must talk about moving a test electric charge Q around in the presence of
fixed charges whose electric field is E. How much work do | do in moving that charge
from one point to another, say from a to b? Well first of all I must assume that I do this
very slowly in some sense, because | do not want to have a substantial amount of energy
radiated away to infinity, but if I do this slowly enough I can make the radiated energy as
small as I desire. | can thus ignore any radiation reaction term, and the force | must exert
to move the charge around is simply the force I need to counter balance the force
associated with the electric field that the test charge feels, plus a little bit more. That is |
need to exert a force

Fre = —QE(r) (18.5.4)

plus a little tiny bit more, to get the test charge to actually move. Again, I can make this
additional “little bit more” force and its associated work arbitrarily small.

Thus the work | must do in moving our test charge from a to b is given by
b b b
W =IFme (r)-dr :-jQE(r')-d I :-QjE(r')-d K (18.5.5)

But using (18.5.3), we have

W2 =-Q| [E(r)-dI'-[E(r)-dI'|=Q[¢(b)-4(a)] (185.6)
or 0 0
[4(b)-4(a)] =W"5 (18.5.7)

Thus the difference in electric potential between two points a and b is the amount of
work | must do to move a unit test charge from a to b against the electric field. The units
of ¢ are thus joules per coulomb, or volts. The units of electric field are Newtons per

coulomb, which are also joules per coulomb per meter, so the units of electric field are
also volts/meter, and this is how we most often quote the units of electric field.

18.6 The energy required to assemble charges

18.6.1 A set of point charges
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Now we can calculate the amount of energy we need to do to assemble a set of
point charges, bringing them in from infinitiy. We do this one by one. It takes no enerty

to bring in the first charge g, from infinity to its final position r,, because there is no
electric field to work against. Once the first particle is there we have a potential given by

(see (18.3.4)) ¢,(r) = 4q1 | ! | , Where have taken our reference point for zero
7TE, 0]

potential at infinity.

Now if we bring in the second charge g, from infinity to its final position r,, we

can calculate the work we need to do this by using the meaning of the potential we
discussed above, to find that the work we need to do to bring in this charge is

1 . . .
q,0,(r,) = % ———. Now our potential with these two charges present is
4re, |r,-r

1 a, 1
45 |r— r1| Are, |r-r,)

@ 1,5(r) = (18.6.1)

To bring in a third charge g, from infinity to its final position r,requires energy
Gaf 1.(F3) , OF

Q0 1 059, 1
r,)= + 18.6.2
B 1.2(13) 4re, |- A4ne, |r,-) ( )
So the total work we have done thus far is the sum of (18.6.2) and ﬁ; or
4re, | r,— r1|
W — qlqz 1 + qul 1 + q3q2 1 (1863)
4re, |r,—1| 4rze, |r,-r| A4me, |r,-r,)
It is fairly easy to see that if we do this N times, we do total work
W, 18.6.4
g‘,zl: 47rg r,— rj | ( )
If we put in a factor of ¥ to account for double counting, we can write this as
ZZ (18.6.5)

J¢| i=1 47[‘9

r— I’j|
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18.6.2 A continuous distribution of charges

If we go over to a continuous distribution of charges, our double sum in (18.6.5)
becomes a double integral, as follows.

1 1 [P (M)dX”
” 47zg|r r| Ip 47rg|r r|(1866)
W:J'Ep r)¢(r)d>x

where we have used (18.4.2) to get the last form in (18.6.6). To put (18.6.6) in a more
familiar form, we use E(r) =-V¢(r) and V-E(r) = p(r) to obtain

w :jg—zf’(v-E)¢5(r)d3x:Ig—z"v-(¢(r)E)d3x—jg—2"E-(V¢(r))d3x
(18.6.7)
W =j%goEzd3x

where in the second term in (18.6.7) we have converted the volume integral of a
divergence to a surface integral at infinity and set it to zero because the integrand falls off

faster than inverse r cubed. Thus we recover in this expression the term we have seen
2

before for the energy density in the electric field, %o

Note that the expression in (18.6.7) is always positive, whereas the similar
expression for point charges (18.6.5) can be positive or negative. The difference is that in
our sum in (18.6.5) we explicity exclude the i = j terms, which corresponds to the energy
required to assemble the point charges themselves, which is infinite. In a more realistic
model we would have the point charges having some small but finite radius R, and the
q2

e,

quantitative justification of this). This of course blows up as R approaches zero, which is
why we do not include it in the sum in (18.6.5). As long as we are not disassembling
point charges, however, there is no harm in ignoring these infinite terms, because it is
only the changes in energy we are interested in as the configuration changes, not the total
energy.

energy to assemble them would be W = (see the next paragraph for a more

18.7 Where is the energy really located in space?

If we look at (18.6.6) and (18.6.7) you might think that we have two equally good
expressions for the energy density of the electromagnetic field, elther PP or %g EZ.

These give very different spatial distributions of energy density however. To illustrate
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this, let us consider the energy necessary to assemble a spherical shell of charge of radius
R, carrying total charge Q, distributed uniformly over the sphere in a surface change

density o =Q/4zR?. We can easily use Gauss’s Law to calculate the electric field

everywhere (see next Section) and then use the electric field and (18.5.3) to calculate the
electric potential from the electric field, to obtain the following results.

0 r<R
E(r)=1. 18.7.1
(r) r Q > >R ( )
4re,r
Q r<RrR
4re R
#(r)= (18.7.2)
Q r>R
Are,r

Calculating the energy required to put this distribution of charge together using (18.6.7)
is straightforward, giving

© 2 2
W= [ %= [dofdrts, | —2 | 2= (18.7.3)
2 v 2 | 4mer 87e,R

This calculation is even simpler using (18.6.6), since p(r) is only non-zero at r = R.

W=J%p(r)(/ﬁ(r)d"‘x=%¢(R)Ip(r)d3x=SiOR (18.8.1)

These two methods of calculating W give the same result, as they must, even
though the integrands are very different. So what is the correct expression for the energy
density of the electric field? Electrostatics actually gives us little guidance in how to
answer this question, but when we introduce time dependence, the answer is quite clear.
If we go back to (4.4.2) for the differential form of the conservation of energy, we had

2
9 igoEZJrB_ v BB _E; (18.8.2)
ot| 2 24, H,

and this form clearly chooses %gOE2 for the local energy density of the electrostatic

field. Moreover if we look at the time dependent process by which the electrostatic
energy is located at a given point in space, we clearly see the flow of energy from where
we are doing work to create it (where the creation rate for electromagnetic energy, —E-J,
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. . - 1
IS non-zero) to where it resides in space, as indicated by the local value of EgOEZ,

through the agency of the Poynting flux, ExB/ 4, .

To take a concrete example of what I mean by this, consider the following
scenario. An electric field is created by an external agent who separates charges. We
start out with five negative electric charges and five positive charges, all at the same point
in space. Since there is no net charge, there is no electric field. Now the agent moves one
of the positive charges at constant velocity from its initial position to a distance L away
along the horizontal axis. After doing that, the agent moves the second positive charge in
the same manner to the position where the first positive charge sits. The agent continues
on with the rest of the positive charges in the same manner, until all of the positive
charges are sitting a distance L from their initial position along the horizontal axis. We
have color coded the "grass seeds" representation in the still below to represent the
strength of the electric field. Very strong fields are white, very weak fields are black, and
fields of intermediate strength are yellow.

Figure 18-3: An external agent creating an electric field by separating + and —
charges.

://web.mit.edu/viz/EM/visualizations/electrostatics/CreatingDestroyingEFields/
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The field lines move in the direction of the energy flow of the electromagnetic
field. Over the course of the animation, the strength of the electric field grows as each
positive charge is moved into place. That energy flows out from the path along which the
charges move, because that is where —E-J > 0 is non-zero and positive, and nowhere
else. That energy is being provided by the agent moving the charge against the electric
field of the other charges. The work that this agent does to separate the charges against
their electric attraction appears as energy in the electric field, and we can see it flow out
from where it is created and take up its position in space.

When we do the reverse process, that is the external agent now moves the charges
back to where they initially were, the energy stored in the electrostatic field moves back
from where it is stored in space to the path of the particle, because that is where is non-
zero and —E-J < 0. Itisthen returned reversibly to the agent moving the charges back
into their original positions. We are neglecting any energy radiated away in this process,
which is fine as long as the charge speeds are non-relativisitic, so that the external agent
recovers exactly the amount of energy he expended increating the electric fields in the
first place.

The amazing thing about electromagnetism is that the fields contain energy, and we
can see exactly how the electric energy is (how it is distributed in space) and how it got to
where it is.

Figure 18-4: An external agent destroying an electric field by bringing together +
and - charges.
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18.8 Gauss’s Law
18.8.1 The general statement
Gauss’s Law is extremely useful in solving electrostatic problems with a high

degree of symmetry, as we shall see. If we consider any closed surface surrounding a
volume, we have from Gauss’s Theorem that

[ V-E(Md°x= [ E(r)-fida (18.8.3)

volume surface

If we use V-E(r) = p(r)/ ¢, ((18.4.4), we have for any closed surface that

Qinside

&

j E(r)-f da:gi j p(r)d*x= (18.8.4)

surface 0 volume

Equation (18.8.4) is always true, but it is not always useful in solving problems. As an
example of this, in Figure 18-5, we show a “Gaussian cylinder” in the presence of two
point charges. The surface integral of the electric field dotted into the normal to the
surface for this cylinder times da is shown by the electric field on the surface of the
cylinder evalualted at a number of ponts, where we also indicate the surface normal. In
the scenario shown, there is zero flux through the cylinder because there is zero change in
the cylinder, even though at every point on the surface there is an electric field. This is
an example where Gauss’s Law is true but useless in solving a problem.

18.8.2 The field of a point charge from Gauss’s Law

To have Gauss’s Law actually be useful for problem solving, we need a situation
like that shown in Figure 18-6. Here we have a sphere centered on the charge, so that
everywhere on the sphere of radius r the electric field is radially outward and thus
parallel to the surface normal. It is also plausible to assume that the electric field
magnitude is only a function of the radius r. Thus (18.8.4) becomes
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Figure 18-5: Gauss’s Law application for point charges

://web.mit.edu/viz/EM/visualizations/electrostatics/GaussLawProblems/

Figure 18-6: Gauss’s Law application for a spherical Gaussian surface

151
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[ E)Ada="= [ E(r)da=E(r) [ da=E(r)dzr’ (18.8.5)
&

surface o] surface surface

and in this form Gauss’s Law has actually allowed us to get the field of a point charge,
that is it is radial and varies in magnitude as (18.8.5) prescribes, e.g. E(r) =q/ 4ze,r*.

18.8.3 The field of a line charge from Gauss’s Law

Lets do something more difficult with Gauss’s Law—the field of an infinite line
of charge. We can of course calculate this electric field using the procedure embodied in
(18.4.1), but this turns out to be comparatively tedius, whereas the Gauss’s Law
procedure yields the answer in just a few steps. We must first assume that our electric
field is along the cylindrically outward radial direction. Then for our imaginary Gaussian
surface we choose a cylinder whose axis is the line of charge, with length L and
cylindrical radius r (see Figure 18-7).

Figure 18-7: An imaginary Gaussian surface (blue cylinder) in a problem with
cylindrical symmetry.
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Since the cylinder is centered on the line charge, everywhere on the cylinder the electric
field is radially outward in the cylindrical sense and thus parallel to the surface normal. It
is also plausible to assume that the electric field magnitude is only a function of the
cylindrical radius r. Thus (18.8.4) becomes (the integrals over the ends of the cylinder
vanish because the electric field and the normal are perpendicular there)

j E(r)-A da=2t_ j E(r) da=E(r) j da= E(r)2zrL (18.8.6)
&

sides o] sides sides

And we easily recover from (18.8.6) that the field of a line charge is given in terms of the
cylindrical

A
2me,r

E(r) = P (18.8.7)

18.8.4 The field of a plane of charge from Gauss’s Law

Finally, lets obtain the electric field of a plane of charge with charge per unit area
o . We choose a Gaussian surface as shown in Figure 18-8.

Figure 18-8: The Gaussian surface for a plane of charge.
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With this choice and using (18.8.4), we find that

E(r) :%isign(x) (18.8.8)

0

where the normal to the plane is X .

19 Boundary Value Problems in Electrostatics

19.1 Learning Objectives

We look at boundary value problems in electrostatics. First we define a typical
boundary problem, and then we explain why these problems fall into the “hard” category
of electromagnetism problems. We then discuss a classic method of solving these
problems, the image charge method. The method only works for problems with a high
degree of symmetry, so we move on to a method that has more general application, which
is separation of variables in various coordinate systems. We only discuss this method for
the case of spherical coordinates,

19.2 The Typical Boundary Value Problem

Funny shaped conductor
held at ﬁxed potemlal

Figure 19-1: The typical boundary value problem

Figure Figure 19-1 shows a typical problem that we want to solve. We have a
conductor of some shape, which is held at a fixed potential. We have a point charge with
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charge q located at some point in space outside the conductor. We want to find the
electric field everywhere in space.

19.2.1 Poisson’s and Laplace’s Equations

Here is the way we go about solving such a problem. We know from (18.4.4) and
(18.4.1) that we have

E(r)=-Vg¢(r) and V-E(r)=p(r)/¢, (19.2.1)
These two equations immediately lead to
V2g(r)=—p(r)/ &, (19.2.2)

This equation is known as Poisson’s Equation (if p(r)=0in the region outside of the
conductor, it is also known as Laplace’s Equation). So we want to find a function ¢(r)
which satisfies (19.2.2) for some specified “free” charge distribution p(r) outside of the

conductor (“free” means we control the location of those charges), with the additional
requirement that the potential goes to a specified value on the surface of the conductor.
This is a “hard” problem because we don’t know where all the charges are. 1f we knew
where all the charges were, we could simply use

1 p(r”t;et
)=
#(rt) dre,® |r-r'

in the limit of no time dependence, which is

) gox (19.2.3)

1 p(l") 37
¢(f)—47[€0 |r_r,|dx (19.2.4)

and we would be done. But we cannot use (19.2.4) to calculate the potential, because we
do not know where all the charges are located. All we know is where the “free” charges
are, and that the charges in the conductor will have arranged themselves to make the
conductor an equipotential, but we do not know a priori how they have done that. This
is an example of the “hard” electromagnetism: the charges move in response to the fields
they create. In this kind of situation, even though (19.2.4) is always true, it is useless in
solving the problem, because we have unknowns on both sides of the equation.

19.2.2 Electric fields in and near isolated conductors

Below we will discuss various techniques for dealing with these kinds of
problems, but first let’s discuss the properties of electric fields in and near isolated
conductors. First of all, the electric field inside an isolated conductor will vanish,
because if there where any electric field, the charges in the conductor will move so as to
cancel out that electric field. Since the electric field is zero inside the conductor, we can
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conclude using Gauss’s Law for any volume inside the conductor, that the charge inside
that volume must also be zero. Therefore any charge on a conductor must lie entirely on
its surface.

Moreover, the surface of any conductor must be an equipotenial. If it were not an
equipotential, that would mean that there would be an electric field on the surface of the
conductor which is tangential to the surface of the conductor. But the charges in the
conductor will move to cancel out any such tangential electric fields on the surface just as
they move to cancel out any electric fields inside the conductor. Therefore an isolated
conductor is an equipotential, and the electric field must everywhere be normal to the
surface of the conductor. Using Gauss’s Law for a small pillbox on the surface of any
conductor, we can easily deduce that the component of the electric field normal to the
surface, E_, is related to the surface charge on the conductor by

E--_ _fvg-2 (19.2.5)
on g

In (19.2.5) we have assumed that the normal n points out of the conductor.
19.3 The Uniqueness Theorem

Before we go any further, we pause and prove the Uniqueness Theorem. The
Uniqueness Theorem says that if we find by hook or crook any solution to the above

problem that has the correct value of V2¢(r) in the space outside of the conductor and has

the specified value on the surface of the conductor, then that is the solution, because there
is one and only one such solution. The usefulness of this theorem is that it allows us to
find a solution using any kind of trick we can think of (the method of images discussed
below is such a trick), and we know that if we have one, we are done, it is the only
possible solution.

Proof of the Uniqueness Theorem: Suppose we have two solutions to our boundary
value problem, ¢ (r) and ¢,(r) that satisfy our requirements. That is,

Vi (r)=-p(r)le, and V?@,(r)=-p(r)/ ¢, (19.3.1)
= given function (19.3.2)

¢1 (r)|r on surface of condutor = ¢2 (r)|r on surface of condutor

Define the function W (r) to be the difference between these two solutions.

W (r)=g,(r)-¢(r) (19.3.3)

Then we must have that
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VAW =0 outside of conductor and  W(r) s of s =0 (19.3.4)
We have the general vector identity for any scalar potential that
V-(WVW)=(VW )" +W VAW (19.3.5)

We apply Gauss’s Theorem to V-(WVW) for the volume outside of the conductor and
the surface of the conductor, as follows

V- (WVW)d°x= [ (WVW)-fida (19.3.6)

vol where p defined bounding surface

But we know that W is zero on the surface of the conductor, so we have

V-WYW)x= [ [(YW) 4WVAW |dx=0  (193.7)

vol where p defined vol where p defined

where we have used (19.3.5) to get the final form in (19.3.7). But we have that
VAW = 0in the volume, so we must have

(W) d*x=0 (19.3.8)

vol where p defined
Since (VW )2 is positive definite, we must have that everywhere in the volume VW =0.

Thus W can only be a constant, and since it is zero on the surface of the conductor, that
constant must be zero. Therefore ¢ (r) and ¢,(r) are the same, and the solution is

unique.
19.4 The Method of Images

The method of images is basically a trick that takes advantage of uniqueness. It
can only be used in situations with high degrees of symmetry. Basically you take the
problem as stated, which we call Problem I, which has a conductor with some unknown
surface charge induced by the presence of the known free charge. You find a different
free space problem, which we call Problem 11, which has no conductor, where you
arrange charges so that you get the proper value of the potential on the surface of the
conductor from Problem 1. We then take that part of Problem Il relevant to Problem |
and transfer it back to Problem I. Since it satisfies all the conditions for Problem I, we
know it must be the solution to Problem I. The best way to illustrate how this works is
to take examples, as follows.
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19.4.1 Point Charge and a Conducting Plane

Suppose a point charge q is on the z-axis a distance d above the origin. The xy
plane at z = 0 is an infinite grounded conducting plane. This is Problem I, as illustrated
in Figure 19-2.

Point charge
-

d

Infinite Conducting Plane
at Zero Potential

Figure 19-2: Problem I: A point charge above in infinite grounded couducting
plane.

Here is Problem 11, as illustrated in Figure 19-3. What we are doing with Problem
Il is to duplicate the charge distribution for z > 0 that we have in Problem I, and arrange
charges in the region where the conductor is in Problem I (z <0) so that we satisfy the
boundary conditions at z = 0 from Problem I, that is zero potential at z = 0. We simply
guess that if we put a charge of —q in Problem |1 a distance d down the negative z-axis,
we will get zero potential in Problem Il at z = 0.

Point charge

“
Free space! 4

n‘mage " d
Charge ¢
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Figure 19-3: Problem I1: A free space problem with two charges

And indeed this is the case. If we write down the solution for the potential for
Problem 11, it is

i (r)= - : - . (19.4.1)
4re, Jx2+y2+(z—d)2 Jx2+y2+(z+d)2 o

This potential has the right behavjor atz=0(tis zerov41ere), and

Vi, (N=0q[5*(r-d2)-5*(r+d2)|/e, (19.4.2)

so in the upper half plane it also has the right value for V?¢(r), a delta function at the

position of the point charge g. It also has a delta function at the position of the negative
point charge, but that is not in the upper half plane and we don’t care about that one.
That is why we are free to put any charges for z < 0 that we want to try to satisfy the
boundary condition at z = 0—they don’t count.

So the Uniqueness Theorem guarantees that if we simply take over to Problem |
the solution to Problem I1 in the upper half plane, and put the potential for Problem I to
zero for z < 0, then we have the unique solution to Problem I, which is

1 q ) q
¢ (r)=14ze, \/x2+y2+(2—d)2 \/x2+y2+(z+d)2 2>0 (19.4.3)
0 z<0

Once we have the solution to Problem I, we can go back and see what the mysterious
surface charge induced on the conducting plane by the presence of the free charge q at
d Zis. Using (19.2.5) we see that

_ 04 _ . 09
o= —808—n' or O'——é‘Oa—Z'Z:0+ (19.4.4)
But
o 1| aee) e 1949
3/2 3/2 A
0 | 4rz, (x2+y2+(z—d)2) (x2+y2+(z+d)2)
S0
1 d
o(xy)=-— T (19.4.6)

27 (x* +y* +d?)
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If we want to know the total induced charge on the plane, it is

TdrTrdqﬁa:—T dr(rad) =+ qd

)= J (r2+d2)3/2 (r2+d2)1/2 =—q (19.4.7)

0

19.4.2 Point Charge outside a Conducting Grounded Spherical Shell

We give one more example of using image charges. A point charge of charge q is
located at position r’ outside of a grounded conducting sphere of radius R. The point
charge is a distance r’ > R from the center of the shell. Using the method of images, we
find that the potential outside the sphere is the potential due to the point charge plus the
potential due to an image charge with charge —qR /r’ located inside the shell at a

distance R? /r’. Therefore our solution is

$(r)=14re,||r-r

rrRz[| r>R (19.4.8)

19.5 Separation of Variables in Spherical Coordinates

Now we turn to another standard technique, which has much wider usage than the
image charge method. What we do is look at solutions to Laplaces’s equation,

V?¢(r) =0, and investiage the form of solutions to this equation in various coordinate

systems. Although we could do this in cartesion and cylindrical coordinates, we will only
look at spherical coordinates in these notes, as it is illustrative of the general technique.

You might ask what good finding solutions to V?#(r) =0 is. But in many problems,
V2¢(r) is zero almost everywhere, and we try to piece together a solution to a general

problem, which charge located in limited regions, out of solutions to V?¢(r)=0,
appropriately chosen.

19.5.1 A Typical Problem Involving Seperation of Variables

Here is a typical boundary value problem where separation of variables is useful.
We have a sphere of radius R, and on the surface of the sphere we know the values of the

potential. That is, some one has given us the function f (9,¢), such that on the surface
of the sphere
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#(r.0.9) _.=1(6.¢4) (19.5.1)

We also know that the potential vanishes at infinity, and that is no free charge for r > R.
Given all this, we want to find the potential for all r > R. Since our boundary condition
is given in spherical coordinates, we see if we can find a solution by adding up many

solutions to V2#(r) =0 in spherical coordinates. If we can satisfy all of the boundary

conditions, then uniqueness tells us that out solution is the only solution, no matter how
we come by it.

Laplace’s equation in spherical polar coordinates is

2
VoL 2(r D) Lo Do) LTy sy
r<or or) resing o6 00) r°sin“0 0%

We are going to assume that our solution ¢(r,9,¢) IS separable, that is, that it can be
written as

#(r,0,4)=R(r)P(OW (¢) (19.5.3)

The reason we might think it is separable in these coordinates is that our boundary
condition is in these coordinates. But the ultimate rationale is that we can find solutions

when we make this assumption that satisfy our boundary conditions, and VZ¢(r) =0, and
uniqueness tells us that this is the solution. If we insert (19.5.3) into (19.5.2) and divide
r’sin’@

by , Wi
R()P(OW (¢)

e have

=2 M
sin ei(rz de smHi(sianPj 1 dw 0 (19.5.4)

— |+— — +———=

R dr dr P dé& dg) W d%
We have isolated all of the ¢ dependence in (19.5.4) in the last term, and the only way
this can be true is if there is a constant m? such that

- =—m
W d%p

(19.5.5)

The solutions to (19.5.5) are sinmg or cosmg. In order for W to be single valued, we
must have that m be an integer. Our remaining equation is
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2
li[rzd—Rj+ 1 i(sined—P)— _mz =0 (19.5.6)
R dr dr Psing d@ d@) sin- 0

where we have divided by sin® @ so as to again isolate all of the r dependence in the first
term of (19.5.6). Again, this means that there must be a constant which we call
I(1+1) such that

1d(,dR
—— | rr—|=1(1+1 19.5.7
R dr( drj I+ ( )
The solutions R(r) are
R(r)=Ar' +Br'* (19.5.8)

This leaves the remaining equation for P as

2
L i(sined—P]Jrl(Hl)— m__o (19.5.9)
Psing do do sin“ @

If we make the substitution x =cos@, the equation for P becomes

d ,\ dP m? B
&[(14)&}[“”1)—1 Z}P—O (19.5.10)

This is the generalized Legendre equation and its solutions are called the associated
Legendre polynomials.

The Legendre functions are the solutions to the above equation with m =0, that is

%{(1—x2)z—ﬂ+|(|+1w=o (19.5.11)

If we impose the requirement that solutions to the above equation converge for x*> <1 ,
then this requires that | be zero or a positive integer®. By convention our functions are
normalized to have the value of unity at x=+1. The first few solutions, the Legendre
polynomials, are given by

R(x)=1 R(x)=x P,(x) :1(3)(2 _1)
2 (19.5.12)
300-3(60 -3 R(0-1{ax -3¢ +3)

5 See Jackson 2" Edition, page 86.



Version Date, December 6 2010 163

In general one can show that

P (X) :ﬁ%(xz -1) (19.5.13)

This formula is known as Rodrigues’ formula. From Rodriques’ formula it can be shown
that

R Ry o111)p =0 (19.5.14)
dx  dx

This equation together with the differential equation can be use to show that

b (21+)xPR 1R,
1+1 (|+1)

This recursion relation for Legendre polynomials is very useful for any numerical work
with the Legendre polynomials because you need only know that F,(x)=1 and

P,(x) = xand you can find the value of P (x)at any x for |1 >1 by applying this recursion
relation | —1times.

(19.5.15)

If the solutions to the associated Legendre equation, where m is not equal to zero,

are to converge for x* <1, we find similarly that | must be zero or a positive integer and
that the integer m can only take on the values -, -(I-1),....,0....,(I-1), I. The associated

Legendre function P™(x)is given by

m/2 drn

dx™

R™(x)=(-1)" (1— xz) P, (x) (19.5.16)

Since the differential equation depends only on m?, P™and PB™ must be proportional,
and it can be shown that

oy (=)L
P (x)=(-1) (I+m)!P' (x) (19.5.17)
(L=m+DPL(X) -2 +)XP" (X)+ (L+m)P"(x) =0 (19.5.18)

)= (20 +D)XP" (X)+ (£ +m)P" (X)

P™ (x
al (/—m+1)

(19.5.19)

((—=m+DP" (X)+(L—x*)2P"H(X) = (L +m+1)xP"(x) =0 (19.5.20)
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For a given m, the set of functions {PI'“ (x)} is a complete set of functions, with
normalization given by

2 (I+m)t

Aot (—mi (19.5.21)

[ R 0B (00 =

19.5.2 Spherical Harmonics

It is usual to combine the & and ¢ to define the spherical harmonics Y,, (6,4)
defined by

\ ¢)=J(2l 1) (! _m)!P’” (cos@)e*™ (19.5.22)

’ |
The Y,, ’s form a complete set of fultions in @ and ¢. The normalization and

orthorgonality conditions are
b d 2
[sinodo [ dg¥y, (6.6)Y,w (6.6) = 545y, (19.5.23)
0 0

We can expand any function g (6,¢) as

= i le A (6.9) (19.5.24)
where -
ZTSi”‘gdede@ (0.4)9(0.¢) (19.5.25)

With the definition of the Y, ’s and (19.5.8), we thus see that the most general form of
the solutions to V?¢(r) =0 that is separable in spherical coordinates is given by

(r.0,9) :i Z[ o+ B Y (6,0) (19.5.26)

19.5.3 The Solution to the Typical Problem

We now return to our “typical” problem above, and see if we can find a solution
to that problem that is of the form given in (19.5.26). If we want to prevent the potential
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from blowing up at infinity, we must take all of our A, to be zero. To satisfy our
boundary condition at the surface of the sphere (19.5.1) we must have

i > [ BaR Y, (0.9) (19.5.27)

1=0 m=-I

t(0.9)=¢

But since we know that the Y, ’s are complete, we know this can be done, and in fact
we can write down the coefficients as follows

Vi 2z
B, = R'*ljsin edej dg Y, (6.9) T (6,9) (19.5.28)
0 0
And we are done. We have solved the “typical” problem involving separation of
variables in spherical coordinates.

19.5.4 Azimuthal Symmetry

Let us suppose that we have a problem with azimuthal symmetry. Then our
integer m above must be zero, and our complete solution given by (19.5.26) reduces to

¢(r,9):i[Ar'+

1=0

li'l jPI (cos®) (19.5.29)
Our normalization condition for the P,’s in this case (cf. (19.5.21) for m = 0) is

1
2
P (X)R.(x)dx =——0,, 19.5.30
_Il.().() % (19.5.30)
It is clear that we can do any potential problem where the potential at r = R is given as a
function of @ using the same technique as above. But there are other interesting things to
do as well.

Consider the following problem. We put a surface charge o (6)=o,P, (cosé) on

the surface of a spherical shell. There are no charges inside or outside the shell other than
these charges. What is the potential and the electric field everywhere? The lack of
charges other than at the shell means that the potential must vanish at infinity and not
blow up at the origin. Since we also know that the potential must be continous across r =
R, we therefore we must have
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#(r,0)= 2A(%,j+lﬂ(cose) (19.5.31)
2A($j R (cos®)

Gauss’s Law applied to a pill box on the surface of the sphere yields

Er:R+ - Er:R— = 0-(0) / & op

_o9| 09
or

T

(AL AL
r=R+ - |—o{ R " R jp' (COSH) (19.5.32)

o,P. ()12, = i#a (cos6) (195.33)

Since the B ’s are orthogonal, we must there have all the A ’s are zero except A, with

R . :
A, =% Therefore our solution (19.5.31) is
(2n+1)e,

[Lj P (cosd) r<R
o,R R

pr.0)=——-—"—= (19.5.34)
( ) go(2n+1) (Ejnﬂ Pn (COSH) -

As an example of (19.5.34), suppose we take n = 0, that is the surface charge
density on the surface of the sphere is constant. Then we have for this case

1 1

1 r<R = -
_6047Z'R2 R r<R_ o |R r<RrR

j r>R  4nre, 1 dre, | 1

— r>R °
r

(19.5.35)

r>R
r

where g, =4zR?. This is what we expect for a uniformly charged spherical shell.

As a second example of (19.5.34), suppose we take n = 1, that is the surface
charge density on the surface of the sphere goes as cosé. Then we have for this case

%o rcosd r<R
3e,
¢(r,9): o R? cosd (19.5.36)
0 — >R

3 1

0
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This potential gives the following electric field

-E,z r<R
E(r.0)=¢(r,0)= .. sin@ ~ 19.5.37
(r.0)=¢(r.0)=1 p, (Zcosserersnlgé? j (SR ( )
dre, \ ¥ r
4o, R® e
where E, =—-and p, = . Thus we have a constant and downward field inside
&,

0

the sphere and a perfect dipole outside the sphere, if our surface charge goes as cosé.
19.6 Boundary Conditions on the Electric Field

Before leaving electrostatics, we discuss the boundary conditions that must be true
across any thin interface in electrostatics. From Gauss’a Law, V-E(r) = p(r)/¢,, we see

that any change in the normal component of the electric field across a thin interface must
be given by
E,,—E, :ﬁ-(Ez—El)zalgo (19.5.38)

where the normal n is assumed to point from 1 to 2.

|

Gau331an P >>¢g

Pillbox

Figure 19-4: Boundary condition on the normal component of E across an interface
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To make absolutely sure we understand where (19.5.38) comes from, consider the
figure above. We apply Gauss’s Law to the pillbox shown, making sure that the radius R
of the pillbox is arbitrarily large compared to its height &. The area of the sides of the
pillbox is therefore given by 27Re and the area of the ends is given by zR*. By making
&small enough compared to R, we can insure that any flux through the sides of the
pillbox due to tangential components of E do not contribute to the integral over the
surface area of the pillbox. Only the normal components of E contribute to the integral,
and we easily obtain (19.5.38).

What about the tangential components of E? These must be continuous, even in a
time varying situation. Take an amperean loop that spans the interface, with width &
perpendicular to the interface and length | tangential to the interface, as shown in the
figure below. If we use Faraday’s Law, and integrate around this loop, we have

&

. af A vu
mperean c
Loop />>

Figure 19-5: Boundary condition on the tangential component of E across an
interface.

gSE-dlz j %-ﬁda (19.5.39)

open surface

If we make the width &very small compared to the length I, the only component that will
enter into the left hand side of (19.5.39) will be the tangential E, since any normal
component will be multiplied by £ << 1. And the magnitude of that component will be
E,l. If we look at the right hand side of (19.5.39), it involves an area l&, and again if we

make ¢ << we can make the area integral insignificant, even in a time varying situation.
Therefore we will always have for the electric field that
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2t T Lt (19540)

20 Basic Magnetostatics
20.1 Learning Objectives

We now consider magnetostatics, and in particular concentrate on how to calculate
magnetic fields using the Biot-Savart Law and Ampere’s Law.

20.2 The relation between Jd*x and I dI
In magnetostatics, we do a lot of switching back and forth between volume
integrals involving J(r") d*x’ and line integrals involving 1 dl’, since many currents are

carried by wires. The correspondence is as follows. If we have a wire carrying current I,
then the current density J is always parallel to the local tangent to the wire, 1dl.

Consider a small segment of the wire centered at point Q (see Figure 20-1). With

wire carrying current [

Q

blow up of
segment near Q

‘F I =% 15(z) 8(y)
Q >«
/dl=§:dx

z

Figure 20-1: The relation between J and | di

no loss of generality, we can set up a local coordinate system where dl is along the x-axis.
In that coordinate system, near the point Q, the current density J is given by

J=X135(z) 5(y) . Note that since the delta functions have dimensions of inverse
argument, this expression for J has the correct units, that is, coulombs/m?2s. If we look at
the integral of J over a small volume enclosing point Q, we have

[ 3d°x= [ &18(x)5(y)dxdydz= | 1%dz=1dI (20.2.1)

volume volume line line
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where we have used the delta functions to do two of the spatial integrations, and in the
last step we have used the fact that X dx=d 1. Thus the correspondence we want is that

the volume integral of J d°x goes over to a line integral of | dl when wires carry the
current. Conversely, if we have a formula that involves a line integral of I dI , we can

generalize it to a volume integral by replacing 1 dl by J d*x For example, in equation
(8.2.14) we defined the magnetic dipole moment of a distribution of currents to be

m = %Jr’xJ(r') d>x’. We can use the prescription above to also write this as a line

integral, m :%I (ﬁ( r'xdl’).
20.3 The Biot Savart Law
dB ®
y
~

-~
~
-~

Figure 20-2: The Biot-Savart Law

The Biot-Savart Law tells us how magnetic fields are generated by steady
currents. In reference to Figure 20-2, if R is the vector from the current carrying element
dl to the point P, then the magnetic field dB generated at the point P by the current
element dl is given by

deildI:R
47 R

(20.3.1)

If the current element dlI is located at r'and the observer at point P is located at r, then
this equation is
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dB(r) = an arx r=") (20.3.2)

I=di

where we have introduced a prime on dl to indicate that it is located at r'. To compute
the total magnetic field at point P due to the complete wire, we evaluate

B(r) = Zﬂ' i |(rr_—rr,)3 (20.3.3)

Taking the cross-product in (20.3.2) is a particularly hard process to imagine in one’s
head, and | urge you to go to the Shockwave visualization show below to get a firm grasp
of how this works.

Figure 20-3: Shockwave visualization to illustrate the nature of Biot-Savart

://web.mit.edu/viz/EM/visualizations/magnetostatics/MagneticFieldConfigurations/Curre
ntElement3d/CurrentElement.htm

If we go over to a continuous distribution of current density, then our expression in
(20.3.3) becomes

B(r)==2 [ d* J(r)x (r-r) (20.3.4)

’ 13
volume | r-r

If we go back to our proof of the Helmholtz Theorem, we see that we can write


http://web.mit.edu/viz/EM/visualizations/magnetostatics/MagneticFieldConfigurations/CurrentElement3d/CurrentElement.htm�
http://web.mit.edu/viz/EM/visualizations/magnetostatics/MagneticFieldConfigurations/CurrentElement3d/CurrentElement.htm�
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B(r)=VxA(r)

where
J(r
A(r) =22 [ dix ( )
volume | r-r
We can also deduce from (20.3.5) that
V-B(r)=0
and from (20.3.6) that
VxB(r)=u,J

20.4 The magnetic field on the axis of a circular current loop

172

(20.3.5)

(20.3.6)

(20.3.7)

(20.3.8)

A circular loop of radius R in the xy plane carries a steady current I, as shown in
Figure 20-4. We want to use the Biot-Savart Law to calculate the magnetic field on the

axis of the loop.

Figure 20-4: Calculating the magnetic field on the axis of a circular current loop

In Cartesian coordinates, the differential current element located at

r‘:R(cos¢'?+sin¢'])

And Idl can be written as

(20.4.1)
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Idl = IRdg'(—sin ¢'i +cos¢']) (20.4.2)

Since the field point P is on the axis of the loop at a distance z from the center, its
position vector is given by T, =zk. Thus we have

rp—r'=—Rcos¢'i—Rsin¢'j+zl§ (20.4.3)

and

|r,-r'|= \/(—R cos¢')? +(~Rsing')’ + 2% =R? + 2° (20.4.4)
In (20.3.3), we need to compute the cross product d | x (r, —r ") which can be simplied as

dlI'x(r,—r") = Rd¢'(—sm¢'j+cos¢'12x[—lfcos¢'| —Rsing'j+zk] (20.45)
=Rdg'[zcosg'i+zsing'j+ RK]

Using the Biot-Savart law, the contribution of the current element to the magnetic field at
Pis

dB:”OI dlx(rp—g)
Ar |y —r'|

N A A 20.4.6
IR | zcosg'i+zsing'j+ Rk , ( )
" an (R? +2°)¥? d
Carrying out the integration gives the magnetic field at P as
1R 2,r[zcos¢'f+zsin¢']+Rlz] '
B=" [ ot dg (20.4.7)

The x and the y components of B can be readily shown to be zero, with the final result
that

-~ iIR?

Thus, we see that along the symmetric axis, B, is the only non-vanishing component of
the magnetic field. The conclusion can also be reached by using the symmetry arguments.



Version Date, December 6 2010 174

To calculate the field off axis is beyond our present mathematical capabilities, but
we can see in principle what the field looks like. Figure 20-5 is a Shockwave
visualization that shows how this is done.

Figure 20-5: A shockwave visualization for constructing the field of a current ring

://web.mit.edu/viz/EM/visualizations/magnetostatics/calculatingMagneticFields/RingMa
gField/RingMagFieldFullScreen.htm

20.5 Ampere’s Law

Ampere’s Law is the integral form of (20.3.8). If we take any open surface S with
contour C, then from (20.3.8) we have

[(vxB)-fida=p,[J-Ada (205.1)
S

S

We can use Stoke’s theorem to convert the left hand side of (20.5.1) to a line integral, and
the right hand side of (20.5.1) is simply the current through the surface S, with the
positive direction of current defined right-handedly with respect to the direction of the
contour integration. This gives us what is known as Ampere’s Law.

$B-dl = 1,y (20.5.2)
C


http://web.mit.edu/viz/EM/visualizations/magnetostatics/calculatingMagneticFields/RingMagField/RingMagFieldFullScreen.htm�
http://web.mit.edu/viz/EM/visualizations/magnetostatics/calculatingMagneticFields/RingMagField/RingMagFieldFullScreen.htm�
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Ampere’s Law can be used to do many straightforward problems which have a lot of
symmetry. Examples are given on the problem set. As with Gauss’s Law, Ampere’s
Law is always true, but it is usually useless for solving problems, unless there is a lot of
symmetry. You can find a java applet on the web at the url below which illustrates what
is going on with Ampere’s Law in the general case without a lot of symmetry.

Fle Wiew Help

Reset ¥iew @

[ Reset View ]

Choose B Field Scaling 'é.l

(=) Make All B Arrow Lengths the Same
() Seale B Arrove Length by (Magnituds B)~0.5

Choose Amper.ean Surface '3)

(%) Show Amperean Cylinder
() show Amperean Circle

Amperean Loop Position @

' Position : ? 1100
: 0.0 3‘ID El
% Position ‘;I | ol

FEE 0.0 3.0

= = - =
Add Line Currents (Maximum Six) lg@

[ Add Out of Page Line Current

[ Add Into Page Line Current

[ Delete All Line Currents

| |

Field ¥isualization

[1 Magnetic Field: Iron Filings

(

Figure 20-6: A Java applet illustrating Ampere’s Law
://web.mit.edu/viz/[EM/simulations/ampereslaw.jnlp

20.6 The Magnetic Potential

In general in magnetostatics the magnetic field cannot be derived from the gradient
of a scalar function, since its curl is not zero (VxB(r) = x,J ). However if there are

extensive regions where the current density J is zero, in those regions the curl of B is
zero, and it can be derived from the gradient of the “magnetic” potential.

As an example of this, consider a spherical shell which carried a surface current
k() in the azimuthal direction, that is

N

J=6(r-R)x(6)4 (20.6.1)


http://web.mit.edu/viz/EM/simulations/ampereslaw.jnlp�
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In this situation we have that the curl of the magnetic field is zero everywhere in space
except at r = R. Therefore the magnetic field can be written as the gradient of the
following scalar potential

0

b (r,0)= 2N (%) R (cos9)

i B, (?jlﬂ R (cos0)

(20.6.2)

where we have imposed the conditions that the field not blow up at the origin and that it
go to zero at infinity. We then determine the constant coefficients in (20.6.2) by
imposing the boundary conditions that we must have on the field across r =R. These
boundary conditions are discussed in the next section.

20.7 Boundary Conditions on the Magnetic Field

Before leaving magnetostatics, we discuss the boundary conditions that must be true
across any thin interface in magnetostatics. We know that V-B(r) =0, so we see that we

must have no change in the normal component of the magnetic field across a thin
interface, that is

=B, (20.7.1)

1 . 2
a P

Gaussian
pillbox R>> &

Figure 20-7: Boundary condition on the normal component of B across an interface

To make absolutely sure we understand where (20.7.1) comes from, consider the
figure above. We Gauss’s Law to the pillbox shown, making sure that the radius R of the
pillbox is arbitrarily large compared to its height . The area of the sides of the pillbox is
therefore given by 27Re and the area of the ends is given by 7R?. By making & small



Version Date, December 6 2010 177

enough compared to R, we can insure that any flux through the sides of the pillbox due to
tangential components of B do not contribute to the integral over the surface area of the
pillbox. Only the normal components of B contribute to the integral, and we easily
obtain (20.7.1).

What about the tangential components of B? These can have a jump if there is a
current sheet in the interface. To see this, take an amperean loop that spans the interface,
with width & perpendicular to the interface and length | tangential to the interface, with a
loop normal that is parallel to the current sheet direction, as shown in the figure below. If
we use Ampere’s Law with the displacement term included, and integrate around this
loop, we have

Sheet with -
SUﬁdCC current ‘_/\_

'y A7

Amperean
Lo | >>8

2

Figure 20-8: Boundary condition on the tangential component of B across an
interface.

@B-dlz,uo j J-Ada+ u e, j %da (20.7.2)

open surface open surface

If we make the width &very small compared to the length I, the only component that will
enter into the left hand side of (20.7.2) will be the tangential B, since any normal
component will be multiplied by £ << 1. And the magnitude of that component will be
B,I. If we look at the right hand side of (20.7.2), the first term will give g, 1«

independent of & whereas the second term involves an area le. Again if we make & <<
we can make the area integral of oE /ot insignificant. Therefore we will always have for
the magnetic field, even in a time varying situation, that

B,®Bn =xu x~ (20.7.3)
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20.8 Biot-Savart as the Relativistic Transformation of the Rest Frame E Field

Before leaving magnetostatics, let us give a heuristic derivation of where the Biot-
Savart Law comes from. If we think of our current source Idl as due to a moving point
charge dqg with velocity v, then Idl, which has units of charge times velocity, becomes
dgv, and Biot-Savart becomes

M, 1dIxR  pdg vxR dg R 1 dg R
dB=*o - = tpevx| S o2y 99 R (2081
i R ar RO e m T e re | 08D

0

We have written the last form in (20.8.1) so that we can discuss it in the context of
(15.5.11), which we reproduce here.

_ _ 1
B =B, B,,= }/(Bperp —C—zvxEj (20.8.2)

This tells us how to get the magnetic field in a frame moving at velocity v with respect
to the laboratory frame. Let us suppose that in the laboratory frame we have a charge dq
at rest. Then in that frame we have

dg R -
dE=-—-"  dB=0 (20.8.3)

- 4re, R

We now use (20.8.2) to find the magnetic field in a frame moving at velocity —v with
respect to the laboratory frame, where we assume that v<<c

= 1 1 dg R | 1 dg R
B _7(Bperp —C—ZVXEJ—(—C—Z(—V)X iz, EJ_C_ZVX|:47Z_80 ?} (20.8.4)

In this frame the charge dq appears to be moving at velocity +v, and we see that the
magnetic field is just that specified by Biot-Savart in the form of the last term in (20.8.1).
Thus the magnetic field of a moving point charge is just the relativistic transformation of
the Coulomb field in its rest frame to the frame in which the charge is moving.
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20.9 Visualizations of the Magnetic Field of a Charge Moving at Constant Velocity

Figure 20-9: The Magnetic Field of a Positive and Negative Charge at Constant
Speed

In Figure 20-9 we show the magnetic field of a positive and negative charge
moving at constant speed. Movies of this can be found at

://web.mit.edu/viz/EM/visualizations/magnetostatics/MagneticFieldConfigurations/

21 Magnetic Force on a Moving Charge and on a Current Element
21.1 Learning Objectives

We look at the properties of the qvxB force and the corresponding form for a
current carrying wire segment, IdIxB.

21.2 gE and qvxB as the Result of Electric and Magnetic Pressure
The Lorentz force on a moving charge is given by

F=q(E+vxB) (21.2.1)

There are a number of things to be said about this equation, the first being that non-
relativistically, the combination (E+vxB) is the electric field as seen in the rest frame

of the charge. We can see this by looking back at equation (15.5.10) for how E
transforms, which we reproduce here.

E,=E  E,.=y(E.+vxB) (21.2.2)


http://web.mit.edu/viz/EM/visualizations/magnetostatics/MagneticFieldConfigurations/�
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There will be a number of occasions where we will identify (E + VX B) as the electric
field in the rest frame of the charge g or of the moving current carrying element dl.

Also, if we consider the Maxwell Stress Tensor, we see that the qvxB magnetic

force can be understood as due to pressure and tension in the total magnetic field, just as
gE can be understood as due to pressure and tension from the total electric field. In

Figure 21-1 we show frames of movies that illustrate this for the electric field, and in
Figure 21-2 we show frames of movies that illustrate this for the magnetic field, and we
also give links to the respective movies. If we look at these movies with an eye towards
the pressures and tensions given by the Maxwell Stress Tensor, we can get a qualitative
feel for why these forces, both electric and magnetic, are in the directions that they are.

Figure 21-1: The gE Force as Due to Maxwell Stresses and Tensions

The figures are frames from movies which can be found at
://web.mit.edu/viz/EM/visualizations/electrostatics/ForcesOnCharges/forceq/forceg.htm
and

://web.mit.edu/viz/EM/visualizations/electrostatics/ForcesOnCharges/force in efield/for
ce in efield.htm

Figure 21-2: The qvxB Force as Due to Maxwell Stresses and Tensions

The figures are frames from movies which can be found at


http://web.mit.edu/viz/EM/visualizations/electrostatics/ForcesOnCharges/forceq/forceq.htm�
http://web.mit.edu/viz/EM/visualizations/electrostatics/ForcesOnCharges/force_in_efield/force_in_efield.htm�
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:/lweb.mit.edu/viz/EM/visualizations/magnetostatics/ForceOnCurrents/forcemovingg/for
cemovingg.htm

and

:/lweb.mit.edu/viz/EM/visualizations/magnetostatics/ForceOnCurrents/force in_bfield/fo
rce_in_bfield.htm

21.3 Where Does the Momentum Go?

When a charge is moving in cyclotron motion in a magnetic field, its momentum is
continually changing. How is momentum conserved in this situation? To answer this, we
show in Figure 21-3 a charge entering an external magnetic field which is non-zero only
over the circular segment shown in the Figure. The charge’s velocity is such that it
makes exactly a quarter of a cyclotron revolution before exiting the region where the
external field is non-zero. We show only those magnetic field lines which are just
outside the circle of revolution of the charge. The field shown is the sum of the external
field and the field of the moving charge.

It is clear that the momentum change of the particle over this sequence is absorbed
by the current segments which are producing the external field, contained within the solid
circular segments at the top and bottom of the figures. If you look at the stress tensor
near the currents producing the external field, you can clearly see a force which is
pushing those current elements in a direction such as to conserve total momentum. The
field is the conduit of the momentum exchange between the charge and the currents
producing the external field, but it stores no momentum itself.

Figure 21-3: A Charge in a External Magnetic Field Transfering Momentum to the
Sources of the External Field

The figures are frames from movies which can be found at
://web.mit.edu/viz/EM/visualizations/magnetostatics/ForceOnCurrents/MovingQinMagn
et/MovingQinMagnetFront.htm

and
//web.mit.edu/viz/EM/visualizations/magnetostatics/ForceOnCurrents/MovingQinMagn
et/MovingQinMagnetBack.htm
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21.4 The IdlxB Force

Suppose we have n charges per unit volume moving at speed v in an external B
field. Then the force per unit volume is the force on one times the number of charges per
unit volume, or

F

unit volume

=qnvxB=JxB (21.4.1)

where we have used the fact that J=qnv to get the last form in (21.4.1). To get the total
force on a given volume, we integrate over volume.

F=[JxBd*—>§1dIxB (21.4.2)

where the last form in (21.4.2) is the total force on a current carrying wire in an external
field. Thus we see that IdlxB is the force on a current carrying wire segment.

21.5 Force between Parallel Current Carrying Wires

It is easy to see using 1dIxB that if we have two parallel current carrying wires, the
magnetic force is attractive if the currents in the wires are in the same direction, and
repulsive if the currents are in opposite directions. We can also see this from looking at
the Maxwell Stress Tensor. If the current in the wires is in the same direction, the field
from the two wires subtracts between the wires, and if the current in the wires is in
opposite directions, the field adds between the wires. Thus the wires are either pulled
together or forced apart by the pressures and tensions associated with the field. This is
shown in the two movies in Figure 21-4.

S B — = = ik - N

Figure 21-4: Magnetic fields between Parallel Current Carrying Wires

The figures are frames from movies which can be found at
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:/lweb.mit.edu/viz/EM/visualizations/magnetostatics/ForceOnCurrents/SeriesWires/Serie
sWires.htm

and
:/lweb.mit.edu/viz/EM/visualizations/magnetostatics/ForceOnCurrents/ParallelWires/Par
allelWires.htm

21.6 Forces on Electric and Magnetic Dipoles in External Fields
21.6.1 The General Derivation

We consider the total force on an isolated and finite distribution of charges
p(r)and currents J(r) sitting in the electric field E® (r) and magnetic field B™ (r) due

to some external distribution of charges and currents. If the extent of our isolated
distrition of charges is d, we will assume that any characteristic scale of variation L in the
external fields is such that d << L. Then the force on our isolated distribution of charges
and currents is given by

F= [ [pE+IxB]dx= [ [pE™+IxB™]d (21.6.1)

volume V volume V

We suppose that our isolated distribution of charges and currents are centered at the
origin, and we expand our external fields in a Taylor series about the origin.

E(r) = E*(0) + ai EZ(0) +.... = EZ(0) + 1 VEZ(0) +... (21.6.2)
X .

]

where ai E(0) is the gradient of the i™ component of E with respect to X;, evaluated at
X .
]
the origin, and similarly for the magnetic field. With this expansion, (21.6.1) becomes to
first zeroth order in d/L

F=E"(0)] pd*x+ [ | Jd3x]x B®(0) = QE®™(0) (21.6.3)

since in magnetostatics we have IJd3x =0, and where we are using
\Y

Q=[p(r)d’ (21.6.4)

\

If we consider the first order terms in d/L in (21.6.1), using the Taylor series expansion
(21.6.2), we have


http://web.mit.edu/viz/EM/visualizations/magnetostatics/ForceOnCurrents/SeriesWires/SeriesWires.htm�
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F= (J-pr d3x}-VEeX‘ (0) +UJ x| r-vB™ (O):ld3XJ (21.6.5)

\

and after some work (21.6.5) can be written as

F =p-VE™(0) +m-VB®(0) (21.6.6)
where
p :Irp(r)dsx (21.6.7)
\%
m:ljrx\](r)dsx’:l—cj‘)rxdl (21.6.8)
2! 2

Thus there is no force on an electric and magnetic dipole sitting in external fields unless
the external fields have gradients, and if they do have gradients then the forces on the
dipoles are given by (21.6.6).

21.6.2 A Specific Example of a m-VB®**(0) Force

It is easy to see why an electric dipole will field a net force in an inhomogeous
electric field, but is not so obvious why a magnetic dipole will field a force in an
inhomogeneous magnetic field. We give here an example of how this happens, using the
case of two circular loops of current having the same axis, as shown in Figure 21-5.

Suppose we have two current loops sharing the same axis. Suppose furthermore
that the sense of the current is the same in both loops as in Figure 21-5. Then these loops
attract one another. This is a specific example of the forces on magnetic dipoles in non-
uniform fields. To see why this is so, consider the magnetic field B, of the lower loop as
seen at the location of the upper loop. The presence of this B field will cause a force on
the upper loop because of the dF =i dl x B; force. If we draw dl and B; carefully, and
take their cross-product, we get the result shown in the figure, that is a dF that has a
radial component and a downward component. The radial component will cancel out
when we integrate all away around the upper loop to find the net force, but the downward
component of the force will not. Thus the upper loop feels a force attracting it to the
lower loop.
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Figure 21-5: Co-axial current loops with currents in the same direction

If now we reverse the direction of current in the upper loop, so that now the
currents in the two loops are in opposite senses, we find that the loops are repelled by
each other, because the dF 's have reversed from the situation above (see Figure 21-6).

Figure 21-6: Co-axial current loops with currents in opposite directions
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Note that this attraction or repulsion depending on the relative sense of the
currents explains why north poles of permanent magnets attract the south poles of other
magnetics and repel their north poles. We know that permanent magnets are caused by
circulating atomic currents in the materials making up the magnet. The north pole of a
permanent magnet is right-handed with respect to the its atomic currents--that is, if you
curl the fingers of your right hand in the direction of atomic current flow, your thumb
will point in the direction of the north pole of the permanent magnet.

In Figure 21-7, 1 show two permanent magnets, both with their north poles up,
and the sense of their atomic currents for this orientation (the atomic currents of course
flow on the surface orinside the magnets). The magnets in this orientation attract one
another, for the same reason that the two co-axial current loops in Figure 21-5 attract one
another--the currents are in the same sense, and the resulting i dl x B force on the atomic
currents in one magnet due to the presence of the magnetic field of the other magnet
results in attraction. We loosely say that the south pole of the top magnet "attracts"” the
adjacent north pole below.

atomic
currents

atomic
currents

/\ at‘Fraction /\

Figure 21-7: Two bar magnets attracting

If we turn the top magnet upside down, so that now the north poles of the two
magnets are adjacent, we have reversed the sense of the currents, and therefore we get
repulsion, for the same reasons the two current loops repel one another in Figure 21-6.
We loosely say that the north pole of the top magnet "repels” the adjacent north pole
below. All of these phenomena are simply the result of qv x B forces, which are the
same as i dl x B forces.
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21.7 Torques on Electric and Magnetic Dipoles in External Fields
21.7.1 The General Derivation

Now we consider the torque on an isolated and finite distribution of charges
p(r)and currents J(r) sitting in external fields. The torque is given by

‘L'=.|.r><[pE+J><B]d3X=J‘r><[,oEeXt +J><Be“]d3x (21.7.1)
\ \
And after some manipulation this can be written as

t=pxE_, (0)+mxB,_,(0) (21.7.2)

21.7.2 A Specific Example of a mxB_,(0) Torque

Although it is easy to see where the torque on an electric dipole in an external
electric field comes from, it is not so obvious where the torque on a magnetic dipole in an
external magnetic field comes from, so we consider this topic further. Suppose we have a
rectangular loop of wire with sides of length a and b, carrying current i (see Figure
21-8). It is free to rotate about the axis indicated in the figure. The normal to the plane
of the rectangular loop of wire is n, where we take n to be right-handed with respect to
the direction of the current flow (if you curl the fingers of your right hand in the direction
of current flow, then your thumb is in the direction of n). The normal n makes an angle
@ with a uniform external magnetic field Beyt, as indicated. If we define the magnetic
dipole moment m of the loop to be iAn, where A = ab is the area of the loop, then
according to (21.7.2), the loop will feel a net torque T due to magnetic forces with
t=mxB_,. This torque will tend to align m with Bext.

-

@]
li
3
Bext
0 =g
: n,m
IJ’ b
()

Figure 21-8: A rectangular loop of current in an external magnetic field
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To demonstrate that T=m x B, is the correct expression, consider the forces on
each of the four sides of the loop, using the expression for the force on a segment of wire

given by dF = IdIxB. The directions of these four forces are indicated in Figure 21-9
below.

In each case, these forces are perpendicular both to Beyt and to the direction of the
current in the segment. The magnitude of the force F, on side 2 (of length b) is i b Beyt
cosd, and is equal to the magnitude of the force F4 on side 4, although opposite in
direction. These two forces tend to expand the loop, but taken together contribute
nothing to the net force on the loop, and moreover they have zero moment arm through
the center of the loop, and therefore contribute no net torque.

The forces F; and F3 also have a common magnitude, i a Beyt, and are oppositely
directed, so again they contribute nothing to the net force on the loop. However, they do
contribute to a net torque on the loop, and it is obvious from studying the figure that the
two forces tend to rotate the loop in a direction that tends to bring m into alignment with
Bext. The forces both have a moment arm of (b/2) sing, and so the total torque is

|r|:2(iaBext)gsint9:iabsin9:|m><B| (21.7.3)

which is the result we desired. In vector form, T=mxB,_,,.

Figure 21-9: The forces on a rectangular loop in an external magnetic field
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21.8 Free Dipoles Always Attract

Finally, we point out that when dipoles free to rotate and translate are allowed to
interact, the combination of the torques and forces are such that the dipoles always
attract. For example the torque will cause to magnetic dipoles to align so that their
currents are in the same sense, and then the force of attraction in that configuration will
pull them together. An example of this behavior is shown in Figure 21-10.

Figure 21-10: Interacting Dipoles Attracting

The application from which this frame is taken can be found at
://web.mit.edu/viz/EM/visualizations/electrostatics/ForcesTorquesOnDipoles/DipolesSho
ck/DipolesShock.htm
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22 Creating and Destroying Electromagnetic Energy and Angular Momentum
22.1 Learning Objectives

We begin our considerations of Faraday’s Law, and consider it first in the context
of the creation and destruction of magnetic fields, energy, and angular momentum. In
later sections we will consider other uses, e.g. with respect to inductance in circuits, but
first we look at the most fundamental implication of Faraday’s Law.

22.2 Faraday’s Law
Faraday’s Law in differential form is

vxE=_8 (22.2.1)
ot

This law is the basis for how we understand why it takes energy to create magnetic fields.
The process by which we put energy into magnetic fields, and retrieve it, is fundamental
enough that it bears emphasis, and it is a good illustration of the conservation laws we
have developed. We have not discussed the energy in magnetic fields up until now
because calculating the energy to create magnetic fields is an intrinsically time dependent
process.

You may argue that calculating the energy to assemble electric charges is also an
intrinsically time dependent process, and we used statics there and got an answer. The
difference is that we must have an electric field to work against to evaluate the work
done--magnetic fields do no work--and in electrostatics we know the electric fields we
are working against to a first approximation. In magnetostatics there are no electric fields
in the absolutely static limit, and up to now we have not known how to calculate the
electric field produced by slowly varying magnetic fields, which is what we must work
against to produce them.

So we are finally in a position to consider the forces that arise, and the work we
must do against those forces, when we try to create a magnetic field. The best way to
convince us intuitively that magnetic fields require energy to create is to set up a situation
where we must do the work to create them (rather than let a battery do the work, for
example). This is the basis of the example in Section

22.2.1 E x B drift of monopoles in crossed E and B fields
Before we get to the quantitative details, let us first look at a visualization of this
process. Before we get to the visualization we need to discuss how we animate the

magnetic field lines in this movie. Here is how it is done.

For an electric charge with velocity v, mass m, and electric charge g, the non-
relativistic equation of motion in constant E and B fields is
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imv:q(E+v><B) (22.2.2)
dt
If we define the E x Bdrift velocity for electric monopoles to be
ExB
V. = e (22.2.3)
and make the substitution
vV=V'+V, (22.2.4)
then (22.2.2) becomes (assuming E and B are perpendicular and constant)
dim\,r _qv'xB (22.2.5)
t

The motion of the electric charge thus reduces to a gyration about the magnetic field line
superimposed on the steady drift velocity given by (22.2.3). This expression for the drift
velocity is only physically meaningful if the right-hand side is less than the speed of light.
This assumption is equivalent to the requirement that the energy density in the electric
field be less than that in the magnetic field.

For a hypothetical magnetic monopole of velocity v, mass m, and magnetic charge
Om, the non-relativistic equation of motion' is

(2227)%mV=qm(B—vXE/c2) (22.2.6)

If we define the E x Bdrift velocity for magnetic monopoles to be

vV, =c ExB (22.2.7)

EZ

and make the substitution analogous to (22.2.3), then we recover (22.2.5) with B replaced

by —E/c?. That is, the motion of the hypothetical magnetic monopole reduces to a
gyration about the electric field line superimposed on a steady drift velocity given by
(22.2.7). This expression for the drift velocity is only physically meaningful if it is less
than the speed of light. This assumption is equivalent to the requirement that the energy
density in the magnetic field be less than that in the electric field. Note that these drift
velocities are independent of both the charge and the mass of the monopoles.

In situations where E and B are not independent of space and time, the drift
velocities given above are still approximate solutions to the full motion of the monopoles
as long as the radius and period of gyration are small compared to the characteristic
length and time scales of the variation in E and B. There are other drift velocities that
depend on both the sign of the charge and the magnitude of its gyroradius, but these can
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be made arbitrarily small if the gyroradius of the monopole is made arbitrarily small. The
gyroradius depends on the kinetic energy of the charge as seen in a frame moving with
the drift velocities. When we say that we are considering “low-energy” test monopoles in
what follows, we mean that we take the kinetic energy (and thus the gyroradii) of the
monopoles in a frame moving with the drift velocity to be as small as we desire.

The definition use to construct our electric field line motions is equivalent to
taking the local velocity of an electric field line in electro-quasi-statics to be the drift
velocity of low energy test magnetic monopoles spread along that field line. Similarly,
the definition we use to construct our magnetic field line motions below is equivalent to
taking the local velocity of a magnetic field line in magneto-quasi-statics to be the drift
velocity of low energy test electric charges spread along that field line. These choices are
thus physically based in terms of test particle motion, and have the advantage that the
local motion of the field lines is in the direction of the Poynting vector.

22.2.2 A visualization of the creation and destruction process

Before we get to the quantitative details, let us consider a movie of this process.
In Figure 22-1, we show one frame of a movie showing the creation process. You can
find a link to this movie at

://web.mit.edu/viz/EM/visualizations/faraday/CreatingMagneticEnerqy/

Figure 22-1: One frame of a movie showing the creation of magnetic fields

In the movie, we have five rings that carry a number of free positive charges that
are not moving. Since there is no current, there is no magnetic field. Now suppose a set of
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external agents come along (one for each charge) and simultaneously spin up the charges
counterclockwise as seen from above, at the same time and at the same rate, in a manner
that has been pre-arranged. Once the charges on the rings start to accelerate, there is a
magnetic field in the space between the rings, mostly parallel to their common axis,
which is stronger inside the rings than outside. This is the solenoid configuration we shall
consider in quantitative detail below in the next section.

As the magnetic flux through the rings grows, Faraday's Law tells us that there is
an electric field induced by the time-changing magnetic field. This electric field is
circulating clockwise as seen from above. The force on the charges due to this electric
field is thus opposite the direction the external agents are trying to spin the rings up in
(counterclockwise), and thus the agents have to do additional work to spin up the rings
because they are charged. This is the source of the energy that is appearing in the
magnetic field between the rings-the work done by the agents against the "back emf".

Over the time when the magnetic field is increasing in the animation, the agents
moving the charges to a higher speed against the induced electric field are continually
doing work. The electromagnetic energy that they are creating at the place where they are
doing work (the path along which the charges move) flows both inward and outward. The
direction of the flow of this energy is shown by the animated texture patterns. This is the
electromagnetic energy flow that increases the strength of the magnetic field in the space
between the rings as each positive charge is accelerated to a higher and higher velocity.

In the case of the destruction of magnetic fields, suppose we have the same five
rings as above, this time carrying a number of free positive charges that are moving
counter-clockwise. This current results in a magnetic field that is strong inside the rings
and weak outside. Now suppose a set of external agents come along (one for each charge)
and simultaneously spin down the charges as seen from above, at the same time and at
the same rate, in a manner that has been pre-arranged. Once the charges on the rings start
to deccelerate, the magnetic field begins to decrease in intensity.

As the magnetic flux through the rings decreases, Faraday's Law tells us that there
is an electric field induced by the time-changing magnetic field. This electric field is
circulating clockwise as seen from above. The force on the charges due to this electric
field is thus opposite the direction the external agents are trying to spin the rings down in
(counter-clockwise), and thus work is done on those agents.

As the strength of the magnetic field decreases, the magnetic energy flows from
the field back to the path along which the charges move, and is now provided to the
agents trying to spin down the moving charges. The energy provided to those agents as
they destroy the magnetic field is exactly the amount of energy that they put into creating
the magnetic field in the first place, neglecting radiative losses. This is a totally reversible
process if we neglect such losses. That is, the amount of energy the agents put into
creating the magnetic field is exactly returned to the agents as the field is destroyed.
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22.3 The spinning cylinder of charge
22.3.1 The fields of a spinning cylinder

Now let us do the quantitative calculation that confirms the qualitative picture
above. Suppose we create a magnetic field in the following way. We have a long
cylindrical shell of non-conducting material which carries a surface charge fixed in place
(glued down) of o Coulombs per square meter. The length of the cylinder is L, which is
much greater than its radius R. The cylinder is suspended in a manner such that it is free
to revolve about its axis, without friction. Initially it is at rest, and there is no magnetic
field. We come along and spin the cylinder up until the speed of the surface of the
cylinder is V. After spinning it up, we will have a magnetic field inside the cylinder and

outside the cylinder the field will be zero. The field inside the cylinder will be given by
B, = ,k,Z = p,0V, 2 (22.3.1)

This is just our standard magnetostatic formula for the field inside a solenoid with surface
current x,. Let's calculate the amount of work we have to do to create this magnetic

field.

Figure 22-2: Spinning up a cylindrical shell of charge



Version Date, December 6 2010 195

Imagine we are in the middle of this process, and have gotten the cylinder up to
some speed V(t) at time t, where V(t) is increasing with time and is less than the final
speed Vo. At that point, there will be a magnetic field inside the cylinder that is also

increasing with time, which is approximately given by
B(r,t) ~ px(t)Z = p,oV(t)Z (22.3.2)

You should immediately object that this is now a time varying situation, so the static
solution is no longer correct. However we have seen in our studies of the various regions
around an isolated time varying set of charges and currents (see Section 9.3) that it is ok
to use the static solutions as long as the time T over which we spin the cylinder up
significantly is much longer than the time that it takes light to cross the cylinder, R/c. If
this is true, and we assume it is, and if we are within the Near Zone, that is, r <<cT then
equation (22.3.2) is a good approximation to the actual magnetic field.

B
Now, VXE= —E , with B in the z-direction, and let us assume that the electric

field is a combination of an azimuthal electric field in addition to our cylindrical radial
field associated with the charge density o. That is, we assume that

E r<R
E(r,t)= . N
(0 ZF+E$ r>R

&

(22.3.3)

If we apply Faraday's Law to a circle of cylindrical radius r about the axis of the
cylinder, we find that the line integral of the electric field yields

$E(r,1)-dl = 27rE, (22.3.4)

The magnetic flux through the imaginary circle at time t is given by

j B(r,t)-fida=

surface

{ﬁrZO'V t r<R (22.3.5)

7RV () r>R

Thus we find that that part of the electric field "induced"” by the time-changing magnetic
field is

urodv(t)
~ o2 dt
1,R*c dV (t)
or  dt

r<R

(22.3.6)
r>R
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We frequently refer to that part of the electric field associated purely with time-changing

magnetic fields as induced fields, thus the origin of the terms "inductance", "inductors",
and so on.

The sense of the electric field is shown in Figure 22-2. When we are trying to
spin up the cylinder, the “induced” electric field will cause forces on the (glued on)
charges on the cylinder walls which are such as to resist us spinning up the cylinder.
This is why we have to do additional work to spin up a charged cylinder, because we
have to do work to overcome the forces associated with the induced electric fields, which
are in a direction such as to resist change. This is an example of Lenz's Law--the
reaction of the system to change is always such as to resist the change.

22.3.2 The work done to spin up the cylinder

How much energy does it take us to do this? We must exert a force in the $
direction to increase the speed of the cylinder. In the following, we ignore the radial part
of the electric field, since we do no work against it. To increase the speed of a little bit of
charge +dq on the cylinder, we must provide a force F,, =—-dqE. That is, we must

provide an additional force in the azimuthal direction that the charge is moving that
balances the retarding force due to the induced electric field (plus a little teeny bit more,
to actually increase the speed of the charge, but we can neglect that little teeny bit). Thus

the rate at which we do work, dd—V:/ =F -V, ispositive, since F,, =—dqE isinthe

direction of V. The work to increase the speed of a little +dq is thus

dd_":’ —F,,-V =—-dqV (t)E, = +dqV (t)[%;" %} (22.3.7)

dW/dt = + dq V(uo0oR/2)dV/dt , where we have used our expression in (22.3.6) for E .
Since the total charge on the cylinder is Q = O'[27ZTL] , the total rate at which we do work
to spin the cylinder up is just found by replacing the dq in (22.3.7) by Q, giving

w

W _ofomLv (t)[”o_R"M} (223.8)

2 dt

which after some manipulation and using B = y oV (t) can be written as

2
dﬂ:ﬁRzLi B_ (22.3.9)
dt dt| 2u,
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To get the total energy to spin up the cylinder, we just integrate this expression with
. . B? : : . .
respect to time to obtain 7ZR2L|:2—Oj| . Since zRL is the volume of our cylinder, this
Hy
BZ
implies an energy density in the magnetic field of 5 °. Itis clear where the energy to
Ho

create this field came from--us!

Moreover, this is process is totally reversible--we can get the energy right back
out of the magnetic field. To do this, we just grab hold of the spinning cylinder and spin
it down. When we try to spin the cylinder down, we are trying to decrease the magnetic
flux, and thus we will have a induced electric field that will try to keep the cylinder
spinning, that is it will reverse direction from the situation above. This is exactly what
we expect from Lenz's Law--the induced electric field is in a direction so as to keep

things the same. The rate at which we do work, (L—V:/ =F, -V, will now be negative,

since F,, =—dqE reverses sign with the electric field. That means that work is being
done on us, and we can use that work to take a free ride, or whatever.

In any case, we are getting energy back out of the process as we spin down the
cylinder, and thereby destroying the magnetic fields. With a little thought, it is clear that
we will get back exactly the amount of energy we put in the first place to create the
magnetic field. Of course we are neglecting radiation losses when we make this
statement, but from our discussions in Section 9.5, equation (9.5.7), we know that the

energy loss compared to the stored energy is of order (R/cT )3 , and we can make this as
small as we desire by simply doing things more and more slowly.
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SPINNING DOWN
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Figure 22-3: Spinning down a cylindrical shell of charge

What we have presented above, based on forces, is an intuitive approach to
understanding the origin of energy in magnetic fields. It is makes manifest that to create
a magnetic field you must do work against the induced electric fields that are associated
with the increasing magnetic flux. Conversely, when you destroy a magnetic field, work
is done on you by the induced electric field associated with the decreasing magnetic flux.

22.3.3 Energy flow in spinning up the cylinder

Now, consider this entire process from the point of view of the conservation of
energy law given in (4.4.2) in integral form, that is,

0
E voIJl:me

H,

surface volume

2
ESOE%ZB—%}&H | (@}-ﬁdaz [ [-E-3]d’ (22.3.10)

When we have a surface current, the term

J' [_E.J}d3xz I [—E- ]da (22.3.11)

volume surface

where k = av(,?. This is the term we evaluated above. We are doing work and therefore
depositing energy at the circumference of the cylinder. That energy, deposited in a thin
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cylindrical shell of radius R, then flows inward toward the center of the cylinder at a rate

given by the Poynting vector ExB . We can easily see that the total Poynting flux
Hy

calculated just inside the surface of the cylinder r a little less that R is given by

2
[ 28] fda= | (—EwB?j-Fdam—zszLi B (22.3.12)
H, 2 dt dt| 24

0

surface surface

Thus we create the energy at r = R, and it flows inward to reside in the magnetic field for
r<R.

22.3.4 Electromagnetic angular momentum for the spinning cylinder

In you think a minute you realize that we should also be creating electromagnetic
angular momemtum when we spin up the cylinder, because we have to apply an
additional torque to spin up the cylinder because of the “back” emf. But if you look at

the density of electromagnetic angular momentum after we are finished, rx[goEx B] it

is zero everywhere. In actual fact you can indeed calculate the creation rate of angular
momentum at the shell and the flux of angular momentum outward for r > R, and it is not
zero, but it flows to infinity and is stored in the fringing fields at infinity, which are not
accessible to us because we have assumed an infinitely long cylinder. To see the
electromagnetic angular momemtum we put into spinning up a distribution of charge, we
must take a finite, not infinitely long body, which we do in the next section for a sphere.

22.4 The Spinning Sphere of Charge
22.4.1 The fields of a spinning sphere

We now carry out the same calculations as above except we look at a more
realistic situation, which will allow us to see where the electromagnetic angular
momentum is stored. Instead of an infinitely long spinning cylinder of charge, we look
at a spherical shell of radius R that carries a uniform surface charge o. Its total charge Q
is 4 7R2 o, and its Coulomb electric field is

0 r<R
Ecoulomb = Lf r>R (2241)
Are 1’

We begin spinning the sphere at a angular velocity w(t) with @R <<c. The motion of
the charge glued onto the surface of the spinning sphere results in a surface current

k() = o w(t)RsinG §=rx(t)sinOd (22.4.2)
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where x(t)=cw(t)R.

=
Z

K=kKsing ¢

Figure 22-4: A spinning sphere of charge with surface current

We can use the quasi-static approximation to get a good approximation to the time

dependent solution for B (good for variations in «(t) with time scalesT ~ o dt > B)
K c
If we define
4r R® 2

m(t) = ”3 x(t) B(t) = %K(t) (22.4.3)

so that
t
B(t) = £M) (22.4.4)

27R?

then our quasi-static solution for B can be shown to be (see Griffiths Example 5.11 page
236-237)

’u"m(?(ZCOSG r+sing é) (r>R)
B(r,t)={ 4zr (22.4.5)

3 B(t) (r<R)

We thus have from (22.4.5) that
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LS(ZCOSH f+sind é)m (r>R)
dB(r,t) |4z dt

dt

(22.4.6)

A

z —B(t) (r<R)

L]
dt
Given (22.4.6), we can find the induction electric field everywhere in space, as follows.

For r <R, take we take a circle whose normal is along the z-axis, whose center is

located a distance rcosé up the z-axis, and whose radius is rsiné@. If we apply
Faraday’s Law in integral form to that circle, we have

27rsingE, = -z (rsin «9)2%—? (22.4.7)
or
~rsin@dB  ~ru dx . ~ T Sing dm
E. iuction = — —=—0—>—-sIinf=—¢p————— 22.4.8
induction (I) 2 dt ¢ 3 dt ¢ 47Z'R3 dt ( )

where we have used (22.4.3).

Forr >R, if we assume E, .ion = E¢$, then
. 0 /.. ~10
VxEOr —(singE, |- ——(TE 22.4.9
* rsineae( /) rar( ‘) ( )

Comparing this expression to (22.4.6), we see that from Faraday’s Law we have for r >
R
H,8in 6 dm

E,=— >
Arr®  dt (22.4.10)

¢

Our complete electric field, Coulomb plus induction field, is thus given by

U
T
E= Ecoulomb + Einduction = Q N7 sin 6 dm (22411)
sr—¢——— r>R
Are,r 4rre dt

It is instructive to compare the induction term for r > R to the Coulomb term

Eincuction _ 476,1” 44,510 dm _ sin@i[47zR3 R Q

2 45 2 w 2}
E outomb Q 4mr® dt Qc”dt] 3 47R (22.4.12)
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Einduction

E

_sindR*dw  wsindR’ 1 do _wR® _ 1(@)( R

3?2 dt 3’ ewd 37T 3¢ c_T] (22.4.13)

coulomb

To get the final form in (22.4.13) above we have used the time scale T for changes in the
angular velocity defined by

ldo

1

T odt (22.4.14)
Our final result in (22.4.13) above shows that the ratio is the product of two terms, both
of which we are assuming to be small, so the ratio of the induction field to the Coulomb
is second order small in small quantities.

22.4.2 The total magnetic energy of the spinning sphere

For our purposes below, we want to calculate the magnetic energy outside of R
and inside of R . Outside of the sphere

j {B—z}dﬁ = an'_lld (cos 9)]:{282 }rzdr (22.4.15)

r>R 21”0 luo

and using (22.4.5)

2
J' {B—z}d"‘x = anlld (cos 0)_[: [Zi{f"—r;j (4cos2 0 +sin’ 9)] r2dr
- T

r>R 2/'10 M,
— ! 2 w ,Ltom2 1
= 27| (3cos 0+1)d(cos€).[R{327[2 ?}dr (22.4.16)
:_'uom2
127R?

In contrast, inside the sphere,

2 2 3 3 2 2
I B 43— B® 47R’ _27R [Z,uo K(t)} :/Joma (22.417)
24, 21, 3 3u 3 67R

0

r<R

so the magnetic energy inside the sphere is twice that outside the sphere. The total

energy we have at time t in the magnetic field is given by the sum of the two terms we
2 2 2

AM oy BN \hich s £

3 R3' 4R3

calculated above, or
6zR°> 127 T
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22.4.3 The creation rate of magnetic energy

The total rate at which electromagnetic energy is being created as the sphere is
being spun up, J. —-J-E d°x, is given by

all space

[ -3Edx= | —[Jm(t)sin@&(r—R)}
all space all space
1 2
=—ﬂ°K(t)d—mJ'sin29d(cos¢9): 2u°K(t)d—m= ”"m3d—m:i “°m3 (22.4.18)
2 dt’ 3 dt 2zR° dt dt|4zR

~u singdm | 5
- — | d°x
|:¢47Z'r2 dt}

1

so from (22.4.18) we are doing work at just the rate needed to increase the total magnetic
energy density we have at a given time. You might worry that we have not taken into
account the energy required to create the inductive electric field, but if we estimate how
big that energy is, using (22.4.10), we have

Lol (o mY 1 (R BY (RY B
207 27\ 4zR*T ) 2 °\4zR?T cT ) 24, (22.4.19)

So we can neglect the energy in the induction electric field compared to that in the
magnetic field, since it is second order small. If you are spinning up the sphere, it is you
who are creating this energy by the additional work you must do to offset the force
associated with the induction electric field.

22.4.4 The flow of energy in the spinning sphere

The energy is being created at r = R, and we can see if flowing away from its
creation site by using the Poynting vector to calculate the flux of electromagnetic

ExB | .
energy I {L} -rda through a spherical surface of radius r for r a little greater than
Ho

R and also for r a little smaller than R.  First let’s do this for r a little greater than R.
There we have

ExB= Q 2?—$”°Sln29d—m X ”"m(z)(ZcosHHsineé)
Are,r Azre dt Ay

surface

umty Q . /. Ay usingdm ~ o\ g sinf@dm s A
=40 sin@(fx0)-————2cos@(pxr)-2———(px0
4rr’ | bdrer? ( ) ) 4rr®  dt (¢X ) 4rr®  dt (¢X )

R - R - 2
_ ,uom(? Q ZSiné’q)_yo25m02cosed_me_|_yosm20d_mf
Az r’ | Armer Arr dt 4rre  dt

(22.4.20)
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So that the energy moving away from the sphere at a distance a little greater than R is

127 R®
(22.4.21)

ExB | . 1 p,m(t) g, sin®6 dm gm(t) dm d | g,m*(t)
j -fda= J — / ———lda=r—r—=—| 2
U, U, 4z R® 4zR°  dt 6z R® dt dt

surface surface

This is exactly the energy flow outward we need to increase the magnetic energy outside
the sphere at a given time. Now let us consider the energy flow across a sphere of radius
r <R. There we have

ExB:l:—J)w(jj—’:}x[i B(t)]:—%%—fsin GB(t)(&)Xi)
2 9 R . 2 M2 ~
Exmz_wdisine(q)x(fcosm— sinﬂ)):—iwsine( cosH+“sin«9)
9 dt dt (47R%)

(22.4.22)

2

So J|:EXB:|-IA’da=—27Z'—ﬂO dm

2
> _[1 d(cos@)sinzez—i il
M, (4r) R dt 7

dt 6zR?

surface

The minus sign in this equation means the energy flow is inward, and it is exactly the
amount we need to account for the rate at which magnetic energy is building up in the
interior (see (22.4.17)).

So all of this makes sense, we are creating energy at the shell where we are doing
work, and it is flowing out from where we create it at exactly the rate that we need for the
build up of magnetic energy inside and outside of the sphere.

Unfortunately, to solve the problem in this relatively simple form, we have had to assume
we are doing everything really slowly compared to the speed of light transit time across
the sphere, so in none of our terms above do we explicitly see fields propagating at the
speed of light. Our solutions just change instantaneously in time everywhere in space,
and that is because we have essentially assumed that c is infinite to get the tractable
expressions above. We can however solve the full problem without making any
assumptions as to how T compares to R/c, but the solutions are much more complicated
(see ://web.mit.edu/viz/spin/) When we do this, we obtain solutions in which the
energy created at r = R propagates inward and outward at the speed of light, reaching
the center of the sphere at a time R/c after it was created at the cylinder walls. We
show one frame of a visualization of this process, in which you can just see the inward
and outward propagation of fields at the speed of light, in Figure 22-5. The full movie
for Figure 22-5 can be found at

://web.mit.edu/viz/spin/visualizations/I=1/slow/slow.htm



http://web.mit.edu/viz/spin/�
http://web.mit.edu/viz/spin/visualizations/l=1/slow/slow.htm�
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Figure 22-5: One frame of a movie showing the creation of magnetic energy

22.4.5 The electromagnetic angular momentum of the spinning sphere
Let us now look at the conservation of electromagnetic angular momentum, which

we could not treat in the cylindrical case because it was stored in the fringing fields at
infinity. The form that this conservation law takes is (4.5.7), which we reproduce below

%Irx[goExB]d3x+j(—rxf.ﬁ)da:_J'rx[pE+JXB]dsx (22.4.23)
v 3 v

If we compute the total electromagnetic angular momentum of this spinning charge
configuration, it is

j rx[e,ExB]d*x (22.4.24)
all space
and we have
dr )2 m? -
o al = sine( c059+“sin49) r<R
r><(E><B)=< (472-R )

R ; R P02
ﬂ°m(§) . Q : sin9¢—”°25m620086d—m9+ U, sm2 Hd_m? F >R
drrr Ame v 4rr dt 4rr®  dt

(22.4.25)
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2 2
—%%sm 49(¢cos¢9) r<Rr
rx(ExB)= (47R) (22.4.26)
_yom(ts){ Q Sineé_%Zschose dmﬂ F >R
Arr® | Are,r 4rr

We can ignore the dm/dt terms in (22.4.26) for two reasons: (1) these terms integrate to

zero because of the$ dependence; and (b) these terms are small compared to the others.
So we have

0 r<R
rx(e,ExB)= B m(t) Q

4rric 47r5 r

~Q ingb= r>R (22.4.27)

Using 0 =—Zsin &+ Xcos@cos¢+y cosdsin g, and realizing in advance that the x and y
components will average to zero because of the cos¢ and sin¢g terms, we have

0 r<R
rx(ExB)=1 m(t) Qsin’ 0,
47 r3c? Are v

(22.4.28)

r>R

The total electromagnetic angular momentum is located entirely outside the sphere and is
given by

Irx(gOEx B)d’x=2 mHQ Tdrj.d(cose)sinze

(87, ) c? 12
(22.4.29)
;. MQ_47R%eRQ
(67e,)Rc*  3(6me,)RC’
[rx(e,ExB)d*x=2 oRQ’ (22.4.30)
187¢, ¢

22.4.6 The creation rate of electromagnetic angular momentum

The total rate at which electromagnetic angular momentum is being created as the
sphere is being spun up is according to (22.4.23)

[ -rx[pE+IxB]d’x= [ -rxcEda= [ (rx$)o (‘Z’;'F:'f‘z:"jda (22.4.31)

all space surface surface
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so that

J‘ —rx[pE+J><B]d3X:—I (O‘,LZS::I;IHd_m
r

all space d surface d (22432)
:2(%—mj I sin?@da= z[a% —ijﬁRzi
4zR dt ) 5. 47zR d 3
20u R(47R%
—r><[pE+J><B]d3X=2i Ho ( )
all space dt 9
(22.4.33)
_,d(20m47R'0R ) _, d ( Q T 8u, 7R’
dt 9 dt| \ 47R? 9
[ —rx[pE+IxB]d*=12 Q'R (22.4.34)
all space dt :|'87Z.‘(;0C

In the first of the equations above we have used (22.4.11), in the second we have ignored
a term that looks like sin @ cos@ because it will integrate to zero when we do the theta
integration, and in (22.4.34) we have used the definitions of m and «. This is the rate we
want to see, because when integrated over time it gives the total electromagnetic angular
momentum created, as given in (22.4.30). If you are spinning up the sphere, it is you
who are creating this angular momentum by the additional torque you must impose to
overcome “back” force due to the induction electric field.

22.4.7 The flux of electromagnetic angular momentum

Finally, let us calculate the flux of electromagnetic angular
momentum, I [—r X T‘] -t da, through a sphere of radius r .

surface

J [—rxﬂ?da: .[ [—rx(‘f-?)}da: .[ {—rx(Trrf+TmA+Tr¢$)}da

surface surface surface
(22.4.35)

For a sphere with r a little less than R, this flow will be zero, as we expect, because there
is no electromagnetic angular momentum in the interior of the sphere when we are
finishing spinning up the sphere. For r a little greater than R, we have
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. . Q usindd
sur‘!.ace|:_re< Tr¢¢:| da - SUI"!‘aC? RTr¢ da o go sur‘!.ace R 472.80R2 Al4.;|an d_Td

R ; 3 2
:—050% .[ R Q ﬂos'”94”RO'CURda +Ad Q°wR

Z_
surface 47T80R2 47Z-R2 3 dt 187[0260 (22436)
This is exactly the rate of flow that we want, because when integrated over time it gives
us the electromagnetic angular momentum stored outside the sphere when the sphere is

fully spun up.

23 The classical model of the electron
23.1 Learning Objectives

We extend the results we have obtained above for the magnetic energy and
angular momentum of a spinning shell of charge to the case of a spherical shell of charge
with a linear velocity. We compute the linear electromagnetic momentum involved in
that motion. Finally, put this all in the context of the attempt in the early 1900’s to make
a purely electromagnetic model of the electron.

23.2 The momentum and angular momentum of a shell of charge
23.2.1 Angular momentum

In the previous section, we derived the total electromagnetic angular momentum
of a spinning uniformly charged shell of radius R and total charge Q, spinning at an

angular speed wz. The total angular momentum (all of which is contained in the region
outside of the shell) is from (22.4.30)

wRQ?
187¢, ¢°

L = [rx(s,ExB)d*x=2 (23.2.1)

The amount of energy that it took to assemble the charges in this shell, U, is given by

U, =1jp¢d3x=1ja¢da= Q" (23.2.2)
2 2 87 R

Let us define the “electromagnetic inertial mass”, m., of this charge configuration by the
equation

2
mEC2 :UE = mE :ﬁ (2323)
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With this definition, we see that the angular momentu in (23.2.1) can be written as

. wRQ’R (4
E @Zﬁ:Z(ngRZ)CO: IE (2324)

where the “electromagnetic moment of intertia” is defined by

I, :ngRZ (23.2.5)

What about the magnetic energy of the spinning spherical shell? In (22.4.18) found that
this magnetic energy is given by

um?> 2, ., 2@*R?
o _“mefRP=Z
B 47R® 9 °F 9 ¢?

U (23.2.6)
so that we have U, <<U_ if wR <<c. Moreover, we can also write (23.2.6) as
U =§R2me2 =%IEa)2 (23.2.7)

At this point, bells start going off in our head’s, and the same bells went off in the heads
of physicists in the early 1900’s. From mechanics we remember that a thin shell of mass

m has a moment of inertia given by | :émRz. When it is rotating it has rotational

kinetic energy of %Ia)z and angular momentum l@. That looks an awful like our

expressions in (23.2.4) and (23.2.7). Maybe mass is just charge?
23.2.2 Linear momentum

Let see if we can get some kind of similar result for linear momentum. We move
the spherical shell at velocity V<< ¢ in the z direction. Assuming for the moment that

the velocity V is constant, we know that in the rest frame of the shell, there is only an
electric field. How can we use that fact to find the magnetic field in the laboratory frame,

neglecting terms of order (V/ c)2 ? If we return to equation (14.3.15), the fact that the
magnetic field in the barred frame is zero means that

\Y = \Y
Bx:Bx:O Byzy[By_'_C_zEzj:O Bz:}/(Bz_C_zEy):o (2328)

This set of equations can be written as
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B=VxE/c® (23.2.9)

We also have from (14.3.8) that
E.=E, E=y(E+VB,) E,=y(E-VB) (23.2.10)

Since the magnetic field in the barred frame is zero, we thus see from (23.2.10) that the
electric field in the laboratory frame is just the Coubomb field in the rest frame of the

sphere, neglecting terms of order (V/c)’.

Now, let us consider a time in the lab frame where the spherical shell is just at the
origin. Then the total amound of linear momentum in the fields of the sphere at that time
IS given by

P = [£,ExBd*x=[£,Ex[VxE]/c*d*x (23.2.11)

We only need to do this integral over the exterior of the sphere since the electric field
vanishes in the interior, so we have

U
m
| <
—
™
VR
O
N——
N
-
X
m—
N>
X
-

2
]rzdaz(\:/—zjgo 47§r2] Px[sinog|r'da  (232.12)

2 2 ©
PQ:_ijgo(zQ—j siné?rzda:Az”CV‘g0 4Q j J'sinzé?d(cose) % (23.2.13)
ey ) 4 R

4 Q? 4
P.=2-V =—mgV 23.2.14
=3 (87&90C2Rj 3" ( )

So we see that the moving spherical shell has a net linear electromagnetic momentum
associated with it, which looks something like its “electromagnetic mass” times its

velocity, except for the funny fact of % :

23.3 The self force on an accelerating set of charges

Where did this linear electromagnetic momentum stored in the fields of the moving
shell come from? We are going to make the following statement, and then give an
example. Suppose you have an electrostatic problem where you have assembled a set of
charges and in doing this you had to expend energy U.. We assume that the charges are

held in place by some rigid framework, and that if we try to move them they will move as



Version Date, December 6 2010 211

a unit. Now suppose you come along and “kick” this distribution of charges, applying a
forceto it of F,,. Then to total force on the charge will be given in part® by

U, dv dv

F=F —¢(ZE-"-F —m — 23.3.1
e ( )

where & is a dimensionless factor of order unity and m. =U_ /c®. What this means is

that a set of charges such as this resists being moved. That is, it has an inertia, and the
order of magnitude of the “back reaction” to being moved is given in (23.3.1).

23.3.1 The electromagnetic inertia of a capacitor

The statement above in (23.3.1) is a generally true. Here we want to give a
specific example with very idealized geometry to give you some feel for why this inertial
“back reaction” exists for a charged object. Consider a capacitor oriented as shown in
Figure 0-1, and moving upward. The plates of the capacitor have area A, and the distance
between the plates is d. The right plate carries a charge per unit area of +¢, and the left
plate carries a charge per unit area -o. When the capacitor is at rest, the electric field

between the plates is E, = ~Z % . The total electrostatic energy in the capacitor is thus

&

2 2
U =Ad (EgoEjjzAd igo Q | |_dQ (23.3.2)
2 2 EA 2g,A

Now suppose we have gotten the capacitor up to speed V y . Then the upward

motion of the positive sheet of charge on the right will correspond to a current sheet with
current per unit length oV y, and the upward motion of the negative sheet of charge on

the left will correspond to a current sheet with current per unit length —oV y . As a result
of these current sheets, there will be a magnetic field between the sheets of current given
by

B =0V 32 (23.3.3)

Now suppose we try to increase the speed of the sheet. This will result in an increase in
the magnetic field given in (23.3.3), and therefore to the presence of an induced electric
field. If we take a loop in the xy plane centered on the x axis with width 2x in the x-
direction and length L in the y direction, and integrate around that loop, the Faraday’s
Law gives, assuming x<d /2

® we say in part because we are neglecting the “radiation reaction” force, we considered above in Section
17.8, and which is proportional to the time derivative of the acceleration.
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E-dl = LZXB d 2XLu oV |=-2xLu Gd—v (23.3.4)
dt ° ° o dt

A little thought will convince you that this induced electric field is in the y-direction and
an antisymmetic function of y, with the induced field for |x| <d/2 given by

dv . Qd .
E =Xy Oo——V =Xy < 23.3.5
H,o——Y = Mo at y ( )

induced dt

Capacitor moving upwards at velocity /(1Y

AY

K (t)=-K(t)¥ K, (L)=+K(t)¥
¢ ol

— E® +

w =—d /D X =+d/2

Figure 0-1: A Capacitor Moving Upward

This induced field will exext a downward force on the positive sheetat x=d /2
and a downward force on the negative sheet at x =—d / 2 (because the induced electric
field has switched diretion there), and therefore if we try to accelerate the capacitor the
induced electric field resists that acceleration with a force given by

. Q dv._ dQ? dv, 2U.dv . dv
Foos =92 —§=—"TF—y=-2m.—
bk =Y Q “Adt gAC dt I £ dt

(23.3.6)

where we have used (23.3.2).

Equation (23.3.6) is the form given in (23.3.1), as we asserted that it must be. In
this highly idealized geometry we see why this back reaction force arises. If we try to
move a set of charges, we will create currents which will generate magnetic fields
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proportional to velocity. If we try to accelerate the set of charges, we will thus have a
time changing magnetic field which will be associated with induced electric fields which
are proportion to the time rate of change of the magnetic fields, or to the acceleration.
These induced electric fields will exert self forces in a direction such as to resist any
attempt to move the charges. That is why there is an additional electromagnetic
momentum (23.2.14) in our moving spherical shell, and where it comes from. It as
usually comes from me, the agent who got the shell to move, who had to exert an
addition force because the shell was charged, and that force is the source of the additional
momentum in the shell.

It is important to note that this process is reversible. That is, if an object is
charged we have to put extra energy into getting it moving, but when we stop it we get all
of that energy back. This is very different from the radiation reaction force, which is
always a drain of energy. This is clear from out moving capacitor example above. When
we try to stop this moving capacitor, we will be reducing the amount of current flowing
and thus the magnetic field those currents produce, and thus there will be an associated
induction electric field which will now try to kept the capacitor moving. That additional
inertia due the charging means as the capacitor slows down we can use the induced
electric field to do work on us, and the work that is done on us is exactly the additional
work we had to put in to get the capacitor up to speed because of the charge.

23.3.2 The classical model of the electron

What do we mean when we talk about the inertial mass of an uncharged object?
What we mean is that if we appy a known force F,_, to the object, the resultant

acceleration will be in the same direction as the force, and if we measure the acceleration
a of the object due to this force, then the inertial mass of the object is given by

m, = Foe (233.7)
a

where we are using m, to denote the mass of the uncharged object. We will always get

this same ratio, regardless of the magnitude of the force applied. That is, if we double
F.... we will observe double the acceleration a, giving the same interial mass as before.
If we now charge up this object, and measure its inertial mass after we have
charged it up, then comparing (23.3.7) to (23.3.1), we see that the inertial mass after we
have charged it up will increase, because the back reaction will have decreased the
acceleration we observe for the same external force applied, F,. That is, we always

have that

U
F= moa = l:me - C_Ea (2338)
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where the last expression comes from (23.3.1). If we solve (23.3.8) for a in terms of the
applied force, we have

(mo +§U—2Eja: F e (23.3.9)
c

Or an inertial mass m of

m= Foe _ m, +§U—2E (23.3.10)
a C

Thus when we charge up a neutral object and then measure its inertial mass, we see an
increase in that mass.

The great excitement in the early 1900’s was that when physicists realized that a
charged object had properties that looked exactly like “ordinary” matter, e.g. momentum,
angular momentum, and inertia, they suddenly realized that perhaps there was no
“ordinary” matter at all, but that everything was simply electromagnetic in character. We
know the mass of the electron m, and its charge e, and if it were a ball of charge of

radius r, given by
e2
r=———— 23.3.11
° A4ze,mc? ( )
then the expression in (23.3.10) would account for all of its inertial mass, and we would

not need the “neutral” inertial mass m, .

The reason this does not work is that of course you need something besides
electromagnetic fields to hold together an electron. If we only had electric fields, for
example, the charge making up an electron would fly off to inifinty due to mutual
repulsion. So there must be something else that is holding the electron together, and
those stresses would also contribute to the inertia. The strange factors we get above (like
the factor of 4/3 in (23.2.14) for one thing means that we can not construct a four
momentum for a purely electrostatic electron that transforms correctly under Lorentz
transformations, another indication that we are leaving out something significant.

In any case, with the advent of quantum mechanics, all of these classical models
went by the boards. But it is worth pointing out that the length scale defined by (23.3.11)
appears repeatedly in classical electromagnetic radiation calculations. For example, as
you will show in Assignment 10, the square of this distance is proportional to the
Thompson cross-section for an electron, that is its cross-section for scattering energy out
of an incident electromagnetic wave.
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24 Interactions with matter |
24.1 Learning Objectives

We begin our discussion of the interactions of electromagnetic fields with matter.
First we look at insulators, that is dielectrics and magnetic materials.

24.2 The Displacement Current

Before we begin actually discussing matter, we first consider the origins of the
displacement current term introduced by Maxwell. Before Maxwell, Ampere’s Law was
well known, which has the differential form

VxB=puJ (24.2.1)

Maxwell noted that this equation must be missing a term because if we take the
divergence of both sides of (24.2.1), since the divergence of any curl is zero, we have

V-J=0 (24.2.2)

But this cannot be because charge conservation in differential form is

v.y=-% (242.3)
ot

Maxwell suggested that (24.2.1) should instead be

VxB =y, (J+80 %) (24.2.4)
With this termand V-E = p/ g, we no longer have a problem with the divergence of

(24.2.4) being zero on both sides. The term ¢, %E in equation (24.2.4) has units of

current density and is called the displacement current, even though it has nothing to do
with displacement and nothing to do with current. The reason it is called that is because
Maxwell knew about the polarization current, which we discuss below in (24.3.4), and he
could ascribe this current to the real motion of charges producing a real current. He
hypothesized that the aether was made up of positive and negative changes and that an
electric field would produce a similar “displacement current” by moving those charges
around. There is no such thing, and the concept is totally wrong. Nonetheless we

. 0 :
continue to call &, aE the displacement current.
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24.3 The average dipole moment per unit volume

We begin our consideration of the interaction of material media with electromagnetic
fields by realizing that for the most part matter is neutral, and that the interaction with
fields is not through any net charge but through the effects of electric and magnetic
dipoles. We are motivated therefore to define the two vectors P and M as the electric
dipole moment per unit volume and the magnetic dipole moment per unit volume. That
is if we have a small volume AV of material located at r at time t, with N electric dipoles

{pi}iN:1 and N magnetic dipoles {mi}iN:l, then we define P and M at (r,t) as

1 13
P(r,t):N;pi M(r,t)ZNgmi (24.3.1)

Here we assume the averaging volume AV is large enough to contain many particles, but
small enough that any macroscopic variation in the material medium is on scales much
larger than AVY3. Since the dimensions of electric dipole moment are charge time
length, P has units of charge per area. Similary, since the dimensions of magnetic dipole
moment are current time area, M has units of current per length.

A variation of P(r,t)with space can be an accompanied by a “polarization”
charge density. The easiest way to see this is to think of a long cylinder of uniformly
polarized material with cross sectional area A and length | (see the left image of Figure
24-0-1). The total dipole moment of this cylinder is IAP, and we expect therefore from
far away it should look like a charge +Q on the top end accompanied by a charge —Q on
the bottom end such that the dipole moment of this arrangement, QI is equal to IAP .
This means that there must be a dipole surface charge density on the ends of the cylinder
of 5,, =Q/A=P.

A

R

h

Figure 24-0-1: A uniform polarized “needle” and “disk”
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Similary, a variation of M(r,t) with space can be accompanied by a

“magnetization” current. . The easiest way to see this is to think of a disk of uniformly
magnetized material with cross sectional radius R and height | (see the right image of

Figure 24-0-1). The total magnetic dipole moment of this cylinder is hzR*M , and we
expect therefore from far away it should look like a disk with a current I running around

its circumference such that the dipole moment 1zR? of this arrangement is equal to
hzR?M . This means that there must be a current per unit height of the disk given by
Knag =1 /H=M.

When we go over to a non-uniform P amd M, then we expect there to be
corresponding polarization charge densities and current densities given by

Py =V -P I = VXM (24.3.2)

At the boundary of a dielectric or magnetic material, we will have polarization surface
charges and magnetization surface currents given by

o, =N-P Koy = Mxih (24.3.3)

where n is the normal pointing out of the material medium.

The polarization charge density in (24.3.2) will be accompanied by a polarization

current to conserve polarization charge, that is there is a J , such that
0
/;:ol +V"]po| =0 :Jpol :Z_I: (2434)

Since V-J,_., = V-(V X M) =0, there is no corresponding “magnetization” charge
density, nor would we expect one.

24.4 Unformly polarized spheres
24.4.1 A dielectric sphere
Suppose we have a uniformly polarized dielectric sphere of radius R, with the

direction of polarization in the z-direction. The polarization surface charge on the surface
of the sphere will be

0,y =N-P=r-PZ=Pcosé (24.4.1)

p

We have seen that a surface charge on a sphere with this angular dependence will
produce a sphere which has an electric field given by
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-E,2 r<R
2p,cosd 5
E=1| 4ner’ (24.4.2)
ing r>R
p, Sin 9%
4re,r
where
3
E, _P L= 4R b (24.4.3)
3¢ 3

24.4.2 A magnetized sphere

Suppose we have a uniformly polarized magnetic sphere of radius R, with the
direction of polarization in the z-direction. The polarization surface current on the surface
of the sphere will be

k. =MxA=MZxf=Msin0 (24.4.9)

mag

We have seen that a surface current on a sphere with this angular dependence will
produce a sphere which has a magnetic field given by

B,Z r<R
M, 2m, cos@f
B=<4z r° (24.4.5)

ing r>R
m_sing »
03 e

LM
Az r
where

3
B, =24 M m0:47;R

M 24.4.6
=3 (24.46)

24.5 Maxwell’s Equations in the presence of matter

So the presence of spatial and temporal variations in P and M mean that we have
to modify Maxwell’s equations to include the assoicated currents and charge densities,
since E and B are produced by all currents and charges, regardless of from which they
arise. Thatisif p,,. and J . are the “free” charge density and current density (that is,

the ones we control) we have

P = Piree +ppo| :pfree_v'P (2451)
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+J g T Imag =9 +V><M+§ (245.2)

ag ~— v free

J=J

free

Maxwell’s equations with these additional terms now become become (Faraday’s Law
and the divergence of B is zero are unchanged)

v.golme VP (24.5.3)
80 80
VxB = p,d (e + 14,V M+ 11 Ejt,uogo S (24.5.4)
ot ot
or
V-(&E+P)= e (24.5.5)
B 0
Vx| —-M |=J,.+—(P+¢&E) (24.5.6)
Hq ot
We define
D=¢E+P (24.5.7)
H:E—M or  B=yu (H+M) (24.5.8)
H,
So then our equations are
V-D=py, (24.5.9)
VxH :Jfree+§D (24.5.10)

24.6 Linear media

We assume that we have media where the only polarization arises because of
external applied fields. Note that this is very different from the situation we discussed in
Section 24.4 above, where somehow the dipoles were aligned on their own (e.g. asin a
permanent magnet) and we then looked to see what fields this polarization produced. Not
only are we going to suppose that the polarization arises because of external fields, but
we are going to assume there is a linear relationship between the external field and the
resultant polarization, that is we assume that

P=¢gyE (24.6.1)

M=z H (24.6.2)

m
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You might argue that if we are going to make P proportional to E we should
correnspondingly make M proportional to B, not H, but this is the custom and we do not
deviate from it. The constant of proportionality y, is called the electric susceptibility
and the constant of proportionality y,, is called the magnetic susceptibility. These are

dimensionless quantities that vary from one substance to another. If we go back to
(24.5.7) and (24.5.8), we see that for linear media, we have

D=¢,E+P=¢E+c,y.E=¢,(1+4.)=¢E (24.6.3)
B =, (H+M) =g, (1+ 7, )H = H (24.6.4)
where
M= U, (1+ ;(m) (24.6.5)
e=¢,(1+1,) (24.6.6)

We call ¢ the permittivity of the material, and x the permeability of the material. We
also call (1+ y,) the dielectric constant of the material, defined as

K, =1+, (24.6.7)
In the case of linear materials, we can therefore write Maxwell’s equations as
V-¢E=piee (24.6.8)

VxB=ul +,ug%E (24.6.9)

free

24.7 Boundary conditions of E, B, H, and D and spheres in uniform fields
24.7.1 Boundary conditions

If you look at our boundary conditions on E and B in Section Sections 19.6 and
20.7 above, it is clear that with material media, the boundary conditions on D, H, B, and

E are

E, =E, (24.7.1)
BZn = Bln (2472)

HykH,a %" (24.7.3)
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D2n - Dln =N (DZ - Dl) = O free /5’0 (2474)

24.7.2 A linear dielectric sphere in a uniform field

Suppose we have sphere made out of linear dielectric material with dielectric
constant K, sitting in a constant field in the z-direction, E=E_ Z. We are going to guess

our solution is of the form

EZ r<R

7+ 2p, c0530 =

E= Are,r (24.7.5)
. r>R

L Pusin 0~

0
4re,r

where the unknowns here are E; and p,, and we will determine these constants using the
boundary conditions in the problem. At the poles we have from (24.7.4) that

&K.E =¢, (Eo + ;glegj (24.7.6)

and at the equator we have from (24.7.1) that
E =E - 4ﬂ§1R3 (24.7.7)

Solving these equations gives
K, -1
p, = 47¢,R°E, ((Ke N 2)) (24.7.8)
3

E,=E, (2+K) (24.7.9)

In the limit that K, =1, we recover the field we expect. In the limit that K, =, we

have zero field inside the sphere. This limit is the same as if the sphere were made out of
conducting material. We can find the polarization surface charge now that we have
solved the problem by computing

2p,cosé

Ot =& (Ep —Ep) = [gOEO cosd+ g ]—goEl cosd (24.7.10)

4re,r
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e COSHLE‘) i E“%}%Eo COS9[1_(2 X 7 2(E<K _zl))j
+ +
- R (24.7.12)
3(K, 1)
T oot = &, E, cos QW

Again we get the corrent limits when K, =1 and when K, =. When K, =1 the
polarization charge vanishes, as we expect, and when K, =co the polarization charge is

o = 3¢,E, C0s @, which is what we need to make the electric field just outside the
sphere at the pole to drop from 3E, to zero just inside the pole. The field in this case
(K,=m)is

0r<R

3
2+2c0349(5j r
r

3
+sin Q(Bj 0
r

We see that the presence of the linear dielectric decreased the electric field inside the
sphere below what it would have otherwise be with out the dielectric, as we expect. In
the corresponding magnetic material case (a sphere with permeability .« sitting in a

constant magnetic field B = B Z ), the magnetic field inside the sphere will be enhanced
instead of diminished, as we expect.

24.7.12
r>R ( )

24.8 Conservation of energy in linear media

We can carry out the following formal manipulations, assuming w and & are not
functions of space, and using (24.5.10)

V-(ExH)=H-(VxE)-E-(VxH)
24.8.1
:—H-E_E'(Jfree+2Dj:_H'@_E'ED_E'Jfree ( )
ot ot ot ot
Or

(24.8.2)

free

2 lepilen +V-(ExH)=-E-J
atl 2 2

This suggests that we take the energy density in linear media to be
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u=%E.D+%B~H (24.8.3)

and the energy flux density to be
S=ExH (24.8.4)

We could write down similar formal equations for the conservation of momentum, but
this is a complicated subject and we refer the reader to e.g. Jackson’s treatment.

24.9 Propagation speed of electromagnetic waves

Suppose we have no free currents or charges and are looking at the propagation of
waves in the media. The taking the curl of (24.6.9), we have

0°B

~ =-V’B (24.9.1)

Vx(VxB)zyz;"%VxE:—,ug

where we have used Faraday’s Law and the fact that V-B =0in (24.9.1). We thus have

0B

V°B - ue =
H ot?

0 (24.9.2)

which means that a plane wave will no longer propagate at speed speed of c, but rather at
the speed

w 1 c
—= = (24.9.3)
kK Jue \/(1+ 2.) A+ 20)
We define the index of refraction n of a medium by
C
n=— = JA+2) @+ 2,) (24.9.4)

25 Why is the speed of light not ¢ in a dielectric?
25.1 Learning Objectives

We want to discuss the propagation of light when there is matter present. We look
at the case where we only have a dielectric present, which leads to electromagnetic plane
waves propagating at speeds different from the speed of light, as we saw in (24.9.3). We
want to see what this means and how it is possible. To this end, we will make a “model”
of a dielectric medium where we deduce a physical mechanism producing the dipole
moment per unit volume P, and thus offer up a physical basis for the origin of (24.6.1).
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25.2 Review of plane wave generated by an oscillating sheet of current

We know that a current sheet oscillating in the y-direction at the origin,
J(x,t) =y x(t) 5(x) , will generate electromagnetic plane waves propagating in the +x
and —x direction, with E and B fields given by

X
c
X
c

E(1) = -9 5 4 (-1 (25.2.1)

B(x,t) = —215 1, k(t =) sign(x) (25.2.2)

Figure 25-1: The E and B fields of an oscillating current sheetat x =0

We will use these expressions below to calculate the electromagnetic wave generated by
a thin dielectric sheet oscillating up and down.

25.3 The slow-down of electromagnetic waves traversing a thin dielectric sheet
25.3.1 The “polarization” current density

Suppose we add matter consisting of many point dipoles. For example, we could
have a number of massive ions which we regard as fixed in space, with number density
n, and with each of the ions having a movable electron attached to it by a spring with
spring constant k. Suppose the vector separation between the electron and the ion for the
i™ ion/electron pair is Ar,, and the electron sees an electric field E and magnetic field B

at its location. Then the non-relativistic equation of motion for the electron is
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m %ue =—e(E+u,xB)—KkAr, (25.3.1)

e

We will assume that that cB < E and that the speed of the electron is much less than c, in
which case we can neglect the u, x B compared to the E term in (25.3.1), so that we have

m, iue =—eE —KAr, (25.3.2)
dt
or
iue = —iE—ijr, ) = LS (25.3.3)
dt m, m,

If we now assume that the electric field varies as cos(wt)and that o < @, =k /m, , we

can neglect the %ue term in (25.3.3) compared to the @?Ar, term, giving us

e ) e
O0=——E-0 A Ar, (t)=—- E(t 25.3.4
SE-ofan = An()=-—tE() 2534

e 0] e
What (25.3.4) tells us is that if the electron sees an electric field varying with time
at its position, and if the frequency of the electric field variation is low compared to the
natural oscillation frequency of the electron, @, , then the position of the electron will

vary with the electric field E, and its velocity will vary as

d e d
t) =—Ar. (t)=— —E(t 25.3.5
u.( dt r. (1 w?m, dt () ( )

e

This means that a time varying electric field in a dielectric will induce a current due to
the motion of the “bound” charges, and this is called the “polarization current”. We can
compute this current using (25.3.5) and the definition of current density to get

ne’ d
—E(t 25.3.6
’m, dt (®) ( )

‘] polarization (t) = _neue (t) =+

It is clear that if we have an electric field that varies in space and time, then (25.3.6) will
generalize to

ne* o
—E(r,t 25.3.7
w’m, ot (rY) ( )

0] e

J

(r,t)=-neu,(t) =+

polarization
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We define
ne’
e~ 2 (25.3.8)
ngO me
and with this definition (25.3.7) becomes
0
‘]polarization(rit)zé‘ole EE(r,t) (25.3.9)

Thus we have come up with a physical model which explains why we would have a
relation like (24.6.1).

25.3.2 Change in the speed in the dielectric due to the polarization current

We can easily see that the polarization current given in (25.3.9) will change the
speed of electromagnetic waves in the dielectric. We saw above that if we only have a

dielectric, and u = 4, , the velocity of propagation of a plane electromagnetic wave is
NOT the speed of light c, but

1) 1 C C
Z_ = = (25.3.10)
kK Jue, (W z) J1+z) JK
where we have defined the dielectric constant K, such that
K, =1+, (25.3.11)

So the addition of our bound charges and their associated polarization currents in the
presence of time changing electric fields leads to a slowing of the propagation speed of
electromagnet waves. How can this be?

That is, how does the presence of a dielectric slow down an electromagnetic wave
propagating through it? What happens is that the time-varying electric field of the
incoming wave drives an oscillating current in the dielectric. These oscillating current
sheets, of necessity, must generate electromagnetic waves. The new waves are out of
phase with the incident wave, and as a result of the interference between these two
waves, the phase of the combination differs from the phase of the incident light. We
observe this change in phase as a change in speed. Let us make this qualitative
description quantitative’.

" This treatment is suggested by a similar approach found in Chapter 31 of Feynman, Leighton, and Sands,
The Feynman Lectures on Physics, Vol 1, Addison-Wesley, 1963.
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25.3.3 The effects of a thin dielectric slab

Suppose we have totally empty space except for a thin dielectric slab lying in the
y-z plane at x = 0. A plane electromagnetic wave whose electric field is polarized in the
y-direction propagates in the +x-direction and encounters the thin dielectric slab of width
D with dielectric constant K, . We assume that this is very close to one, that so that the
speed of light in the slab is only slightly less than c. If there we no dielectric present, the
wave would propagate through the slab in a time D/c. We now show that the additional
time At it takes to get through the slab because the thin dielectric slab "slows" down the
light can be written as At = Dy, / 2c, which corresponds to the slow-down we expect

because the speed of the wave in the slab is no longer c but ¢/ 1+ y, ~c—cy, /2,0

that the time to “get through” the slab is no longer D/c but Lz2+%
c(l-x/2) ¢ 2

The electric field of our incident plane wave is given by

SE, =Y SE, cosw(t —8 (25.3.12)

as shown in the top wave form in Figure 25-2. We put at the origin a dielectric sheet
with dielectric constant K, =1+ y, and width D, which we assume is small compared to
a wavelength of our incoming wave, that is A =2zc/® >> D . Because of the presence
of the bound charges in the slab, which will oscillate up and down under the influence of

the electric field of the incident wave, we will see a polarization current density given by
(see (25.3.9) and (25.3.12))

‘Jbound =on(e%E:—é‘o}(eé‘an)Sin(a)t)g/ (25313)

Incident wave Dielectric Sheet

3E cos(at—kx) SE cos(wt-kx)

wave generated by _
shaking dielectric sheet 3E, sin (ot-kx)

Figure 25-2: An electromagnetic wave encoungers a thin dielectric sheet
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Thus the electric field of our incoming wave sets up an oscillating sheet of current with
current per unit length in the y-direction of

Kk (t) =—¢,7.0E,Dwsin(wt) (25.3.14)

Using equation (25.2.1) above, for x > 0, we see that the electric field of the wave
generated by this current sheet is given by

~C X ~ a)DZe 1 X
5E1 :_yE/uO K(t—z):y‘:Z—C:|5EO SIn a)(t—z) forx > 0 (25315)

This wave is shown by the lower wave form in Figure 25-2 as a function of x for a given
instant of time t = 0. The total electric field for x > 0 is thus

oE

total

:5E0+5E1:95E0{cosw(t—ij+%sinw(t—ij} forx > 0
c c c

(25.3.16)

To see that (25.3.16) implies that the wave is delayed in going through the dielectric, we
assume that

oDy, Dy, 1

= 25.3.17
2c A ( )
where A is the wavelength of the wave. We now use the fact that if g <<1 then
cos(y — f8)=cosy cos S+ sinysin B~ cosy + fsiny (25.3.18)

And comparing (25.3.18) to (25.3.16) assuming (25.3.17) allows us to write (25.3.16) as
OE,,. (X,t) =yJSE, cosw(t—At—%j forx > 0 (25.3.19)

where At=Dy,/2c. Equation (25.3.19) shows that the peaks in amplitude for x > 0,

are delayed by a time At from the time we expect if there were no dielectric, and this
delay in the peak corresponds the a longer time for the wave to “get through” the
dielectric sheet, as we noted above.

Note that we have gotten this delay by adding up two waves in (25.3.16), both of
which are traveling at the speed of light.
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26 Interactions with matter 11
26.1 Learning Objectives

We turn now from insulators to conductors. We first look at the “microscopic”
relation between J and E in conductors, or Ohm’s Law, and then move on to consider the
consequences of this relationship.

26.2 The microscopic form of Ohm’s Law

In constrast to our treatment of the relationship between J and E for dielectrics in
Section 25.3.1 above, we consider here a different model for currents in a material.
Again, we suppose we have a number of massive ions which we regard as fixed in space,
with number density n, with an equal number of electrons, but now with the electrons
free to move and not bound to the ions. However, the electrons do “collide” with the
ions, and this results in a frictional drag. Suppose the vector displacement of an electron
from its rest position is Ar,, and that the electron sees an electric field E and magnetic

field B at its location, with %Are =u,. Then the non-relativistic equation of motion for

the electron is

me%ue =—e(E+u,xB)-m,y.u, (26.2.1)
where y, is a collision frequency and the —m,y_u, term represents the frictional drag.

Again, we assume that that ¢B < E and that the speed of the electron is much less than c,
in which case we can neglect the u, xB compared to the E term in (26.2.1), so that we

have

me%ue =—eE-myu, (26.2.2)
or

9 —— ey, (26.2.3)

dt m

e

If we now assume that the electric field varies as cos(wt)and that o < y,, we can

neglect the %ue term in (26.2.3) compared to the —y_u, term, giving us

0=-—E-yu, = u,(t)=———E(t) (26.2.4)

m, VM,
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What (26.2.4) tells us is that if the electron sees an electric field varying with time
at its position, and if the frequency of the electric field variation is low compared to the
collision frequency, then the velocity of the electron will vary with the electric field E in
the manner given in (26.2.4). This means that a time varying electric field in a conductor
will induce a current due to the motion of the “free” electrons. We can compute this
current using (25.3.5) and the definition of current density to get

ne?

J(t) =—-neu,(t) =+—E(t) (26.2.5)

Ve,

It is clear that if we have an electric field that varies in space and time, then (26.2.5) will
generalize to

2

3(r,t)=—neu, (t) = +——E(r,t) (26.2.6)
We define the conductivity o, to be
2
o =1° (26.2.7)
7em,
and with this definition (26.2.6) becomes
J(r,t)=0,E(r,t) (26.2.8)

26.3 Reflection of an electromagnetic wave by a conducting sheet

26.3.1 The conceptual basis

How does a very good conductor reflect an electromagnetic wave falling on it? In
words, what happens is the following. The time-varying electric field of the incoming
wave drives an oscillating current on the surface of the conductor, following Ohm's Law.
That oscillating current sheet, of necessity, must generate waves propagating in both
directions from the sheet. One of these waves is the reflected wave. The other wave
cancels out the incoming wave inside the conductor. Let us make this qualitative
description quantitative.

Suppose we have an infinite plane wave propagating to the right, generated by

currents far to the left and not shown. Suppose that the electric and magnetic fields of
this wave are given by

Eincicent (X, 1) = YSE, cos a)(t —ﬁj Bincicent (X, 1) =Z 5B, cOs a)(t —ij (26.3.1)
c c
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as shown in the top wave form in the Figure 26-1. We put at the origin (x =0) a
conducting sheet with width D, which we assume is small compared to a wavelength of
our incoming wave. This conducting sheet will reflect our incoming wave. How?

! Conducting Sheet
BE,cos (@l —kx]

INCOMING WAVE
EE cos(at - kx) JT
—

EEJEDE[mt+kH]

Figure 26-1: An incoming electromagnetic wave reflected by a conducing sheet.

The electric field of the incoming wave will cause a current J=o.E to flow in
the sheet, where o, is the conductivity. Moreover, the direction of Jwill be in the same
direction as the electric field of the incoming wave, as shown in Figure 26-1. Thus our
incoming wave sets up an oscillating sheet of current with current per unit lengthk = DJ .
As in our discussion in Section 25.3.3, this current sheet will generate electromagnetic

waves, moving both to the right and to the left (see Figure 26-1, lower wave form) away
from the oscillating sheet of charge. What is the amplitude of these waves?

Using equation (25.2.1) above, for x > 0 the electric field of the wave generated
by the current J, which we denote by E,(x,t) will be

E,(x,t) = —% DJ (t—@] (26.3.2)

and this represents a wave propagating both to the left and to the right at the speed of
light. The sign of this electric field at x = 0; it is down when the sheet of current is up,
and vice-versa. Thus, for x > 0, the electric field E,(x,t) generated by the current in the
sheet will always be opposite the direction of the electric field of the incoming wave, and
it will tend to cancel out the incoming wave for x > 0. For a very good conductor, in fact,
we show below that DJ will be equal to 26E, / cy,, so that for x >0 we will have

E,(x,t) =—YSE, cos(wt—kx). That is, for a very good conductor, the electric field of
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the wave generated by the current will exactly cancel the electric field of the incoming
wave for x > 0!

And that's what a very good conductor does. It supports exactly the amount of
current per unit length needed to cancel out the incoming wave for x >0 (28E, /cy,, or
equivalently 26B, / u,) . For x <0, this same current generates a "reflected" wave
propagating back in the direction from which the original incoming wave came, with the
same amplitude as the original incoming wave. This is how a very good conductor
totally reflects electromagnetic waves. Below we show that our current density will in
fact approach the value needed to accomplish this in the limit that the conductivity o

approaches infinity. We also have you obtain this result in the more standard manner in
Problem Set 10.

26.3.2 The quantitative result in the limit of infinite conductivity

We show here that a perfect conductor will perfectly reflect an incident wave. To
approach the limit of a perfect conductor, we first consider the finite resistivity case, and
then let the conductivity go to infinity. As we pointed out above, the electric field of the
incoming wave will, by Ohm's Law, cause a current J = ¢ E to flow in the sheet, where
o, is the conductivity. Since the sheet is assumed thin compared to a wavelength, we
can assume that the entire sheet sees essentially the same electric field, so that J will be
uniform across the thickness of the sheet, and outside of the sheet we will see fields
appropriate to a equivalent surface current k = DJ . This current sheet will generate
electromagnetic waves, moving both to the right and to the left, away from the oscillating
current sheet. The total electric field, E,, (x,t), will be the sum of the incident electric

field and the electric field generated by the current sheet. Using equations (26.3.1) and
(26.3.2) above, we thus have for the total electric field the following expression:

~ X
Etotal (X!t) = Eincident (X’ t) + EJ (X’t) = yé‘Eo cos a)(t _gj _% DJ (t _gj (2633)

We also have a relation between the current density J and E,__, from Ohm's Law, which

IS

total
J (t) = 0B (0,1) (26.3.4)

Where E,, (0,t) is the total electric field at the position of the conducting sheet (which

remember is very thin compared to a wavelength of the wave). Note that is appropriate
to use the total electric field in Ohm's Law--the currents arise from the total electric field,
irrespective of the origin of that field. So we have

k(t) =DJ(t)=Do E,, (0,t) (26.3.5)
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If we look at (26.3.3) at x = 0, we have

E,. (0,t) = JSE, cosa)(t)—% DJ(t) (26.3.6)
or using (26.3.5)
E,u (0.1) =§5E, cos a(t) —% Do.E,. (0,1) (26.3.7)

We can now solve equation (26.3.7) for E,, (0,t) , with the result that

1 ~
E o (0,1) = Do, YSE, cosa(t) (26.3.8)
1+-F0""c
2
and therefore, using equation (26.3.8) and (26.3.5)
Do -
k(t) = Do E, (0,t) = < |ySE, cosm(t) (26.3.9)
14 cu,Do,
2

If we take the limit that o, approaches infinity (no resistance, that is, a perfect
conductor), then we can easily see using equation (26.3.8) that E,, (0,t) goes to zero,
and that using equation (26.3.9)

k(t)=y 2C§E° cosm(t)=y 208, cosa(t) (26.3.10)
Ho Ho

In this same limit equation (26.3.3) becomes

Epo (X, 1) = YOE, [cosa)(t —5] —COSa)[t —MH (26.3.11)
C

c
or
0 for x>0
Ep (X, 1) =1 . for x<0 26.3.12
o (X:1) y5Eo{cosw(t—ij—cosw(niﬂ ( )
c c

Again in the same limit of infinite conductivity, our total magnetic fields become
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0 for x>0

B, . (Xt)=<. for x<0 26.3.13
wa (X.1) z5Bo{cosw(t—gjmosw(u%ﬂ - ( )

Thus, we see that we get no electromagnetic wave for x > 0, and standing
electromagnetic waves for x < 0. Note that right at x = 0, the total electric field vanishes.

The current per unit length k(t) =y 208, cosa)(t) is just the current per length we need

to bring the magnetic field down from its value at x <0 to zero for x>0

You may be perturbed by the fact that in the limit of a perfect conductor, the
electric field vanishes at x = 0, since it is the electric field at x = 0 that is driving the
current there! But this is ok in this limit, since the conductivity is going to infinity in the
same limit. In the limit of very small resistance, the electric field required to drive any
current you want can go to zero, because the product of the infinite conductivity and the
zero electric field can assume any value you need. That is, even a very small value of the
electric field can generate a perfectly finite value of the current.

26.4 Radiation pressure on a perfectly conducting sheet

In the process of the reflection, there is a force per unit area exerted on the perfect
conductor. This is just the Jx B force due to the current flowing in the presence of the
magnetic field of the incoming wave. If we calculate the total force dF acting on a
cylindrical volume with area dA and length D of the conductor, using (26.3.10) and
(26.3.13) we find that it is in the +x direction, as follows

dF(t) =dADJxB, . (0,t)
= dAK(t) X Bincident (O! t)
25B’

:RdA{ ; }cosz(a)t) (26.4.1)
Hy

= RdA[%J cos® (wt)
cu,

so that the force per unit area, dF/dA , or the radiation pressure, is just twice the

Poynting flux divided by the speed of light c. Note that in (26.4.1) we use on the
magnetic field due to the incident wave. Including the magnetic field due to the
generated wave is unnecessary, since that wave reverses sign across x = 0 and thus
generates net force on the sheet. The factor of two is appropriate for total reflection, as is
the case here. For total absorption, the factor of two becomes unity. We can obtain this
same expression by integrating the Maxwell stress tensor over surface of the same
cylindrical volume.
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27 Moving Magnets, Einstein, and Faraday
27.1 Learning Objectives

We first review the example that Einstein gave in the first paragraph of his 1905
paper on special relativity, and try to explain what motivated him to focus on this
phenomena in one of his most famous papers. This involves thinking about the magnetic
field of a moving magnetic and what electric field is associated with it, and conversely
the force that will be seen by a conductor moving in the magnetic field of a stationary
magnet.

27.2 What did Einstein mean?

On the Electrodynamics of Moving Bodies

by A. Einstein
(Translated from "Zur Elektrodynamik bewegter Korper, " Annalen der Physik, 17, 1905)

It is known that Maxwell's electrodynamics- as usually understood at the present
time- when applied to moving bodies, leads to asymmetries which do not appear to be
inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a
magnet and a conductor. The observable phenomena here depends only on the relative
motion of the conductor and the magnet, whereas the customary view draws a sharp
distinction between the two cases in which either the one or the other of these bodies is in
motion. For if the magnet is in motion and the conductor at rest, there arises in the
neighborhood of the magnet an electric field with a certain definite energy, producing a
current at the places where parts of the conductor are situated. But, if the magnet is
stationary and the conductor in motion, no electric field arises in the neighborhood of the
magnet. In the conductor, however, we find an electromotive force, to which in itself
there is no corresponding energy, but which gives rise- assuming equality of relative
motion in the two cases discussed- to electric currents of the same path and intensity as
those produced by the electric forces in the former case.

Examples of this sort, together with the unsuccessful attempts to discover any
motion of the earth relatively to the "light medium,"” suggest that the phenomena of
electrodynamics as well as of mechanics possess no properties corresponding to the idea
of absolute rest....We will raise this conjecture (the purport of which will hereafter be
called the "Principle of Relativity") to the status of a postulate, and also introduce another
postulate, which is only apparently irreconcilable with the former, namely, that light is
always propagated in empty space with a definite velocity ¢ which is independent of the
state of motion of the emitting body.....

Let us try to understand in detail what Einstein meant by the example he gives above
about moving magnets versus stationary magnets. First, he talks about the electric field
of magnets in motion. Let us investigate the electric fields of moving magnets.
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27.2.1 The electric field of a magnet moving at constant velocity

Suppose we have a magnet whose dipole moment is along the x-direction moving
in the x-direction at constant velocity V =V X as seen in the laboratory frame. Suppose
E and B are the fields of the magnet as seen in the laboratory frame. If we look at
(14.3.8) for the transformation of fields between co-moving frames, we have

E =E E,=y(E,-VB,) E =r(E+VB,) (27.2.1)

X X

where the “barred” frame is the rest frame of the magnet. If we neglect terms of order
(V/c)2 equation (27.2.1) can be written as

E-E+VxB (27.2.2)

But in the rest frame of the magnet, the electric field E is zero, so that we must have the
following relationship between the electric and magnetic fields of the magnet as seen in
the laboratory frame, where the magnet is moving:

E-_-VxB (27.2.3)

Now how does the magnetic field in the laboratory frame relate to the dipolar magnetic
field we have in the rest frame of the magnet? If we look at the transformations (14.3.15)
and consider them when we are going from the rest frame of the magnet to the laboratory
frame (this reverses the sign of the velocity and changes a bar to an unbar and vice versa),
we have

_ _V _ _ _
B, =B, By=7(By——2Ezj B,=7(B,+—E,)) (27.2.4)

(]

Since we know that the electric field E in the rest frame of the magnet is zero, this
means that to first order in (V/c), we have that the magnetic field in the laboratory
frame is the same as the magnetic field in the rest frame of the magnet, which is dipolar.

Therefore we have from this fact and (27.2.3)

E=-VxB (27.2.5)

dipole

In Figure 27-1 we show this “motional electric field” for the case where the
magnet moves to the right. In Figure 27-2 we show the electric field where the magnet
moves to the left. In both cases the electric field moves in circles about the direction of
motion of the magnet, with the sense of the circulation of the electric field reversing from
in front of the magnet to behind the magnet.
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Figure 27-1: The E field of a magnet moving to the right (red is the north pole)

Figure 27-2: The E field of a magnetic moving to the left (red is the north pole)

27.2.2 “... the magnet is in motion and the conductor at rest...”

Now let us return to Einstein’s example above. He first considers the situation
where the magnet is in motion and the conductor is at rest. If we actually do this
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experiment, as in Figure 27-3, which shows one frame of a movie of the experiment®, we
find that the current in the coil is left-handed with respect to the magnetic dipole vector
(pointing to the right in the figure) when the magnet is moving toward the coil, and left-
handed with respect to the magnetic dipole vector when the magnet is being pulled away
from the coil. This is in keeping with the direction of the electric field shown in Figure
27-1 and in Figure 27-2, and this is what Einstein means when he says that “...there
arises in the neighborhood of the [moving] magnet an electric field with a certain definite
energy, producing a current at the places where parts of the conductor are situated...”.
That is, there is a current in the loop because of the electric field of the moving magnet.

V-

M
B

Figure 27-3: A magnet moving toward and away from a stationary loop of wire.

27.2.3 “...the magnet is stationary and the conductor in motion...”

On the other hand, suppose the magnet is at rest and the conductor is moving.

Then there is no electric field as seen in the conductor. But there isa V xB force on the
charges in the coil, because they are now moving along with the coil, and a little thought
shows that this force is in the same direction and has the same magnitude as the electric
field given in (27.2.5) (remember we had the magnet moving toward the coil at velocity
V =V X, so this means that the coil is moving toward the magnet at velocity —V'). Thus
in either case we get the same current in the coil, but in one case the observer would say
that the charges in the coil feel a force producing a current because of the electric field
they see, and in the other an observer would say that the charges feel a force producing a
current because of the V xB force they see. Regardless of what the source of the force

8 http://web.mit.edu/viz/EM/visualizations/faraday/faradaysL aw/
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IS, we see a current as a result. Let us look at the mathematical form of Faraday’s Law
and put these qualitative ideas into quantitative form.

27.3 Differential and Integral Forms of Faraday’s Law
27.3.1 Faraday’s Law in Differential Form

Faraday’s Law in differential form is

VxE__B (27.3.1)
ot

We can begin the process of writing Faraday’s Law in integral form by integrating both
sides of (27.3.1) over any open surface S(t) and converting the integral of the curl of E to
a line integral of E over the bounding contour C(t) using Stokes Theorem, giving

[ (VxE)-Ada= ¢ E-dI- | %-ﬁda (27.3.2)

S(t) C(t) S(t)

We would like to move the % term out from under the integral sign to become a %in

front of the integral sign, but we have to be careful about doing this because we
frequently apply Faraday’s Law in integral form to moving circuits. We have to pause
for a bit to prove the following mathematical theorem.

27.3.2 A Mathematical Theorem

The theorem we now prove has nothing specifically to do with electromagnetism,
it is a general theorem about the flux through moving open surfaces. Consider the
following problem. You are given a vector field F(r,t) which is a function of space and

time. You are also given an open surface S with associated bounding contour C, and this
surface is moving in space, with each element of the surface moving at some specified
velocity v(r,t) (the r here of course must lie on the open surface). All of these things are

given. Suppose you now compute the flux of F through S at any given instant of time t,
in the usual way, that is

O, (t) = j F(r,t)-fida (27.3.3)

S(t)

where we have used the notation S(t) to indicate that the surface is changing in time, as
well as F.  Note that ®_(t) depends only on time--we have integrated over space. Now,

here is the question we want to answer. What is the time derivative of ®_(t) ? Let's start
out by giving the answer, and then we will show how it comes about.
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do(t) f OF(r,t)

- ~ ﬁda-@{vxF(r,t)]-m + j [V-F(r,t)] v-Ada (27.3.4)

S(t) C(t) S(t)
The first term on the right of this equation is due to the intrinsic time variability of F.
The other two terms on the right, a line integral around the bounding contour C(t), and
another surface integral over S(t), arise purely because of the motion of S (that is, they
disappear when v(r,t) is zero everywhere).

To prove (27.3.4), let us start out with the definition of the derivative of a
function:

APe(t) _ iy L+ AY =D () _ o 1 [ F(rt+ay)-fida- [ F(r,1)-fida

dt At—0 At At—0 At S(tan) )

(27.3.5)
We use a Taylor series expansion of F about t,

F(r,t+At) = F(r,t)+At%+.... (27.3.6)

to write the first term on the right of equation (27.3.5) as two terms, namely
APe®) _ i L | at j FF(Y A da+ j F(r,t)-Ada— j F(r,t)-fida (27.3.7)

dt ASOALL ey S(trAt) S0

Now the next part is tricky. The divergence theorem is just as good for time
varying functions as for functions which do not vary in time, and it says the following.
Pick any closed volume V' bounded by the closed surface S'. This is different from the
surface S above (for one thing, S" is closed, and S is open). Now, the divergence theorem

states that at any time t, we have

[[v-Fr.n] d* = F(r,0)- v da (27.3.8)

This equation is true for any volume V' and any given instant of time, and we are going to
apply it at time t to the following volume (brace yourself). The volume V' at time t
which we are going to use in (27.3.8) is the volume swept out by our original open
surface S, as it moves through space between time t and time t+A4t.

This at first seems like a peculiar volume to use at time t, since it depends on
things that happen in the future, but it is a perfectly well defined volume at time t, we just
need to know what is going to happen with S(t) in the future to define this volume of
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space at t, but that is given.  Figure 27-4 shows this closed surface and the associated

volume.

The Yolume ¥' for applyving Gauss's Thm:
VoFap i &1 = 1) -da’
17 Fen]ar = fFay - S(t+at)

e (1)

Figure 27-4: The closed surface at time t we use for applying the divergence
theorem

The infinitesimal line element dl and the infinitesimal area element
da =ndashown in Figure 27-4 are associated with the open surface S. They must be
right-handed with respect to one another, which is why da must be up if dl is
counterclockwise. The vector da=nda is not the infinitesimal area element da'

associated with the closed surface S'--that vector must always point away from the
volume of interest, namely V'. So da’ is anti-parallel to da on the bottom of the volume

shown above, and parallel to da on the top of the volume shown above.

Applying Gauss's Theorem to the volume V' gives

j[v F(r,t)] d°x gSF(r t)-da’' = <J'> F(r,t)-da’ + gS F(r,t)-da’ + gS F(r,t)-da’
S (t+At) S(t) ribbon
(27.3.9)

where we have gone all around the closed surface S' containing V', including the "ribbon”
of area that is swept out by the moving contour C(t) between timestand t+At. If we use
the fact that da'=da on the surface S(t+4t) and da’=—da on the surface S(t), we have

I[V-F(r,t)]d3x’:<jSF(r,t)-da’: @ F(r,t)-da—cj}F(r,t)-da+ 95 F(r,t)-da’
S(t+At) S(t) ribbon

Vv’ S'
(27.3.10)

Now what is d®x’ for this volume V'? It is pretty easy to see that
d®x'=v-da At . This is dimensionally correct, and has the right behavior (if v is
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perpendicular to da at some point on S there is no increase in differential volume d®x’ at
that point between time t and t+At). In addition, it is also pretty obvious that the
infinitesimal area element on the surface of the "ribbon" is given by da;,,, =dl x VAt .

To see this clearly, consider Figure 27-5Error! Reference source not found., which is a
blowup of an area of detail of Figure 27-4 . This sketch shows the geometry of the

situation. This form daj,,,, =dl x VAt has the right dependence--if v is parallel to dl, at
some point, the contour C is moving parallel to itself at that point, and there is no area
swept out by C at that point between t and t+t.

da’ .. =dl X vat

ribhon

Figure 27-5: The infinitesimal area element for the ribbon

So, using these two forms for d*x’ and daJ,,, in equation (27.3.10), we can
convert the volume integral on the left hand side into a surface integral over S(t), and the
area integral over the ribbon on the right hand side to a line integral over C(t). We
certainly make some error in doing this, but the corrections will be of order At, and we
already have a At in these terms, so that the corrections will vanish as we go to the limit
of At = 0. Thus, we have that

[[V-FrD]v-daat= ¢ F(r,t)-da— F(r,t)-da+ F(r,t)-(dl x v)at
S(t) S(t+At) S(t) c)

(27.3.11)

which we can rewrite as
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F(r.t)-da— ¢ F(r,t)-da=-at$ F(r,t)-(dl x v) +At [ [V-F(r,t)] v-da
S(t+At) S(t) c) S(t)

(27.3.12)

Thus we can write (27.3.7) as

doe() _ Iimi At J‘ ﬁF(r’t)-da—AthF(r,t)-(dl X V) +At j [V-F(r,t)] v-da
dt A0 At S(t+AL) c() s
(27.3.13)
If we take the limit, we have
dd.(t) [ AF(r.t)
- _j ~ ~da—<Jf>F(r,t)~(dI X V) + j [V-F(r,t)] v-da (27.3.14)

S(t) C() S(t)

If we use the vector identity A-(B xC)=(Cx A)-B in the second term on the right, we
can also write this as

ddg(t) _ I 5F(r.t),da_qg[vxp(r,t)].m + j [V -F(r,t)] v-da (27.3.15)
dt S0 ot <o S()

which is the result we were after. What this equation says is that the flux of F through
the moving open surface can change in three ways. First, there can be changes due to the
innate time dependence of F (first term on the right in (27.3.15)). But also the flux can
change because flux is lost out of the boundary of the surface as it moves along (second
term on the right). And finally, the flux can change because the surface sweeps across
sources of F, that is regions where the divergence of F is non-zero.

27.3.3 Faraday’s Law in Integral Form

We are now ready to write Faraday’s Law in integral form. We apply (27.3.15) to
the magnetic field, using the fact that we always have V-B =0

d0s (1) _  IBILY) Ayae v x B(r,t)]-dl 27.3.16
: S{) . qu)[ ] (27.3.16)

Using this equation, (27.3.2) becomes

d .
<]S[E+\/><B(r,t)]-d|=—E j B-Ada (27.3.17)

C(t) S(t)
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But we have just seen this term on the left before. Non-relativistically it is the electric
field as seen in the rest frame of dl. Equation (27.3.17) is the correct form for the integral

version of Faraday’s Law. If we define E = E+ v x B(r,t), then we have

_ dd, (t
¢ E-dl __ 9% (27.3.18)
s dt

27.4 Faraday’s Law Applied to Circuits with Moving Conductors

We consider several examples that demonstrate how the form of Faraday’s Law
given in (27.3.18) applies to moving conductors.

27.4.1 The Falling Magnet/Falling Loop

To see how our final form of Faraday’s Law removes the distinction between
whether the magnet is moving or the conductor is moving, consider the following
problem. We have a magnet with dipole moment m=m2 and mass M, and associated
magnetic field B The dipole moment of the magnet is always up, and the magnet is

constrained to move only on the z-axis, but it is allowed to move freely up and down on
that axis (see Figure 27-6). Let Z(t) be the location of the magnet at time t. The z-axis is

dipole *

e * magnat

Figure 27-6: A magnet falling on the axis of a conducting loop

also the axis of a circular stationary loop of radius a, resistance R, and inductance L, fixed
in place atz=0. The magnet moves downward under the influence of gravity due to
the force —Mgz . There will be a current | induced in the loop as the magnet falls,
because of the changing magnetic flux through the loop, and that current will produce a
magnetic field B, (r,t). The falling magnet will feel a force due to the current it

loop
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induces in the loop due to the magnetic field B, , given by m-VB,  (see Griffiths
equation (6.3) page 258). The equation of motion is thus
2 loop
M d ZZ :—Mg+mdBZ
dt dz (27.4.1)

We need another equation to solve the problem, which we get from Faraday’s Law.
Faraday’s Law (27.3.18) applied to the loop is

d

_ d
@E-dl:—ajB-dA}E

[[Biooo +Baipore |12 (27.4.2)

From the definition of the self-inductance of the loop L, we have LI = J'B,OOp -nda, so

$E-di :—L——— j [ Byipore |- 7102 (27.4.3)

If p is the resistivity of the loop material, Ohm’s Law in microscopic formis E= pJ,
and if A, o 1S the area of the cross section of the wire, then J =1/ A, ceion N

gSE-dI:qapJ-dI:;g)pdlzl[ﬂ}:IR (27.4.4)
A:ross section A:ross section

so that Faraday’s Law can be written as

did
IR :—La—adeipole -dA (27.4.5)

Here is the crucial point. If we were to apply Faraday’s Law to the situation
where the magnet is at rest and the ring is falling, (27.4.5) does not change. It does not
change because in getting to (27.4.4), we used Ohm’s Law in microscopic form (see
Section 26.2, (26.2.8), and the proper electric field to use in Ohm’s Law is always the
electric field in the rest frame of the conductor. That is what causes charges to move, and
that is where we want to evaluate the electric field and not in any other frame. It is clear
then that our equations of motion (27.4.5) and (27.4.1) depend only on the relative
position of the magnet and the loop and the rate at which that is changing, and not on
whether the loop is moving or the magnet is moving, or whether we are in a frame where
both move. The resultant relative motion of the two is the same, regardless of the inertial
frame in which we describe it.

27.4.2 A Circuit with a Sliding Bar
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We consider another problem with a moving conductor. In Figure 27-7 we have a
highly conducting cylindrical bar has mass M. It moves in the +x-direction along two
frictionless horizontal rails separated by a distance W, as shown in the sketch. The rails
are connected on the far right by a resistor of resistance R, as shown. The resistance of
the bar, the rails, and the external resistor is R Fort <0, the bar is in the region

total *

)
)
\
)
)
)
\
)
)
\
\
D

Sliding Bar, mass M

Figure 27-7: The sliding bar circuit

x <0, sliding at a constant speed Vg through a region with no magnetic field (see
sketch). At time t =0, when the bar is at location x = 0, the bar enters a region
containing magnetic field By, which is directed out of paper. After this time, suppose

the bar has speed V(t).

Faraday’s Law tells us that nyﬁ-dl around the circuit is equal to the negative of

the time rate of change of the magnetic flux. Once the bar enters the field the flux is
o(t)= [ B-Aida=B,(L-X ()W where ax(y =V (t)
surface (2746)

In the surface integral, we have taken n to be out of the page, which means that the
direction of the contour integral dl is positive counterclockwise. So we have

do

qSE-dl = IR — =+BV ()W
dt

total —

_BV({HWwW
R (27.4.7)

=1
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where the plus sign in this equation means that the induced electric field and the resultant
current is counterclockwise around the circuit. This means that the current in the bar is
down in the drawing above.

Again, the crucial point here is that when we do the evaluation of gSE-dI , We can

always use Ohm’s Law in the formE = p J , and we will always end up with the total

resistance of the resistors in the circuit, even though some are moving and some are not.
This is because in Faraday’s Law we are always evaluating the electric field in the rest
frame of the circuit element.

If we ask about the force F on the bar at time t > 0, we see that the total force on
the bar is the force per unit length 1xB_ times the length W, and the direction is in the

—X direction, so we have

. . BW)
F =—XWIB, =XV (t) (BW) (27.4.8)

total

Given this force F on the bar, the differential equation for V(t) fort>0, is

BW )’
M d_V =-V(t) u
dt Rtotal
=V(t)=Ve' (27.4.9)

where 7= MRy is the e-folding time

BAW 2

The time dependence of | is given by (see (27.4.7))

I(t) = BW Ve (27.4.10)
total
Thus we easily have
i(l MV Zj =MV d_V — MVOZG—Z'(/T
dt\ 2 dad =
2 , 2 (27.4.11)
:M |2 R — 2 |V|B§\N Riotal —I°R
2 BOW M Rtotal BOW o

Thus the Joule heating rate at any time is equal to the rate at which the moving bar is
losing kinetic energy, as we would expect from the conservation of energy.
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27.4.3 A Loop Falling Out of a Magnetic Field
We consider one last example of Faraday’s Law applied to moving conductors.

A loop of mass M, resistance R, inductance L, height H, and width W sits in a magnetic

-|B, z2=0 . . . L
field given by B = X{OO 0 At t =0 the loop is at rest and its mid-point is at z =
z<
0, as shown in Figure 27-8, and the current in the loop is zero at t = 0. The acceleration

of gravity is downward at g.

272000 00 000000 O0OO 060 0 0
20 00 00 000000000 0 0
20 00 0 0 0ofc 0@ 0Jle © @ @ © 0
2 0 00 0 0 0jeo © © 0l © © ® © O
2 0 00 0 0 0lo @ © OJo © © © © O
20 00 0 0 0je 0 @ 0o © @ © © O
P 0 00 0 0 0jo 0 @ Ol © @ © © O
20 00 0 0 0o 0 © 90Jlo © © © © ©

Mass ” z=0
Resistance R A1)
Inductance L

bo '

Figure 27-8: A Loop Falling Out of a Magnetic Field

The two differential equations that determine the subsequent behavior of the loop are as
follows, where we take the direction of positive current to be counterclockwise, as shown
in the figure. From Faraday’s Law we have

dl d
IR :_LE_EW[BO(H /2+Z(t))]

= IR= —Ld—I—WBov(t)
dt

(27.4.12)

and the equation of motion is simply

M %v(t) =-Mg + IWB, (27.4.13)
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If we multiply the first equation by I and the second equation by v, we have

I’R=—LI d—I—WIBOV(t) __d1p —WIB, v(t)
dt dt 2

and
Mviv(t) =-Mgv+IWB,v = a1 Mv?
dt dt 2

Putting these two together gives conservation of energy

il le2+Mgz+1LI2 =—1°R
dt| 2 2

249

(27.4.14)

(27.4.15)

(27.4.16)

Let solve the case where the resistance of the loop is zero. Assuming that the

loop never falls out of the magnetic field, (27.4.13) is

M %v(t) =-Mg + IWB,

d? dl
M —v(t) =WB —
- dt? ® ° dt

and (27.4.14) is

0=- 3 _we v
dt

N di _ _WB,v(t)

dt L
Thus we have
d? dl W?2B2
M—v(t)=WB—=- o v(t
dt? ®) dt L ®
d2 WZBZ
= —V({)+ °v(t)=0
pre t) i ®)

And therefore our solution for the velocity is

2p?2
v(t):—gsin(cot) where a)Z:W B,
0

where we have picked the sin so that v is 0 at t = 0. This implies that

(27.4.17)

(27.4.18)

(27.4.19)

(27.4.20)
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2(t) :%(cos(a)t)—l) (27.4.21)

where we have picked the integration constant so that z is 0 at t =0
Finally, we determine the constant A from the fact that we have to satisfy at t = 0 the
equation

M %v(t) =-Mg + IWB,

(27.4.22)
This means that we must have M %V(O) =MAwcos(0)=-Mg = A= -8
w
S0
9. . _W’B; g
V(t)=—=sin(wt) where = © and z(t)=—(cos(wt)-1) (27.4.23
(t) " (wt) O =—r (t) wz( (wt)-1) ( )

28 EMF’s and Faraday’s Law in Circuits
28.1 Learning Objectives

We now consider the concept of electromotive force in a circut. We have seen
above that a given observer may think that the motion of charges is driven either by a qE

ora qvxB force in the observer’s rest frame, or some combination of both, but that this

always reduces to the electric field in the rest frame of the circuit element. There may
also be or some other force entirely (see our example of the battery below), and that leads
us to consider the general concept of an EMF. We then turn our attention to the typical
circuit elements: batteries, resistors, capacitors, and inductors. We pay special attention
to inductors, since there are a huge number of misconceptions about the “voltage drop”
across an inductor. We will only consider single loop circuits here. In the beginning we
will only consider circuits with batteries with resistors. Then we will add inductors, and
finally capacitors. Unlike in the situation above, in this Section we assume that all
parts of the circuit are at rest.

28.2 The electromotive force

Suppose we have a current flowing in a closed circuit. To have a flow of current
in our single loop circuit, there must be at every point in the circuit some force per unit
charge f on the charge carriers which causes them to move. For the moment we consider
a circuit containing only batteries and resistors. Ohm's Law states the relation between
the force per unit charge f at any point in the circuit and the current density J at that point
is J=o.f . This is the same relation we have derived in Section 26.2, except that there

we considered only the force per unit charge due to an electric field E, whereas here we
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consider the force per unit charge due to any force. The constant o is called the
conductivity (we use the symbol o to distinguish this quantity from surface charge o).
Why do we have this particular relationship? The classical model is given in Section
26.2, and we do not repeat those arguments here, other than that we point out that those
arguments easily generalize from the electric field to any force per unit charge f.

Now, the electromotive force (or emf) of our single loop circuit is denoted by the
symbol &, and is defined by the equation

g=@f-d (28.2.1)

where the integral is around the complete circuit, and at every point in the circuit f is the
force per unit charge that is felt by the charge carriers located at that point (the same f
that we were dealing with above). The terminology here is poor, since an "electromotive
force™ is not a force at all, but instead is a closed line integral of a force per unit charge.
Note that the units of emf are Joules/coulomb, or Volts.

In any case, it is the emf & defined in (28.2.1) that determines how much current
will flow in a circuit, by the following argument. The crucial step in this argument is
understanding the following point.

For a single loop circuit, the current I is to an good approximation
the same in all parts of the circuit

Why is this so? Basically, although the current will start out at t=0 being unequal in
different parts of the circuit, those inequalities mean that charge is piling up somewhere.
The accumulating charge at the pile up will quickly produce an electric field, and this
electric field is always in the sense so as to even out the inequalities in the current. We
give a semi-qualitative example of this evening-out below in Section 28.8, but for the
moment we simply accept it.

The upshot is that in a very short time electric fields will be set up around the
circuit along with various pockets of accumulated charge, all arranged so as to made the
current the same in every part of the circuit. This will be true all around the circuit as
long as we long as we are considering time changes in the current that are long compared
to the speed of light transit time across the circuit.

Given this, let's figure out how the resultant current I is related to the emf &. We
have

5=<‘ﬁf-dl=§|5i-dl=§|5ALa‘:dl=lgf>Ad—al‘: (28.2.2)

o

where A is the cross-sectional area of the circuit at any point, and o its conductivity, and
both of these quantities can vary at different points in the circuit. However, the current |
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does not vary around the circuit, which allows us to take it out of the integral in equation
(28.2.2). We have also assumed that the current at any point is uniformly distributed
across the cross-sectional area A. This is not a crucial assumption, and we can relax that
easily. Thus if we define the total resistance Rt of our one loop circuit as

di
RT=<j>A—UC (28.2.3)

then we have the relationship between the emf, the current I, and the total resistance of
the circuit Rt :

| =2
R (28.2.4)

From equation (28.2.4), the units of the resistance are clearly volt/amp which we define
as an ohm. Thus we see that the conductivity oz must have units of ohm-1 m-1.
Sometimes we will refer to the resistivity of a material. The resistivity is just the inverse
of the conductivity, and has units of ohm meters.

28.3 An example of an EMF: batteries

Let's apply these ideas to a concrete example--a simple circuit consisting of a
battery connected by highly conducting wires to a resistor (a conductor with low
conductivity oc). Batteries provide one of the most familiar examples of a source of
electromagnetic energy. Batteries are in many ways like capacitors, with one
fundamental difference. There are chemical people inside batteries that do work, and
provide an "electromotive force", as follows. The positive terminal of a battery carries
positive charge, just like the positive plate of a (charged) capacitor, and similarly for the
negative terminal (see sketch next page). There is therefore an internal electric field E,

in the battery, going from the positive terminal to the negative terminal, and the positive
terminal of the battery is at a higher electric potential than the negative terminal. When
the battery is placed in a circuit, say with a resistor, there is then a path for positive
charge to flow from higher to lower potential (through the resistor--see below), and
charge will do just that when the circuit is established. Up to this point, we have a
situation that looks very much like a capacitor that is discharging through a resistor.

But the terminals of the battery do not discharge. The cartoon essence of a battery
is the following. Suppose a charge +dq leaves the positive terminal, flows through the
resistor, and then arrives at the negative terminal. When that charge arrives at the
negative terminal, a chemical person picks it up and, and applying a force per unit charge
fs, moves it against the internal electric field of the battery, and deposits it on the
positive terminal again. No matter how rapidly charge flows off the positive terminal
through the external circuit and arrives at the bottom plate, the chemical people manage
to keep up, transferring the incoming charge on the negative terminal to the positive
terminal, as fast as it arrives. Clearly our "chemical people” are doing work in this
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process, just as we do work in charging a capacitor, because they are moving positive
charge against the electric field of the battery by applying the force f.

=
1 = dg/dt

postive
terminal +q
r+++++4-4-++++~I R

/]\ds

E. E,
+dg

R P PP B SRR ORE
negative -q
terminal

Figure 28-1: A cartoon view of a battery in a circuit

However, if we look at the complete circuit, there are really two forces per unit
charge involved in driving current around the circuit: the "source™ of the emf, fs, which is
ordinarily confined to one portion of the loop (inside the battery here), and the
electrostatic force per unit charge E whose function is to smooth out the flow and
communicate the influence of the source to distant parts of the circuit (Griffiths, page
292). The total force per unit charge, f, that is the f that appears in equation (28.2.1)
above, is therefore given by the sum

f=f+E (28.3.1)

In the case of the circuit here, a battery and a resistor, cﬁEdI =0 because this is an

electrostatic field. Furthermore, fs vanishes outside of the battery, so that we have simply
top batter

that &€= bo:om batyteryfs -dl . This is just the work done per unit charge by the chemical

people in moving the charge against the electric field of the battery from the bottom plate

to the top plate. The rate at which they are doing work is dg/dt times this work per unit

charge, or
P

rate at which work done by battery =

& (28.3.2)

and this is the rate that the battery is providing energy to the circuit.
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The origin of the electromotive force in a battery is the internal mechanism (the
"chemical people™) that transports charge carriers in a direction opposite to that in which
the electric field would move them. In ordinary batteries, it is chemical energy that
makes the charge carriers move against the internal field of the battery. That is, a
positive charge will move towards higher electric potential if in so doing it can engage in
a chemical reaction that will yield more energy than it costs to move against the electric
field. The electromotive force in a battery depends on atomic properties. The values of
potential differences between the battery terminals lie in the range of volts because the
binding energies of the outer electrons of atoms are in the range of several electron volts,
and it is essentially the differences in these binding energies that determine the voltage of
the battery.

The actual details of all this are complicated, so we will not go beyond the cartoon
level. Purcell (Electricity and Magnetism, Berkeley Physics Course, Volume 2, McGraw-
Hill, 1965) has a excellent discussion of batteries in Chapter 4 of that volume.

28.4 The resistance of a resistor

Finally, let's finish up our discussion of the simple battery and resistor circuit
shown in Figure 28-1. Suppose the resistor in our circuit consists of a conducting
cylinder of length L and cross-sectional area A, with conductivity . Since the only
force per unit charge in the resistor is the electric field in the resistor, E (the battery

"source" fs is zero there), the current density in the resistor, J., is o.E; by the

; ; tOpR . ;
microscopic form of Ohm's Law. Let AV, = —IbotmmR E: -dl be the potential difference

from the bottom to the top of the resistor (see Figure 28-1). Then
| /A=J,=0E,=0,AV,/L (28.4.1)

Solving equation (28.4.1) for I in terms of AVR, we obtain
i L
I =AV, /R with R=—— (28.4.2)
o A

This is the macroscopic form of Ohm's Law with which we are most familiar. The
quantity R is the resistance of the resistor, in ohms, and is a function of both the

fundamental properties of the material, via o, and of the shape of the material, via A and
L.

Suppose now that the conductivity in the connecting wires and in the battery is so
much larger than o, that we can take them to be infinite for all practical purpose. Then

equation (28.2.3) becomes R,=R That is, the total resistance of our circuit is to a good
approximation just the resistance of our (low conductivity) resistor. If we consider

equation (28.2.4) (with Rt = R), we obtain | = E/R = AVR/R, and therefore €= AVR.
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Since cﬁE-dI =0, this only can be true if inside the battery we have approximately that

f, =—E;, where E; is the electric field in the battery. Note that since J and E are anti-
parallel in the battery, the creation rate of electromagnetic energy, —E-J , is positive
there, and therefore electromagnetic energy is being created in the battery.

28.5 Joule heating

Since J, and E, are parallel in the resistor, the creation rate of electromagnetic

energy, —E-J , is negative, and therefore electromagnetic energy must be being
destroyed in the resistor. Where is this energy going? Well, the electric field is doing
work on the charges at the rate of qnEg v, , or +E -J; , per unit volume, just as we

would expect (if electromagnetic energy is disappearing, it must be going some place).
That work done by the field in the steady state is transmitted from the charges to the
lattice via collisions, i.e., to random thermal energy. The total rate at which this heating

takes place is +Eg -Jr times the volume AL, or EJAL, or VI. Thus the heating rate
P in joules per second, is

heating ’

(28.6.1)
P

heating

=AVql = I°R (28.5.1)

This is the familiar form of the Joule Heating Law. If we furthermore use the fact that

€= AVR, we have that the rate at which the battery is doing work is equal to the rate at
which energy is appearing as heat in the resistor. Thus electromagnetic energy is being
created in the battery at the same rate at which it is being destroyed in the resistor.

28.6 Self-inductance and simple circuits with ""one-loop™ inductors:

The addition of time-changing magnetic fields to simple circuits means that the
closed line integral of the electric field around a circuit is no longer zero. Instead, we
have, for any open surface

oB(r,t) .
E-dl=—| ——=-nda 28.6.1
%5 j ~ (286.1)
Any circuit in which the current changes with time will have time-changing magnetic
fields, and therefore associated “induced” electric fields, which are due to the time
changing currents, not to the time changing magnetic field (association is not causation).
How do we solve simple circuits taking such effects into account? We discuss here a

consistent way to understand the consequences of introducing time-changing magnetic
fields into circuit theory--that is, self-inductance.

As soon as we introduce time-changing currents, and thus time changing
magnetic-fields, the electric potential difference between two points in our circuit is not
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longer well-defined. When the line integral of the electric field around a closed loop is
no longer zero, the potential difference between points a and b, say, is no longer
independent of the path used to get from a to b. That is, the electric field is no longer a
conservative field, and the electric potential is no longer an appropriate concept (that is, E
can no longer be written as the negative gradient of a scalar potential). However, we can
still write down in a straightforward fashion the differential equation for I(t) that
determines the time-behavior of the current in the circuit.

To show how to do this, consider the circuit shown in Figure 28-2. We have a
battery, a resistor, a switch S that is closed at t = 0, and a "one-loop inductor”. It will
become clear what the consequences of this "inductance" are as we proceed. Fort >0,
current will flow in the direction shown (from the positive terminal of the battery to the

negative, as usual). What is the equation that governs the behavior of our current | for t
> 0?

Switch 5 -
closed at t=0 ]

Figure 28-2: A simple circuit with battery, resistor, and a one-loop inductor

To investigate this, we apply Faraday’s Law to the open surface bounded by our
circuit, where we take da =nda to be out of the page, and thus dlis counter-clockwise,

as shown. First, what is the integral of the electric field around this circuit? That is, what
is the left-hand side of (28.6.1)? Well, there is an electric field in the battery in the
direction of dl that we have chosen, we are moving against that electric field, so that

_[E-dl is negative. Thus the contribution of the battery to our integral is —& (see the

discussion in Section 28.3 above). Then there is an electric field in the resistor, in the
direction of the current, so when we move through the resistor in that direction, IE~dI IS

positive, and that contribution to our integral is +1 R. What about when we move
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through our “one-loop inductor”? There is no electric field in this loop if the resistance
of the wire making up the loop is zero, so there is no contribution to J'E~dl from this part

of the circuit. This may bother you, and we talk at length about it below. So, going
totally around the closed loop, we have

cﬁE-dI =—&+IR (28.6.2)

Now what is the right hand side of (28.6.1). Since we have assumed in this
Section that the circuit is not moving, we can take the partial with respect to time outside
of the surface integral and then we simply have the time derivative the magnetic flux
through the loop. What is the magnetic flux through the open surface? First of all, we
arrange the geometry so that the part of the circuit which includes the battery, the switch,
and the resistor, makes only a small contribution to the magnetic flux as compared to the
(much larger area) of the open surface which consititutes our “one-loop inductor”.
Second, we know that the sign of the magnetic flux is positive in that part of the circuit
because current flowing counter-clockwise will produce a B field out of the paper, which
is the same direction of nda, so that B-nda is positive. Note that our magnetic field

here is the self magnetic field—that is the magnetic field produced by the current flowing
in the circuit, and not by an currents external to this circuit.

We also know that at any point in space, B is proportional to the current I, since it
can be computed from the Biot-Savart Law, that is,

B(r,t) = ”"'(t)gﬁdl (r=r) (28.6.3)

You may immediately object that the Biot-Savart Law is only good in time-independent
situations, but in fact, as we have seen before when considering radiation, as long as the
current is varying on time scales T long compared to the speed of light travel time across
the circuit and we are within a distance cT of the currents, then (28.6.3) is an excellent
approximation to the time dependent magnet field. If we look at (28.6.3), although for a
general point in space it involves a very complicated integral over the circuit, it is clear
that B(r,t) is everywhere propostional to I(t). That is, if we double the current, B at any

point in space will also double. It then follows that the magnetic flux itself must be
proportional to I, because it is the surface integral of B, and B is everywhere proportional
tol. Thatis,

d)(t)—jB(r,t)-ﬁda—j{”"l(t)qulx r-r) } - ()j{ gS—d'x (r r)}ﬁda

S(t) I)|3
(28.6.4)

or
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dl'x(r—r') .
D(t) = LIt Lot (U7 )L Ag 28.6.5
(t) (t) 4ﬁ£{¢ Kr—rjg }n a ( )

So the magnetic flux is a constant L times the current. Note that L is a constant in the
sense that it stays the same as long as we do not change the geometry of the circuit. If we
change the geometry of the circuit (for example we halve the radius of the circle in our
Figure above), we will change L, but for a given geometry, L does not change. Even
though it may be terrifically difficult to do the integrals in (28.6.5), once we have done it
for a given circuit geometry we know L, and L is a constant for that geometry. The
quantity L is called the self-inductance of the circuit, or simply the inductance. From the
definition in (28.6.5), you can show that the dimensions of L are g, times a length. In

Assignment 10, you show that a lower limit to the inductance of a single loop of wire is
proportional to z, times its radius.

Regardless of how hard or easy it is to compute L, it is a constant for a given
circuit geometry and now we can write down the equation that governs the time evolution
of I. If ®(t)=LI(t), then dd(t)/dt=Ldl(t)/dt, and equation (28.6.1) becomes

¢E4ﬂ=—€+IR=—L%% (28.6.6)

If we divide (28.6.6) by L and rearrange terms, we find that the equation that determines
the time dependence of I is

a.R_E (28.6.7)
dt L L
The solution to this equation given our initial conditions is
8 —tR/L
I(t)= E(1—e ) (28.6.8)

This solution reduces to what we expect for large times, thatis | = % , but it also shows a

continuous rise of the current from 0 initially to this final value, with a characteristic time
7, defined by

7, =— (28.6.9)
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This time constant is known as the inductive time constant. This is the effect of having a
non-zero inductance in a circuit, that is, of taking into account the “induced” electric
fields which always appear when there are time changing B fields. And this is what we
expect—the reaction of the system is to try to keep things the same, that is to delay the
build-up of current (or its decay, if we already have current flowing in the circuit).

28.7 Kirchhoff's Second Law modified for inductors: a warning

We can write the governing equation for I(t) from above as
dl
E—1 R—LE:ZAVi:O (28.7.1)

where we have now cast it in a form that "looks like" a version of Kirchhoff's Second
Law, a rule that is often quoted in elementary electromagnetism texts. Kirchhoff's
Second Law states that the sum of the potential drops around a circuit is zero. In a circuit
with no inductance, this is just a statement that the line integral of the electric field
around the circuit is zero, which is certainly true if there is no time variation. However,
in circuits with currents that vary in time, this "Law" is no longer true.

Unfortunately, many elementary texts choose to approach circuits with inductance
by preserving "Kirchhoff's Second Law", or the loop theorem, by specifying the
"potential drop™ across an inductor to be -Ldl/dt if the inductor is traversed in the
direction of the current. Use of this formalism will give the correct equations. However,
the continued use of Kirchhoff's Second Law with inductors is misleading at best, for the
following reasons.

Kirchhoff's Second Law was originally based on the fact that the integral of E
around a closed loop was zero. With time-changing currents and thus time-changing self-
magnetic fields, this is no longer true (the E field is no longer conservative), and thus the
sum of the "potential drops" around the circuit, if we take that to mean the negative of the
closed loop integral of E, is no longer zero--in fact it is Ldl /dt (this is equation (28.6.6)
with the sign reversed).

The continued use of Kirchhoff's Second Law in this way gives the right
equations, but it confuses the physics. In particular, saying that there is a "potential drop"
across the inductor of —Ldl /dt implies that there is an electric field in the inductor such
that the integral of E through the inductor is equal to —Ldl /dt. This is not always, or
even usually, true. For example, suppose in our "one-loop" inductor above that the wire
making up the loop has negligible resistance compared to the resistance R. The integral
of E through our "one-loop" inductor above is then very small, NOT —Ldl /dt. Why is
it very small? Well, to repeat our assertion above

For a single loop circuit, the current I is to an good approximation
the same in all parts of the circuit
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This is just as valid in a circuit with inductance. Again, although the current may
start out at t=0 being unequal in different parts of the circuit, those inequalities mean that
charge is piling up somewhere. The accumulating charge at the pile-up will quickly
produce an electric field, and this electric field is always in the sense so as to even out
the inequalities in the current. In this particular case, if the conductivity of the wires
making up our one-loop inductor is very large, then there will be a very small electric
field in those wires, because it takes only a small electric field to drive any current you
need. The amount of current needed is determined in part by the larger resistance in
other parts of the circuit, and it is the charge accumulation at the ends of those low
conductivity resistors that cancel out the field in the inductor and enhance it in the
resistor, so as to maintain constant current in the circuit. We return to this point below in
Section 28.8.

One final point, to confuse the issue further. If you have ever put the probes of a
voltmeter across an the terminals of an inductor (with very small resistance) in a circuit,
what you measured on the meter of the voltmeter was a "voltage drop" of —Ldl /dt. But
that is not because there is an electric field in the inductor! It is because putting the
voltmeter in the circuit will result in a time changing magnetic flux through the voltmeter
circuit, consisting of the inductor, the voltmeter leads, and the large internal resistor in
the voltmeter. A current will flow in the voltmeter circuit because there will be an
electric field in the large internal resistance of the voltmeter, with a potential drop across
that resistor of —LdlI /dt, by Faraday's Law applied to the voltmeter circuit, and that is
what the voltmeter will read. The voltmeter as usual gives you a measure of the potential
drop across its own internal resistance, but this is not a measure of the potential drop
across the inductor. It is a measure of the time rate of change of magnetic flux in the
voltmeter circuit! As before, there is only a very small electric field in the inductor if it
has a very small resistance compared to other resistances in the circuit.

28.8 How can the electric field in an inductor be zero?

Students are always confused about the electric field in inductors, in part because
of the kinds of problems they have seen. Quite often in simple problems with time
varying magnetic fields, there is an “induced” electric field right where the time varying
magnetic field was non-zero. What has changed in our circuit above to make the electric
field zero in the wires of the (resistanceless) inductor zero, even though there is a time
changing magnetic flux through it? This is a very suble point and a source of endless
confusion, so let’s look at it very carefully.

Your intuition that there should be an electric field in the wires of an inductor is
based on doing problems like that shown in Figure 28-3 below. We have a loop of wire
of radius a and total resistance R immersed in an external magnetic field which is out of
the page and increasing with time as shown. In considering this circuit, unlike in our
“one-loop” circuit above, we neglect the the magnetic field due to the currents in the wire
itself, assuming that the external field is much bigger than the self-field. The conclusions
we arrive at here can be applied to the self-inductance case as well.



Version Date, December 6 2010 261

© 0 0 0O
/

O O @ O

Figure 28-3: A loop of wire sitting in a time-changing external magnetic field
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The changing extermal magnetic field will give rise to an “induced” electric field
in the loop of the wire, with

$E-di =—di(B ra’) (28.8.1)

ext
t

This “induced” electric field is azimuthal and uniformly distributed around the loop as
long as the resistance in the loop is uniform, and in the loop itself we easily have from
(28.8.1) that the electric field right at the loop is given by

~a dB,,

- 28.8.2
2T T gt (288.2)

$E-dl =27aE, = —%(Bwﬂaz) = E|

Thus if the resistance is distribed uniformly around the wire loop, we get a
uniform induced electric field in the loop, circulating clockwise for the external magnetic
field increasing in time (see Figure 28-4). This electric field causes a current to flow, and
the current will circulate clockwise in the same sense as the electric field. The total
current in the loop will be the total “potential drop” around the loop divided by its
resistance R, or

_ ra® dB,,
R dt

(28.8.3)
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Figure 28-4: A loop of wire with resistance R in an external field out of the page

But what happens if we don’t distribute the resistance uniformly around the wire
loop? For example, let us make the left half of our loop out of wire with resistance R,

and the right half of the loop out of wire with resistance R,, with R, +R, =R, so that we

have the same total resistance as before (see Figure 28-5). Let us futher assume that
R, <R,. How is the electric field distributed around the loop now?

First of all, the electromotive force around the loop (see (28.8.1)) is the same, as
is the resistance, so that the current | has to be the same as in (28.8.3). Moreover it is the
same on both sides of the loop by charge conservation. But the electric field in the left
half of the loop E, must now be different from the electric field in the right half of the

loop E,. This is so because the line integral of the electric field on the left side is zaE,,
and from Ohm’s Law in macroscopic form, this must be equal to IR,. Similarly,
rwakE, =IR,. Thus

5 =&:> E, <E, since R <R, (28.8.4)
E2 RZ

This makes sense. We get the same current on both sides, even though the resistances are
different, and we do this by adjusting the electric field on the side with the smaller
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resistance to be smaller. Because the resistance is also smaller, we produce the same
current as on the opposing side, with this smaller electric field.

But what happened to our uniform electric field. Well there are two ways to
produce electric fields—one from time changing currents and their associated time
changing magnet fields, and the other from electric charges. Nature accomplishes the
reduction of E, compared to E, by charging at the junctions separating the two wire

segments (see Figure 28-5), positive on top and negative on bottom.

o

induced

X

sl

charge

— R

induced i o

Figure 28-5: The electric field in the case of unequal resistances in the loop

The total electric field is the sum of the “induced” electric field and the electric
field associated with the charges, as shown in the Figure above. It is clear that the
addition of these two contributions to the electric field will reduce the total electric field
on the left (side 1) and enhance it on the right (side 2). The field E, will always be

clockwise, but it can be made arbitrarily small by making R, <<R,.

Thus we see that we can make a non-uniform electric field in an inductor by using
non-uniform resistance, even though our intuition tells us (correctly) that the “induced”
electric field should be uniform at a given radius. All that Faraday’s Law tells us is that
the line integral of the electric around a closed loop is equal to the negative of the time
rate of change of the magnet flux through the enclosed surface. It does not tell us at what
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locations the electric field is non-zero around the loop, and it may be non-zero (or zero!)
in unexpected places. The field in the wire making up the “one-loop” inductor we
considered above is zero (or least very small) for exactly the kinds of reasons we have
been discussing here.
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