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This work examines the impact of discharge decisions under uncertainty in a capacity-constrained high

risk setting: the intensive care unit (ICU). New arrivals to an ICU are typically very high priority patients

and, should the ICU be full upon their arrival, discharging a patient currently residing in the ICU may be

required to accommodate a newly admitted patient. Patients so discharged risk physiologic deterioration

which might ultimately require readmission; models of these risks are currently unavailable to providers.

These readmissions in turn impose an additional load on the capacity-limited ICU resources.

We study the impact of several different ICU discharge strategies on patient mortality and total readmis-

sion load. We focus on discharge rules that prioritize patients based on some measure of criticality assuming

the availability of a model of readmission risk. We use empirical data from over 5000 actual ICU patient

flows to calibrate our model. The empirical study suggests that a predictive model of the readmission risks

associated with discharge decisions, in tandem with simple index policies of the type proposed can provide

very meaningful throughput gains in actual ICUs while at the same time maintaining, or even improving

upon, mortality rates. We explicitly provide a discharge policy that accomplishes this. In addition to our

empirical work, we conduct a rigorous performance analysis for the family of discharge policies we consider.

We show that our policy is optimal in certain regimes, and is otherwise guaranteed to incur readmission

related costs no larger than a factor of (ρ̂+1) of an optimal discharge strategy, where ρ̂ is a certain natural

measure of system utilization.

1. Introduction

The intensive care unit (ICU) is the designated location for the care of the sickest and most unstable

patients in a given hospital. These units are among the most richly staffed in the hospital: for

example, in California, licensed ICUs must maintain a minimum nurse-to-patient ratio of one-to-

two. Critically ill patients, who may be admitted to a hospital due to multiple illnesses, including

trauma, need urgent admission to the ICU. While it is possible to hold these patients in other areas
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(e.g., the emergency department) pending bed availability, this is quite undesirable, since delays in

providing intensive care are associated with worse outcomes (Chalfin et al. 2007). Consequently, in

such situations, clinicians may elect to discharge a patient currently in the ICU to make room for

a more acute patient. For the sake of precision, we will refer to this as a demand-driven discharge.

In theory, the patient selected for such discharge would be one who was sufficiently stable to be

transferred to a less richly staffed setting (such as the Transitional Care Unit (TCU) or Medical

Surgical Floor (Floor)), and, ideally, the term ‘stable’ would be one based on ample clinical data.

In practice, since predictive models of patient dynamics are not readily available, clinicians must

make these transfer decisions based entirely on clinical judgment. It is natural to conjecture that

demand-driven discharges might be associated with costs; namely:

• Patient Health Related Costs: Patients subject to a demand-driven discharge could

potentially face additional risks of physiological deterioration. Such deterioration might ultimately

require readmission. Even worse, readmitted patients tend to require longer stays in the ICU and

have a higher mortality rate than first-time patients (see Snow et al. (1985), Durbin and Kopel

(1993)).

• System Related Costs: Readmitted patients impose an additional load on capacity-limited

ICU resources. Ultimately this hampers access to the ICU for other patients

Thus motivated, the present work examines the potential benefits of a quantitative decision

support system for clinicians when faced with the requirement to identify a patient for discharge

in order to make room for a more acute patient. The hope is that the availability of such a system

could lead to both better patient outcomes and simultaneously increase efficiencies in the use of

scarce ICU resources. More formally, associating a demand-driven discharge with some cost which

depends on the physiological characteristics of the patient discharged, our goal is to ‘optimally’

discharge patients so as minimize total expected costs associated with demand-driven discharges

over time. One example of such a cost may be the increase in mortality risk due to a demand-

driven discharge. As a second example, one might consider the increase in expected readmission

load associated with the increased likelihood of readmission due to a demand-driven discharge. We

will eventually estimate and test several such cost metrics.

Our analysis will consider a stylized model of an actual ICU where the number of ICU beds is

fixed1. Patients arrive to the ICU at random times; patients are categorized into a finite number

1 Since a strict (one-to-two in California) nurse-to-patient ratio must be maintained, it is often the size of the nursing
staff that determines the number of available ICU beds rather than the actual number of physical beds which are
available.
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of classes based on their physiological characteristics upon admission. There exist a number of

proprietary classification systems based on a patient’s physiological characteristics. All new arrivals

must be given an ICU bed immediately; they cannot queue up and wait for a bed to become

available. This models the aforementioned fact that new ICU patients are typically extremely high

priority. If no beds are vacant upon the arrival of a new patient, a current patient will have to be

discharged in order to accommodate the newly arriving patient2. The demand-driven discharge of

a patient will incur a cost which depends on that patient’s class; this cost is modeled to reflect the

impact of the demand-driven discharge on the patient as well as the system as described above. Our

goal will be to minimize the expected costs incurred due to demand-driven discharges over some

finite horizon. This is a difficult problem, and our analysis of this stylized model will suggest simple

policies for which we will develop performance guarantees. More interestingly, we will conduct a

detailed simulation study based on real data to examine our recommendations.

1.1. Our Contributions

We make the following key contributions:

• Interpretability: We show that a myopic policy is a potentially good approximation to an

optimal policy. This corresponds to an index policy wherein every patient class is associated with

a class specific index. The index for a given class can be computed from historical patient flow

data in a robust fashion. Depending on the cost metric under consideration, we will demonstrate

that these indices can serve as natural measures for patient criticality that have both clinical as

well as operational merit. The index policy then has an appealing clinical interpretation: when

a patient must be discharged in order to accommodate new patients, one simply discharges an

existing patient of the lowest possible criticality index.

• Robustness: Our index policy is ‘robust’: In particular the indices we compute are oblivious

to patient traffic intensities which are highly variable and difficult to estimate. Rather, they rely

on quantities relevant to specific classes of patients that are typically far simpler to estimate from

data. For the data set under consideration, relative changes of estimated parameters greater than

50% were typically required to induce a change in the associated indices.

• Performance Guarantees and Operational Relevance: We demonstrate via a theoretical

analysis that our index policy is, for a certain class of problems, optimal and in general incurs

total expected cost that is no more than 1+ ρ̂ times that incurred under an optimal discharge rule,

where ρ̂ is a certain natural measure of ICU utilization. We identify a cost metric – the increase

2 We later consider an extension of our model which includes the additional option of blocking new patients.
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in expected readmission load due to a demand-driven discharge – that in addition to enjoying a

clinical interpretation as a measure of criticality, can be shown to capture a notion of throughput

optimality.

• Empirical Validation: Most importantly, we calibrate our model to empirical data from over

5000 patient flows at a large privately owned partnership of hospitals and identify parameters for

patient dynamics. We consider a variety of cost metrics, including several natural metrics motivated

by existing clinical literature and modifications of these cost metrics such as the operationally

relevant metric alluded to above. We measure the impact of these discharge policies along two

dimensions. First, to understand impact at the individual patient level, we measure mortality rates

under the various policies. Second, to understand system level impact we measure the readmission

load incurred under the various policies. In doing so, we identify a policy that, in addition to

fitting within the ethos of ordering patients by a measure of criticality, has substantive benefits

over other, perhaps more ‘obvious’ policies: Under modest assumptions on patient traffic, it incurs

a 30% reduction in readmission load at no cost to mortality rate.

As such, this study provides a framework for the design of demand-driven discharge policies and

in doing so identifies a policy that allows us to utilize available ICU resources as effectively as

possible while not sacrificing the quality of patient outcomes. At a high level, our analysis suggests

that investments in providing clinicians with more decision support (e.g., severity of illness scores

and the associated risks of physiological deterioration) could translate into tangible benefits both

in terms of improved patient outcomes, increased efficiency, and decreased costs.

1.2. Related Literature

The use of critical care is increasing, which is making already limited resources even more scarce

(Halpern and Pastores 2010). In fact, it was shown that 90% of ICUs will not have the capacity

to provide beds when needed (Green 2003). As such, it is the case that some patients may require

premature discharges in order to accommodate new, more critical patients. In a recent econometric

study (Kc and Terwiesch 2011), these types of patient discharges were shown to be a legitimate

cause of patient readmissions thereby effectively reducing peak ICU capacity due to the additional

load the readmitted patients bring. The empirical data we have analyzed in calibrating our ICU

model corroborates this fact.

There has been a significant body of research in the medical literature which has looked at

the effects of patient readmissions. In Chrusch et al. (2009), high occupancy levels were shown to

increase the rate of readmission and the risk of death. Unfortunately, readmitted patients typically
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have higher mortality rates and longer hospital lengths-of-stay (see Franklin and Jackson (1983),

Chen et al. (1998), Chalfin (2005), Durbin and Kopel (1993) and related works).

When a new patient arrives to the ICU, either after experiencing some trauma or completing

surgery, he must be admitted. If there are not enough beds available, space must be allocated by

transferring current patients to units with lower levels of staffing and care. In Swenson (1992) and

related works, the authors examine how to allocate ICU beds from a qualitative perspective that is

not based on analysis of patient data but rather on philosophical notions of ‘fairness’. The authors

propose a 5-class ranking system for patients based on the amount of care required by the patient

as well as his risk of complications. Our approach may be seen as a quantitative perspective on

the same problem wherein decisions are motivated by the analysis of relevant quantitative patient

data. To date, the work (particularly in the medical community) on how to determine discharge

decisions has been rather subjective due to the lack of information-rich models which attempt to

capture patient dynamics. Thus, these works (see for instance Bone et al. (1993) and a study by

the American Thoracic Society (1997)) have not considered that discharging a patient from the

ICU in order to accommodate new patients may result in readmission, further increasing demand

for the limited number of beds and ultimately compromising the quality of care for all patients

involved. We not only propose such a model, but also show the efficacy of discharge policies which

utilize this previously unavailable information.

Dobson et al. (2010) consider a setup quite similar to ours but ignore the readmission phe-

nomenon; rather they simply seek to quantify the total expected number of patients discharged in

order accommodate new, more critical patients. To this end, they analyze a policy that chooses to

discharge patients with the shortest remaining service time (which are modeled as deterministic

quantities). As will be seen in Section 5, which presents an empirical performance evaluation using

a real patient flow data-set, a distinct heuristic is desirable when one does account for patient

readmission.

A number of modeling approaches have been used to make capacity, staffing and other tac-

tical decisions in the healthcare arena (see for instance Huang (1995), Kwak and Lee (1997),

and Green et al. (2003)). Queueing theory has been particularly useful to study the question

of necessary staffing levels in hospitals. As examples of this work, Green et al. (2006) and

Yankovic and Green (2011) consider a number of staffing decisions from a queueing perspective.

The goal is to provide patients with a particular service level (in terms of timeliness, and also

nurse-to-patient ratio) while at the same time addressing issues such as temporal variations in

arrival rates of patients of different types. See also Green (2006) for an overview of the use of OR
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models for capacity planning in hospitals. Murray et al. (2007) considers different factors such as

age, gender, physician availability and number of visits per patient per year to determine the largest

patient panel size that may be supported by available resources. In Green and Savin (2008), the

authors consider how to reduce delay in primary care settings by varying the number of patients

served by the particular primary care office. When a patient wishes to make an appointment, he

may be delayed before the physician is able to see him. Two significant differences separate the

problem we consider from those considered in the above streams of work: arriving patients to an

ICU must receive service immediately (which thus necessitates discharging current patients). This

in turn requires that we consider individual patient dynamics, and in particular model the impact

of discharging a patient to accommodate new ones on the discharged patient’s likelihood of revis-

iting the ICU. We can then make staffing decisions in much the same way as the aforementioned

work.

In a related paper on ICU patient flow (Shmueli et al. 2003), the authors examine the affect

of ICU admission strategies on the distribution of ICU bed occupancy. The authors assume it is

possible for patients to wait for an ICU bed, regardless of their criticality. For the specific ICUs we

consider, waiting is highly undesirable (thereby necessitating our modeling decisions that arriving

patients be given a bed immediately). An interesting direction for future work would be to consider

an intermediate scenario, where some patients may be delayed, whereas others must be given a

bed immediately.

Finally, relative to recent work by (Chan and Farias 2009), we note that the present paper

considers a class of models entirely distinct from the ‘depletion problems’ studied there and succeeds

in establishing relative approximation guarantees for a class of models left unaddressed by that past

work. The properties we exploit in our analysis are new and it would be interesting to understand

whether the techniques introduced here have application to the more natural cost-minimization

variants of the queueing problems introduced in Chan and Farias (2009).

The rest of the paper proceeds as follows. Section 2 formally introduces the queueing model and

patient dynamics we study. In Section 3, we analyze the performance of an index policy which

selects patients to discharge in a greedy manner based on their expected costs incurred due to

demand-driven discharges. We explore a scenario where the proposed greedy policy (based on an

information-rich model) is, in fact, optimal. Furthermore, in a more general setting, we show that

the greedy policy is guaranteed to be within a factor of (ρ̂+1) of optimal, where ρ̂ is a measure of

system utilization. In Section 4, we discuss various measures of criticality which constitute clinically

relevant cost metrics. These measures include an important refinement to a criticality measure that
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has received some attention in the critical care literature. In Section 5, we discuss the calibration of

our model using a proprietary ICU patient flow data-set from a group of private hospitals. Having

calibrated our model, we show in Section 6 that our primary proposal outperforms a number of

benchmarks of interest. We conclude in Section 7.

2. Model

We begin by proposing a stylized model of the patient flow dynamics in a hospital ICU and

account for the fact that discharging a current ICU patient in order to accommodate a new one is

undesirable for the discharged patient and comes at a ‘cost’. At a high level, our model captures

the fact that a newly admitted patient must receive ICU resources and that this requirement in

turn could necessitate the discharge of an existing ICU patient. Such a discharged patient may

suffer physiologic deterioration due to the demand-driven discharge. Since arriving patients cannot

be queued or blocked, the model we consider is distinct from a typical queueing model. Presuming

a measure of cost associated with a demand-driven discharged patient, a natural goal is to find a

patient discharge policy that minimizes this cost.

Preliminaries: We consider time to be discrete and indexed by t ∈ [0, T ]. In each time-slot,

we must determine if a patient must be discharged and, if so, which one. If there are enough

available beds to accommodate all current and arriving patients, discharge of current patients is

not required.

We assume that patients may be classified into one of M classes, each potentially corresponding

to the particular ailment/health condition of the ICU patient. Let m ∈M= {1,2, . . . ,M} denote

the type of a particular patient. Patients from a given class are assumed to have identical statistics

for their initial lengths of stay and identical costs associated with a demand-driven discharge.

Specifically, we assume that the initial length-of-stay for a patient of class m is a geometric random

variable with mean 1/µ0
m. If such a patient is discharged prior to completing treatment due to

the arrival of a more acute patient, a cost, φm ≥ 0, is incurred. While the patient length-of-stay

distribution is assumed to be memoryless for the purposes of analysis, our empirical study assumes

log-normal distributions for length-of-stay that are fit to the empirical data (see Section 5). Finally,

in Section 3.3, we discuss an extension to our model which is able to capture a patient’s evolution

and changing condition during his ICU stay by using a ‘phase’-type length-of-stay distribution.

At most one new patient can arrive in each time-slot and an arrival occurs with probability λ.

We define ρ̂= λ
minm µ0

m
as a measure of the utilization of the ICU: a higher ρ̂ implies a more stressed

ICU while a lower value implies more able bed resources. Notice that this measure does not rely
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on the relative arrival intensities of various patient types. We let at,m denote the probability that

a newly arriving patient at time t is of type m. These probabilities are deterministic and known a

priori to the optimal discharge policy; the policy we study will require neither knowledge of λ nor

the probabilities at,m.

We assume that the ICU has B beds. If all B beds are full and a new patient arrives, then a

patient must be discharged prior to completing service in order to accommodate the newly arrived

patient. We let xt,m ∈ {0,1 . . . ,B} denote the number of class m patients currently in the ICU at

the beginning of time-slot t and let yt,m ∈ {0,1} be an indicator for the arrival of a typem patient at

the start of the tth epoch. Note that because at most one new patient can arrive in each time-slot,
∑M

m=1 yt,m ≤ 1 for all t. A current patient must be discharged if
∑M

m=1 xt,m +
∑M

m=1 yt,m =B + 1;

we refer to this type of discharge as a demand-driven discharge. The natural departure (or service

completion) of patient type m occurs at the end of the tth time-slot with probability µ0
m after any

demand-driven discharge and/or admission occurs.

State and Action Space: The dynamic optimization problem we will propose is conveniently

studied in a ‘state-space’ model. We define our state-space as the set:

S =

{

(x, y, t) : x∈ {0,1, . . . ,B}M ,
M
∑

m=1

xm ≤B,y ∈ {0,1}M ,
M
∑

m=1

ym ≤ 1,0≤ t≤ T

}

In particular, the state of the system is completely described by the number of patients of each

type currently in the ICU, the type of the arriving patient at that state if any, and the epoch in

question. We denote by x(s) the projection of s onto its first coordinate and similarly employ the

notation y(s) and t(s). We let the random variable st ∈ S denote the state in the tth epoch. Note

that because the {at,m} process is assumed to be deterministic and given a-priori, the current time

slot t completely specifies the arrival probabilities for each patient class.

For each state s, let A(s)⊂M denote the set of feasible actions that can be taken in time-slot

t(s). For states wherein a demand-driven discharge is required, i.e. states s for which
∑

m x(s)m+

y(s)m > B, we have A(s) = {m : x(s)m > 0}. At all other states s, A(s) = {m : x(s)m > 0} ∪ {0}.

Thus, an action A∈A(s) specifies the class of the patient, if any, to be discharged in time-slot t(s);

since only one patient can arrive in each time slot, at most one demand-driven patient discharge

is required to accommodate a new patient. We will henceforth suppress the dependency of the set

of feasible actions, A(s), on s.

Dynamics: Let s′ = S(s,A) denote the random next state encountered upon employing action

A (demand-driven discharge of patient type A) in state s. A random number, Xt(s),m, of class m

patients will complete treatment and depart naturally, whereXt(s),m is a Binomial-(x(s)m+y(s)m−
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1{A=m}, µ0
m) random variable. LetRt be independent random variables, defined for each t, indicating

the type of an arriving patient at the start of the tth epoch. Rt takes values in {1,2, . . . ,M}∪ {0};

Rt =m with probability λat,m for m∈ {1,2, . . . ,M} and Rt = 0 with the remaining probability. The

vector denoting arrivals at the next state, Yt(s)+1 is then given by Yt(s)+1,m = 1{Rt(s)+1=m}. Thus,

s′ = S(s,A) is defined as:

x(s′)m = x(s)m + y(s)m−1{A=m}−Xt(s),m,

y(s′)m = Yt(s)+1,m,

t(s′) = t(s)+ 1.

Cost Function: The cost incurred for taking action A is defined by a cost function C : S×A→

R+. Such a cost function might capture a number of quality metrics. For instance, the cost function

might reflect the net decrease in quality-adjusted life years (QALYs) as a result of a demand-driven

discharge. Our discussion is able to capture any such cost function. We take C(s,A) = φA for

A∈ {1,2, . . . ,M}, and C(s,0)= 0. In Section 4, we discuss clinically relevant cost metrics.

Objective: Let Π denote the set of feasible discharge policies, π which map the state space S

to the set of feasible actions A. Define the expected total cost-to-go under policy π as:

Jπ(s) =E





T−1
∑

t′=t(s)

C(st′ ,π(st′))|st(s) = s



 .

We let J∗(s) =minπ∈Π Jπ(s) denote the minimum expected total cost-to-go under any policy. We

denote by π∗ a corresponding optimal policy, i.e. π∗(s)∈ argminπ∈Π Jπ(s).

The optimal cost-to-go function (or value function) J∗ and the optimal discharge policy π∗ can

in principle be computed numerically via dynamic programming: In particular, define the dynamic

programming operator H according to:

(HJ)(s)=min
A∈A

E [C(s,A)+J(S(s,A))] . (1)

for all s ∈ S with t(s) ≤ T − 1. J∗ may then be found as the solution to the Bellman equation

HJ = J , with the boundary condition J(s′) = 0 for all s′ with t(s′) = T . The optimal policy π∗

may be found as the greedy minimizer with respect to J∗ in (1). The minimization takes into

consideration the current state s, the distribution of future patient arrivals, as well as the impact

of the current decision on future states. References to an optimal policy in subsequent sections will

refer to precisely this policy. The size of S precludes this straightforward dynamic programming

approach. Moreover, even if optimal solution were possible, the robustness of such an approach and

its implementability remain in question since it relies on detailed patient arrival statistics which
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are typically not stationary and difficult to estimate. As such, our goal will be to design simple,

robust heuristics for the load minimization problem at hand.

In addition to the above objective, one may also consider the task of finding an average-cost

optimal policy; i.e. the task of finding a stationary policy π (a policy that satisfies π(s) = π(s′) for

all s, s′ with x(s) = x(s′), and y(s) = y(s′)), that solves

κ∗(s) =min
π

κπ(s)

where κπ(s) = limsupT→∞
1
T
E
[

∑T−1
t′=t(s)C(st′ ,π(st′))

∣

∣

∣
st(s) = s

]

is the average-cost to go (i.e. the

long run costs incurred due to demand-driven discharges) under policy π.

It is not difficult to see that the Markov chain on Ŝ (the projection of S on its x and y coordinates)

induced under any stationary policy π is irreducible, so that in fact, the above problem is solved

simultaneously for all s by a common stationary policy π∗, and κπ(s) = κπ for all s ∈ S and a

stationary policy π. Finally, the ergodic theorem for Markov chains implies (with some abuse of

notation), that

κπ =
∑

s∈Ŝ

νπ(s)C(s,π(s)),

where νπ is the stationary distribution induced by π on Ŝ.

3. A Priority Based Policy

This section introduces an index policy for the dynamic optimization problem proposed. Under

such a policy, the patient selected for a demand-driven discharge is simply chosen from a patient

class that would incur the minimal cost. In particular, such a policy states that the patient (class)

πg(s) chosen for discharge satisfies:

πg(s)∈ argmin
A∈A(s)

C(s,A) = argmin
m∈A(s)

φm. (2)

It is easy to see that the policy specified by (2) has a natural implementation as an ‘index’ policy. It

is interesting to note that implementing such a policy requires data about particular patient classes,

but does not require the estimation of arrival rates of the various classes. This latter information

is highly dynamic and difficult to estimate.

Since the policy we have proposed ignores the effect of future arrivals and the expected length-

of-stay of the current occupants, it is natural to expect such a policy to be sub-optimal. In the

appendix, Example A shows what can go wrong.
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In light of the sub-optimality of our proposed priority based policy, the remainder of this section

is devoted to establishing performance guarantees for this policy. In particular, we identify a setting

where the greedy policy is, in fact, optimal. More generally we establish that the greedy policy

incurs expected costs that are at most a factor of (ρ̂+ 1) times the expected costs incurred by

an optimal policy (i.e. the greedy policy is a ‘(ρ̂+1)-approximation’) where ρ̂= λ
µ0
min

(here µ0
min !

minm µ0
m) is a measure of the utilization of the ICU defined in Section 2: a higher ρ̂ implies a more

stressed ICU while a lower value implies more able bed resources. This latter bound is independent

of all other system parameters.

3.1. Greedy Optimality

In this section, we consider a special case of the general model presented in Section 2 for which a

greedy discharge rule is optimal. The proof of this result can be found in the appendix. In particular

we have the following theorem:

Theorem 1. (Greedy Optimality) Assume that for any two patient classes i, j with φi ≤ φj we also

have 1/µ0
i ≥ 1/µ0

j . Then, we have that the greedy policy is optimal, i.e.

Jg(s) = J∗(s),∀s∈ S

The above theorem considers problems for which patients with lower cost also have higher

nominal lengths-of-stay. In this case, since eliminating a low cost patient also frees up capacity

that would have otherwise been occupied for a relatively longer time, it is intuitive to expect the

greedy policy to be optimal. However, the assumptions of the theorem are likely to be restrictive

in practice. In the next section, we consider the performance of the greedy policy without any

assumptions on problem primitives.

3.2. A General performance Guarantee

Our objective in this section is to demonstrate that the greedy heuristic incurs expected costs that

are within ρ̂+1 times that incurred by an optimal policy as discussed in Section 2. In particular,

we will show that for any state s ∈ S, Jg(s)≤ (ρ̂+ 1)J∗(s), where ρ̂ = λ
µ0
min

is a utilization ratio

defined in Section 2.

To show the desired bound, we begin with a few preliminary results for the optimal value

function J∗. The proofs of these results can be found in the appendix. The first result is a natural

monotonicity result which says that having an ICU with higher occupancy levels is less desirable

that having lower occupancy levels. In particular:
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Lemma 1. (Value Function Monotonicity) For all states s, s′ ∈ S satisfying x(s) ≥ x(s′), y(s) =

y(s′), t(s) = t(s′), we have:

J∗(s)≥ J∗(s′).

In words, the above Lemma states that all else being equal, it is advantageous to start at a state

with a fewer number of patients occupying the ICU. Now suppose in state s we chose to take the

greedy action as opposed to the optimal action (assuming of course that the two are distinct). It

must be that the former leads to a higher cost state than does the optimal action. The following

result places a bound on this cost increase. In particular, we have:

Lemma 2. (One Step Sub-optimality) For any state s∈ S and α= ρ̂
ρ̂+1

,

E[J∗(S(s,πg(s)))]≤ αC(s,π∗(s))+E[J∗(S(s,π∗(s)))]

In words, Lemma 2 tells us that if we were to deviate from the optimal policy for a single epoch

(say, in state s), the impact on long term costs is bounded by the quantity αC(s,π∗(s)). We now use

this bound on the cost of a single period deviation in an inductive proof to establish performance

loss incurred in using the greedy policy; we show that the greedy heuristic is guaranteed to be

within a factor of ρ̂+ 1 of optimal, where ρ̂ = λ
µ0
min

is the utilization ratio of the ICU defined in

Section 2.

Theorem 2. For all s∈ S, Jg(s)≤ (ρ̂+1)J∗(s).

Proof: The proof proceeds by induction on the number of time steps that remain in the

horizon, T − t(s). The claim is trivially true if t(s) = T − 1 since both the myopic and optimal

policies coincide in this case. Consider a state s with t(s)< T − 1 and assume the claim true for

all states s′ with t(s′)> t(s).

Now if π∗(s) = πg(s) then the next states encountered in both systems are identically distributed

so that the induction hypothesis immediately yields the result for state s. Consider the case where

π∗(s) *= πg(s). Defining α= ρ̂
ρ̂+1

, we have:

J∗(s) = C(s,π∗(s))+E[J∗(S(s,π∗(s)))]

≥ (1−α)C(s,π∗(s))+E[J∗(S(s,πg(s)))]

≥ (1−α)C(s,πg(s))+E[J∗(S(s,πg(s)))]

≥ (1−α)C(s,πg(s))+E[(1−α)Jg(S(s,πg(s)))]

= (1−α)Jg(s)

=
1

ρ̂+1
Jg(s) (3)
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The first equality comes from the definition of the optimal policy. The first inequality comes from

Lemma 2. The second inequality comes from the definition of the greedy policy which minimizes

single period costs. The third inequality comes from the induction hypothesis. The second equality

comes from the definition of the greedy value function. This concludes the proof. "

Our guarantee on performance loss suggests that in regimes where ICU utilization is low, the

greedy policy is guaranteed to be close to optimal. At some level, this is an intuitive result–low

levels of utilization should imply infrequent demand-driven discharges as there are likely to be

available beds when new patients arrive; Theorem 2 makes this intuition precise by demonstrating

a bound on how performance loss scales with utilization levels. Our guarantees are worst case;

later in this section we will consider a generative family of problems for which the performance

loss is a lot smaller than predicted, even at high utilization levels. Moreover, we will demonstrate

via an empirical study using patient flow data, that the greedy policy is superior to a number of

benchmarks that resemble current practice. Before we continue, we briefly discuss extensions to

the model presented in Section 2 and how the presented results can be applied.

3.3. Patient Evolution during ICU stay

Thus far, we have assumed the distribution for the length-of-stay of each patient is memoryless.

Since the health of a patient will vary over the course of his stay, one may wish to employ a

length-of-stay distribution that does not have a constant hazard rate. We now consider how to

incorporate this more realistic scenario.

For each patient class m, consider a random progression of the state of their health condition.

Let hm ∈ {hm
0 , h

m
1 , . . . , h

m
nm

} denote the set of health condition states patient class m can achieve.

Whenever a new patient of type m arrives, it begins with a health state of hm
0 . Assuming that

a patient is in health state hm
n in some epoch, the patient departs with probability µ0

m(h
m
n ). If

he does not depart, he evolves to health state hm
n+1 with probability γm

n and remains in state hm
n

with probability 1− γm
n . Should a patient in health state hm

n be demand-driven discharged, the

cost he introduces is φm(hm
n ). The different health condition states and corresponding departure

probabilities enable us to capture the changes (improvement or deterioration) in patient health as

a patient spends time in the ICU. Note that there are no constraints on the relationship between

the µ0
m(h

m
n ) so that the patient does not necessarily improve with time. Indeed, there have been

studies which shows that patients likelihood of departure decreases the longer they have spent in

the hospital (Chalfin 2005).

The state space now needs to be expanded to incorporate the different health states each patient

class can achieve. To do this, we can redefine x(s) to be a 2-dimensional array where xm,n(s)
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denotes the number of class m patients in health condition state hm
n . We consider using the natural

analogue to the greedy policy discussed thus far:

π̃g(s)∈ argmin
(m,n):xm,n(s)>0

φm(h
m
n )

Now, Lemma 1 can be established exactly as before for this new system, with the understanding

that we will say x(s)≥ x(s′) iff xm,n(s)≥ xm,n(s′) for all m,n. Further, the analysis used in the

proof of Lemma 2 also applies identically as in the case of that result to show that for α= ρ̃
ρ̃+1

,

E[J∗(S(s, π̃g(s)))]≤αC(s,π∗(s))+E[J∗(S(s,π∗(s)))].

where we now define

ρ̃=
λ

minm,nµ0
m(h

m
n )

.

With these results, the proof of Theorem 2 applies verbatim to yield

Theorem 3. For all s∈ S, J π̃g
(s)≤ (ρ̃+1)J∗(s).

3.4. Patient Diversions

Throughout our discussion we have assumed that all new patientsmust be given a bed immediately.

In some cases, high occupancy levels in an ICU can lead to congestion in other areas of the hospitals,

such as the Emergency Department (ED), because patients cannot be transferred across hospitals

units. In Allon et al. (2009) and McConnell et al. (2005), it is shown that when ICU occupancy

levels are high, ambulance diversions increase. Because of the inability to move patients from the ED

to ICU, patients are blocked from the ED and ambulances must be diverted to other hospitals. In

de Bruin et al. (2007), the authors examine the case of bed allocation given a maximum allowable

number of patient diversions in the case of cardiac intensive care units. The authors identify

scenarios where achieving the target number of patient diversions is possible, but do not consider

how to make admission and discharge decisions. Ambulance diversion comes at a cost–for both

the hospital and patient. The hospital loses the revenue generated for treatment (McConnell et al.

2006, Melnick et al. 2004, Merrill and Elixhauser 2005) while delays due to transportation time

may result in worse outcomes for the diverted patient (Schull et al. 2004). On the other hand,

diversions can sometimes alleviate over-crowding (Scheulen et al. 2001).

Typically, diverted ambulance patients are not the ones who require ICU care (Scheulen et al.

2001). However, within a hospital it may still be possible to block new ICU patients admissions,

either by diverting them to another unit (i.e. a Transitional Care Unit or General Floor) within
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the same hospital or transferring them to an ICU in a different hospital (because of the integrated

nature of the hospital system we study, such intra-hospital transfers do occur). Blocking new

patients may reduce the number of demand-driven discharges. Note that these new patients are

often being transferred from a different hospital unit (Emergency Department, Operation Room,

General Ward, etc.) rather than being brought in by ambulances, which is the case of the extensive

body of literature on ambulance diversions. Given the ability to divert patients, we consider how

to incorporate patient diversions into our model and decision analysis. We extend our model to

allow new ICU patients to be diverted to another hospital ICU or unit of lesser care. Hence, when

an ICU is full the hospital administrator must decide whether to block the new patient or to make

a demand-driven discharge of a current patient in order to admit the new patient.

To formalize the above decision making, we consider the following extension of our model: in a

given state s, we permit an additional action corresponding to diversion which we denote by D;

we let C(s,D) denote the cost associated with a diversion in state s; as per our discussion above,

this cost must capture the increased risks to the patient being diverted in state s (i.e. the arriving

patient in that state) as also potential revenue losses to the hospital. We then consider employing

the following policy; for states s /∈ Ŝfull, i.e. states where the ICU has available capacity, no action

is necessary. Otherwise, we follow the following diversion/discharge policy:

π̂(s) =

{

πg(s), if C(s,D)≥C(s,πg(s));
D, otherwise.

Now, Lemma 1 can be established exactly as before for this new system, and the analysis used in

the proof of Lemma 2 also applies identically as in the case of that result to show that for α= ρ̂
ρ̂+1

,

E[J∗(S(s, π̂(s)))]≤ αC(s,π∗(s))+E[J∗(S(s,π∗(s)))].

Given these properties, the proof of Theorem 2 applies verbatim to yield

Theorem 4. For all s∈ S, J π̂(s)≤ (ρ̂+1)J∗(s).

3.5. Comparison to Optimal

This section is devoted to examining the performance loss of the greedy policy via numerical

studies. We compare the greedy and optimal policies for a set of smaller problems for which the

optimal policy is actually computable. In the following section, we examine larger problem instances

calibrated to empirical data and compare the performance of the greedy policy to a number of

benchmark policies.
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In Section 3.2, we have shown that the greedy performance is an (ρ̂+1)-approximation algorithm

to optimal. In order to enable computation of the optimal policy, we consider a small scenario

with B = 10 beds, M = 2 patient types and a time horizon of 240 time slots (assuming admission

and discharge decisions are made every 6 minutes, or 10 times an hour, this corresponds to a time

horizon of 24 hours). For each data point, we fix the probability of arrival of each patient type.

We consider 100 different realizations for the nominal length-of-stay and cost of demand-driven

discharge of each patient type which we vary uniformly at random with mean 25 hours and 2.5

units of cost, respectively. For each fixed set of parameters–ai,t, µ0
i , and φi–we calculate the optimal

policy using dynamic programming. We compare the average performance of this optimal policy

to the performance of the greedy policy over 100 sample paths.
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Figure 1 Performance of greedy policy compared to optimal for varying arrival rates.

Figure 1 shows the ratio of the greedy performance to the optimal performance (Jg(s)/J∗(s))

for a range of different arrival rates. As from Section 2, the probability of a patient arrival is

given by λ while the probability an arrival is of patient type 1 is given by a1. Values above 1

show the loss in performance due to using the greedy policy. We can see that the greedy policy

performs within 3% of optimal, which is substantially superior to what the bound in Section 3.2

suggests. In fact, for reasonable arrival rates (λ< .05 means 1 patient arrives every 2 hours) the

performance loss of the greedy policy is less than 1% of optimal. These differences are so small
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they can essentially be ignored due to possible numerical errors. The greedy policy does not require

arrival rate information and is much simpler to compute than optimal. These simulation results

suggest that using the greedy policy results in little performance loss while significantly reducing

the computational complexity. In fact, while the complexity of the greedy policy grows linearly in

the time horizon, T , and logarithmically in the number of patient types (logM), the complexity of

the optimal policy grows exponentially in a number of problem parameters despite only resulting

in slightly higher performance. The simplicity and good performance of the greedy policy, which

simply prioritizes different patient types, makes it desirable for real-world implementation.

4. Clinical Relevance

Our exposition thus far has treated the problem of prioritizing patients for demand-driven dis-

charges as a purely operational problem. In a nutshell, we have shown that if one desires to minimize

some long run cost metric impacted by demand-driven discharge decisions, then a priority rule

that is ‘greedy’ with respect to the cost metric serves as a reasonable and operationally viable

approximation to an optimal policy.

This section considers clinical issues relevant to the problem at hand. In particular, the clin-

ical viability of a discharge policy is of paramount importance. In particular, what remains to

be specified are clinically relevant cost metrics and priority rules which capture factors physi-

cians would like to account for in making discharge decisions. Certainly, the general consensus

of the medical community is that patients should be discharged in order of ‘least critical first’

(see, for instance, Swenson (1992)). However, what determines criticality is left wide open to

interpretation and is highly dependent on the experience and training of an individual physician.

In fact, disagreements on which patient should be discharged arise frequently and in an effort

to building a process around this critical decision, many hospitals are adopting an intensivist-

managed system that makes triage decisions for all patients in the ICU (Franklin et al. 1990,

Task Force of the American College of Critical Care Medicine 1999). While such a process will

remain necessarily subjective, there is a strong desire that the process be informed by quantita-

tively designed best-practice recommendations. In this sprit, we consider several policies that fall

within the ethos of a priority rule based on measures of patient criticality that have been broached

in the extant medical literature.

Mortality Risk: A natural measure of patient ‘criticality’ is mortality risk. In fact, the commonly

used APACHE and SAPS severity scores are based on mortality predictions for ICU patients

(Zimmerman et al. 2006, Moreno et al. 2005). While it is obvious that patients with high mortality
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risk are ‘critical’ and should not be demand-driven discharged, intensivists are likely to find this

measure of criticality too crude to be of value in practical scenarios. To be more precise, one

typically needs to be able to distinguish among patients all with relatively low mortality risk but

variedly long and complex recoveries. In addition, a metric based solely on mortality risk will fail to

capture a system-wide view of the ICU and in particular, the impact a discharge decision for a given

patient might have on the ability to provide timely and quality care for other patients. Specifically,

such a metric fails to account for the impact a discharge decision has on ICU congestion – congestion

in the ICU can result in postponing surgeries, delaying admissions, and/or rerouting patients to

other units–all of which are associated with worse outcomes (Metcalfe et al. 1997, Mitchell et al.

1995, Smith et al. 1995, Chalfin et al. 2007, Renaud et al. 2009, Rincon et al. 2010). As such, it is

ethically important to consider factors related to congestion in making such decisions.

Readmission Risk: A potential refinement on using simply mortality risk as a measure of patient

criticality is accounting for readmission risk. In fact, measures related to readmission risk have been

gaining attention and credibility in the medical community motivated primarily by two factors:

medical outcomes and payment structures. In terms of medical outcomes, readmitted patients have

been shown to be worse off, with higher mortality and longer length-of-stay (Chen et al. 1998,

Durbin and Kopel 1993, Rosenberg and Watts 2000). Recognizing the clinical risks associated with

readmissions, many hospitals are adopting discharge strategies which account for patient readmis-

sions (Franklin and Jackson 1983, Yoon et al. 2004). In terms of monetary incentives, readmissions

can also increase costs by over 25% (Naylor et al. 2004). Acknowledging the detrimental impact

of readmissions on patient outcomes and the extraordinarily high costs associated with the care of

readmitted patients, the Patient Protection and Affordable Care Act (2010) requires Medicare to

begin reducing readmissions in 2013. While physiology-based probabilistic models for assisting ICU

physicians in making discharge decisions are not widely available, there has been recent interest in

developing risk scores to assess readmission risks, similar to what the APACHE and SAPS scores

do for mortality (Gajic et al. 2008). In this spirit, one may consider several concrete metrics:

A Crude Metric: As a concrete measure of readmission risk, one might consider the likelihood

of readmission. One expects that such a measure will be fairly correlated with a measure of

mortality risk. At the same time, such a measure will move towards addressing some of the pitfalls

of using mortality risk alone. That said, such a measure remains somewhat coarse in two regards:

First, it fails to account for the actual impact of the demand-driven discharge decision itself on

readmission risk; since readmissions might arise due to a multitude of other factors, this is crucial.

Second, it fails to account for the diversity in complications that might occur upon a readmission.
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A Refinement (Our Proposed Policy): We consider a mild refinement to the above measure

of readmission risk: we consider the increase in readmission load, attributable to a demand-driven

discharge. Roughly speaking, we can think of this refinement as accounting not only for readmis-

sions, but in addition, the typical length of stay upon such a readmission. More precisely, let pNm and

1/µR,N
m be the probability of readmission and expected readmission LOS of patient class m given he

is naturally discharged. Similarly, let pDm and 1/µR,D
m be the probability of readmission and expected

readmission LOS of patient class m given he is demand-driven discharged. By Chen et al. (1998),

we expect to have pNm <pDm and µR,N
m >µR,D

m . Then the increase in readmission load attributable to

the demand-driven discharge is precisely:

∆-Readmission Load=
pR,D
m

µR,D
m

−
pR,N
m

µR,N
m

We will in the subsequent sections consider a priority rule that measures patient criticality via

the ∆-Readmission Load score. In addition to fitting in with the ethos of a priority rule that

can be interpreted as a criticality measure, we see that this rule is consistent with assuming, in

the notation of the previous Sections, a one period cost-function C(s,A) that corresponds to the

increase in readmission load due to the demand-driven discharge decision. In the appendix, we

show that such a cost metric is also explicitly aligned with the desire to avoid a loss of throughput

due to congestion effects.

Other Measures of Criticality: While we have outlined the two broad criticality measures one

might consider in the medical community, yet other measures have been proposed in the operations

research community. In particular, Dobson et al. (2010) considers prioritizing patients based on

a patients expected length of remaining stay. Unfortunately, this is a fairly difficult quantity to

estimate and as such models to predict this quantity are also unavailable. For completeness, we

will also consider this measure in our empirical investigation.

5. Empirical Data

The goal of this section is to calibrate a model from real data that will permit us to compare

the clinically relevant policies discussed in the preceding section. We analyze patient data from 7

different private hospitals for a total of 5,398 patients who completed at least one ICU visit.

Patient Classes: Our first goal is to classify patients into a small number of groups, each of

which is defined on the basis of physiological variables. There are may ways of doing this, and we

chose a method that is aligned with the current process design philosophy of the hospital system

from which the data for this study was obtained. In particular, we classified patients into 5 different
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classes based on the Kaiser Permanente Inpatient Risk Adjustment Score (see Escobar et al. (2008))

which is a severity score used to predict the likelihood of death. These severity scores are based

on a number of different factors including age, primary condition (cardiac, pneumonia, GI bleed,

seizure, cancer, etc.), lab results obtained 72 hours prior to hospital admission, chronic ailments

(diabetes, kidney failure, etc.), etc. They are quite similar to the well studied APACHE and SAPS

scoring systems (for instance, the c statistic for this score is in the 0.88 range) with the important

addition that they incorporate additional physiological information obtained for patients in this

particular hospital system within a short time prior to their being admitted to the hospital (that

APACHE or SAPS scores would not assume available). Like scoring rules of this type, the severity

scores we use to classify patients may be interpreted as a mortality risk figure. This severity score is

used in the hospital system we study, while the APACHE and SAPS scores are not available to us.

We quantize these severity scores into one of five different bins of equal size. Table 1 summarizes

the severity scores for the 5 patient classes as well as the percentage of survivors. It is important

to note that we only use these scores as a convenient and clinically interpretable way of classifying

patients. We do not use the severity score of a patient for the purposes of predicting mortality,

length of stay, probability of readmission and so-forth; rather, we directly estimate all of these

factors from data.

Patient Class Range for predicted mortality # data points % survivors

1 [0,.0048) 1089 99.5%
2 [.0048,.0148) 1084 97.0%
3 [.0148,.039) 1097 94.7%
4 [.039,.1025) 1067 91.8%
5 [.1025,1) 1061 85.4%

Table 1 Patient Classes

ICU Occupancy Levels: Our data set indicates the utilization of the ICU upon patient

discharge. We define the ‘near capacity’ or ‘full’ state as when the ICU occupancy level is at least

75% of its maximum. If the ICU occupancy is less than 75% of maximum, we say the ICU is in

the ‘low’ state. This characterization is similar to that in Kc and Terwiesch (2011) and acceptable

from a medical perspective.

Sampling Bias: Our study rests on the assumption that the statistics governing a patient’s

length-of-stay in the ICU, the likelihood of their death, the likelihood of their readmission and the

lengths of any subsequent visits depend solely on their health condition as summarized by their

Kaiser Permanente Inpatient Risk Adjustment Score, and whether or not they were discharged
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from a full ICU. Since we are interested in isolating the impact of demand-driven discharge to

accommodate new patients on patient length-of-stay statistics and the likelihood of readmission, it

is important to check that the distribution of severity scores for patients in the group of patients

discharged from a full ICU is close to that of patients discharged from an ICU in the low state.

To this end, we use the Kolmogorov-Smirnov two-sample test (see Smirnov (1939) and related

references), which is the continuous version of the chi-squared test. For each pair of ICU occupancy

levels (Full versus Low), we compare the empirical distributions of severity using the Kolmogorov-

Smirnov test to see if the samples come from the same distribution. We find that with significance

level of 1%, the samples do come from the same distribution. Hence, we conclude with high prob-

ability, that the ICU occupancy level parameter and the severity scores of data points in our data

set are independently distributed.

To summarize, a data point in our data set can be expressed as a tuple of the form

(S,D, (L1, F1), (L2, F2), . . . , (Lk, Fk)) where S is a severity score, D is an indicator of patient death

during hospital stay, Ln is the patient length-of-stay on his nth visit to the ICU in the episode and

Fn is an indicator for whether the ICU was full upon his nth discharge.

5.1. Estimation

We first estimate the probability of death for patients discharged from a low versus full ICU. We

estimate the nominal probability of death, P(D|Low)m, using the fraction of patients who were

discharged from a low occupancy ICU and died during the same hospital stay.

P(D|Low)m =

∑

i 1{Di=1}1{F i
1=0}1{Si∈m}

∑

i 1{F i
1=0}1{Si∈m}

.

where {F i
1 = 0} is the event that the ICU occupancy level was low upon discharge of patient i from

his first ICU discharge and {Si ∈m} is the event that the severity score of patient i defines him as

class m. Similarly, we can calculate the probability of death when discharged from a full ICU.

P(D|Full)m =

∑

i 1{Di=1}1{F i
1=1}1{Si∈m}

∑

i 1{F i
1=1}1{Si∈m}

.

Table 2 summarizes the estimated probabilities of death for each patient class along with the 95%

confidence interval for these estimates.

We notice that it is difficult to discern any substantial impact of a demand-driven discharge on

mortality. This is not particularly surprising: while there exist studies which suggest that demand-

driven discharges increase mortality rates (for example (Chrusch et al. 2009)), there are others

which find that mortality risks are not predicted by occupancy levels (Iwashyna et al. 2000).
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Patient # data P(D|Low) [95% CI] # data P(D|Full) [95% CI]
Class points points

1 739 .005 [.000,.010] 350 .003 [.000,.009]
2 682 .022 [.011,.033] 402 .017 [.004,.030]
3 679 .059 [.041,.077] 418 .043 [.024,.062]
4 669 .079 [.059,.099] 398 .088 [.060,.116]
5 621 .167 [.138,.196] 440 .116 [.086,.146]

Table 2 Mortality: probability of death when patients naturally depart and when patients are demand-driven

discharged.

Our estimator for the nominal length-of-stay (LOS) for patient type m, is simply the empirical

average

µ(LOS0
low)m =

∑

iL
i
11{F i

1=0}1{Si∈m}1{Di=0}
∑

i 1{F i
1=0}1{Si∈m}1{Di=0}

.

where {F i
1 = 0} is the event that the ICU occupancy level was low upon discharge of patient i from

his first ICU discharge and {Si ∈m} is the event that the severity score of patient i defines him

as class m. Similarly σ(LOS0
low)m is an empirical standard deviation. Note that when calculating

LOS, we exclude patients who died. This is common practice in the medical community because

various factors, such as Do-not-resuscitate orders can skew LOS estimates for patients who die

(Norton et al. 2007, Rapoport et al. 1996).

We also calculate the fraction of these patients who return to the ICU during the same hospital

stay to calculate a nominal probability of readmission, P(R|Low)m. These readmitted patients

relapse due to numerous medical reasons unrelated to being discharged; the discharge is likely to

be a natural departure as there is no need to discharge patients in order to accommodate new ones

when the ICU occupancy level is low and there are available beds. Thus,

P(R|Low)m =

∑

i 1{Li
2>0}1{F i

1=0}1{Si∈m}
∑

i 1{F i
1=0}1{Si∈m}

.

where {Li
2 > 0} denotes the event that patient i was readmitted.

Finally, of patients readmitted to the ICU from among those initially discharged from a non-full

ICU, we compute an estimate of their expected length-of-stay upon readmission, according to:

µ(LOSR
low)m =

∑

iL
i
21{F i

1=0}1{Li
2>0}1{Si∈m}1{F i

2=0}1{Di=0}
∑

i 1{F i
1=0}1{Li

2>0}1{Si∈m}1{F i
2=0}1{Di=0}

.

where {F i
2 = 0} denotes the event that patient i was discharged from a low occupancy ICU upon

his second ICU discharge. Again, we exclude patients who died in this estimation. Notice that

µ(LOSR
low)m is an estimate of patient length-of-stay upon readmission when the readmission is due
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Patient # data µ(LOS0
low) σ(LOS0

low) P(R|Low) [95% CI] # data µ(LOSR
low) σ(LOSR

low)
Class points (hours) points (hours)

1 735 45.7 134.2 .073 [.054,.092] 34 36.1 40.5
2 667 46.7 50.8 .095 [.073,.117] 46 66.0 118.1
3 639 59.7 98.4 .102 [.079,.125] 39 106.9 212.5
4 616 78.1 201.8 .115 [.091,.139] 45 110.5 289.3
5 517 89.6 116.7 .119 [.094,.115] 34 161.4 365.5

Table 3 Nominal patient parameters: operational parameters when patients naturally depart and are not dis-

charged in order to accommodate new patients. Average initial length-of-stay (LOS0
low), readmission

probability P(R|Low) and readmission length-of-stay (LOSR
low) when discharged from a ‘low’ occupancy

ICU. Length-of-stay is given in hours.

to medical factors unrelated to demand-driven discharge. Table 3 states the values of the estimates

for our data set including information about the relevant number of data points.

We compute similar estimates for patients discharged from a full ICU; we assume these discharges

are demand-driven. Of particular interest is the probability of patient readmission when a patient

is discharged from a full ICU, P(R|Full)m. We estimate this probability according to:

P(R|Full)m =

∑

i 1{F i
1=1}1{Li

2>0}1{Si∈m}
∑

i 1{F i
1=1}1{Si∈m}

.

We have seen that patients who are not discharged in order to accommodate new patients may

require readmission (Table 3); we expect that patients who are discharged from a full ICU may

require readmission for those same reasons in addition to complications which arise due to being

demand-driven discharged. Therefore, we expect the probability of readmission when discharged

from a full ICU to be higher than when discharged from a low ICU. We also estimate the expected

length-of-stay of such readmitted patients according to

µ(LOSR
full)m =

∑

iL
i
21{F i

1=1}1{Li
2>0}1{Si∈m}1{F i

2=0}1{Di=0}
∑

i 1{F i
1=1}1{Li

2>0}1{Si∈m}1{F i
2=0}1{Di=0}

.

Table 4 states the values of these estimates for our data set including information about the relevant

number of data points.

Contrasting the results in Tables 3 and 4 we see that patients discharged during times of heavy

ICU utilization are markedly more likely to be readmitted, all else being the same. In the following

section, we will use the estimates we have computed here to construct and simulate the clinically

relevant policies discussed in the previous Section.

6. Performance Evaluation

The goal of this Section is to explicitly construct the clinically relevant policies discussed in Section

4 using the estimates of the previous Section. For each of the policies we construct, we will primarily

be interested in characterizing two things:



24

Patient # data µ(LOS0
full) σ(LOS0

full) P(R|Full) [95% CI] # data µ(LOSR
full) σ(LOSR

full)
Type points (hours) points (hours)

1 349 54.3 138.9 .086 [.057,.115] 9 61.4 71.8
2 395 51.7 54.1 .109 [.079,.140] 16 112.0 200.2
3 400 59.4 79.3 .120 [.089,.151] 17 99.6 86.8
4 363 62.8 68.1 .136 [.102,.170] 17 175.7 375.1
5 389 92.7 138.2 .132 [.100,.164] 17 237.1 577.8

Table 4 Demand-driven discharged patient parameters: operational parameters when patients are discharged in

order to accommodate new patients. Average initial length-of-stay (LOS0
full), readmission probability

P(R|Full) and readmission length-of-stay (LOSR
full) when discharged from a ‘full’ ICU. Length-of-stay is

given in hours.

Mortality: This is a first order measure of the clinical impact of any demand-driven discharge

practice. Given our discussion in Section 4, one would hope that any of the clinically relevant

discharge policies considered there results in effectively equivalent mortality rates. If this were not

the case, this would be cause to question the clinical viability of the policies.

Measures of Access: Assuming that two given policies possess similar mortality rates, one may

be concerned about finer grained measures of performance. An important issue raised in Section 4

– and indeed a focus of this paper and recent healthcare reform –was that of access. It is crucial

that the demand-driven discharge policies employed ensure equitable and maximal access to ICU

resources while of course, ensuring no sacrifice in terms of mortality rates. In fact, it is entirely

within reason that these two goals are aligned as opposed to being at odds with each other.

We next specify each of the policies discussed qualitatively in Section 4:

Mortality Risk ‘P(D)’: Under this policy, if a demand-driven discharge is called for, one

selects a patient from the class with the smallest probability of death, P(D), of the patients currently

in the ICU. Table 2 calibrates these figures for patients in our data set. This translates to the order

1,2,3,4,5.

Readmission Risk I ‘P(R)’: Under this policy, one selects a patient from the class with

the smallest nominal probability of readmission, P(R), of the patients currently in the ICU. In

particular, given the estimates from our data set reported in Table 3, this translates to the order

1,2,3,4,5.

Readmission Risk II ‘∆-Load’: This policy, which as discussed earlier, is a refinement of

the readmission risk metric above, has been a focal point of our study. We can estimate the increase

in readmission load for a given patient class, m, as the quantity

P(R|Full)mµ(LOSR
full)m −P(R|Low)mµ(LOSR

low)m.

Using the data from Tables 3 and 4, this translates to the priority order 3,1,2,4,5.
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Remaining Length-of-stay ‘LOS’: Under this policy, one selects a patient from that class

with the smallest remaining length-of-stay. As such this is not a static index rule. In particular,

one needs to compute, for a patient of class m that has been in the ICU for time t, the quantity

E[LOS0
low|LOS0

low ≥ t], and prioritize patients in increasing order of this quantity. In our simulations,

we give this policy more power and assume the realization for ICU LOS is known as soon as a

patient begins ICU care. This policy is analyzed in Dobson et al. (2010) albeit for a model that is

agnostic to readmission loads.

Table 6 summarizes the first three policies. It is interesting to note that of the first three policies,

all three policies choose to protect patients of types 4 and 5 from a demand-driven discharge.

These are patients with relatively higher mortality risk, and as such this is a desirable feature.

Interestingly, the ∆-Load policy differs from the first two in how it prioritizes the first three patient

classes which have low mortality risk. This allows for the following interpretation of the ∆-Load

policy – it ensures that patients with high mortality risk are the least likely to be subject to a

demand-driven discharge while carefully prioritizing among patients with low mortality risk to

account not only for the likelihood they would have to be readmitted as a consequence of the

discharge, but also the extent of the care they might require if such a readmission were to occur.

Patient Nominal Nominal ∆-Readmission
Type P(D) P(R) Load (hours)

1 .005 .073 2.65
2 .022 .095 5.94
3 .059 .102 1.05
4 .079 .115 11.19
5 .167 .119 12.09

Table 5 Estimated Policies

We consider the following simulation setup: We assume a time horizon of 1 week where admission

and discharge decisions are made every 6 minutes, or 10 times within an hour and consider an ICU

with B = 10 beds. While these decisions may in reality occur on a continuous basis, patient transfers

are not instantaneous and the granularity of 6 minutes per hour is fine enough to emulate an

actual ICU. Discharge policy simulations are over 1,000 sample paths each. We use the parameters

estimated in Table 6 for nominal length-of-stay, probability of death, probability of readmission, and

change in expected readmission load. A patient’s nominal length-of-stay is log-normally distributed.

We vary the probability of an arrival, λ between 0 and 0.021 (i.e. between 0 and 5 arrivals on

average every 24 hours). An arrival rate λ= .021 corresponds to 5 patient per day, i.e. a turnover
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of 1/2 the beds in the ICU each day which is about the highest load seen in the ICU. We use a

uniform traffic mix across patient classes, which is consistent with the empirical data. We note

that in this numerical study, we do not include diversions and disease progression as patient data

required to develop these models is fairly limited. For instance, Gajic et al. (2008) is one of the few

existing works that try to predict readmission risks and it is a static model. We leave such studies

for future research as more patient data becomes available. We now report on the two issues we

set out to examine, namely mortality and patient access.

6.1. Mortality Rates

We compare the number of deaths per week under the various discharge policies. We consider an

arrival rate of 2.5 patients per day, which corresponds to the load an average hospital could expect

to a 10 bed ICU. In column (a) of Table 6 we compare the number of deaths per week using the point

estimates of P(D|Full) and P(D|Low) given in Table 2. We also consider the following robustness

check using the confidence intervals computed for our class specific mortality rate estimates: we

consider that the various probabilities (namely, P(D|Full)m and P(D|Low)m) each take on one of

their upper or lower confidence limits, and consider all the 210 resulting parameter combinations.

We conduct a separate simulation for each of these parameter combinations, and report for each

discharge policy the lowest and highest mortality rates across parameter combinations. The results

are summarized in Table 6. We can see that using both the point estimates, as well as under our

robustness check, all three policies are remarkably similar.

(a) (b) (c)
Policy # Deaths Min. # Deaths Max. # Deaths

∆-Readmission Load 1.014 0.751 1.325
P(Death) & P(Readmission) 1.004 0.764 1.332
Shortest Remaining LOS 1.022 0.740 1.303

Table 6 Weekly Mortality Rate using (a) point estimates (b) the combination over the 95% confidence intervals

with the lowest rate and (c) the combination over the 95% confidence intervals with the highest rate.

We next consider a further robustness check assuming that, in fact, the probability of death

upon being demand-driven discharged is substantially increased (beyond the value estimated in the

data) – we set the probability of death for a demand-driven discharged patient 10%,20%,30%,40%,

and 50% higher than the estimated probability of death for that patient class given in Table 2.

We compare the relative increase (decrease) in the number of deaths compared to the proposed
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∆-Readmission Load policy. Table 7 summarizes these results. Again, the table reveals that the

three policies continue to remain essentially identical across the range of perturbations with no

single policy dominating.

Inflation Factor Shortest Remaining LOS P(Death) & P(Readmission)

0 -0.9% 0.9%
10% 0.0% 0.5%
20% 0.8% 0.1%
30% 1.5% -0.4%
40% 2.2% -0.7%
50% 2.6% -1.2%

Table 7 Percentage increase over ∆-Readmission Load policy in weekly mortality rate when artificially inflating

P(Death|Full).

From these experiments, we conclude that in as much as mortality rates are concerned all four

policies are viable and result in essentially identical mortality rates. In spite of the fact that the

policies differ from each other, this reaffirms our earlier assertion that all four of the policies will

protect patients with high mortality rates from a demand-driven discharge.

6.2. Patient Access

We measure access via the following proxy – since demand-driven discharges result in an increase

in the expected critical care requirements for the discharged patient down the road, we measure the

expected increase in these requirements, measured in hours of ICU care. In particular, we measure

the expected increase in readmission load incurred due to demand-driven discharges under all four

policies. Figure 2 shows the expected increased readmission load in hours for the four discharge

policies. We can see that the proposed ∆-Load policy outperforms each of the benchmarks – in

some cases by nearly 30%. The next best policy in this regard is the one based on (unadjusted)

readmission and mortality risks, i.e. the P(R) & P(D) index policy. Thus, although the problem of

minimizing readmission load due to required demand-driven discharges is a hard one, the proposed

∆-Load policy appears to substantially outperform the benchmarks studied here. As the arrival

rate increases, more patients will need to be demand-driven discharged in order to accommodate

the high influx of new patients. Consequently, the expected readmission load increases significantly.

In order to appreciate the physical meaning of the costs estimated in these experiments, we note

that with 24 hours in a day, an additional cost of 24× 7 = 168 hours corresponds to the loss of
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Figure 2 Performance of proposed index policy compared to benchmarks for various arrival rates and distribution

across patient types according to the proportions seen in the empirical data.

an entire bed for 1 week since it will be occupied by readmitted patients. What we see is that

for 5 patient arrivals per day, the ∆-Load policy incurs readmission load that is 13.5 hours lower

than the next best policy (the P(D) & P(R) policy) which corresponds to the loss of a single ICU

bed (in a 10 bed ICU) for a little more than half a day per week. Over the course of a year this

corresponds to a free ICU bed for nearly a whole month. The savings relative to the LOS index

policy are higher. Finally, in light of our study on mortality rates, these difference in performance

do not come at the cost of increased mortality.

In conclusion, we have observed the following:

Mortality: All four policies we considered at the outset in Section 4 result in essentially identical

mortality rates. We have verified this fact across multiple ‘robustness’ checks. We attribute this to

an attractive feature common to the first three policies, namely the fact that patients with high

mortality risk are protected from a demand-driven discharge.

Access: In terms of access (or equivalently, increase in ICU load incurred due to demand-driven

discharges) the policies are quite dissimilar. The ∆-Load policy (that has been a focal point in

this paper) provides the greatest access. We attribute this to the fact that the policy carefully

prioritizes among patients with low mortality risk.

As such, we believe that the ∆-Load policy might serve as a useful guide to intensivists priori-

tizing demand-driven discharge decisions among patients medically fit for discharge.
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7. Conclusion

Faced with the need to accommodate an acute, newly admitted patient, a clinician may select from

among patients currently in the ICU, a relatively ‘stable’ patient for transfer to a less richly staffed

hospital unit. A patient so discharged from the ICU faces risks of physiological deterioration that

may ultimately require readmission to the ICU. This is, of course, not an ideal situation either from

an efficiency standpoint or the standpoint of ideal patient outcomes. The present work studied the

feasibility of developing a decision support tool to aid clinicians in these difficult decisions. We

have attempted to gauge the value of such a support tool using a large patient flow data set and

quantified this value in terms of potential reductions in readmitted patient load.

The model we have developed revolves around simple estimates of the cost associated with a

demand-driven patient discharge. We examine a number of clinically relevant cost metrics including

mortality and readmission risks. We focus on a measure of readmission risk which incorporates the

likelihood of readmission in addition to the complexity of the readmission: change in readmission

load. We estimated our model from actual patient-flow data. Given our model, we developed a

simple index based policy to serve as a decision support tool to a physician making the aforemen-

tioned discharge decisions. Our support tool is, by its structure, easy to implement from a clinical

standpoint, and highly robust to estimation errors. The latter point is well reflected in our empir-

ical study. Our study suggests that implementation of our support tool could result in substantial

reductions in readmitted patient load without sacrificing mortality even under modest assumptions

on patient traffic, at least in the context of the hospital system from which we collected the data for

the study. While the Kaiser Permanente Inpatient Risk Adjustment Score has been shown to have

similar predictive power as the widely used SAPS and APACHE scores (Escobar et al. 2008), the

value of our approach has not been established for these other severity scores. This represents an

interesting avenue for future empirical investigation. It is remarkable that our model demonstrates

benefits despite (from a clinical standpoint) being relatively simple–for example, it does not include

diagnostic or physiologic data available at the time that a patient was discharged.

This work suggests several future potential research directions, including:

1. Developing more complex predictive models of patient dynamics that recognize the evolution

of patients over the course of their stay. We believe that the present study is sufficient motivation

to collect data that would allow us to identify such a model. Such data could be employed to assign

patients a “readiness for discharge” severity score similar in concept to other existing severity of

illness scores. This is also key to practical deployment of a decision support tool.
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2. It would be interesting to understand the impact of a demand-driven discharge on other

quantities of interest, particularly metrics measuring quality of life impact.

3. Theoretically, we have shown that our index policy is optimal in certain regimes and guaran-

teed to incur readmission loads of no greater that a factor of (ρ̂+1) of an optimal policy in general.

It would be interesting to understand traffic regimes where this bound could be made tighter –

this is, of course, a somewhat secondary pursuit but nonetheless very interesting from a theoretical

perspective.

4. It would be interesting to initiate a study of ICU admissions so as to move towards a more

holistic view of equitable and optimal allocation of hospital resources.
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Appendix

A. Greedy Sub-Optimality

Consider the case with B = 2 beds and a time horizon of T = 2. There are 2 patient types, i∈ {1,2}.

The parameters for each patient type are as follows for some small ε> 0:
For i= 1: µ0

1 = 1/2, φ1 =1
For i= 2: µ0

2 = 1, φ2 =1− ε
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Therefore, patient type 1 has nominal expected length-of-stay of 2 and cost of 1. Similarly, patient

type 2 has nominal expected length-of-stay of 1 and cost of 1− ε.

Consider an initial state at t= 0 such that there exists 2 ICU patients: one of each type. Hence,

x0,1 = 1 and x0,2 = 1. Also, a new patient of type 1 arrives at t= 0 and t = 1, i.e. y0,1 = y1,1 = 1

while y0,2 = y1,2 = 0.

At t= 0, there are already 2 patients in the ICU, and a new patient arrives. Therefore, a current

patient must be discharged in order to accommodate the new patient. The greedy policy discharges

patient type 2 at t= 0 because its cost is less than that of patient type 1. This comes at a cost of

1−ε. Now, with this demand-driven discharge and the admission of the new patient there are 2 type

1 patients occupying the ICU. With probability 1/4 neither type 1 patient completes service and

departs by t= 1 and with the second new arrival, a patient must be discharged to accommodate

this new arrival at a cost of 1. With probability 3/4 at least one of the type 1 patients completes

service prior to the second new arrival and no demand-driven discharge is required at t= 1. Hence,

the expected cost of the greedy policy is 1− ε+1/4= 5/4− ε.

On the other hand, the optimal policy recognizes that patient type 2 has a very short length-

of-stay and decides not to discharge this patient at t = 0. Instead the optimal policy discharges

patient type 1 to accommodate the new patient, incurring a cost of 1. Now with this demand-driven

discharge and the admission of the new patient, there is one type 1 patient and one type 2 patient

occupying the ICU. At the end of time slot t=0, the type 2 patient completes service and departs

naturally with probability 1. Regardless of whether the type 1 patient departs naturally, when

the second new arrival comes at t= 1, it can immediately be accommodated without requiring a

demand-driven discharge of a current patient. Hence, the expected cost of the optimal policy is 1.

Taking ε→ 0 we see that J∗(s0)≤
4
5
Jg(s0) here.

B. A Connection with Throughput

Here we make precise the connection with throughput maximization when the cost metric of

interest is the ∆-Readmission Load associated with a demand-driven discharge. We consider a

stylized model of the ICU which accounts for patient readmissions. Patients who are naturally

discharged require ICU readmission with probability 0. Patients who are demand-driven discharged

are readmitted to the ICU with probability pm and have readmission LOS which is exponentially

distributed with mean 1/µR
m. Hence, the cost associated with a demand-driven discharge of patient

type m, is the ∆-Readmission Load:

C(s,m) =
pm
µR
m

Consider an ICU with C beds. We consider the following setup:
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1. B beds are reserved for first-time arrivals with C −B ! B′ beds reserved for readmissions.

Any reference to ‘state’ will be understood to correspond to the occupants of these B beds and we

will consequently employ the notation in Section 2.

2. The readmission queue is served according to a first-in-first-out discipline.

3. In the event that B beds are occupied by first-time visitors, a new arrival will prompt a

‘demand-driven’ discharge according to a stationary policy π that monitors the state of the B-beds

reserved for first-time arrivals.

Note that readmitted patients cannot be demand-driven discharged. The rationale for this is

natural: Readmitted patients are typically much worse off and have higher mortality rates and

longer lengths-of-stay. This is well established in the medical literature (see Chen et al. (1998),

Durbin and Kopel (1993), Snow et al. (1985) among others). As such, subjecting such patients to

a demand-driven discharge is likely to be highly undesirable from a practitioners perspective. In

addition, the policy that prioritizes patients should a demand-driven discharge be required may

only consider the state of the B beds reserved for first time arrivals; one may dispense with this

restriction, but doing so is beyond our scope here.

Given a vector λ ∈ [0,1]M defined so that λat,m ! λm for all m (assuming time homogenous

rates), we will refer to a policy π as stabilizing for λ if, under this policy the readmission queue is

stable. More precisely, we require the sequence of waiting times {Wn} experienced by patients in

the readmission queue (a waiting time is defined in the usual sense as the time between entry into

the readmission queue and the time before service begins), has a sub-sequence that converges to a

random variable W that is a.e. finite.

Now, let us denote by the sequence Tn the interarrival time between the nth and (n + 1)st

entry to the readmission queue, and by Sn, the service time required by the nth patient. Assume

moreover that no demand-driven discharges occur in the absence of a need for one, i.e. π(s) = 0 if

s /∈ {(x, y) :
∑

m x(s)m+y(s)m =B+1,
∑

m y(s)m = 1}! Ŝfull (Recall again, that s here corresponds

to the state of the B beds reserved for first-time admissions). Then, Tn is simply the time between

the nth and (n+ 1)st visit to a state in the set Ŝfull while Sn is a Geometric (µR
π(sn)

) random

variable with probability pπ(sn) (where sn corresponds to the state of the B beds for first-time

arrivals upon the nth discharge) and 0 with the remaining probability. Now, if s0 ∼ νπ, then it is

not hard to see that {Tn, Sn} is a stationary process. The process is also ergodic; a consequence

of the ergodicity of the Markov chain induced by π. A classical result of Loynes (Theorem 8 of

Loynes (1963)) then establishes that the readmission queue is stable if E[T0]>E[S0]/(C−B), and

unstable if E[T0]<E[S0]/(C −B). Now, elementary arguments (see Durrett (1996)) can be used
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to show that E[T0] = 1/
∑

s∈Ŝfull
νπ(s) and E[S0] =

∑

s∈Sfull
νπ(s)C(s,π(s))/

∑

s∈Sfull
νπ(s). In other

words, we have that the readmission queue is stable if

κπ <C −B,

and unstable if κπ > C −B, so that minimizing κπ maximizes throughput which motivates the

problem that is the focus of our study.

In addition, the following theorem shows that heuristics for the problem of minimizing long run

readmission costs incur a proportionate ‘dilation’ of the set of arrival rate profiles that will result

in stable readmission queues. In particular, let λ be a vector of arrival rates that is in the interior

of the throughput region for our model. By this we understand that there exists a demand-driven

discharge policy π∗
λ under which the readmission queue is stable when the arrival rate vector is λ,

and moreover there exists an ε> 0 such that the arrival rate vector λ(1+ ε) can also be stabilized.

Let us denote by π∗
αλ a policy minimizing κπ for the arrival rate vector αλ where α ∈ (0,1]. Finally,

let π̂αλ be a possibly sub-optimal demand-driven discharge policy for the arrival rate αλ satisfying

κπ̂αλ/κπ∗

αλ ≤ 1/α. We have:

Theorem 5. Assuming an arrival rate vector αλ, the readmission queue is stable under the

demand-driven discharge policy π̂αλ.

Proof: Let us denote by π∗
αλ (respectively π∗

λ) a policy minimizing κπ in a system with arrival

rate vector αλ (respectively λ). Now consider the following sub-optimal policy for an arrival rate

αλ: we simulate arrivals of ‘fictitious’ patients, so that the net stream of patients (both actual and

fictitious) has arrival rate λ. To this system we apply policy π∗
λ. Now by construction, a discharge

under this policy will correspond to the discharge of an actual patient with probability α; with the

remaining probability, the discharge will be one of a fictitious patient and incur no costs. It thus

follows that this sub-optimal policy incurs a cost of precisely ακπ∗

λ . Moreover, since it is sub-optimal

for the arrival rate vector αλ, it must be that

κπ∗

αλ ≤ακπ∗

λ .

It follows that

κπ̂αλ ≤ (1/α)κπ∗

αλ ≤ κπ∗

λ .

But given the fact that λ was in the interior of the stability region, it must be (by our earlier

argument that showed κπ∗

αλ ≤ ακπ∗

λ) that κπ∗

λ < C −B∗, so that κπ̂α < C −B∗, from which the

claim follows. "
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We have demonstrated a stationary policy πg satisfying, for a given arrival rate vector λ,

κπg
/κπ∗

λ ≤ 1/(1 + ρ̂) where ρ̂ was a measure of utilization. It follows that should the readmission

queue be unstable under πg, then it will remain unstable for any arrival rate vector that strictly

dominates (1+ ρ̂)λ under any stationary discharge policy. In other words, the use of the πg policy

will correspond to a dilation of the throughput region by a factor corresponding to the approxi-

mation guarantee we have established.

C. Miscellaneous Technical Proofs

Proof of Theorem 1: We will, without loss, consider states s at which all feasible actions

require the demand-driven discharge of a current patient (who has not yet completed treatment);

i.e.
∑

m x(s)m = B and y(s) *= 0. For the sake of a contradiction, we will assume that under any

optimal policy π∗, π∗(s) /∈ argminm:x(s)m>0 φm, i.e. the patient selected for the demand-driven

discharge under any optimal policy is not among the set of patient types that minimizes one-period

costs at state s. For notational convenience, we take π∗(s) = j, and i= πg(s)∈ argminm:x(s)m>0 φm.

Thus, by assumption we have that

J∗(s) =C(s, j)+E [J∗(S(s, j))]<C(s, i)+E [J∗(S(s, i))] . (C1)

Now, let si = S(s, j), and sj = S(s, i). We may assume that x(si)k = x(sj)k∀k *= i, j. Moreover,

since C(s, i) < C(s, j), we have 1/µ0
i ≥ 1/µ0

j so that we may couple sample paths in the system

which used the optimal policy in state s (demand-driven discharged patient j) with the system

which used the greedy policy at state s (demand-driven discharged patient i) so that patient i

finishes service and departs in the epoch subsequent to t(s) in the former system only if j finishes

service and departs naturally in that same epoch in the latter system. Thus, in time slot t(s)+ 1

we have either that: (i) x(si)i − x(sj)i = 1 and x(sj)j − x(si)j = 0, (ii) x(si)i − x(sj)i = 0 and

x(sj)j − x(si)j = 0 or (iii) x(si)i − x(sj)i = 1 and x(sj)j − x(si)j = 1. In case (i), Lemma 1 implies

that J∗(si)≥ J∗(sj). In case (ii), we clearly have J∗(si) = J∗(sj) since si = sj.

Let us consider case (iii), which says that neither patient i nor j have departed by time slot

t(s)+ 1. We couple the systems starting at states si and sj so that they see identical arrivals and

identical service times (departures) for the patients they have in common. Moreover, we couple the

service times of the additional type i patient in the si system and the additional type j patient

in the sj system as follows: If after any required demand-driven discharges in a particular time

step, patient i and j both remain in their respective systems, patient j will complete/depart with

probability µ0
j . If patient j departs, patient i will depart in the same time step with probability
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µ0
i/µ

0
j ; if patient j does not complete, then neither will patient i. If only one of i or j are present,

they will complete with probability µ0
i and µ0

j respectively.

Now let us consider using the following sub-optimal policy for the system starting at state sj:

we assume that the additional type j patient is in fact a type i patient, and apply the optimal

policy for this transformed state. If at some point the type j patient completes service naturally,

we choose to register this departure with probability µ0
i/µ

0
j , and with the remaining probability

assume a ‘virtual’ additional type i patient that will complete service in subsequent periods with

probability µ0
i . If at some point the discharge policy chooses the additional type j patient (which

it regards as a type i patient) for the demand-driven discharge, we charge ourselves C(s, j) (notice

that this may occur after the actual patient has already departed and correspond to the demand-

driven discharge of the virtual patient), so that the costs incurred here are certainly higher than

under an optimal policy for the sj system. Call this policy π′. We use the optimal policy in the si

system.

Let p̄i be the probability that the additional type i patient will have to be demand-driven dis-

charged in the si system. Now we have that J∗(si) = C̄+ p̄iC(s, i) where C̄ is the total readmission

costs incurred for patients excluding the additional type i patient. Notice that under our coupling,

Jπ′

(sj) = C̄+ p̄iC(s, j) = J∗(si)+ p̄i[C(s, j)−C(s, i)]. Consequently, we have that J∗(sj)−J∗(si)≤

p̄i(C(s, j)−C(s, i)).

Cases (i), (ii), and (iii) together yield E[J∗(S(s, i))− J∗(S(s, j))]≤ C(s, j)−C(s, i) which con-

tradicts (C1) (since C(s, i) *=C(s, j)) and yields our result. "

Proof of Lemma 1: Consider a coupling of the systems starting at state s and s′ wherein

both systems witness identical sample paths for patient arrivals and identical service times for the

patients they have in common. More precisely, assuming that at time t, the systems are in states st

and s′t respectively, the patients who arrive in both systems are coupled so that y(st) = y(s′t). Let

z(st) and z(s′t) be the patient vectors in both systems after these arrivals and any potential demand-

driven discharges. Then the number of service completions in both systems over the remainder of

the tth epoch are coupled as follows: If z(st)m ≥ z(s′t)m, then the number of patients of type m that

finish service and depart naturally from the s′ system is given by the Binomial-(z(s′t)m, µ
0
m) random

variable X ′
t,m while the number of patients of type m that finish service and depart naturally

from the s system is given by X ′
t,m +Zt,m where Zt,m is a Binomial-(z(st)m − z(s′t)m, µ

0
m) random

variable. A symmetric situation must hold if z(s′t)m ≥ z(st)m.

Now assume that the system starting at s uses an optimal policy whereas the system starting at

state s′ ‘mimics’ the actions of the s system (call this policy π̄), so that if the s system chooses to
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demand-driven discharge a patient of a particular type, the s′ system will also choose to discharge a

patient of that type should such a patient be available, whether or not this demand-driven discharge

is called for (i.e. whether or not a new patient has arrived and there are no available beds). In

the event that the s′ system needs to make a demand-driven patient discharge and the s system

either does not need make a demand-driven discharge or else selects to demand-driven discharge a

patient of a class not available in the s′ system, the s′ system discharges a randomly chosen patient

from among those available. It is easy to see that π̄ is an admissible randomized non-anticipatory

policy: starting at state s′ one adds ‘virtual’ patients so that the total number of patients (real

and virtual) of a given type in the s′ system are identical to the number in the s system. One then

employs an optimal policy, and simulates service completion for virtual patients. We now show

that under our coupling, x(st)≥ x(s′t) for all t.

The proof is based on induction in time. The base case follows from our assumption that x(s)≥

x(s′). We assume that for all t≤ k, x(st) ≥ x(s′t) and will show this implies the same is true for

t= k + 1. Let Ak = π∗(sk) and A′
k be the patient discharged at time k under the π̄ policy. Note

that A′
k,m ≤Ak,m by our definition of π̄ and the induction hypothesis. We have

x(sk+1)m −x(s′k+1)m = [(x(sk)m + y(sk)m −Ak,m)
+ −Xk,m]−

[(x(s′k)m + y(s′k)m −A′
k,m)

+ −X ′
k,m]

≥ x(sk)m −x(s′k)m +X ′
k,m −Xk,m

= x(sk)m −x(s′k)m −Zk,m

≥ 0

The first inequality comes from our coupling and the definition of the two policies. The second

inequality follows from the definition of Zt,m; Zt,m ≤ x(st)m−x(s′t)m.

We may thus establish that for all t(s)≤ t≤ T , At ≥A′
t, so that C(st,π∗(st))≥C(s′t, π̄(s

′
t)) for

all such t. Taking expectations over the random patient arrivals and departures, we have J∗(s)≥

J π̄(s′)≥ J∗(s′), which is the result. "

Proof of Lemma 2: Without loss, we assume π∗(s) *= πg(s) (else, there is nothing to prove).

By definition, we must have x(s)πg(s), x(s)π∗(s) > 0. Let S̃(s,π∗(s)) be the next state obtained if

one discharged both π∗(s) and πg(s) in state s. In particular, we define S̃(s,π∗(s))! s̃ according to



40

x(s̃)π∗(s) = x(s)π∗(s) + y(s)π∗(s) − 1−Xt(s),π∗(s),

x(s̃)πg(s) = x(s)πg(s) + y(s)πg(s) − 1−Xt(s),πg(s),

x(s̃)m = x(s)m+ y(s)m−Xt(s),m, m *= π∗(s),πg(s)

y(s̃)m = Yt(s)+1,m,

t(s̃) = t(s)+ 1,

where analogous to our earlier description of S(s, a), we define Xt(s),π∗(s) (resp. Xt(s),πg(s)) as a

Binomial (x(s)π∗(s) + y(s)π∗(s) − 1, µ0
π8(s)

) (resp. Binomial (x(s)πg(s) + y(s)πg(s) − 1, µ0
πg(s))) random

variable. For m *= π∗(s),πg(s), we define Xt(s),m as a Binomial (x(s)m + y(s)m, µ0
m) random vari-

able. Yt(s)+1,m is defined as before for all m. Now, by construction, x(S̃(s,π∗(s)))≤ x(S(s,π∗(s))),

while y(S̃(s,π∗(s))) = y(S(s,π∗(s)), so that by Lemma 1, we have that E[J∗(S̃(s,π∗(s)))] ≤

E[J∗(S(s,π∗(s)))].

Now, let us consider the following sub-optimal policy π′ for the system in which the greedy action

is taken at state s. Define τ = min{T > t > t(s) :
∑

m Yt,m = 1}; i.e. τ is the first time after the

current time step t(s) that an arrival occurs (or infinite if no arrival occurs prior to time T ). Then on

the event that x(sτ)π∗(s) = x(s)π∗(s)+ yt(s),π∗(s)− 1, π′ simply takes the optimal action for t≥ τ (so

that, in fact π′ coincides with π∗ on this event). On the event that x(sτ)π∗(s) = x(x)π∗(s)+yt(s),π∗(s),

π′(sτ) = π∗(s), and π′ takes actions according to the optimal policy π∗ for t > τ . The probability

that an eviction occurs under π′ at τ is simply the probability that no patient of type π∗(s) has

departed prior to the next arrival; an event whose probability is at most λ/(λ+ µ0
π∗(s)). Observe

moreover that we may couple the systems starting at state S(s,πg(s)) and S̃(s,π∗(s)) so that under

the π′ policy in the former system and the optimal policy in the latter, both state processes agree

on t > τ , and moreover, no eviction will be required at times t≤ τ in the latter system. It follows

that

E[Jπ′

(S(s,πg(s))]≤
λ

λ+µ0
π∗(s)

C(s,π∗(s))+E[J∗(S̃(s,πg(s))].

Since E[J∗(S(s,πg(s))] ≥ E[Jπ′

(S(s,πg(s))] and as established earlier, E[J∗(S̃(s,πg(s))] ≤

E[J∗(S(s,πg(s))], the result follows. "
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