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1 Introduction 
 
1.1 Motivation 

 
The visualization of time dependent vector fields is a central problem in scientific 

visualization.  There have been two advances in computer graphics since 1993 which 
have fundamentally changed the way that vector fields can be visualized in two 
dimensions.  The first of these was the introduction of the Line Integral Convolution 
(LIC) method for showing the structure of vector fields at a resolution near that of the 
display, using textures generated by convolving the vector field with a grid of pixels of 
random brightness [Cabral and Leedom, 1993].    

 
The second was the introduction of a method for the animation of a LIC using a 

second velocity field to evolve the underlying grid of random pixels used to generate the 
LIC [Sundquist, 2001; Sundquist, 2003].   Links to these papers may be found at 2001 
and at 2003.  This latter method, called Dynamic Line Integral Convolution (DLIC), 
produces an animated sequence of images of the first field such that the time dependence 
of that field is evident from frame to frame by the inter-frame coherence in the LIC 
texture pattern.   We discuss more details of this process below in Section 2.   

 
In a paper to be submitted to the American Journal of Physics, Belcher and Koleci 

[2007] discuss at a heuristic level how these two algorithms work, and why they are 
effective learning tools for electromagnetism.  The motivation for this paper is to make 
the LIC and DLIC methods and their educational impact more widely known to the 
physics community.   

 
 The present document first gives a brief heuristic discussion of what a DLIC is.  
Then, starting with Section 3, we provide a guide to the software code developed by 
Andreas Sundquist to produce DLICs.  Assembling the documentation has been carried 
out by John Belcher, and additional programming has been provided by Michael 
Danziger and John Belcher.  Our intended audience is undergraduates, graduate students 
or postdoctoral fellows in science and engineering who have some knowledge of 
programming who would like to produce DLICs for applications in their specialty.  This 
is a set of instructions and examples that will enable someone with that background to 
create DLICs.     

 
1.2 What’s New in Release 1.01? 
 
 Compared to release 1.0, we have added extensive documentation about adding 
color to the DLIC, and we have changed the definition of the color modes so that we have 
more flexibility in adding color.  We have moved the Colorizer method into its own 
separate class.  We have added more examples of using the program for 
electromagnetism.   
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1.3 What’s New in Release 1.02? 
 
 Compared to release 1.01, we have added ColorMode 4.  This mode allows the 
user to color the image by region, as opposed to flat color or a color linked to field 
strength (see Section 5.2.6).  We have also added a new mode for showing fluid flow, in 
which the flow speed varies by region as opposed to remaining constant across the image 
or varying with field strength (see Section 4.6.2).  We have added an additional paper 
using the DLIC method to our paper collection located at this link (Liu and Belcher 
2007), and we have included the classes used to make the figures in that paper.   
 
1.4 What’s New in Release 1.03? 
 
 Compared to release 1.02, we have added a new feature that allows one to set the 
origin of the DLIC as different from zero if you have no symmetry in the DLIC.  This 
feature is described in Section 3.4.1.7 below.   We have added to our animation classes 
code to animate the electric field of a linear antenna.   
 
 
 

2 What is a DLIC? 
2.1 LIC 
 
 The LIC method uses correlations in a texture pattern to show the spatial structure 
of a vector field.  To explain heuristically how the LIC algorithm works, we first consider 
a constant field.  Given a square array of NxN pixels of random brightness, we want to 
generate a textured array of the same dimension, where the texture pattern indicates the 
direction of the constant field, to within a sign.   To do this, we process our NxN random 
array pixel by pixel to produce the new texture array, as follows.  At any pixel 1 (see 
Figure 2.1-1), we average the brightness of the pixels along a line centered on pixel 1 and 
in the direction of the local field, for n pixels, n << N, and put this value in our new 
texture array at the same location as pixel 1 was in the initial array. 
 
 We now move to an adjacent new pixel and repeat this same process again 
(Figure 2.1-2).  If we move parallel to the field to get to the new pixel, say pixel 2 in 
Figure 2.1-2, then the resulting average that we obtain at pixel 2 is almost the same as the 
average for pixel 1, because most of the pixels are the same.  So the calculated brightness 
at pixel 2 is highly correlated with the brightness of pixel 1.  If on the other hand we 
move perpendicular to the field to get to the new pixel, say pixel 3 in Figure 2-1.2, the 
resulting average is not correlated at all with the average at pixel 1, because none of the 
pixels whose brightness is being averaged are the same.  This process produces a new 
array which has correlations in brightness along the field direction.  Another way of 
saying this is that we have produced a texture pattern where the streaks in the texture are 
parallel to the field direction, as shown in Figure 2.1-3. 
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Figure 2.1-1:  To produce a LIC image for the constant field F, we take each pixel in 
a random pattern, for example, pixel 1, and average the brightness of the n pixels 
lying along a line parallel to F centered on pixel 1, as indicated by the while line. 

 

 
 

Figure 2.1-2:  We calculate the brightness at pixels 2 and 3 by averaging over the 
brightness of the n pixels lying along the lines parallel to F centered on pixels 2 and 

3, as indicated by the two white lines. 
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Figure 2.1-3:  A LIC of a constant field, constructed in the manner described in the 
text. 

 
 Now consider the LIC procedure for a field that varies in space.  If we simply 
follow the procedure described above and average the brightness of pixels along straight 
lines in space, where the direction of the straight line is determined by the local direction 
of the field at (for example) pixel 1, we would get a visual representation of the field but 
it would be inaccurate, because we would be assuming that the local streamline can be 
reasonably approximated by a straight line along the entire n pixel averaging length.  For 
locations where the local radius of curvature of a given field line is large compared to the 
n pixel length of the averaging line, this assumption is valid.  However, if the local radius 
of curvature is comparable to or smaller than the length of n pixels along the averaging 
line, this assumption is no longer valid, and correlations in the texture pattern so 
generated will no longer show the details of structure of the field at this scale.   
 
 To correct for this, the Cabral and Leedom LIC algorithm averages over n pixels 
along a line in space, but the averaging line is no longer a straight line, but the field line 
that passes through the point at which we are calculating the new texture value, for 
example pixel 1.   That is, the texture pattern is convolved with the field structure along a 
line in space determined by the field lines, thus the name line integral convolution.  This 
procedure retains the property that movement along the local field direction exhibits a 
high correlation in brightness values, but movement perpendicular to that direction 
exhibits little correlation, and this is true even in regions of high curvature.   
 
 Figure 2.1-4 shows a LIC for the magnetic field of a conducting ring falling 
toward a stationary magnetic dipole (see also Section 2.3 and Section 4.2 below).  
Regions of high curvature occur near the two zeroes just above the ring.  The zeroes are 
distinguishable by the tilted X-like structure near them.  For comparison we also draw 
four field lines in the figure.  We also note that although we mostly use the terminology 
LIC in what follows, the SundquistDLIC code actually uses a Fast Line Integral 
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Convolution algorithm to compute the LIC, as introduced by Stalling and Hege 1995, and 
occasionally we will use the term FLIC. 
 

 
 

Figure 2.1-4:  LIC for a Faraday’s Law visualization.  A conducting ring is falls 
toward a stationary magnetic dipole, and eddy currents are induced in the ring. 

2.2 DLIC 
 
 Dynamic Line Integral Convolution (DLIC) extends the LIC algorithm described 
above to time-dependent fields. The vector field F(x,t) is allowed to vary arbitrarily over 
time, with the motion of its field lines described by a second velocity vector field, D(x,t).  
That is, at any time t the field line of F(x,t) passing through x at time t is displaced in 
space at time t + Δt  to a new position   x + D(x,t) Δt.  
 
 The DLIC algorithm originated by Sundquist produces an animation by evolving 
the random texture input used in LIC in a manner prescribed by the velocity field D.  
That is, if T(x,t) represents our random texture map, we evolve it with time according to 
 

( ) ( )( ),T t t T t t t+ Δ = − Δx x D x, ,                                               (2.2.1) 
 

Unfortunately, the texture is typically stored as a discrete array of values on an ordered 
grid.  Repeatedly evolving that array over time will result in warping and a loss of detail.  
That is, the motion velocity field D may have divergent or convergent regions, which will 
spread out or compress the location of the pixels in our texture.  
 
 To avoid this problem, instead of evolving the random input texture according to 
equation (1), the Sundquist DLIC algorithm tracks a large number of particles of random 
intensity, roughly on the same order as the number of pixels in the original input texture. 
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The particles move over time with a velocity given by D, and the DLIC algorithm 
continuously monitors and adjusts their distribution to keep the level of detail roughly the 
same, by both consolidating old particles and creating new particles.  At any instant of 
time for which we want to produce a frame of the animation, the texture at that time is 
generated by simply drawing all of the particles being followed onto it. Once we have the 
texture for a given frame, the LIC method is applied to this texture to render the image of 
the field at that time.  
 
 Intuitively, since the particles that produce the input texture advect according to 
the motion field D, the LIC convolution of the field lines of F with the texture from one 
frame to the next samples the same part of the texture pattern, since the texture particles 
and field lines move in concert. Thus, the streaks in the LIC of F appear to move from 
one frame to the next according to the motion field D.  Each output image in the sequence 
will individually have the same properties as a static LIC rendering, but successive 
frames will have an inter-frame coherence that depicts the prescribed motion of the field 
lines.   
 
2.3 The Falling Ring 
 
 We give an example of a situation in electromagnetism where the construction of 
a DLIC is of physical interest.  A conducting ring with mass m, radius a, resistance R and 
self-inductance L is located on the z-axis above a stationary permanent magnet with 
magnetic dipole moment vector .  The normal to the ring is along the vertical z-axis, 
and the ring is constrained to move along that axis.  The ring is released from rest at t = 
0, and falls under gravity toward the conducting ring.  Eddy currents arise in the ring 
because of the changing magnetic flux as the magnet falls toward the ring, and the sense 
of these currents will be such as to slow the ring.  The overall field configuration of the 
total magnetic field will be as shown in Figure 2.1-4.   The solution for the motion of the 
ring involves the solution to three coupled ordinary differential equations for the z-
coordinate of the falling ring, the current in the ring, and the z-coordinate of the velocity 
of the falling ring.  These equations are given in Section 4.1 of the

ẑoM

 TEAL_Physics_Math 
documentation. 
 
 According the scheme introduced by Belcher and Olbert 2003 (linked at 2003) the 
magnetic field lines in this case should evolve with a velocity field given by 
 

2B
×

=
E BD

                                                               (2.3.1) 
 

The physical interpretation of this velocity field is that it represents the guiding center 
motion of a set of low energy electric monopoles initially arranged along any given 
magnetic field line, as those monopoles drift in the time-dependent electric and magnetic 
fields.   We will return to this example in Section 4.2 below, where we discuss a specific 
example of the generation of a DLIC.   
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3 Setting Up the SundquistDLIC Project 
 
3.1 Downloading and Installing the DLIC Java Code Base and Documentation 
 
 Go to http://web.mit.edu/viz/soft/ and follow links to the DLIC code base.  You 
will download three zipped files, one under the link Source Code and named 
SundquistDLIC.zip, the second under the link DLIC Documentation and named 
DLICdoc.zip, and the third under the link General Documentation and named 
generalDoc.zip.    
 
 Create a folder C:\Development\Projects\ on your C-drive and unzip 
SundquistDLIC.zip into the Projects folder.  Unzip the DLICdoc.zip  into the 
C:\Development\Projects\SundquistDLIC\ folder.  Unzip the generalDoc.zip file into the 
C:\Development\Projects\ folder.  Once you have done this you will have installed the 
DLIC code and documentation.  All of the documentation discussed below is now 
contained in the two folders C:\Development\Projects\SundquistDLIC\DLICdoc and 
C:\Development\Projects\generalDoc.   In particular this document in pdf format is 
contained in the folder DLICdoc.  If you are not reading this document from that folder, 
many of the links will not work.   
 
 In what follows we will provide links to the documentation on your C-drive 
assuming that you have installed the source code and documentation as described above.  
In particular when we discuss particular java files, we will link directly to those files. 
You may want to set the default application for reading .java files to Notepad.  To do 
this, right click on any .java file, choose “Open With > Choose Program” from the dialog 
box (see Figure 1.2-1) and in the dialog box that then comes up, choose “Select the 
program from a list”.  In the list that comes up, select Notepad and make sure you check 
the box labeled “Always use the selected program to open this kind of file”.   
 

 
Figure 3.1-1:  Setting the default .java application reader to Notepad 

 
3.2 Installing Java and Eclipse in a Windows Environment 
 

http://web.mit.edu/viz/soft/
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 We discuss the DLIC software in the context of Eclipse (http://www.eclipse.org/), 
a free, state-of-the-art Java Integrated Development Environment (IDE).  We will assume 
that you are familiar with the Eclipse IDE interface, and developing Java applications in 
this environment.  Step by step instructions for downloading Eclipse and the Java SDK 
(SDK stands for Software Development Kit) and creating a SundquistDLIC  Java Project 
in Eclipse are given in a pdf file in your generalDoc folder at this link.  To reiterate what 
active links in this document mean, “right-clicking” on the preceding link will take you to 
a pdf file named  
 

InstallingJavaEclipseInWindows.pdf 
 

in the folder C:\Development\Projects\generalDoc\.  If you have downloaded and 
installed the code base and documentation in accord with the instructions in Section 3.1 
above, the preceding link will open this document.   
 
 We also provide a short document with common hints for using Eclipse, which 
explicitly tells you how to perform the various actions described below in Eclipse.  This 
includes explanations for how to perform certain actions whose explanations are hard to 
find in the standard Help documentation on the Eclipse taskbar.  That document in pdf 
format is at this link.   
 
3.3 Creating a SundquistDLIC Java Project in Eclipse 
 

Follow the directions in Section 3.2 in the pdf file at this link.  When you have done 
this, open a Package Explorer window for the Project.  You will see a directory tree for 
the packages in SundquistDLIC in Eclipse that looks like the one given on the next page 
in Figure 3.3-1.   

http://www.eclipse.org/
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Figure 3.3-1:  The Package Structure of the SundquistDLIC Project 
 

3.4 The Package Structure of the SundquistDLIC Java Project 
 
 To learn the structure of the DLIC package, the user should use this document as 
well as the javadocs and the actual java classes for the SundquistDLIC Project.   We first 
give an overview of the package structure of the Project.  This same information is 
included in the package documentation in the javadocs for the Project.   
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3.4.1 core  
 
3.4.1.1 core.dlic 
 
 This package contains classes which create and evolve the individual FLIC 
images making up a movie of a given experiment.  FLIC computes the Fast Line Integral 
Convolution at each step of the evolution of a given experiment.  Streamline is used by 
FLIC to trace streamlines of the fields and compute equally spaced sample points along 
them.  DLIC computes the overall evolution of the random input field according to the 
velocity field specified by the animation of the experiment. 
 
3.4.1.2 core.field 
 
 This package contains a number of classes used to create and manipulate the 
images generated for a given animation of an experiment as it evolves.  Vec2 and Vec3 
refer to two and three dimensional fields, respectively.   
 
3.4.1.3 core.image 
 
 This package creates and evolves the individual FLIC images making up a movie 
of a given experiment.  FLIC computes the Fast Line Integral Convolution at each step of 
the evolution of a given experiment.  Streamline is used by FLIC to trace streamlines of 
the fields and compute equally spaced sample points along them.  DLIC computes the 
overall evolution of the random input field according to the velocity field specified by the 
animation of the experiment.   
 
3.4.1.4 core.io 
 
 This package creates and handles various input/output functions for the final 
images that are created, as well as the window used to display those images in real time 
to the user as the DFLIC images are produced.  ImageIO is used to input and output the 
final images generated.  OutputWindow manages the window used to display the images 
in real time as they are produced.   
 
3.4.1.5 core.math 
 
 This package contains a variety of classes which handle vector manipulations and 
the evolution of a given experiment as it evolves.  For example, it provides integration 
schemes for integrating ODE’s that define the evolution of a given experiment.  We also 
define various special functions here, such as those used to evaluate elliptic integrals.  

 
3.4.1.6 core.postprocessing 
 
 This package performs various operations on the images created by a given 
simulation of an experiment after the images are created by the classes in core.dflic. For 
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example, we color those images, or we “periodify” a long sequence of images so that 
when they are looped the movie appears to repeat seamlessly.   

 
3.4.1.7 core.rendering 
 
 This package handles all the code that draws and evolves the DLIC and the 
experiment. Built in are several handlers for adjusting all of the rendering parameters that 
might conceivably need adjusting. These parameters are set in the animation of the 
experiment.  
 
 We enumerate one of the features here.  If you have no symmetry in the DLIC to 
be generated, you can change the origin of the DLIC from the default value to (0,0,0) by 
using renderer.SetOrigin(new Vec3(100.,100.,100.) in the animation setting up the 
animation.   

 
3.4.2 doc  
 
 The doc folder contains the javadocs for the Project, in html format.  The main 
html link is the index.html link in doc.    
 
3.4.3 simulations 
 
3.4.3.1 simulations.animations 
 
 This package animations for electrostatic, magnetostatic, Faraday’s Law, 
radiation, and fluid flow experiments.  An animation class contains the main routine that 
is executed to produce a given sequence of DLIC images for an experiment.  The 
animation sets up the experiment parameters and also the parameters that control how the 
images produced are created (e.g. size, color, and so on).   
 
3.4.3.2 simulations.experiments 
 
 This package contains all the experiments for the various electrostatic, 
magnetostatic, Faraday’s Law, radiation, and fluid flow experiments.  An experiment 
class assembles the various electromagnetic objects needed and defines how they interact 
and evolve.  All experiments extend BaseExperiment (javadoc, java), where here and in 
the future the links following a reverence to a java file link to the javadocs for that file 
and the .java file itself, respectively. 
 
3.4.3.3 simulations.objects 
 
 This package contains all the various electromagnetic objects that the experiments 
assemble for a given experiment.  Each electromagnetic object must define how its 
electromagnetic fields are calculated.  All objects extend BaseObject (javadoc, java).   
 
3.4.4 DLICdoc  
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 The DLICdoc folder contains a variety of documentation files in pdf format, 
including this one. 
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4    Examples of DLIC Generation 
 
4.1 Overview 
 
 An overview of the computational process for generating a DLIC is as follows.  
The main program is always contained as a method in one of the classes in 
simulations.animations.  That animation program creates an instance of an experiment.  
All experiments are contained in one of the classes in simulations.experiments and they 
each extend BaseExperiment (javadoc, java).  The animation program sets up the 
experiment parameters (for example, the time step between frames), and also the 
parameters that control how the images produced are created (e.g. size, color, and so on).  
An animation program also always creates an instance of a Renderer (javadocs, java) 
object.  These links will only work if you have installed this pdf file in the locations 
described in Section 3.1 above.  The Renderer object then creates an instance of the 
DLIC generation program to generate the images, using classes in core.dflic.   
 
 An experiment assembles the various electromagnetic objects needed for a given 
experiment and defines how they interact.  An electromagnetic object is always contained 
in one of the classes in simulations.objects, and each extends BaseObject (javadoc, java).   
Each object knows how to calculate the electromagnetic fields associated with that kind 
of object.  All of the electromagnetic objects in a given experiment are assembled by that 
experiment into a collection of electromagnetic objects of class EMCollection (javadocs, 
java).  This collection knows how to compute the total electromagnetic fields in the 
experiment by summing the electromagnetic fields of the objects which it contains.  If 
necessary, the experiment also specifies the kind of integrator used to integrate the 
equations for the evolution of the system, and specifies what these equations are.  Note 
that the evolution of the experiment may be specified by analytic functions, in which case 
no integrator is necessary.  Finally, an experiment specifies what field is to be displayed 
(electric or magnetic) and how the velocity D field discussed in Section 2.2 is to be 
calculated.  The calculation of the velocity field takes place in the class 
core.field.EMVec2Field (javadocs, java) according to the kind of flow field specified in 
the experiment by the parameter FieldMotionType.   
 
4.2 The Falling Ring 
 
 To make the above concrete, we use the example of the falling ring discussed in 
Section 2.3 above.  The ring of current and the magnetic dipole are both formed from the 
CurrentRing class (javadocs, java).  The CurrentRing class knows now to calculate the 
non-relativistic electric and magnetic fields of a moving ring of current with current I and 
time rate of change of current dI/dt.  The magnetic field is just given by the usual 
expression for the magnetic field of a ring of current, and the electric field is given by the 
motional electric field − × plus the induction electric field associated with the time-
changing magnetic field.  These expressions can be found in Section 3.2.2 of the 

v B

TEAL_Physics_Math documentation, which should be at the link given as long as the 
SundquistDLIC documentation has been installed in the manner described in Section 3.1 
of the current document.   
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  The experiment class FallingRingExperiment (javadocs, java) creates an 
EMCollection (javadocs, java) object which consists of two current ring objects, one at 
rest at the origin (the “point dipole”) and one falling from above along the z-axis.  The 
dimensionless equations describing the evolution of the z-coordinate of the falling ring, 
the current in that ring, and the z-coordinate of the velocity of the falling ring, are given 
in Section 4.1.3 of the TEAL_Physics_Math documentation.   The method Motion 
(javadocs) computes the time derivatives of these three parameters, and is used by a 
fourth order Runge Kutta integration scheme (javadocs, java)  to find the behavior of the 
system as a function of time.  Note that the time involved in the integration to evolve the 
experiment is small compared to the image computation, and we usually take many more 
steps than we need to take, to insure accuracy (see the parameter numberSmallSteps in 
BaseExperiment).      
 
 The animation class FallingRingAnimation (javadocs, java)  instantiates a 
FallingRingExperiment object with the desired parameters for that object.  If you execute 
the class as it exists in the download (see Section 4.7 below for instructions on executing 
the program), it will produce 130 images in the folder 
 
                                   C:\DLICs\fallingRing 
 
You should generate these files because we use these as input to the Periodify class 
example discussed below in Section 5.1.   
 
 The parameters alpha and beta for the generated sequence of images are set such 
that this is a superconducting ring which is light enough that it levitates above the 
magnet, and thus the motion is periodic.  We have set the time step between frames such 
that the motion of the ring repeats every 100 frames.  We explain why we generate 130 
frames, which is 30 frames more than the 100 frames needed for the motion to repeat, in 
Section  5.1 below, which discusses making a sequence of DLIC images periodic.   
 
 Finally, the experiment FallingRingExperiment (javadocs, java) sets its FieldType 
to Constants.FIELD_BFIELD (javadocs, java) and its FieldMotionType to 
Constants.FIELD_MOTION_BFIELD.  This means that when the DLIC is generated it is 
displaying the magnetic field of this collection of two EM objects as the F field discussed 
in Section 2.2 above, and is using equation (2) for the velocity field D used to evolve that 
F field.   
 
 We include in the documentation a movie of the DLICs generated above in 
various formats, which can be found here.  The way in which these movies are generated 
is discussed in Section 6 below.   Figure 4.2-1 shows one frame of that movie.   
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Figure 4.2-1:  One Image Generated by the Falling Ring Animation, after insertion 
in to 3ds max 2008 file.   

 
4.3 Electrostatics 
 
 We next consider an electro-quasi-static example.  The animation class, which 
always contains the main method, is RepulsionTwoChargesAnimation (javadocs, java), 
which instantiates the experiment TwoChargesExperiment (javadocs, java).  This 
experiment creates an EMCollecton which is the sum of the two base objects 
PointCharge (javadocs, java) and MovingPointCharge (javadocs, java).  These two base 
objects know how to calculate the non-relativistic electric and magnetic fields of a 
stationary and moving charge.  The electric field is just given by the usual expression for 
the electric field of a point charge, and the magnet field is given by the motional 
magnetic field . 2/ c×v E
 
  The experiment class TwoChargesExperiment  (javadoc, java) instantiates the two 
point charge objects, one at rest at the origin and one free to move along the z-axis.  The 
equations describing the evolution of the z-coordinate of the moving charge simply 
reflect the coulomb repulsion between the stationary and moving charge.  The method 
Motion (javadocs) computes the time derivatives of the position and speed of the moving 
charge, and is used by the fourth order Runge Kutta integration scheme to find the 
behavior of the system as a function of time.   
 
 The animation class RepulsionTwoChargesAnimation (javadocs, java)   
instantiates a TwoChargesExperiment object with the desired parameters for that object.  
If you execute the class as it exists in the download (see Section 4.7 below for 
instructions on executing the program), it will produce 100 images in the folder: 
 
                                       C:\DLICs\charges 
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Figure 4.3-1 shows one frame of the sequence which will be generated.  Note that the 
frame is colored using the default hue for electric fields, 0.1 on a 0-1 scale.  This hue can 
be changed, as discussed in Section 5.2 below.   
 

 
 

Figure 4.3-1:  One frame of the RepulsionTwoCharges Animation 
 
 Finally, the experiment TwoChargesExperiment  sets its FieldType to 
Constants.FIELD_EFIELD (javadocs, java) and its FieldMotionType to 
Constants.FIELD_MOTION_EFIELD.  This means that when the DLIC is generated it is 
displaying the electric field of this collection of EM objects as the F field discussed in 
Section 2.2 above, and is using equation (4.3.1) below for the velocity field D used to 
evolve that F field (see Belcher and Olbert).  
 

2
2c

E
×

=
E BD

                                                          (4.3.1) 
 
4.4 Magnetostatics 
 
 We next consider a magneto-quasi-static example.  The experiment consists of 
two rings of current, one above the other.  The top one represents the small magnet in the 
TeachSpin© (http://www.teachspin.com/) experiment, which is suspended from a spring 
and the bottom one represents the bottom current ring in the TeachSpin experiment.  We 
set the current in that ring using an external power supply.  In this experiment we assume 
that the external power supply drives a current in the bottom current ring I(t) that varies 
sinusoidally with time: 
 

( ) sin( )oI t I tω=                                                       (4.4.1) 
 
We assume that this problem is purely magnetostatic—that is, we assume that is there is 
no current induced anywhere in this problem due to a changing magnetic flux through 
any ring--e.g. there are no induced electric fields or currents of importance.  Thus the 

http://www.teachspin.com/
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current in the bottom ring is given exactly by equation (4.4.1) and we need not worry 
about any induced currents either from the moving magnet above the ring or from the self 
inductance of the ring itself.   
 
 Moreover, consider only frequencies such that the motion of the magnet due to 
the changing current in the bottom ring is very close to quasi-static, and the amplitude of 
that motion is small.  That is, we set the driving angular frequency ω very low compared 
to the natural frequency of oscillation of the magnet on the spring from which it is 
suspended.  In this case, the magnetic force on the dipole due to the current in the ring 
below simply results in a displacement of the magnet from its equilibrium position that is 
proportional to the magnetic force on the magnet.  Thus this displacement is in phase 
with the current in the bottom ring.   For the assumed small displacement, we can write 
an equation for the displacement of the magnet from equilibrium as follows: 
 

  ( ) sin( )oz t z tω=                                                        (4.4.2) 
 

In this case, we have an analytic expression for the evolution of the experiment in 
equations (4.4.1) and (4.4.2), and do not need to integrate any equations of motion. 
 
 The animation class in this case, which always contains the main method, is 
TeachSpinAnimation (javadocs, java), which instantiates the experiment 
TeachSpinExperiment (javadocs, java).  This experiment creates an EMCollecton which 
is the sum of two CurrentRing (javadocs, java) objects.  These two base objects know 
how to calculate the non-relativistic electric and magnetic fields of a stationary and 
moving current ring, with time varying current.  The electric field is given by the 
motional electric field − × plus the induction electric field associated with the time-
changing current in the ring.  The magnet is assumed to have constant atomic current, so 
the only electric field associated with the magnet is the motional electric field.  The lower 
ring has a time-changing current but is stationary, so that the only electric field associated 
with the lower ring is the induction electric field.   

v B

 
  The experiment class TeachSpinExperiment  instantiates the two current rings 
objects, one at rest at the origin with variable current and one free to move along the z-
axis with constant current.  Finally, the experiment TeachSpinExperiment  sets its 
FieldType to Constants.FIELD_BFIELD (javadocs, java) and its FieldMotionType to 
Constants.FIELD_MOTION_BFIELD.  This means that when the DLIC is generated it is 
displaying the magnetic field of this collection of EM objects as the F field discussed in 
Section 2.2 above, and is using equation (2) above for the velocity field D used to evolve 
that F field (see Belcher and Olbert).  
 
4.5 The Oscillating Radiating Dipole 
 
 We next consider an example of electric dipole radiation.   The experiment 
consists of a point dipole with a dipole moment that is the sum of a constant part and a 
part that is oscillating sinusoidally in time   
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[ ]1 ˆ( ) sin( )ot p p tω= +p z                                                   (4.5.1) 
 

The electric field of a time-varying electric dipole p(t) is given by 
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where the “dot” above a variable indicates differentiation with respect to time, and the 
electric dipole moment vector and its time derivatives are evaluated at the retarded time 

.   crttret /−=
 
 The animation class in this case, which always contains the main method, is 
SinusoidalDipoleRadiationAnimation (javadocs, java), which instantiates the experiment 
OscillatingDipoleExperiment (javadocs, java) with p0 = 10 and p1 = 1.  This experiment 
creates an EMCollecton which consists only of an ElectricOscillatingDipole (javadocs, 
java) object.  This base object knows how to calculate the electric and corresponding 
magnetic field given by equation (4.5.2).  The experiment OscillatingDipoleExperiment 
sets its FieldType to Constants.FIELD_EFIELD (javadocs, java) and its FieldMotionType 
to Constants.FIELD_MOTION_EFIELD.   
 
4.6 Fluid Flow 
 
4.6.1 Fluid Flow from Analytic Functions 
 
 We include the option to make movies of fluid flow (where the D field is parallel 
to the F field) because much of the roots and terminology in electromagnetism comes 
from concepts in fluid flow.  It is therefore instructive to be able to present electric and 
magnetic fields as if they were various idealized fluid flow fields.  We first consider two 
examples of fluid flow where the flow field is generated from analytic functions.    
 
 The CirculatingFlowExperiment (javadocs, java) experiment consists of up to six 
different magnetic field sources: four current carrying line charges with current into or 
out of the page, a constant field in the page, and a line of magnetic monopoles oriented 
out of the page.  The animation class in this case, which always contains the main 
method, is CirculationFlowAnimation (javadocs, java), which instantiates the experiment.  
The experiment sets its FieldType to Constants.FIELD_BFIELD and its FieldMotionType 
to Constants.FIELD_MOTION_VBFIELD.  When we set FieldMotionType to this value, 
the velocity field D is set to  
 

FpowerBFluidFlowSpeed
Fnorm
⎡ ⎤= ⎢ ⎥⎣ ⎦

D                                 (4.6.1.1) 
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where the parameters in equation (4.6.1.1) are set in CirculationFlowAnimation through 
calls to renderer.SetFluidFlowSpeed(500.) and so on.  For example, one could set 
Fpower to zero and FluidFlowSpeed to 500.  Then the fluid flow speed is everywhere 
constant.  If we wanted the flow speed to vary linearly with the magnitude of the local 
field B, we would set Fpower to 1.  Note that since we are plotting a “B” field we have 
set the hue to the default hue for magnetic fields, 0.5961 on a 0-1 scale.  This hue can be 
changed by following the prescriptions in Section 5.2 below.   
 

 
 

Figure 4.6-1:  An Example of a Fluid Flow Image 
 
4.6.2 Fluid Flow Speed Varying With Region in an Image 
 
 We also include the option to make the flow speed in an image vary with region 
of the image, instead of being linked to the strength of the field, as above.  We still use 
the direction of the field to give the direction of fluid flow, but we use position in the 
image to determine the magnitude of the fluid flow.  For example, Figure 4.6-2 shows 
one frame of an animation of a simple flow model for flows in the heliosphere and local 
interstellar medium.  The region outside of the heliosphere moves at a flow speed of 50 
pixels per second, the region between the heliopause and the termination shock moves at 
a speed of 100 pixels per second, and the region inside the termination shock moves at a 
speed of 300 pixels per second.  The various regions are determined by using the radius 
of a sphere and by an equation similar to equation (5.2.6.1) below in Section 5.6.2.   
 
 To use this feature, we must provide a method getFlowSpeed  in our experiment, 
which given the position in space at a given frame, returns the flow speed to be used at 
that position.  The experiment sets its FieldType to Constants.FIELD_EFIELD and its 
FieldMotionType to Constants.FIELD_MOTION_VREFIELD, OR 
Constants.FIELD_BFIELD and Constants.FIELD_MOTION_VREFIELD, respectively. 
When we set FieldMotionType one of these values, the velocity field D has a direction 
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given by the E or B field and a magnitude determined by region in getFlowSpeed.   An 
example of an animation and experiment which does this is the 
HeliosphereFlowAnimation (javadocs, java) and its corresponding experiment, 
HeliosphereFlowExperiment (javadocs, java).   This animation was used to produce the 
image in Figure 4.6-2.   
 

 
 

Figure 4.6-2:  Fluid Flow Varying According To Region 
 
4.6.3 Fluid Flow from Data Input 
  
 If the user wants to display fluid flow fields from data input, e.g. from data files 
generated by a numerical program that calculates fluid flows in various contexts, then the 
user should look at the structure of the animation file DataInputAnimation (javadocs, 
java) the corresponding experiment file DataInputExperiment (javadocs, java) and the 
associated base object, DataInputObject (javadocs, java).  These classes demonstrate the 
program flow that will allow the input of data flow fields.  The class that does the input 
and the subsequent interpolation to display to the screen is DataInputObject.  To test the 
interface we generate the data array with a for loop in GetArray, a method in this class.  
The user should replace this method with one which reads in a velocity array, one array 
for each frame of the animation.   
 
4.7 Running an Animation 
 
 In Eclipse’s Package Explorer, select for example FallingRingAnimation.java 
(see Figure 4.7-1) by left-clicking on it.   
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Figure 4.7-1:  Running an Animation 

 
 Then left-click on “Run” in the upper tool bar and choose “Run  > Run” from the 
menu.  You will see a dialog box (see Figure 4.7-2).   To begin execution, click on “Run” 
at the bottom of that dialog box.  If you need more memory (for example if you are 
generating a very large image), then left click on the “Arguments” tab in Figure 4.7-2.    
You will see a dialog box as shown in Figure 4.7-3.  Set more memory by typing “-
Xmx512m” (or e.g  “-Xmx256m” or higher) in the “VM arguments:” box shown in Figure 
4.7-3. 
 
 

 
Figure 4.7-2:  The Run dialog box 
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Figure 4.7-3:  Increasing the Memory in Eclipse 

 

5 Postprocessing 
 
5.1 Making a Sequence of Images Periodic 
 
 Many of the sequences we generate should be periodic—that is if we loop them 
we should get no discontinuity from the end frame to the beginning frame when we 
repeat the film strip.  That does not happen in our DLICs because of the nature of the way 
we evolve the random field.  However, if we generate 30% more DLICs than we need for 
one period, we can blend the beginning 30% of the frames with the ending 30% of the 
frames in a smooth way that will produce a periodic set of images in the above sense.  
The routine that does this is Periodify (javadocs, java).  Periodify is set up so that if you 
run it in the form given, it will blend the 130 frames produced by the 
FallingRingAnimation (Section 4.2) into 100 frames that are perfectly periodic.  These 
periodic 100 frames are the ones used to generate the Falling Ring movie at this link.  
  
5.2 Color Coding 
 
 Color coding of the image is a step that is also done in post-processing, e.g. we 
have computed the LIC for a given frame of the animation, and before writing the image 
to file we “colorize” it.   The parameters that control the colorization are set in the main 
animation routine, using the renderer methods as below: 
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 renderer.SetColorMode(MyColorMode) 
 renderer.SetColorHue(MyColorHue) 
 renderer.SetColorSaturation(MyColorSaturation) 
 renderer.SetColorValue(MyColorValue) 
 renderer.SetColorStrength(MyColorStrength) 
 renderer.SetFallOff(MyFallOff). 
 renderer.SetRegionColor(MyRegionColor); 
 
We now explain the meaning of these parameters.  First we review the HSV color model. 
 
5.2.1 The HSV Scale (after http://en.wikipedia.org/wiki/HSV_color_space)  
 
 The HSV (Hue, Saturation, Value) model, also known as HSB (Hue, Saturation, 
Brightness), defines a color space in terms of three constituent components: 
 
Hue:  This is the color type (such as red, blue, or yellow).   It ranges from 0.-1.0 or 0–
255.  Each value corresponds to one color.   Figure 5.2-1 shows the range of colors from 
0 to 255.   
 
Saturation:  This is the intensity of the color.  It ranges from 0.-1.0 or 0–255.  A value of 
0 means no color, i.e., a shade of grey between black and white. A value of 255 means 
intense color.  See the range of Saturation given in Figure 5.2-1.  Saturation is also 
sometimes called the "purity" by analogy to the colorimetric quantities excitation purity 
and colorimetric purity.  
 
Value:  This is the brightness of the color.  It ranges from 0.-1.0 or 0–255.  A value of 0 
is always black.  Depending on the saturation, 255 may be white or a more or less 
saturated color.  See the range of Value given in Figure 5.2-1.   
 

 
 

Figure 5.2-1:  HSV 

5.2.2 Color Mode 0 
 Color mode 0 is grayscale.   
 
5.2.3 Color Mode 1 
 
 Color mode gives the LIC an overall hue as specified by the user with 
MyColorHue, MyColorSaturation, and MyColorValue.   The default value of H, S and V 
are 0.1, 1., 1. on a 0-1 scale.  The LIC below is produced by a animation class which 

http://en.wikipedia.org/wiki/HSV_color_space
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allows experimentation with color, ColorTestAnimation (javadocs, java).   The vector 
field here is in the vertical direction and has a magnitude which increases linearly from 0 
to 10 across the width of the LIC shown below. Below is a sample LIC for a the standard 
electric field hue of 25 on a 0-255 scale or 0.1 on a 0-1 scale.   
 

 
Figure 5.2-2:  Color Mode 1 

5.2.4 Color Mode 2 
 
 Color mode 2 gives the LIC an overall Hue and also sets S and V values according 
to MyColorSaturation and MyColorValue as well as of the magnitude of the vector field 
FieldMag at a given pixel in the LIC, using the following prescription from the class 
Colorizer (javadocs, java).    
 
 If  FieldMag >  MyColorStrength, then V is set to MyColorValue  and S is set to 
 MyColorSaturation  times the square root of the 
 ratio /MyColorStrength FieldMag  on a 0-1 scale.   
 
 If   FieldMag  <=  MyColorStrength, then S is set to MyColorSaturation and V is 
 set to MyColorValue  times the ratio  raised to the 
 MyFallOff power on a 0-1 scale.   

/FieldMag MyColorStrength

 

 

                 
Figure 5.2-3:  Color Mode 2 with S and V values. 

 The top of Figure 5.2-3 shows a LIC image of Figure 5.2-2 in Color Mode 1, with 
MyColorStrength = 5, MyFallOff = 1, MyColorHue = 0.1, MyColorSaturation = 1 and 
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MyColorValue = 1.  Again, the field magnitude in this LIC varies linearly from 0 to 10 
from left to right.  The bottom of Figure 5.2-3 shows the S and V values across the LIC 
image above, calculated using the prescription given above.  By varying the value of 
MyFallOff we can vary how the color goes to black below the MyColorStrength value, 
i.e. if we set MyFallOff to 4 the color will go to black very rapidly, and if we set 
MyFallOff to 0.5 if will go to black less rapidly than shown above.   
 
 Color coding is very useful in indicating the variation in field strength in a LIC.  
For example, in Figure 5.2-4  below we show two frames from an animation of a 
magnetic monopole appearing above a thin conducting sheet at t = 0.  At t = 0, there is 
no penetration of the magnetic field below z = 0, and that region is black.  As time 
progresses the magnetic field diffuses into the region z < 0, as indicated by the image on 
the right below.  This example is from the paper Liu and Belcher 2007].  
 

      
Figure 5.2-4:  An example of the usefulness of Color Mode. 

 
5.2.5 Color Mode 3 
 
 One problem with using point charges with color, in that the field strength near 
the point charge diverges, and unless we do more than what is described above, the high 
field strength regions will not display well.  As a result we “brighten” the regions of high 
field strength so that we wash out the DLIC streaks in favor of pure white.  There is a 
certain amount of this done in Color Mode 2.  Color Mode 3 is exactly the same as Color 
Mode 2 except we do even more of this brightening.  If these two modes are not 
sufficient for user purposes, he or she can change the brightening code in the Colorizer 
routine referenced above.   
 
5.2.6 Color Mode 4 
 
 In some situations we want to color our image according to the region in the 
image.  For example, Figure 5.2-5 shows the electric field of a positive point charge q 
sitting in a constant downward electric field of magnitude Eo.  We have colored the field 
lines emanating from the point charge a different color from the field lines connecting to 
the charges generating the constant field.  If we take the charge to be at the origin, then 
the equation of the curve separating these two regions is given by  
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and this equation is used to define the two regions in Figure 5.2-5. 
 

 
 

Figure 5.2-5:  Coloring of a DLIC by region. 
 If we use this color mode, we must provide a method getHue in our experiment, 
which given the position in space at a given frame, returns the hue to be used at that 
position.  The hues in the various regions are determined by setting 
renderer.SetRegionColor(MyRegionColor).  An example of an animation and experiment 
which uses Color Mode 4 is the ChargeMovingAgainstConstantFieldAnimation 
(javadocs, java) and its corresponding experiment, ChargeInFieldExperiment (javadocs, 
java).   This animation was used to produce the image in Figure 5.2-5.   
 
 
5.3 Rendering a Single Large Image in a Sequence 
 
 Frequently we want to render one image from a sequence at much higher 
resolution than we want to render the entire sequence.  To do this, we can set flags in the 
Renderer class which allow us to render only one frame in a sequence, even though we 
step through the evolution the experiment in the regular way.  To enable this feature, in 
the main animation class set 
 
     renderer.SetStartFrame(50); 
    renderer.SetEndFrame(50); 
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before the renderer.StartRender() statement.  In the example above, you will only render 
the 50th image.  You can set the height and width of the image to as many pixels as you 
desire.  Remember though that all of the spacing of objects in your frame (e.g. the radius 
of the ring in Falling Ring) are given in pixels, and for the image to remain proportional, 
you must increase that spacing in keeping with your increase in image size.  Also, for 
large images you may have to increase the memory, as shown in Figure 4.7-3.   
 

6 Incorporating a Sequence of DLIC Images into a 3ds max Scene 
 
 There are a number of ways in which the sequence of images we have generated 
above can be made into a movie.  One of the most effective ways is to use a 3D modeling 
and animation program such as 3ds max.  We will show screen shots from 3ds max 2008, 
but the procedure is similar for earlier versions of 3ds max.  The images we have created 
can be “projected” as a movie onto a screen in a 3ds max scene by assigning the sequence 
of DLICs to a material and pasting that material onto a geometric primitive in 3ds max.  
In 3ds max we can also create and animate objects that correspond to physical objects in 
our scenarios, for example, the ring and magnet in the FallingRingExperiment (see 
Section 4.2).  We do this using the 3ds max scripting language.  We have included a max 
script to do all this with this package (link, read this with Notepad).  We illustrate this 
whole procedure in the case of the falling ring experiment discussed above.   
 
6.1 Creating a 3ds max Scene with Animated Objects and a Screen 
 We create the objects we want in a 3ds max scene by running a MAXScript file.  
We assume you have already opened 3ds max and have a fresh .max scene file open. To 
run the script, you must first get to the Open Script dialog box. To do this, left-click on 
the “hammer” icon in the upper right of 3ds max’s main interface to open the Utilities 
panel (see Figure 6.1-1) 
 

 
 

Figure 6.1-1: The upper right of the 3ds max main interface 
 
You will see a number of boxes.  Left click on the MAXScript box (see Figure 6.1-2).   
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Figure 6.1-2:  The Utilities panel after selecting MAXScript 
 
Now left click on the Open Script box under the MAXScript bar.  You will see a dialog 
box like the one below.   
 

 
 

Figure 6.1-3:  The Open Script dialog box 
Navigate to the folder  
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C:\Development\Projects\SundquistDLIC\DLICdoc\3ds max\ 
 

and open the fallingRing.ms MAXScript file.  That script will open in an editor window as 
shown in Figure 6.1-4.   
 

 
 

Figure 6.1-4 :  The Editor Window for MAX script files. 

 
Using Tools chose Evaluate All.  This will run the script.  The script creates a torus 
representing the falling ring, a cylinder representing the magnet, and a screen on which 
we will “project” the DLICs produced above.  The script also computes the motion of the 
ring for the parameters we used in creating our DLICs above in Section 4.2.  It then 
animates the motion of the ring, producing a 100 frame 3ds max sequence that frame for 
frame corresponds exactly to our DLIC scenario above.   
 
6.2 Projecting the DLIC on the Screen in the 3ds max Scene 
 
 To project the DLIC sequence onto the screen, first bring up the Materials Editor 

by left clicking on the Materials Editor icon  (see Figure 6.1-1).   When the 
Materials Editor comes up, it will look as shown in Figure 6.2-1.   Left click in the upper 
left material panel (showing a grey ball) to select that panel.  We will now assign the 
DLIC sequence as a material to that panel.  Left click in the grey box to the right of the 
word Diffuse in Figure 6.2-1.  A Materials Map/Browser window will come up (Figure 
6.2-2).   Double left click on Bitmap in this window.   This will bring up a Select Bitmap 
Image File window (Figure 6.2-3). 
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Figure 6.2-1:  The Material Editor window. 

 

 
Figure 6.2-2:  The Material/Map Browser window 
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Figure 6.2-3:  The Select Bitmap Image File window 

Navigate to the folder 
 

C:\DLICs\fallingRingSM 
 
Check the box to the left of Sequence at the bottom of the window in Figure 6.2-3, 
and left click to select the first image file frsm0000.tif.  If you cannot see that file, make 
sure your “Files of type” box is set either to “All formats” or “TIF Image File (*.tif)”.  
Then left click on Open.  Your Materials Editor window should now look like Figure 
6.2-4. 

 
Figure 6.2-4: The Material Editor Icons after assigning the DLIC files 



 Version 1.03 36 

   Select the Screen object in 3ds max (left click on the Select by Name box  
and in the window that comes up select Screen and left click on Select at the bottom of 

that window).   Then left click on the third icon from the left  in the Material Editor 
window shown in Figure 6.2-4.  This assigns the material consisting of the DLIC 
sequence of images to the Screen.  To make the images visible in a 3ds max Viewport, 

left-click on the ninth icon from the left in the Material Editor window , and make 
sure you have chosen Smooth and Highlights for your Viewport window view.  You 
should now see something resembling Figure 4.2-1 in your Front Viewport.  When 
rendered, this scene will produce a 100 frame movie (about 3 seconds long at 30 frames 
per sec) like the ones shown here (this link opens the folder 

 
C:\Development\Projects\SundquistDLIC\DLICdoc\3ds max\) 

 
We also include in this folder the 3ds max .max file which contains all of the above 
objects and animations. 
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