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Abstract

We consider the canonical revenue management (RM) problem wherein a seller must sell
an inventory of some product over a finite horizon via an anonymous, posted price mechanism.
Unlike typical models in RM, we assume that customers are forward looking. In particular,
customers arrive randomly over time, and strategize about their time of purchase. The private
valuations of these customers decay over time and the customers incur monitoring costs; both the
rate of decay and these monitoring costs are private information. Moreover, customer valuations
and monitoring costs are potentially correlated. This setting has resisted the design of optimal
dynamic mechanisms heretofore. Optimal pricing schemes – an almost necessary mechanism
format for practical RM considerations – have been similarly elusive.

The present paper proposes a mechanism we dub robust pricing. Robust pricing is guar-
anteed to achieve expected revenues that are within at least 29% of those under an optimal
(not necessarily posted price) dynamic mechanism. We thus provide the first approximation
algorithm for this problem. The robust pricing mechanism is practical, since it is an anony-
mous posted price mechanism and since the seller can compute the robust pricing policy for a
problem without any knowledge of the distribution of customer discount factors and monitoring
costs. The robust pricing mechanism also enjoys the simple interpretation of solving a dynamic
pricing problem for myopic customers with the additional requirement of a novel ‘restricted
sub-martingale constraint’ on prices that discourages rapid discounting. We believe this inter-
pretation is attractive to practitioners. Finally, numerical experiments suggest that the robust
pricing mechanism is, for all intents, near optimal.

1. Introduction

Applications of revenue management run the gamut from dynamic pricing in the airline industry,
to hospitality, to retail. The following dynamic pricing problem is one of the canonical problems
in revenue management: A seller is endowed with an inventory of a single product that she must
sell over a finite horizon. She cannot acquire additional inventory over the course of the horizon
and unsold inventory has negligible salvage value. Customers arrive randomly over the course of
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the selling horizon with the intent of purchasing a single unit of the product. Should the posted
price upon a customers arrival exceed his valuation he leaves the system for good; otherwise he
purchases a single unit of the product. The seller seeks to dynamically adjust prices with a view to
maximizing expected revenue. For typical assumptions on the customer arrival process – assuming,
for instance, a renewal process – this problem admits a tractable dynamic programming solution.
Despite its simplicity, the canonical nature of this problem serves to highlight an important view
of the role of dynamic pricing in revenue management as a tool to hedge against uncertain demand.

In the past decade, it has become amply clear that for a number of principal RM applications,
assuming myopic customer behavior, as in the problem above, is no longer a tenable assumption.
In spite of this realization, optimal dynamic mechanisms proposed for the version of this central
problem that assumes strategic customers, face the following critique:

1. They do not admit pure pricing implementations requiring instead devices such as lotteries
or end of season ‘fire-sale’ auctions. This typically rules out applying these mechanisms
in scenarios where an anonymous posted price mechanism is the norm (unfortunately, the
majority of RM applications).

2. They place strong restrictions on information asymmetry. Specifically, no mechanisms are
available for the (typical) setting where customer discount factors or monitoring costs are
private information.

3. These mechanisms frequently impute sophisticated purchase timing decisions in equilibrium
that are arguably as untenable as the non-strategic assumption given the burden they place
on the customer from a computational and data standpoint.

The present paper seeks to make progress on these fronts. In particular, we propose a class of
dynamic pricing policies which may be interpreted as solving the simple dynamic pricing problem
for myopic customers with the additional restriction that the pricing policy satisfy what we call a
‘restricted sub-martingale constraint’. This restricted sub-martingale constraint effectively places
an intuitive restriction on the rate at which the seller can discount. We dub such policies ‘robust
dynamic pricing’ policies. We show how to compute optimal robust pricing policies and demonstrate
that such policies admit attractive properties:

1. Computing a robust policy requires minimal data on customers beyond what is already re-
quired by the standard dynamic pricing problem assuming myopic customers. Customer
discount factors and monitoring costs are private information.

2. Robust pricing policies induce customers to behave myopically under mild assumptions on
customer utility.

3. Optimal robust pricing policies are in essence no harder to compute than their non-robust
counterparts.
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4. We exhibit a robust pricing policy that is guaranteed to garner revenues that are within 29%
of those garnered under the optimal dynamic mechanism1.

In addition to the features above, numerical results suggest that the performance of our robust
pricing policy can be expected to be substantially superior to what the uniform theoretical guarantee
we prove suggests. These numerical experiments also show that the loss in revenue due to an
incorrectly calibrated, but otherwise optimal, dynamic mechanism can be substantial over and
above the issues raised earlier.

In a nutshell, the present paper provides a tractable, provably robust approach to dynamic
pricing in the face of forward looking customers. The approach is robust in that it provides revenue
guarantees while making minimal assumptions of customers’ inter temporal utilities and search
costs, allowing them to be private information.

The remainder of the paper is organized as follows: Section 1.1 provides a brief literature
review. Section 2 presents our model: we introduce the notion of a dynamic pricing policy, model
customer utilities, and define an optimal dynamic mechanism benchmark. Section 3 introduces
robust dynamic pricing policies. We state our main theoretical results on the properties of these
policies in this section. Sections 4 and 5 present our analysis and finish with a proof of our
uniform performance guarantee. Section 6 focuses on computation, showing that an optimal robust
pricing policy can be computed by solving a three dimensional dynamic program; this section is of
independent interest in that the correctness of the three dimensional DP formulation follows from
a proof of a state space collapse. Section 7 complements our analysis with a brief numerical study.
Section 8 concludes with thoughts on future directions.

1.1. Literature Review

Revenue management is today a robust area of study with applications ranging from traditional
domains such as airline and hospitality pricing to more modern ones, such as financial services. The
text by Talluri and van Ryzin [2004] provides an excellent overview of this area. Gallego and van
Ryzin [1994] is a foundational revenue management paper; the present paper effectively studies the
same problem but allowing for forward looking customers. Recent empirical work, most notably
Moon et al. [2015] and Li et al. [2014] has established that this forward looking behavior is highly
prevalent. Interestingly, the paper by Moon et al. [2015] directly estimates a customer utility model
that is a special case of the model studied in this paper.

The antecedent literature most relevant to the present paper is associated with the area of dy-
namic mechanism design. Before discussing that stream of literature, however, we pause to mention
that a vast amount of research in the operations management community has been dedicated to
establishing qualitative insights on pricing strategies beneficial to a revenue manager faced with
forward looking customers. This work is primarily conducted in a stylized, two period setting and

1Note that mechanism need not be a pricing policy.
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seeks to understand issues as far ranging as the ability to commit to a pricing policy to the impact
of a ‘mix’ of strategic and myopic customers, to the value of ‘quick response’ policies to name just
a few topics of interest. Several surveys of this literature are available, including those by Shen and
Su [2007], Ho and Su [2009], Netessine and Tang [2009], and Aviv and Vulcano [2012].

Dynamic Mechanism Design: Closest to the spirit of the present paper, is research that
applies dynamic mechanism design ideas to RM with forward looking customers. An early paper
in this regard is Vulcano et al. [2002]; these authors consider impatient (but strategic) customers
arriving sequentially over a finite horizon and propose running a modified second price auction in
each period (as opposed to dynamic pricing).

An excellent paper by Gallien [2006] provides what is perhaps the first tractable dynamic
mechanism for a non-trivial revenue management model with forward looking customers. The model
he considers is the discounted, infinite horizon variant of the canonical RM model, and he shows
that the optimal dynamic mechanism can be implemented as a dynamic pricing policy in this model.
A limitation in this paper is the assumption of an infinite horizon and the delicate requirement that
the seller’s discount rate matches that of every customer (i.e. there is no heterogeneity in buyers’
inter-temporal preferences and these preferences are effectively common knowledge). More recently,
Board and Skrzypacz [2010] consider a discrete time version of the same model, and assuming a
finite horizon, compute the optimal dynamic mechanism. Board and Skrzypacz [2010] also require
that all customers discount at a homogenous rate that is common knowledge. While they do solve
the finite horizon RM problem, the mechanism they propose is no longer a purely dynamic pricing
mechanism but requires an end-of-season ‘clearing’ auction.

Pai and Vohra [2013] consider a substantially more general model of (finite horizon) RM with
forward looking customers. Customers in their model have heterogenous ‘deadlines’ as opposed
to discounting. Only when these deadlines are known to the seller, the authors characterize the
optimal mechanism completely and show that is satisfies an elegant ‘local’ dependence on customer
reports. On the other hand, when deadlines are private information, the authors illustrate that
the optimal dynamic mechanism is substantially harder to characterize. In light of this work, it is
interesting to note that both Gallien [2006] and Board and Skrzypacz [2010] compute the optimal
dynamic mechanism while requiring that the customer discount rate (which one may think of as
the mean of an exponentially distributed, random time until departure from the system) is common
knowledge, which is restrictive. We note that there is a sizable body of literature leading to the
papers by Board and Skrzypacz [2010] and Pai and Vohra [2013], and discussed therein. We do not
repeat that discussion here.

It is worth contrasting the present paper with the aforementioned mechanism design research:

1. We allow for customers’ discount factors to be private information, akin to the the hard
‘unknown deadlines’ version of the problem studied by Pai and Vohra [2013]). In addition,
we assume that customers have a ‘monitoring cost’ and allow this cost to be correlated with
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their valuation. This is in essence the richest model one might consider for this canonical
problem.

2. We consider a finite horizon problem like Board and Skrzypacz [2010] and Pai and Vohra
[2013]. This makes our model relevant to the vast majority of RM applications (in contrast
with the assumption of a discounted, infinite horizon as in Gallien [2006]).

3. We provide a mechanism that enjoys a constant factor approximation guarantee relative to
the optimal mechanism for our setting. The optimal dynamic mechanism is unknown (and
in light of the Pai and Vohra [2013] paper, likely intractable). We provide what is the first
approximation algorithm for this challenging problem.

4. Our mechanism can be implemented as a simple anonymous posted price mechanism; it
constitutes a dynamic pricing policy for the seller. In contrast, neither Board and Skrzypacz
[2010] nor Pai and Vohra [2013] provide dynamic pricing mechanisms; the former requires an
end of season ‘clearing’ auction.

Outside of the three core points of reference discussed above, a nice variety of algorithmic work,
motivated by the presence of consumer strategicity in RM flavored problems, has emerged in recent
years. For instance, the paper by Borgs et al. [2014] considers a setting where a firm with time
varying capacity sets prices over time to maximize revenues in the face of strategic customers.
Inventory cannot be carried over from one epoch to the next. Like Pai and Vohra [2013], customers
have arrival times, deadlines and valuations. However, these quantities are assumed known. The
focus of the paper is thus on the dynamic optimization problem that arises in this setting and the
authors contribute a surprising dynamic programming formulation. It is worth mentioning that
Said [2012] considers and solves a mechanism design problem for a setting similar to Borgs et al.
[2014] with the exception that customers have discount rates (as opposed to deadlines) that are
homogeneous and known, and valuations remain unobserved. Finally, a recent paper by Caldentey
et al. [2015] examines a very similar problem but in the absence of priors, optimizing instead a
regret objective

Akan et al. [2009] consider a variant of the mechanism design problem where customers lives
are the entirety of the selling horizon (i.e. all customers are present at time zero), but they become
aware of their valuations at a time known to them. Customers have no preference with respect to
the time of allocation and do not incur monitoring costs. The authors are able to construct the
optimal mechanism in this setting; of course, the assumption that all customers are available to
make a decision at the start of the horizon is restrictive and detracts from RM applications.

Although fairly distinct from the RM problem we focus on, a related interesting stream of
literature has emerged focused on problems wherein a seller has multiple interactions with a buyer.
This setting corresponds naturally to some recent applications of RM techniques, such as the
allocation of impressions online to a set of advertisers, and affords the seller the opportunity to
learn about customers over time. An early paper in this setting is Bergemann and Välimäki [2010];
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that work focuses on efficient mechanisms. More recently, several papers have presented revenue
maximizing solutions to variants around this common theme. These include Kakade et al. [2013]
and Pavan et al. [2014]. The Kakade et al. [2013] paper provides a particularly elegant description
of this interesting class of problems and an equally interesting, Meyersonian solution.

2. Model

We are concerned with a seller who is endowed with x0 units of inventory of a single product, which
she must sell over the finite selling horizon [0, T ] via an anonymous posted price mechanism, all of
which is common knowledge. We denote the price posted at time t by πt. We denote the inventory
process by Xt and the corresponding sales process by Nt; Nt = x0−Xt. We require that πt depend
only on the history of the pricing and sales process2.

Customers arrive over this period according to a Poisson process of rate λ; an extension to
non-homogenous processes is possible. A customer arriving at time t is endowed with a valuation,
v, a time discount factor, α, and a monitoring cost θ, all non-negative. We denote by φ, the ‘type’
of an arriving customer which we understand to be the tuple

φ , (tφ, vφ, θφ, αφ) .

In the sequel, we will make the dependence of each component on φ explicit only when needed.
After making a purchase decision, customers exit the system. Assume that such a customer chooses
to delay making a purchase decision to time τφ ≥ tφ, and define the tuple yφ , (τφ, aφ, pφ), where
pφ = πτφ . If the seller has inventory to allocate3 and if the allocation provides the customer greater
utility than no allocation then aφ = 1; otherwise aφ = 0. Such a customer garners utility

U(φ, yφ) = aφ
(
e−αφ(τφ−tφ)vφ − pφ

)
− θφ(τφ − tφ).

Modeling inter-temporal preferences and monitoring costs as we have above is relatively common-
place in the literature; see for instance Aviv and Pazgal [2008], Cachon and Swinney [2009], Su
and Zhang [2009], and Cachon and Feldman [2015]. In fact, Moon et al. [2015] directly estimate a
special case of this model in an online RM context.

We assume that a customer’s type φ is private information, drawn from a distribution that is
common knowledge. For the sorts of RM applications alluded to in the introduction, heterogeneity
in α allows us to capture heterogeneity in customers’ aversion to the risk of not obtaining the
product while θ parameterizes the cost he incurs in monitoring prices. We denote by θ a lower-
bound on the monitoring cost of a customer; this quantity is potentially zero. We denote the
marginal distribution (c.d.f.) of product valuations, v, by F (·) and the corresponding p.d.f. by

2More formally, we require πt to be left continuous, and adapted to Ft− where Ft = σ(πt, Xt).
3Multiple customers revealing themselves to the seller at the same time are allocated inventory in random order.
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f(·). We denote F̄ (·) , 1 − F (·). We assume that a customer’s valuation v is independent of his
discount factor α. We make a standard assumption on the valuation distribution:

Assumption 1. v − F̄ (v)
f(v) is non-decreasing in v and has a non-negative root, v∗.

Customers are forward looking and employ (symmetric) stopping rules contingent on their type
that constitute a symmetric Markov Perfect equilibrium. In particular, for customer type φ, τφ is
a stopping rule with respect to the filtration generated by the price process, Pt, and solves4 the
optimal stopping problem

sup
τ≥tφ

E
[
U(φ, τ)|Ptφ

]
,

where the expectation assumes that other customers use a symmetric stopping rule.
Our goal in this paper is to construct a price process πt, and exhibit a corresponding stopping

rule τπ to ‘maximize’ the seller’s expected revenue

Jπ,τπ(x0, T ) = E
[∫ τ̂∧T

0
πtdNt

]
,

where τ̂ = inf{t : Xt = 0}. We will not characterize an optimization problem to find an optimal
such dynamic pricing policy, Rather, we will measure the performance of the robust dynamic pricing
algorithm that is the subject of this paper via-a-vis an optimal dynamic mechanism benchmark
that we discuss next.

2.1. An Optimal Dynamic Mechanism Benchmark

We denote by ht , {φ : tφ ≤ t} the set of customers (or more carefully, customer types) that arrive
prior to time t. We restrict ourselves to direct mechanisms.

A mechanism specifies an allocation and payment rule that we encode as follows: customer φ
is assigned

yφ , (τφ, aφ, pφ) ,

where τφ ≥ tφ is the time of allocation, aφ is an indicator for whether or not a unit of the product
is allocated and pφ is the price paid by the customer. Note that yφ depends on hT . Denote by
yt , {yφ : τφ ≤ t} the set of decisions made up to time t. Finally denote the seller’s information
set by Ht, the filtration generated by the customer reports made up to time t and assignment
decision prior to time t. Specifically, Ht = σ

(
ht, yt−

)
. A feasible mechanism satisfies the following

properties:

1. Causality: τφ is a stopping time with respect to the filtration Ht. Moreover, aφ and pφ are
Hτφ-measurable.

4We will later demonstrate existence of such an equilibrium stopping rule for a specific class of pricing policies.
We do not prove existence in general.
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2. Limited Inventory: The seller cannot allocate more units of product than her initial allocation:∑
φ∈hT aφ ≤ x0, a.s.

3. No Participation Fee: pφ = 0 if aφ = 0.

We denote by Y, the class of all such rules, yT . The seller collects total revenue

Π
(
yT
)
,
∑
φ∈hT

pφ,

whereas the utility garnered by customer φ is U(φ, yφ). The utility garnered by customer φ when
he reports his true type as φ̂ is then given by U(φ, yφ̂), where customer φ can only reveal his arrival
no earlier than his true arrival (i.e., tφ̂ ≥ tφ), and yφ̂ depends on hT \{φ} ∪ {φ̂}.

The seller now faces the following optimization problem that seeks to find an optimal dynamic
mechanism.

maxyT∈Y E
[
Π
(
yT
)]

subject to E−φ [U(φ, yφ)] ≥ E−φ
[
U(φ, yφ̂)

]
, ∀ φ, φ̂, s.t. tφ̂ ≥ tφ (IC)

E−φ [U(φ, yφ)] ≥ 0 , ∀ φ. (IR)

(1)

Denote by J∗(x0, T ) the optimal value obtained in the problem above. We have the following
result5 illustrating that this constitutes an interesting benchmark (a proof may be found in the
Appendix):

Lemma 1. (Valid Benchmark) For any pricing policy (π, τπ), we have that

Jπ,τπ(x0, T ) ≤ J∗(x0, T ).

It is worth pausing to discuss two salient facts pertinent to the formulation above:

1. The formulation allows for general mechanisms. As our objective is to produce a benchmark,
this generality is desirable, as it will imply a guarantee among a much broader class of
mechanisms than those that rely purely on anonymous posted prices.

2. The formulation requires truth telling be the best response in expectation over all possible
customers arrival process. This is weaker than dominant strategies (as in Gallien [2006]),
as well as weaker than the the requirement placed on the stopping rules assumed when a
pricing mechanism is employed (which allowed customers to observe the price history); cor-
respondingly this benchmark is no weaker than the optimal mechanisms for those respective
cases.

5The result is straightforward; we prove it since a standard revelation principle Lemma for this setting does not
appear to be available in the literature.
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3. Robust Dynamic Pricing

This section presents a robust dynamic pricing policy {πt} that induces customers to behave my-
opically, and that guarantees the seller expected revenues that are within a constant factor of the
optimal mechanism benchmark, J∗(x0, T ).

Specifically, we define a feasible set of pricing policies that satisfy an additional ‘robustness’
constraint. Let Ft = σ(πt, Xt) and define by Gt = Ft− the filtration yielded by the left limit of Ft.
We require:

1. πt is left-continuous and adapted to Gt.

2. πt satisfies a constraint we dub the ‘restricted sub-martingale’ constraint. Specifically, for all
t such that Xt− > 0, we require:

E
[
(πt − πt′)+ ∣∣Gt] ≤ θ(t′ − t) (2)

for all t′ ≥ t where the expectation assumes that all customers behave myopically.

3. πt =∞ if Xt− = 0.6

Denote by Π the set of all processes satisfying the three constraints above. We then seek to solve
the following dynamic optimization problem:

Ĵ∗(x0, T ) , sup{πt}∈Π E
[∫ τ̂∧T

0
πtdNt

]
(3)

where Nt is a point process with instantaneous rate λF̄ (πt); see Brémaud [1981]. Notice that
this optimization problem does not consider any strategic behavior on the part of customers. The
only aspect in which it differs from the ‘typical’ revenue revenue management problem is the con-
straint placed on sample paths of the pricing policy via the restricted sub-martingale constraint (2).

Motivation: In the absence of the restricted sub-martingale constraint (2), the dynamic op-
timization problem above is identical to what one may consider the canonical RM problem studied
in Gallego and van Ryzin [1994]. The second constraint implies

E [πt′ |Gt] ≥ πt − θ(t′ − t).

This allows an interesting interpretation of the constraint. If customers have no monitoring cost
whatsoever, this constraint requires the pricing process to be a submartingale. As monitoring costs
grow higher, this constraint grows weaker. In the limit of infinite monitoring costs, the constraint
is vacuous (and we are back to the canonical RM problem with myopic customers as one might

6We adopt the convention ∞ · 0 = 0.
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expect). Consequently, the constraint limits the extent of the ’price drop’ a customer arriving to
the system may hope to gain from waiting to purchase. The extent of this limitation grows stronger
as it becomes cheaper for customers to wait.

Computation: The problem of computing an optimal robust pricing policy is akin to the prob-
lem of computing an optimal dynamic pricing policy, with additional requirement that the policy
computed satisfy the restricted sub-martingale constraint. This additional constraint is effectively
a constraint on sample paths of the pricing policy and it is ex-ante unclear that the solution of a
such a problem is amenable to a traditional dynamic programming. Fortunately, in Section 6, we
prove that the restricted sub-martinagle constraint is, under mild technical conditions, equivalent
to a local constraint on sample paths of the pricing policy that permits a dynamic programming
solution using a so-called ‘post-decision’ state. In summary, this allows us to compute an optimal
solution to the robust pricing problem via the solution of a three-dimensional HJB equation; the
standard (myopic) dynamic pricing problem admits a two-dimensional HJB equation.

3.1. Performance Guarantee for Robust Pricing

We present here our principle results for the robust pricing policy. First, we establish an equilibrium
stopping rule for customers when the seller follows a robust pricing policy; specifically we show that
customers behave myopically:

Lemma 2. (Myopia) Assume that the seller adopts a robust dynamic pricing policy, and further,
that all customers of type φ̂ 6= φ behave myopically: that is they follow the stopping rule τφ̂ = tφ̂.
Then, φ’s best response is to use the stopping rule τφ = tφ.

Proof. Now, since the inter arrival times of customers are exponential (and so, memoryless), and
moreover, since Ftφ = Gtφ a.s. when customer φ chooses to not make a purchase at his time of
arrival (and consequently does not reveal himself), we have that customer φ’s best response may
be calculated by solving the optimization problem:

max
τφ

E
[
U(φ, τφ)|Gtφ

]
.

We will show that U(φ, t) is a Gt-super-martingale on t ≥ tφ when Xtφ− > 0; if Xtφ− = 0, the claim
of the lemma is trivial. Doob’s optional sampling theorem then immediately implies that

U(φ, tφ) ≥ max
τφ

E
[
U(φ, τφ)|Gtφ

]
which is the result. To finish the proof, we show that U(φ, t) is a Gt-super-martingale on t ≥ tφ.
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We have, for t ≥ t′ ≥ tφ:

E [U(φ, t)|Gt′ ] = E
[(
e−αφ(t−tφ)vφ − πt

)+ ∣∣Gt′]− θφ(t− t′)− θφ(t′ − tφ)

≤
(
e−αφ(t−tφ)vφ − πt′

)+
+ E

[
(πt′ − πt)+ ∣∣Gt′]− θφ(t− t′)− θφ(t′ − tφ)

≤
(
e−αφ(t−tφ)vφ − πt′

)+
− θφ(t′ − tφ)

= U(φ, t′).

where the second inequality follows from the restricted sub-martingale constraint. This completes
the proof. �

Denote by π̂∗ an optimal solution to (3). The previous Lemma shows that (an) equilibrium
stopping rule for customers facing such a pricing policy is the myopic rule τφ = tφ. We next
present the main performance guarantee for this paper. Specifically, we show that the optimal
robust pricing policy guarantees revenues that are within a constant factor of the revenue under
the optimal dynamic mechanism benchmark presented in the preceding section:

Theorem 1. Let π̂∗ be an optimal robust pricing policy. Moreover, denote by τ π̂∗ the corresponding
(myopic) stopping rule τ π̂∗φ = tφ. We then have that

Jπ̂∗,τ π̂∗ (x0, T ) ≥ 0.29J∗(x0, T ).

This result is remarkable from two perspectives:

1. From a theoretical perspective, as discussed in our review of the literature, optimal mechanism
design for the revenue management problem considered here is difficult. Pai and Vohra [2013]
make the case that an optimal solution is likely intractable. In light of this, it is remarkable
that a simple, easy to interpret anonymous pricing policy enjoys a uniform performance
guarantee.

2. From a practical perspective, the mechanism we propose is easily implemented, seeing as it is
precisely the same format (anonymous pricing) as the plurality of (myopic) RM policies used
today, and enjoys modest information requirements.

The next two sections are dedicated to establishing Theorem 1. In anticipation of these sections,
however, we find it useful to point out two salient features of our proof of this theorem:

1. We show, in fact, that the guarantee above holds for a sub-optimal robust pricing policy. This
sub-optimal policy can be interpreted as the optimal policy for an infinite horizon dynamic
pricing problem with a certain ‘optimized’ discount rate.

2. The (sub-optimal) policy used to establish our result requires no knowledge of θ, so that the
information requirements of this policy are identical to the information requirements of the
dynamic pricing problem with myopic customers.
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The next two sections are dedicated to a proof of Theorem 1. Broadly, this will proceed in two
steps. The first step (Section 4) entails producing an upper bound on the sellers revenue under the
optimal dynamic mechanism, J∗(x0, T ). It will be important that we connect this upper bound to
the value under a certain dynamic pricing scheme. The second step (Section 5 entails constructing a
feasible robust dynamic pricing policy and comparing its revenue to J∗(x0, T ) via the upper bound
computed in Section 4. This will conclude the proof of our performance guarantee.

4. Analysis: An Optimal Dynamic Mechanism Upper Bound

Towards establishing Theorem 1, we find it useful to compute an upper bound on J∗(x0, T ), the rev-
enue under the optimal dynamic mechanism, in terms of the revenue under an optimal (discounted,
infinite horizon) dynamic pricing policy when customers are myopic. To this end, we first prove an
intuitive upper bound on J∗(x0, T ) that connects this quantity to a static problem. Specifically, let
us denote by φn, the customer with the nth largest valuation, vφn , vn, from among all customers
arriving within the sales horizon, T . Let x̂ = x0 ∧max{n : vn ≥ v∗}. We then show:

J∗(x0, T ) ≤ E

 ∑
n:n≤x̂

(
vn − F̄ (vn)

f(vn)

) .
This upper bound enjoys a simple interpretation: specifically, it is the expected revenue under
an optimal (static) auction for x0 units of an item, where the expectation is over the number of
participants in the auction. This result requires we consider a relaxation of our dynamic mechanism
design problem where customers can only distort valuation (as opposed to type), and produce a
further relaxation employing a suitable envelope theorem. Having proved this result, we will be able
to connect this upper bound to a standard (discounted, infinite horizon) dynamic pricing problem.

4.1. A Relaxed Problem

Let us denote by φv′ the report of customer φ when he distorts his valuation to v′. In particular:

φv′ ,
(
tφ, v

′, θφ, αφ
)

and consider the following weakened incentive compatibility constraint:

E−φ [U(φ, yφ)] ≥ E−φ
[
U(φ, yφv′ )

]
, ∀ φ, v′ (IC’)

(IC’) is a relaxation of (IC) since we only allow for distortions of valuation. In what follows, we
will frequently drop the −φ subscript on the expectation where it is clear from context. We now
derive an upper bound on the expected price paid by customer φ for any feasible mechanism that
satisfies (IR) and (IC’):
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Lemma 3. If (IC’) and (IR) hold, then for any φ,

E [pφ] ≤ vφE
[
aφe
−αφ(τφ−tφ)

]
−
∫ vφ

v′=0
E
[
aφv′e

−αφ
(
τφv′
−tφ
)]
dv′. (4)

Proof. Denote by u(φ, y) the derivative of U with respect to v, treating y as a constant. We have:

E [U(φ, yφ)] = E[U(φv, yφv)]

= E
[∫ vφ

v′=0
u
(
φv′ , yφv′

)
dv′ + U(φ0, yφ0)

]
≥ E

[∫ vφ

v′=0
u
(
φv′ , yφv′

)
dv′
]

= E
[∫ vφ

v′=0
aφv′e

−αφ
(
τφv′
−tφ
)
dv′
]

=
∫ vφ

v′=0
E
[
aφv′e

−αφ
(
τφv′
−tφ
)]
dv′.

where the first equality is (IC’), the second equality follows from the envelope theorem (specifically,
Theorem 2 of Milgrom and Segal [2002]), the first inequality is due to (IR), and the final equality
is via Fubini’s theorem. Further, note that:

E[U(φ, yφ)] = E
[
vφaφe

−αφ(τφ−tφ) − pφ − θ(τφ − tφ)
]

≤ E
[
vφaφe

−αφ(τφ−tφ) − pφ
] ,

so that with the prior inequality, we have:

E [pφ] ≤ vφE
[
aφe
−αφ(τφ−tφ)

]
−
∫ vφ

v′=0
E
[
aφv′e

−αφ
(
τφv′
−tφ
)]

which is the result. �

Now, since Lemma 3 is implied by (IC) and (IR) (noting that (IC’) is implied by (IC)), we
have that the following optimization problem (whose optimal value we denote by J̄∗(x0, T )) is a
relaxation of the optimization problem for J∗(x0, T ):

maxyT∈Y E
[
Π
(
yT
)]

subject to E [pφ] ≤ vφE
[
aφe
−αφ(τφ−tφ)

]
−
∫ vφ

v′=0
E
[
aφv′e

−αφ
(
τφv′
−tφ
)]
, ∀ φ

(5)
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4.2. The Relaxation And An Upper Bound

We now analyze the relaxed problem and show that J̄∗(x0, T ), the optimal value of the relaxed
problem (5) satisfies:

J̄∗(x0, T ) ≤ max
yT∈Y

E

 ∑
φ∈hT

(
v − F̄ (v)

f(v)

)
aφ

 .
Lemma 4.

J∗(x0, T ) ≤ J̄∗(x0, T ) ≤ max
yT∈Y

E

 ∑
φ∈hT

(
v − F̄ (v)

f(v)

)
aφ

 .
Proof. The first inequality is evident since the optimization problem for J̄∗(x0, T ) is a relaxation
of that for J∗(x0, T ). Now, observe that the constraint defining E[pφ] must be tight at an optimal
solution, so that

J̄∗(x0, T ) = max
yT∈Y

E

 ∑
φ∈hT

vφE−φ
[
aφe
−αφ(τφ−tφ)

]
−
∫ vφ

v′=0
E−φ

[
aφv′e

−αφ
(
τφv′
−tφ
)]
dv′


where the notation E−φ makes explicit that an expectation is over −φ. Now, denote by W (φ), the
following quantity, marginalized over vφ:

W (φ) =
∫ ∞
vφ=0

(
vφE−φ

[
aφe
−αφ(τφ−tφ)

]
−
∫ vφ

v′=0
E−φ

[
aφv′e

−αφ
(
τφv′
−tφ
)]
dv′
)
f(vφ)dvφ,

so that

J̄∗(x0, T ) = max
yT∈Y

E

 ∑
φ∈hT

W (φ)

 . (6)

Now, applying the ‘standard trick’ of interchanging integrals for the second term in the integrand
in W (φ), we have: ∫ ∞

vφ=0

∫ vφ

v′=0
E−φ

[
aφv′e

−αφ
(
τφv′
−tφ
)]
f(vφ)dv′dvφ

=
∫ ∞
v′=0

E−φ
[
aφv′e

−αφ
(
τφv′
−tφ
)] ∫ ∞

vφ=v′
f(vφ)dvφdv′

=
∫ ∞
v′=0

E−φ
[
aφv′e

−αφ
(
τφv′
−tφ
)]
F̄ (v′)dv′

so that,

W (φ) =
∫ ∞
vφ=0

(
vφ −

F̄ (vφ)
f(vφ)

)
E−φ

[
aφe
−αφ(τφ−tφ)

]
f(vφ)dvφ.
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Substituting W (φ) in (6) with this identity, and applying Fubini’s theorem, we have:

J̄∗(x0, T ) = max
yT∈Y

E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ)

)
aφe
−αφ(τφ−tφ)


≤ max

yT∈Y
E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ)

)
aφ


which is the result. �

4.3. The Discounted Infinite Horizon Problem As An Upper Bound

Recall that Ĵ∗β(x0) denotes the optimal value of the discounted, infinite horizon dynamic pricing
problem, with myopic customers and discount rate β > 0, i.e.

Ĵ∗β(x0) = max
π∈Π̂

E
[∫ τ̂

0
e−βtπtdNt

]
.

where Π̂ is the set of left continuous pricing policies, adapted to Gt, satisfying πt =∞ if Xt− = 0.
As our final step for this section, we use the result of Lemma 4, in connection with an interesting
representation of Ĵ∗β(·) to effectively relate our dynamic mechanism design benchmark to a simple
dynamic pricing problem with myopic customers.

Lemma 5.

Ĵ∗β(x0) = max
y∞∈Y

E

 ∑
φ∈h∞

e−βtφ

(
vφ −

F̄ (vφ)
f(vφ)

)
aφ

 .
Proof. Observe that if, on a given sample path, under the optimal policy we accept φ, thereby
earning vφ −

F̄ (vφ)
f(vφ) , then we would have accepted all φ′ = (tφ, vφ′ , θφ, αφ) such that vφ′ ≥ vφ, since

such an acceptance would earn

vφ′ −
F̄ (vφ′)
f(vφ′)

≥ vφ −
F̄ (vφ)
f(vφ)

since v − F̄ (v)
f(v) was assumed to be non-decreasing. Consequently, by the optimality of stationary

policies, the optimal policy takes the following form:

π(φ,Xtφ−) =

1, if vφ ≥ π̃(Xtφ−).

0, otherwise.
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with π̃(0) ,∞. Call the family of all such functions Π̃. Consequently, we have

max
y∞∈Y

E

 ∑
φ∈h∞

e−βtφ

(
vφ −

F̄ (vφ)
f(vφ)

)
aφ

 = max
π̃∈Π̃

E

 ∑
φ∈h∞

e−βtφE
[(
vφ −

F̄ (vφ)
f(vφ)

)
I
[
vφ ≥ π̃(Xtφ−)

]]
= max

π̃∈Π̃
E

 ∑
φ∈h∞

e−βtφF̄ (π̃(Xtφ−))π̃(Xtφ−)


= Ĵ∗β(x0)

where the second inequality used the fact that∫ ∞
v=p

(
vf(v)− F̄ (v)

)
dv = pF̄ (p).

This completes the proof. �

Combining, Lemmas 5 and 4 yield the final result for this section, an upper bound on J∗(x0, T )
in terms of the optimal value of a (discounted, infinite horizon) dynamic pricing problem with
myopic customers:

Lemma 6. For any β > 0, we have:

J∗(x0, T ) ≤ eβT Ĵ∗β(x0).

Proof. We have:

J∗(x0, T ) ≤ max
yT∈Y

E

 ∑
φ∈hT

(
v − F̄ (v)

f(v)

)
aφ


= max

y∞∈Y
E

 ∑
φ∈hT

(
v − F̄ (v)

f(v)

)
aφ


= eβT max

y∞∈Y
E

 ∑
φ∈hT

e−βT
(
v − F̄ (v)

f(v)

)
aφ


≤ eβT max

y∞∈Y
E

 ∑
φ∈hT

e−βtφ

(
v − F̄ (v)

f(v)

)
aφ


≤ eβT max

y∞∈Y
E

 ∑
φ∈h∞

e−βtφ

(
v − F̄ (v)

f(v)

)
aφ


= eβT Ĵ∗β(x0)

where the first inequality is Lemma 4, the second inequality follows since T ≥ tφ for all φ ∈ hT .
The final equality is Lemma 5. �
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5. A Robust Dynamic Pricing Lower Bound and The Approximation
Guarantee

Our analysis in this section will complete the proof of Theorem 1 using the upper bound on the
optimal dynamic mechanism, J∗(x0, T ) established in the preceding section. We will accomplish
this in the following steps:

1. First, we construct a feasible robust dynamic pricing policy that is, in effect, the optimal
policy for the discounted, infinite horizon problem, applied over a finite horizon.

2. We then prove that this policy accrues expected revenues that are within a constant factor
of the optimal infinite horizon revenue.

3. Using this result along with the upper bound on the optimal dynamic mechanism proved in
Lemma 6 will yield Theorem 1.

5.1. Infinite Horizon Dynamic Pricing

Consider the infinite horizon dynamic pricing problem introduced in previous sections. Specifically,
recall that we defined

Ĵ∗β(x0) = max
π∈Π̂

E
[∫ τ̂

0
e−βtπtdNt

]
.

where τ̂ = inf{t : Nt = x0}, and where Π̂ is the set of left continuous pricing policies, adapted to
Gt, satisfying πt =∞ if Xt− = 0. We denote by {π̂∗β,t} an optimal policy. From Farias and Van Roy
[2010], we have that π̂∗β,t , π̂∗β(Xt−), where for all x > 0, π̂∗β(x) is the root of the equation

p− F̄ (p)
f(p) = Ĵ∗β(x)− Ĵ∗β(x− 1). (7)

The optimal price process enjoys the following properties:

Lemma 7. On every sample path, π̂∗β,t is non-decreasing in t while π̂∗β,tF̄ (π̂∗β,t) is non-increasing in
t.

Proof. The first claim is Lemma 1 of Farias and Van Roy [2010]. For the second claim, we observe
that since Ĵ∗β(x) ≥ Ĵ∗β(x−1), it follows from Assumption 1 that π̂∗β,t ≥ v∗ for all t. Now, since pF̄ (p)
is non-increasing in p on p ≥ v∗ by Assumption 1, it follows that π̂∗β,tF̄ (π̂∗β,t) is also non-increasing
in t. �

These properties of the price process yield the following simple result which will be crucial for
our lower bound.
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Lemma 8. Let T, T ′ > 0, with T > T ′. We have:

E
[∫ τ̂∧T

0
π̂∗β,tdNt

]
≤ T

T ′
E
[∫ τ̂∧T ′

0
π̂∗β,tdNt

]

Proof. Since π̂∗β,tF̄ (π̂∗β,t) is non-increasing in t (as established in the preceding Lemma), we have
immediately that ∫ τ̂∧T

0
π̂∗β,tF̄ (π̂∗β,t)dt ≤

T

T ′

∫ τ̂∧T ′

0
π̂∗β,tF̄ (π̂∗β,t)dt.

The above inequality must also therefore hold in expectation. Now Nt −
∫ t
0 π̂
∗
β,t′F̄ (π̂∗β,t′)dt is a Gt

martingale by construction (see Brémaud [1981]), so that

E
[∫ τ̂∧T

0
π̂∗β,tdNt

]
= E

[∫ τ̂∧T

0
π̂∗β,tF̄ (π̂∗β,t)dt

]

for all T ≥ 0, which completes the proof. �

5.2. A Robust Dynamic Pricing Policy And Proof Of Theorem 1

Now, consider the robust dynamic pricing policy {π̂t} defined according to

π̂t = π̂∗β(Xt−)

for some β > 0. We observe that this is a robust dynamic pricing policy since it is evidently left
continuous and adapted to Gt, and further, trivially satisfies the restricted sub-martingale constraint
since π̂∗β(x) is non-increasing in x. We show that the revenue obtained under this policy (over the
finite horizon T ), is lower bounded by a function of the optimal discounted infinite horizon revenue
(when the discount rate is β):

Lemma 9.
Ĵ∗β(x0) ≤

(
1 + e−βT

βT

)
Ĵ∗(x0, T ).

Proof. Denote by X an exponential random variable with rate β that is independent of the arrival
process and customer types. Then,

Ĵ∗β(x0) = E
[∫ τ̂

0
e−βtπ̂∗β,tdNt

]
= E

[∫ τ̂∧X

0
π̂∗β,tdNt

]

where the equality follows from Fubini’s theorem. Moreover, since π̂t as defined prior to the
statement of the Lemma is a feasible robust dynamic pricing policy,

E
[∫ τ̂∧T

0
π̂∗β,tdNt

]
≤ Ĵ∗(x0, T ).
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But applying Lemma 8 to every realization of X and taking expectations yields

E
[∫ τ̂∧X

0
π̂∗β,tdNt

]
≤ E

[
max

{
1, X
T

}]
E
[∫ τ̂∧T

0
π̂∗β,tdNt

]
.

Since
E
[
max

{
1, X
T

}]
= 1 + e−βT

βT
,

the result follows. �

We can now complete our proof of Theorem 1. Two inequalities established in Lemma 6 and
Lemma 9 yield

Ĵ∗(x0, T ) ≥ 1
eβT + 1/βT J

∗(x0, T )

for any β > 0. Noting that Jπ̂∗,τ π̂∗ (x0, T ) = Ĵ∗(x0, T ), and taking β = 1/1.42T in the preceding
inequality yields Theorem 1.

6. Computing Optimal Robust Dynamic Pricing Policies

This section presents an approach to computing an optimal robust dynamic pricing policy. The
approach proceeds by characterizing the optimal robust dynamic pricing policy via an appropriate
Hamilton-Jacobi-Bellman (HJB) PDE. While such characterizations are typically routine, in our
case, the characterization merits careful attention. Specifically:

1. The restricted sub-martingale constraint ostensibly places a constraint on sample path prop-
erties of the pricing policy, and such constraints are not amenable to dynamic programming
approaches in general. In our case, however, we show that this constraint is equivalent to a
‘local’ constraint on optimal prices.

2. The dynamic programming formulation appears to require the use of a so-called ‘post-decision’
state which is atypical for dynamic programming formulations employed in the context of
dynamic pricing.

Before proceeding we restrict attention to a specific class of robust dynamic pricing policies
that are sufficiently ‘regular’ to admit analysis. We will restrict attention to robust pricing policies
within this class.

Assumption 2 (Regularity). Denote by {tn} the set of times at which a sale occurs. Let πc
t be a

continuous, piecewise differentiable process, adapted to Ft and potentially non-differentiable only
on the set {tn}. Moreover, let ∆t be a bounded left continuous process adapted to Ft. We require
that πt admit the decomposition:

πt = πc
t +

∑
tn<t

∆tn
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where both
∣∣∣∂−∂t πc

t

∣∣∣ and |∆t| are bounded above by some constant B7.

We refer to the class of robust pricing policies that satisfy Assumption 2 as regular robust
pricing policies. Observe that the decomposition above is intuitive – specifically, it decomposes the
pricing policy into a ‘continuous’ component and a ‘jump’ component. Our focus in this section will
be presenting a dynamic programming approach to computing an optimal regular robust pricing
policy. Our first step in this task is to present a ‘local’ property on price paths that is equivalent
to the restricted sub-martingale constraint for robust pricing policies.

6.1. A Local Constraint On Prices

Recall that the restricted sub-martingale constraint (2) on dynamic pricing policies took the form:

E
[
(πt − πt′)+ ∣∣Gt] ≤ θ(t′ − t) a.s.

for all times t ≤ t′. We show that for regular robust pricing policies this is equivalent to a local
condition. The proof is somewhat technical in nature and deferred to the appendix.

Proposition 1. A regular robust pricing policy π satisfies the restricted sub-martingale constraint
(2) if and only if it satisfies

(
∂−
∂s
πc
s

)−
+ λF̄ (πs) (∆s)− ≤ θ a.s. (8)

for all s.

Beyond being computationally useful (as we shall see), the result above is illuminating. Specif-
ically, it makes precise the notion that we do not want to allow prices to fall ‘too quickly’; an idea
is at the heart of robust pricing.

6.2. The HJB Equation

Denote by Y the state space R × R × N. Denote by y , (s, p, x) a generic element of Y. Let
J : Y → R, be given, differentiable in its first two arguments and satisfying J(T, ·, ·) = 0, and
J(·, ·, 0) = 0. Denote by J the set of all such functions. Denote ΠM , {πM} where πM : Y → R×R
denote a Markov ‘pricing policy’. We require

(πM(y)0)− + λF̄ (p)(πM(y)1)− ≤ θ ∀y ∈ Y,

and further that (πM(y)0)− and (πM(y)1)− are both zero if p = 0, while ‖πM(y)‖∞ ≤ B ∀y ∈ Y.
Let Π denote the set of all such markov policies. Finally, define the operator HπM acting on J

7B is allowed to depend on problem data – namely λ, x0, T and the distribution of reservation prices.
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according to:

(HπMJ)(y) = ∂

∂s
J(s, p, x) + ∂

∂p
J(s, p, x)πM(s)0 +

[
p+ J(s, p+ πM(s)1, x− 1)− J(s, p, x)

]
λF̄ (p)

for all y such that s < T and x > 0. Outside this set, we define (HπMJ)(y) to be identically 0. The
HJB equation for our problem can then be stated as

sup
πM∈ΠM

HπMJ = 0 (9)

While we will derive rigorous results shortly, it is worth making a few informal comments here.
The HJB equation above is easy to intuit by considering an appropriate discrete time system and
taking formal (non-rigorous) limits. There, one sees the role of the various state variables: s and
x (time, and inventory) are usual and make an appearance in the HJB equation for the standard
dynamic pricing problem. The third state variable is current price (p), and encapsulates all the
information needed to guarantee a robust pricing policy. In general, this third state variable would
have required us to track the entire history of the price process (leading to an intractable problem),
but in our case, thanks to the result of Proposition 1, simply tracking the current price is sufficient
yielding en effective stat-space collapse.
We next assume that the HJB equation admits a solution:

Assumption 3. The HJB equation admits a solution J∗ ∈ J .

Now, since the supremum of a continuous function over a compact set is attained, we know that
the supremum in the HJB equation is attained; denote by π∗(y) such a point. Moreover, the set of
points attaining the supremum varies continuously in s and p. We thus define the regular robust
pricing policy π∗ according to

π∗t =
∫ t

0
π∗,M(s)0ds+

∑
tn<s

π∗,M(s)1 (10)

We now present the main result for this section, showing that a solution to the HJB equation yields
an optimal robust pricing policy.

Theorem 2. Let π∗ be the pricing policy obtained as the solution to the HJB equation, as defined
in (10). Let πs be any regular robust pricing policy. Then,

E
[∫ T

0
λπsF̄ (πs)ds

]
≤ E

[∫ T

0
λπ∗s F̄ (π∗s)ds

]
.

The proof of Theorem 2 can be found in the Appendix. Contrasting the HJB equation here
with that one would encounter in a ‘vanilla’ dynamic pricing problem (such as in, say, Gallego
and van Ryzin [1994]) shows that the additional computational complexity here is marginal – a
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three dimensional problem as opposed to two. In essence, the HJB equation here must control the
rate at which the price is ‘discounted’ between successive sales, and in doing so guarantees that the
restricted sub-martingale constraint on prices is met. As mentioned previously, since this constraint
depends on the current price, it then becomes necessary to track the current price as part of the
state as well.

7. Numerical Experiments

The goal of the present section is to complement our theoretical analysis with several numerical
experiments. Specifically, we have three goals:

1. Characterizing sub-optimality of the robust pricing mechanism relative to an optimal dynamic
pricing mechanism (since our uniform performance guarantee is unlikely to be tight). Here
we would like to make the point that one might expect near optimal performance in practice.

2. Characterizing the price of mis-specification: even assuming we could calculate the optimal
dynamic mechanism, such a mechanism would require careful calibration of a variety of pa-
rameters (for instance, customer discount factors). We would like to make the point that the
optimal mechanism is likely to be fragile with respect to mis-specification.

3. Finally, we would like to highlight the performance of a certain non-optimal robust pricing
policy that satisfies our performance guarantees and is easier to compute than the optimal
robust pricing policy.

Recall that we established a uniform performance lower bound on the robust pricing policy π̂∗β
(defined in (7)). In particular, we established this bound for the policy π̂∗β taking β = 1/1.42T .
This section will numerically investigate the performance of π̂∗β, where we will be allowed to tune
β. In addition to performance loss for the robust mechanism, we would like to understand the
risk of mis-specification in an optimal dynamic mechanism. To that end, we will explore explore
the performance loss incurred if the seller misestimates the distribution of customers’ time dis-
count factor α and monitoring cost θ, and implements the optimal dynamic mechanism under
those mis-specified parameters. Throughout this section, we assume that customers’ valuations are
exponentially distributed with parameter 1; i.e., F (v) = 1− e−v for all v ∈ R+.

First, we investigate the performance of π̂∗β. Table 1 reports a lower bound on relative perfor-
mance. Specifically, the lower bound reported is:

LB(x0, T ) ,
maxβ∈B Jπ̂∗

β
(x0, T )

JUB(x0, T ) .

where

JUB(x0, T ) = max
yT∈Y

E

 ∑
φ∈hT

(
v − F̄ (v)

f(v)

)
aφ


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is an upper bound on J∗(x0, T ) by Lemma 4. We selected the optimal β from among a set of
discount factors between 0.01 and 100, examined in increments of 0.01.

Table 1: A lower bound on relative optimality (i.e., LB(x0, T )).

x0 β∗ Jπ̂∗
β∗

(x0, T ) LB(x0, T )
1 0.12 1.49 0.79
2 0.15 2.36 0.84
3 0.18 2.91 0.89
4 0.22 3.26 0.93
5 0.28 3.47 0.96
6 0.34 3.58 0.98
7 0.40 3.64 0.99
8 0.59 3.66 1.00
9 0.77 3.68 1.00

10 0.77 3.68 1.00
Note. The parameters are λ = 1, T = 10.

We make the following two key observations from Table 1:

1. Relative Performance: For a wide range of inventory relative scarcity levels (x0/λT varies
from 0.1 to 1), π̂∗β∗ yields revenues which are at least 79% of the optimal revenue, and in most
cases, more than 90%.

2. Recall that under π̂∗β, customers’ time discount factors and monitoring costs impact neither the
policy nor customers’ behavior: every customer behaves myopically, and the seller’s revenue
is the same as her revenue yielded in the setting in which all customers are myopic. Therefore,
the results in Table 1 are robust, in that they hold under any type distribution of customers’
time discount factors and monitoring costs.

Next, we investigate the robustness (or lack thereof) of the optimal mechanism to mis-specification
of discount factor and monitoring cost. We analyze the setting in which all customers have the
same time discount factor α and monitoring cost θ, but the seller incorrectly believes that all cus-
tomers are effectively infinitely patent and do not incur such costs (α = 0 and θ = 0). The optimal
mechanism under the seller’s belief is simply to conduct a static revenue maximizing auction at the
end of the horizon, whereas the best response from buyers is simply to report their appropriately
discounted value at the end of the horizon (or not participate and leave the system at tφ, if this
quantity turns out to be negative). Denote the revenue yielded under the misspecified ‘optimal’
mechanism by J∗α,θ(x0, T ). In this experiment, we allow α and θ to vary in a wide range (from 0.01
to 1). To understand the cost of the mis-specification of α and θ, we compare the revenue under
this mis-specified policy against that under the robust dynamic pricing policy studied in the last
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experiment, and report the quantity:

UBα,θ ,
J∗α,θ(x0, T )

maxβ∈B Jπ̂∗
β
(x0, T ) .

Table 2 reports the results which are quite stark: In essentially all cases, the mis-specified ‘optimal’
mechanism performed worse than the robust dynamic pricing policy – in many cases substantially
worse.

Table 2: Performance loss for an optimal but mis-specified mechanism (i.e., UBα,θ).

UBα,θ

x0\(α, θ) (.01,.01) (.01,.1) (.01,1) (.1,.01) (.1,.1) (.1,1) (1,.01) (1,.1) (1,1)
1 1.15 0.90 0.22 0.63 0.49 0.17 0.09 0.09 0.06
2 1.05 0.77 0.15 0.52 0.38 0.11 0.06 0.06 0.04
3 0.99 0.69 0.12 0.45 0.32 0.09 0.05 0.05 0.03
4 0.94 0.64 0.11 0.42 0.29 0.08 0.05 0.04 0.03
5 0.90 0.60 0.10 0.39 0.28 0.08 0.04 0.04 0.03
6 0.88 0.58 0.10 0.38 0.26 0.07 0.04 0.04 0.03
7 0.87 0.57 0.10 0.37 0.26 0.07 0.04 0.04 0.03
8 0.86 0.57 0.10 0.37 0.26 0.07 0.04 0.04 0.03
9 0.86 0.57 0.10 0.37 0.26 0.07 0.04 0.04 0.03

10 0.86 0.57 0.10 0.37 0.26 0.07 0.04 0.04 0.03
Note. The parameters are λ = 1, T = 10.

In conclusion, our numerical experiments suggest the following conclusions:

1. The robust dynamic pricing policy offers excellent performance relative to the optimal dy-
namic mechanism. This relative performance appears to far exceed the quality suggested by
our uniform lower bound.

2. The performance loss incurred due to mis-specification of an optimal mechanism might easily
exceed that incurred due to the use of a sub-optimal (but robust) mechanism such as our
robust dynamic pricing policy.

8. Concluding Remarks

We have focused on a rich class of revenue management models. The class of models is rich in that
we allowed for heterogeneity in customer discount factors and monitoring costs; these were private
information in contrast to problems for which the optimal mechanism is known. We proposed a
class of pricing mechanisms for this set of models inspired by two very practical requirements:

1. Pricing mechanisms are the mechanism of choice in RM – departures from such mechanism
in mainstream applications are few and far-between.
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2. It is unclear that calibrating a rich utility model for customers – describing how they discount
or their monitoring costs – is possible given the naturally censored nature of the data available
for such a task.

In the face of these requirements we have demonstrated a policy that is easy to compute and
satisfies a constant factor guarantee with respect to the optimal mechanism. Computing the optimal
mechanism in our setting has been intractable heretofore, and our proposed mechanism constitutes
the first approximation algorithm for the problem that admits uniform guarantees. Computational
experiments suggest that this policy is, for all intents, near optimal.

Looking to the future, one interesting direction for future work is data-centric. Specifically,
it may be possible to collect from data some statistical information about parameters such as
θ and α; Moon et al. [2015] is a good example of empirical work in this direction. The robust
pricing mechanisms we propose are effectively agnostic to much of this information, and it would be
interesting to consider the design of robust mechanisms that are able to use the refined distributional
information at some expense to robustness.
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A. Proofs for Section 2

Lemma 1. (Valid Benchmark) For any pricing policy (π, τπ), we have that

Jπ,τπ(x0, T ) ≤ J∗(x0, T ).

Proof. Consider the class of pricing mechanisms, Yp ⊂ Y, where for a given pricing policy πt,
pφ = πτφ , and aφ = 1 only if doing so yields the buyer a higher utility than no allocation, and if
inventory is available. Now consider the optimization problem:

maxyT∈Yp E
[
Π
(
yT
)]

subject to E−φ
[
U(φ, yφ)|Ptφ

]
≥ E−φ

[
U(φ, yφ̂)|Ptφ

]
, a.s.,∀ φ, φ̂, s.t. tφ̂ ≥ tφ (IC)

E−φ [U(φ, yφ)] ≥ 0 , ∀ φ. (IR)

(11)

Denote by Jπ∗(x0, T ) the optimal value for this problem. Observe now that for any pricing policy
(π, τπ), we must have Jπ,τπ(x0, T ) ≤ Jπ

∗(x0, T ). Specifically, given a policy (π, τπ), consider the
mechanism yπ where the seller commits to ‘simulating’ each customers stopping rule, i.e. use
τφ = τπφ . Since by definition τπφ is a best response to itself and the pricing policy π, (IC) is satisfied
in (11). But (1) is a relaxation of (11), so Jπ∗(x0, T ) ≤ J∗(x0, T ) completing the proof. �

B. Proofs for Section 6

Proposition 1. A regular robust pricing policy π satisfies the restricted sub-martingale constraint
(2) if and only if it satisfies

(
∂−
∂s
πc
s

)−
+ λF̄ (πs) (∆s)− ≤ θ a.s. (12)
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for all s.

Proof. We first show that (8) implies the restricted sub-martingale constraint (2). Specifically, for
all times t ≤ t′:

E
[
(πt − πt′)+ ∣∣Gt] = E

(− ∫ t′

t

∂−
∂s
πc
sds−

∫ t′

t
∆sdNs

)+ ∣∣∣∣∣Gt


≤ E
[∫ t′

t

(
∂−
∂s
πc
s

)−
ds+

∫ t′

t
(∆s)− dNs

∣∣∣∣∣Gt
]

= E
[∫ t′

t

(
∂−
∂s
πc
s

)−
+ λF̄ (πs) (∆s)− ds

∣∣∣∣∣Gt
]

≤ θ(t′ − t) a.s.

where the first inequality follows from a repeated application of Jensen’s inequality, and the final
inequality from assuming (8). We next demonstrate that the restricted sub-martingale constraint
(2) implies the local condition (8). First, define the Gt stopping time τδ according to:

τt,δ = inf
{
t̂ :
∫ t̂

t
λF̄ (πs)ds ≥ δ

}
.

Then, we have from Meyer’s random time-change theorem (Theorem II.T16 in Brémaud [1981]),
that Nt,τt,δ ,

∫ τt,δ
t dNs is distributed as Poisson random variable with parameter δ. Moreover, we

have by construction that
lim
δ→0

τt,δ − t
δ

= 1/λF̄ (πt) a.s.

Now on the set where Nt,τt,δ = 0, we have by Taylor’s theorem and the above limit that

(
πt − πτt,δ

)+
=
(
∂−
∂s
πc
s

)− ∣∣∣∣∣
s=t

δ

λF̄ (πt)
+R1(δ)

where |R1(δ)| = o(δ). While on the set where Nt,τt,δ = 1, we have that

(
πt − πτt,δ

)+
= − (∆t)− +R2(δ),

where |R2(δ)| = O(δ). Both remainder terms are uniformly bounded from above since prices are
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uniformly bounded from above. It follows that

E
[(
πt − πτt,δ

)+ ∣∣Gt] ≥ E
[(
πt − πτt,δ

)+
1Nt,τt,δ=0

∣∣Gt]+ E
[(
πt − πτt,δ

)+
1Nt,τt,δ=1

∣∣Gt]

≥
(
∂−
∂s
πc
s

)− ∣∣∣∣∣
s=t

δ

λF̄ (πt)
E
[
1Nt,τt,δ=0

∣∣Gt]+ (∆t)− E
[
1Nt,τt,δ=1

∣∣Gt]
− E

[
|R1(δ)|1Nt,τt,δ=0

∣∣Gt]− E
[
|R2(δ)|1Nt,τt,δ=1

∣∣Gt]
(13)

Applying the Cauchy-Schwartz inequality to the remainder terms, then, we note that

E
[
|R1(δ)|1Nt,τt,δ=0

∣∣Gt] ≤ √E
[
|R1(δ)|2

∣∣Gt]E
[
1Nt,τt,δ=0

∣∣Gt] =
√

E
[
|R1(δ)|2

∣∣Gt] exp(−δ)

and

E
[
|R2(δ)|1Nt,τt,δ=1

∣∣Gt] ≤ √E
[
|R2(δ)|2

∣∣Gt]E
[
1Nt,τt,δ=1

∣∣Gt] ≤ √E
[
|R2(δ)|2

∣∣Gt] δ exp(−δ)

Replacing the remainder terms in (13) with these upper bounds, dividing through by δ, and then
applying the bounded convergence theorem we immediately have:

lim inf
δ→0

E
[(
πt − πτt,δ

)+ ∣∣Gt] /δ ≥ (∂−
∂s
πc
s

)− ∣∣∣∣∣
s=t

1
λF̄ (πt)

+ (∆t)−

But by Lemma 10, we have that

lim sup
δ→0

E
[(
πt − πτt,δ

)+ ∣∣Gt] /δ ≤ lim sup
δ→0

θE [τt,δ − t|Gt] /δ = θ

λF̄ (πt)

where the equality follows from the bounded convergence theorem. The prior two inequalities now
imply that a pricing policy πt that satisfies the restricted sub-martingale constraint must also satisfy

(
∂−
∂s
πc
s

)−
+ λF̄ (πs) (∆s)− ≤ θ a.s.

for all s. �

Lemma 10. Let τ (assumed ≥ t) be a bounded Gt-stopping time and πt a pricing policy satisfying
the restricted sub-martingale constraint. Then,

E
[
(πt − πτ )+ ∣∣Gt] ≤ θE [τ − t|Gt] a.s.

Proof. Without loss of generality, we prove the result for t = 0. Define

Ms = (π0 − πs)+ − θs
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Now M0 = 0, and observe that Ms is a Gs−supermartingale:

E [Ms′ |Gs] ≤Ms + E
[
(πs − πs′)+ ∣∣Gs]− θ(s′ − s) ≤Ms

where the second inequality follows since πs satisfies the restricted sub-martingale constraint.
Doob’s optional sampling theorem now yields the result. �

The main result of this Section was the following verification theorem showing that a solution
to the HJB equation did, in fact, constitute an optimal robust pricing policy:

Theorem 2. Let π∗ be the pricing policy obtained as the solution to the HJB equation, as defined
in (10). Let πs be any regular robust pricing policy. Then,

E
[∫ T

0
λπsF̄ (πs)ds

]
≤ E

[∫ T

0
λπ∗s F̄ (π∗s)ds

]
.

We prove this theorem next:

B.1. Proof of Theorem 2

For any regular robust pricing policy, πs, we denote, with a slight abuse of notation, the process
(HπJ)s according to:

(HπJ)s = ∂

∂s
J(s, πs, xs) + ∂

∂p
J(s, p, xs)

∣∣∣
p=πs

∂−
∂s

πs

+ [πs + J(s, πs + ∆s, xs − 1)− J(s, πs, xs)]λF̄ (πs)

We define (HπJ)s = 0 on the set where xs = 0. We have the following result adapted from Brémaud
[1981]:

Lemma 11 (Dynkin). For any regular robust pricing policy πs and J ∈ J , we have:

E
[∫ T

0
λπsF̄ (πs)ds

]
= J(0, π0, x0) + E

[∫ T

0
(HπJ)sds

]
.

Proof. We have

J(t, πt, xt) = J(0, π0, 0)

+
∑

0<Tn≤t

[
J(Tn, πTn , xTn)− J(Tn−1, πTn−1 , xTn−1)

]
+ J(t, πt, xt)− J(θt, πθt , xθt)

(14)

where θt = sup{Tn : Tn ≤ t}. Now,

J(Tn, πTn , xTn)− J(Tn−1, πTn−1 , xTn−1) = (J(Tn, πTn , xTn)− J(Tn, πTn , xTn−))

+
(
J(Tn, πTn , xTn−)− J(Tn−1, πTn−1+, xTn−1)

)
+
(
J(Tn−1, πTn−1+, xTn−1)− J(Tn−1, πTn−1 , xTn−1)

)
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But,

J(Tn, πTn , xTn−)− J(Tn−1, πTn−1+, xTn−1)

=
∫ Tn

Tn−1

[
∂

∂s
J(s, p, xs)

∣∣∣
p=πs

+ ∂

∂p
J(s, p, xs)

∣∣∣
p=πs

∂πs
∂s

]
ds,

and ∑
0<Tn≤t

(J(Tn, πTn , xTn)− J(Tn, πTn , xTn−))

=
∫ t

0
(J(s, πs, xs− − 1)− J(s, πs, xs−)) dNs

.

and ∑
0<Tn≤t

(J(Tn, πTn+, xTn)− J(Tn, πTn , xTn))

=
∫ t

0
(J(s, πs + ∆s, xs− − 1)− J(s, πs, xs− − 1)) dNs

.

Substituting in (14), we have a.s. (since Nt −Nt− = 0 a.s.):

J(t, πt, xt) = J(0, π0, 0)

+
∫ t

0

[
∂

∂s
J(s, p, xs)

∣∣∣
p=πs

+ ∂

∂p
J(s, p, xs)

∣∣∣
p=πs

∂πs
∂s

]
ds

+
∫ t

0
[J(s, πs + ∆s, xs − 1)− J(s, πs, xs)]λF̄ (πs)ds

+
∫ t

0
[J(s, πs + ∆s, xs− − 1)− J(s, πs, xs−)] (dNs − λF̄ (πs)ds)

We apply the above representation for t = T , and note that J(T, ·, ·) = 0. Taking expectations,
and adding the expected revenue under the pricing policy πs, namely

E
[∫ T

0
λπsF̄ (πs)ds

]
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to both sides, we immediately have:

E
[∫ T

0
λπsF̄ (πs)ds

]
= J(0, π0, 0)

+
∫ t

0
E
[
∂

∂s
J(s, p, xs)

∣∣∣
p=πs

+ ∂

∂p
J(s, p, xs)

∣∣∣
p=πs

∂πs
∂s

]
ds

+
∫ t

0
E [πs + J(s, πs + ∆s, xs − 1)− J(s, πs, xs)]λF̄ (πs)ds

= J(0, π0, 0) + E
[∫ T

0
(HπJ)sds

]

which is the result. �

We can now proceed with the proof of Theorem 2. Let π be any regular robust pricing policy.
We have by Proposition 1, that

(
∂−
∂s
πc
s

)−
+ λF̄ (πs) (∆s)− ≤ θ a.s.

Consequently, for any given state y ∈ Y defining the set P (y) , {πM(y) : πM ∈ ΠM}, we have for
all s that

(πc
s,∆s) ∈ P (y) a.s.

so that
(HπJ

∗)s ≤ sup
πM(ys)∈P (ys)

(HπJ
∗)(ys) = sup

πM∈ΠM
(HπJ

∗)(ys) = 0 a.s.

Consequently, Lemma 11 yields

E
[∫ T

0
λπsF̄ (πs)ds

]
≤ J∗(0, π0, x0).

Moreover, since under pricing policy π∗, we have

(Hπ∗J
∗)s = sup

πM(ys)∈P (ys)
(HπJ

∗)(ys) = sup
πM∈ΠM

(HπJ
∗)(ys) = 0 a.s.

Lemma 11 applied for that pricing policy yields

E
[∫ T

0
λπ∗s F̄ (π∗s)ds

]
= J∗(0, π0, x0)

which completes the proof.

32


	Introduction
	Literature Review

	Model
	An Optimal Dynamic Mechanism Benchmark

	Robust Dynamic Pricing
	Performance Guarantee for Robust Pricing

	Analysis: An Optimal Dynamic Mechanism Upper Bound
	A Relaxed Problem
	The Relaxation And An Upper Bound
	The Discounted Infinite Horizon Problem As An Upper Bound

	A Robust Dynamic Pricing Lower Bound and The Approximation Guarantee
	Infinite Horizon Dynamic Pricing
	A Robust Dynamic Pricing Policy And Proof Of Theorem 1

	Computing Optimal Robust Dynamic Pricing Policies
	A Local Constraint On Prices
	The HJB Equation

	Numerical Experiments
	Concluding Remarks
	Proofs for Section 2
	Proofs for Section 6
	Proof of Theorem 2


