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Consider-then-choose models, borne out by empirical literature in marketing and psychology, explain that

customers choose among alternatives in two phases, by first screening products to decide which alternatives

to consider, before then ranking them. In this paper, we develop a dynamic programming framework to study

the computational aspects of assortment optimization under consider-then-choose premises. Although non-

parametric choice models generally lead to computationally intractable assortment optimization problems,

we are able to show that for many practical and empirically vetted assumptions on how customers consider

and choose, our resulting dynamic program is efficient. Our approach unifies and subsumes several specialized

settings analyzed in previous literature. Empirically, we demonstrate the versatility and predictive power of

our modeling approach on a combination of synthetic and real industry datasets, where prediction errors are

significantly reduced against common parametric choice models. In synthetic experiments, our algorithms

lead to practical computation schemes that outperform a state-of-the-art integer programming solver in

terms of running time, in several parameter regimes of interest.
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1. Introduction

What selection of products should an e-retailer display for each search query? How does a brick

and mortar retailer determine the product assortment in each store? The challenge of finding a

selection of products that maximizes revenue or customer satisfaction, in the face of heterogeneous

customer segments, who have different preferences across products, has been recognized in several

industries as a strategic and operational driver of success.
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In a highly differentiated market, choosing an optimal assortment requires to model before-

hand the customers preferences to predict accurately how the demand shares of products evolve

in response to variations in the offer set, through what is called a choice model. Building an effec-

tive choice model strikes a delicate balance between several desired attributes. Indeed, as choice

models become more detailed, both their estimation from data, and the resulting optimization

problems face computational barriers, due to what is known as the curse of dimensionality. In fact,

assortment optimization is combinatorial in nature and yields hard problems. The present paper

demonstrates that a class of choice models, referred to in the literature as ‘consider-then-choose’

models, render assortment optimization tractable under a wide variety of modeling primitives. We

present a unique dynamic programming formulation of the problem, and show that a state space

collapse in this problem yields the aforementioned tractability in several practical cases. Outside

of theory, we empirically demonstrate the predictive power of our modeling approach using both

synthetic and real industry datasets. We illustrate the computational practicality of our approach

through extensive comparisons with state-of-the-art integer programming solvers.

Choice modeling and assortment optimization. Generally speaking, choice models can

be divided into parametric and non-parametric models, the latter of which are effectively general

distributions over preference lists of products. Until recently, most of the work related to assortment

optimization has focused on parametric choice models, primarily attraction-based models in which

customer preferences are modeled through a relatively small number of parameters. The survey

by Kök et al. (2009) and book by Talluri and Van Ryzin (2006) present excellent overviews on such

topics, and our literature review in Section 1.2 will summarize the state of the art here. In a nutshell,

the literature presents us with the following dichotomy: on the one hand, for simple parametric

models such as the Multinomial Logit (MNL) and variants of the Nested logit (NL) model, we

now have efficient algorithms available for assortment optimization. On the other hand, these

same models impose structural assumptions on customer preferences that may prove unrealistic in

practice (Debreu 1960, Ben-Akiva and Lerman 1985). In attempting to address this latter issue,

one may consider further generalized models such as a mixture of MNL models (MMNL), but then

assortment optimization is no longer easy with the best known algorithms having a complexity

that scales exponentially in the cardinality of the mixture (Bront et al. 2009, Rusmevichientong

et al. 2014, Désir and Goyal 2014). In addition this latter class of models is notorious for problems

such as over-fitting to data.

In an attempt to construct a parsimonious approach to modeling choice, non-parametric choice

models, where the choice probability arises from a sparse distribution over preference lists (Rus-

mevichiengtong et al. 2006, Farias et al. 2013, van Ryzin and Vulcano 2014) have also received

some attention. Here, each customer type purchases the highest rank item in his preference list
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made available, or leaves without making any purchase. In this context, Farias et al. (2013) develop

a robust estimation methodology, where the sparsity of the distribution scales with the amount

of data available, allowing to attain better prediction accuracy than several common parametric

models. On the other hand, there is relatively little known on the computational tractability of

assortment optimization under these non-parametric models heretofore, beyond a few special cases

of interest (Honhon et al. 2012). In fact, sparsity is generally insufficient to alleviate the compu-

tational hardness of assortment optimization, and the problem was shown to be NP-hard even to

approximate by Aouad et al. (2015).

Consider-then-choose models. The aforementioned parametric and non-parametric models

place extremely general conditions on the customer’s decision making process, effectively requiring

a customer to list all her options and then pick her most desirable from that list. In reality, one may

naturally expect this process to be different with a customer using a set of simple rules to immedi-

ately disregard the vast majority of choices, and then rank (and select from) the small number of

options left. We refer to such models as consider-then-choose models, wherein the consideration set

is the (small) set of products considered. The history of these consider-then-choose idea originates

in the marketing and psychology literature. The idea of whittling down choices into a consideration

set was first posited by Campbell (1969) and formulated into a theory of the customer’s behavior

by Howard and Sheth (1969). In his seminal study, Hauser (1978) observed that the consideration

set structure is in itself a significant explanatory factor of choice heterogeneity. We review the

evolution of this approach to modeling choice in our literature review in Section 1.2. However, our

objective with considering such models is twofold:

1. We believe that these models have the ability to model real-world data. This belief is motivated

by empirical observations made in the antecedent literature on whether and how consideration

sets are formed. Further, our modeling approach is borne out by several experiments on real

industry datasets.

2. This consider-then-choose structure can be leveraged to mitigate the complexity of assortment

optimization problems. In particular, we show that many empirically-vetted assumptions on

how customers consider and choose lead to tractable assortment optimization problems.

1.1. Our results

Our main contribution is the development of a unified algorithmic framework to study the compu-

tational tractability of assortment problems under a family of preference-list based choice models

that has been empirically vetted in the marketing literature, specifically, consider-then-choose mod-

els. Moreover, our framework allows a direct connection between modeling assumptions on the

customers’ choice behavior and the resulting computational complexity. Consequently, we show
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that several practical assumptions regarding how customers consider and choose lead to tractable

assortment optimization models. Our dynamic programming algorithm, based on a divide-and-

conquer approach in a specific graph representation, provides computationally efficient heuristics

for more general preference list distributions, and outperforms a state-of-the-art integer program-

ming solver (IP) for several class of instances. We demonstrate the predictive power of the pro-

posed consider-then-choose modeling framework against common parametric models, using both

synthetic experiments and real-world datasets. Our industry partner, Infoscout Inc, operates the

largest purchase panel in the US, which provides longitudinal purchase information across retailers

and product categories. In what follows, we provide a more detailed sketch of our contributions.

Dynamic program and graph representation. Motivated by the empirical observation that

the structure of the consideration sets largely explains choice heterogeneity, we start by formulat-

ing in Section 3 a dynamic program for unique-ranking distributions, where customers consider

arbitrary subsets of products, but their relative ranking preferences are derived from a common

permutation. We introduce a bipartite graph representation of the problem, which is key to our

approach and analysis. Indeed, the connected components of this graph capture a natural decom-

position of the instance. Our dynamic program makes use of this decomposition procedure in a

divide-and-conquer fashion. In contrast to standard dynamic programming, our algorithm relies

upon a careful and exhaustive generation of the computational tree prior to solving the recursive

equation. This approach allows for a state space collapse, which substantially reduces the com-

plexity under structural assumptions regarding how customers consider and choose. Specifically,

we show that the complexity analysis generally boils down to ‘counting’ the number of connected

subgraphs induced by the graph traversal. We prove that our algorithm runs in polynomial time for

very sparse distributions, when the number of preference-lists grows logarithmically in the number

of products. Also, we show that even in the worst case, our algorithm dominates the brute force

enumerative approach.

The extension to general preference list-distributions requires additional technicalities, which are

described in Section 5. Also, our results naturally extend to capacitated assortment optimization,

with a constraint on the size of the assortment. This result is described separately in Appendix F.

Tractable consider-then-choose models. In Section 4, we investigate several models of con-

sideration sets that stem from documented assumptions on the customers’ purchasing behavior.

We derive polynomial running time guarantees for the corresponding dynamic program in the

unique-ranking setting. In Section 6, we investigate more general classes of distributions that com-

bine heterogeneous consideration sets along with ranking heterogeneity. Our results subsume and

extend several models studied in previous literature. Our complexity results, and the corresponding

structural assumptions, are summarized in Table 1.
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Table 1 Summary of results: polynomial running time guarantees for consider-then-choose choice models.

Consideration sets Ranking functions Running time Sections

Induced intervals
Neighborhood of a
ranking function

O(N4K) 4.1 and 6.1
Laminar properties O(N2K2) 4.2 and 6.1

Disjunction on d features O(N4d−2K) 4.3 and 6.1
Intervals Quasi-convex permutations O(N4K4) 6.2

Two-feature compensatory Two-feature compensatory O(N4K4) 6.3

The parameter N describes the number of product alternatives, K denotes the number of preference lists (sparsity of the

distribution), and d is a complexity parameter corresponding to the number of features considered by customers upon forming

their consideration set in the disjunctive model. The notion of induced intervals means that there exists some arbitrary numbering
according to which the consideration sets are intervals.

Empirical performance. Our numerical experiments on synthetic instances, described in Sec-

tion 7.1, demonstrate that the algorithm is efficient in practice. We compare its performance

against an integer programming formulation implemented using a state-of-the-art commercial solver

(GUROBI v6.5). We demonstrate that the IP approach becomes intractable to solve large-scale

instances of the quasi-convex model. Even under generic consideration set structures, our approach

dominates the IP solver in several regime of parameters.

Finally, we demonstrate in Section 7.2 the versatility of our modeling approach against a bench-

mark formed by ‘small’ mixtures of Multinomial Logits (MMNL)1. The objective is to predict the

relative purchase probabilities of products in various assortments. The predictive power of our

approach is demonstrated by the experiments conducted on real-world datasets provided by our

industry partner, in three distinct product categories. The errors in out-of-sample predictions of

the purchase probabilities are reduced on average by 14% to 25% under various metrics. In syn-

thetic experiments, our consider-then-choose model outperforms the benchmarks in the plurality

of cases. Specifically, we use the following ground truth models: a large-mixture MMNL model and

a simple consider-then-choose model.

1.2. Related literature

Our work relates to two streams of literature, namely the operational literature on choice modeling

and assortment planning, and the marketing literature on consider-then-choose models.

Choice models and assortment optimization. In the last two decades, growing product prolifer-

ation and differentiation has motivated a paradigm shift in demand modeling from independent

demand models to choice-based models, to capture the substitution effects in a given product

category (Mahajan and Van Ryzin 2001, Kök and Fisher 2007, Ratliff et al. 2008, Vulcano et al.

2010). In this context, assortment optimization has received a great deal of attention in opera-

tions management literature. Most of the focus has been on variants of this problem under the

1 In light of previous literature, assortment optimization is practical only for a mixture over a relatively small number
of customer segments (a notion we will make precise in Section 7.2).
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widespread attraction-based models such as the Multinomial Logit (MNL) model, the discrete Mix-

ture of MNLs (MMNL), etc. Under MNL preferences, the problem is known to be polynomially

solvable (Talluri and van Ryzin 2004, Rusmevichientong et al. 2010), and the solution methods

were further advanced to handle more general settings (Rusmevichientong and Topaloglu 2012,

Davis et al. 2013). However, the tractability of assortment optimization under the attraction-based

models does not carry over to heterogeneous customer segments. That is, even with two segments

the MMNL-based problem was shown to be NP-complete by Bront et al. (2009) and Rusmevichien-

tong et al. (2014). For a fixed number of customer segments, Désir and Goyal (2014) developed a

fully polynomial-time approximation scheme, but its computationally efficiency hinges on modeling

few customer segments. Given these computational barriers, recent work in assortment optimiza-

tion attempts to identify new probabilisitic models leading to tractable assortment optimization

problems (Li et al. 2015, Blanchet et al. 2013, Davis et al. 2014).

On the other hand, there has been an emerging literature on preference list-based choice mod-

els (Rusmevichiengtong et al. 2006, Farias et al. 2013, Jagabathula and Rusmevichientong 2016).

Here, the heterogeneity in choice is explicitly encoded through a distribution over preference

lists. This approach to modeling choice is very general, e.g., the attraction-based models can be

viewed as parametrized distributions over all potential preference lists. In this context, Farias et al.

(2013) proposed an efficient methodology to make robust revenue predictions and derived recovery

guarantees under certain technical conditions. To overcome the dimensionality of the estimation

problem, van Ryzin and Vulcano (2014) proposed the ‘market discovery’ algorithm: starting from

an initial collection of preference lists, the support of the distribution is enlarged iteratively by

generating a preference list that increases the log-likelihood value, using dual information. While

estimation methods have been investigated in this setting, assortment optimization remains mostly

untapped. Aouad et al. (2015) characterized the complexity class of the problem under generic

distributions, while Honhon et al. (2012) developed tailor-made dynamic programming ideas for

several special cases, which are subsumed by our analytical results.

Consider-then-choose literature. A steady line of research in marketing and psychology has stud-

ied various aspects of the decision-making strategies employed by customers. This literature gives

rise to the following key observations.

• Cognitive simplicity. To alleviate the cognitive burden in multi-alternative decision tasks,

individuals apply simple decision heuristics (Tversky and Kahneman 1975, Payne et al. 1996).

Hence, the consideration sets are justified by the need to balance search efforts with potential

gains (Hauser and Wernerfelt 1990, Roberts and Lattin 1991). Screening heuristics were shown

to be rational under limited time and knowledge (Gigerenzer and Goldstein 1996, Gigerenzer

and Selten 2002).
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• Consideration set heuristics. Consequently, numerous studies in marketing have validated

a consider-then-choose decision process, where customers screen products to a smaller rele-

vant set of products before making choice decisions. For example, Pras and Summers (1975),

Brisoux and Laroche (1981) and more recently Gilbride and Allenby (2004) showed empiri-

cally that customers often form their consideration sets through a ‘conjunction’ of elimination

rules; see also Parkinson and Reilly (1979), Belonax and Mittelstaedt (1978), Laroche et al.

(2003). For a detailed view on the consideration set literature, we refer the reader to the

surveys by Hauser et al. (2009), Payne et al. (1996), Bettman et al. (1998).

• Predictive power. It has generally been observed that the incorporation of a two-stage decision

process enables more accurate predictions, for example in market share forecasting (Urban

1975, Silk and Urban 1978), in choice modeling (Roberts and Lattin 1991) or in risky decision-

making (Brandstatter et al. 2006). In fact, in his seminal work, Hauser (1978) observed that

the heterogeneity in choice decisions is largely explained by the consideration sets. Even with

a crude assumption on the ranking decisions (formed uniformly at random), the consideration

set structure still explains nearly 80% of the heterogeneity in choice captured by a richer

model, which combines the consideration sets with logit-based rankings. This observation can

be explained in that the first stage decisions eliminate a large fraction of the alternatives and

the resulting consideration sets are comprised of a few products in most categories (Reilly and

Parkinson 1985, Belonax and Mittelstaedt 1978, Hauser and Wernerfelt 1990).

Motivated by these findings, the modeling approach we develop subsequently is centered around

the notion of consideration sets. We will show that this approach to adding ‘structure’ to a general

distribution over preference lists buys us a great deal from a computational complexity stand-

point, and still allows strong predictive power. Prior to our work, the paper by Jagabathula and

Rusmevichientong (2016) also incorporates a choice model based on consideration sets. The opti-

mization problem considered therein relates more closely to combinatorial pricing.

2. Modeling Approach and Problem Formulation

Assortment optimization problem. Throughout the paper we use the index i∈ {1, . . . ,N}=

[N ] to denote one of N products, each is associated with a price Pi. In addition, we use the index

j ∈ {1, . . . ,K} = [K] to denote one of K customer-types, each is associated with a consideration

set Cj ⊆ [N ] that specifies the products she is willing to buy and a ranking function σj (that

is, a permutation over products) that reflects her relative preferences. We let (λ1, . . . , λK) be the

probability vector, where λj denotes the respective fraction of customer-type j in the population.

The decision maker has to choose an assortment A⊆ [N ] that maximizes the total revenue. Specif-

ically, let Rev (j,A) denote the revenue obtained from customer type j given that assortment A
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is stocked. Note that if A∩ Cj = ∅ then Rev (j,A) = 0 and otherwise Rev (j,A) = Pi(A,j), where

i(A, j) = arg mini∈A∩Cj{σj (i)} is the most preferred product of customer-types withinA. Therefore,

the objective is to find an assortment A that maximizes the expected revenue:
∑

j∈[K] λj ·Rev (j,A).

We let C = {Cj : j ∈ [K]} be the collection of consideration sets and Σ = {σj : j ∈ [K]} be the

set of the ranking functions. In contrast to generic preference list distributions, our approach

captures consider-then-choose purchasing behaviors by imposing constraints on the sets C and Σ,

respectively. Below, we provide a high-level description of the ingredients used to model C and Σ,

while the precise mathematical definitions are stated in the corresponding parts of the paper.

Consideration set structure. We relate the collection of consideration sets C to the cus-

tomers’ cognitive process, where they screen products to form their consideration set. To this end,

we build upon the survey by Hauser et al. (2009), which provides a unified framework to express

the different consideration set models proposed in the marketing literature (see also Gilbride and

Allenby (2004) for a similar mathematical formalism). Suppose that each product i∈ [N ] is repre-

sented in by a vector x(i) ∈Rd in latent d-dimensional feature space. A screening rule corresponds

to a cut-off level te ∈R on a given feature e∈ [d] that implies the elimination of all products i∈ [N ]

not satisfying x(i)
e ≥ te. Generally speaking, Hauser et al. (2009) explains that there are several

families of cognitive processes whereby customers combine different screening rules to draw their

consideration sets:

• Conjunction of rules. Here, a product is considered if each one of the specified screening rules

are all satisfied. Namely, each consideration set C ∈ C is of the form:

C =
⋂
e∈[d]
{i∈ [N ] : x(i)

e ≥ te} .

• Disjunction of rules. A product is considered if at least one of specified screening rules is

satisfied, leading to:

C =
⋃
e∈[d]
{i∈ [N ] : x(i)

e ≥ te} .

• Compensatory models. A product is considered based on a linear combination between different

specified screening rules. In this case, there exists a utility vector u ∈ Rd and a cut-off level

t∈R such that the consideration set is of the form:

C = {i∈ [N ] : u ·x(i) ≥ t} .

In Sections 4 and 6, we investigate several classes of distributions over preference lists, where C is

congruent with such combinations of screening rules. It is worth mentioning that, for a large enough

d, each of the above models can replicate any arbitrary collection of consideration sets. Hence,

for purposes of identifying tractable consideration set structures, we focus on a small number of

screening rules – which is also consistent with the cognitive simplicity of customers’ decisions.
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Ranking decisions. Having explained how we model C, it remains to describe Σ. To ease the

exposition, our algorithmic framework is introduced in an incremental way. First, we focus on the

heterogeneity of the consideration sets and start our discussion assuming that the collection of

rankings Σ is a singleton. Here, we assume that there exists single ranking order common to all

customer types, i.e., σj = σ, and the heterogeneity in preferences stems only from the heterogeneity

of the consideration sets. We refer to this setting as the unique-ranking model. As shall be seen

subsequently, the unique-ranking model already subsumes several choice models studied in pre-

vious literature, and even in this setting, assortment optimization is computationally intractable.

Specifically, it was shown by Aouad et al. (2015) that the problem under the unique-ranking model

is NP-hard to approximate within factor O (N 1−ε) for any ε > 0.

Our algorithmic approach and analysis carry over in the presence of heterogeneity in ranking

decisions. Specifically, in Section 6, the unique-ranking assumption is relaxed in two ways: (i) by

assuming that Σ is formed by similar rankings arising from the local perturbations of a central

permutation, or (ii) by studying ranking structures motivated by behavioral assumptions (e.g.,

quasi-convex permutations).

3. Dynamic Program Under Unique-Ranking Distributions

In this section, we present a dynamic programming (DP) formulation under unique-ranking distri-

butions. As some obstacles must be surmounted to consummate our approach in the general case,

the algorithm for arbitrary preference list distribution is described separately in Section 5, to ease

the exposition. We formulate the dynamic program in two parallel ways, the first corresponds to a

traditional recursive formulation and the second is an appropriate graph representation.

Preliminaries. Recall that an instance of the assortment problem is described by the set of

parameters N,K,Σ,C, σj,Cj, λj. Assuming that Σ = {σ}, without loss of generality the product

indices can be rearranged according to the σ-ordering. That is item 1 is the most preferred product

and N is the least preferred one – to lighten the notation, the reference to σ is omitted hereafter.

In what follows, we use [X] to denote the set {1, . . . ,X}.
State space and objective function. The state space is formed by all pairs of subsets (S,T ),

where S is a subset of products in [N ] and T is a subset of types in [K]. Specifically, we let J(S,T )

be the maximum expected revenue that can be obtained from choosing an assortment of products

within S to satisfy the customer-types in T . In the subproblem, we assume that only customers in

T can occur and the arrival probabilities are directly induced from the original instance without a

renormalization of the corresponding sub-vector. Formally, the subproblem (S,T ) is formulated as

follows:

J(S,T ) = max
A⊆S

∑
j∈T

λj ·Rev (j,A) .
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Figure 1 Graph Representation. (a) Decomposition of the instance according to the connected components of

the graph representation. (b) Representation of the proof of Proposition 1.

Graph Representation. We next introduce a bipartite graph representation G associated

with each instance of the problem. The partite sets are formed by (i) the set of products, each of

which is represented by a node, and (ii) the set of customer-types [K]. There is an edge between

a customer-type node and a product node if the latter is included in the consideration set of the

former. That is, we define the graph G= ([N ], [K],E), where E = {(i, j)∈ [N ]× [K] : i∈Cj}. This

graph induces the family of subgraphs G[S,T ] associated with each subproblem (S,T ), that is,

G[S,T ] = (S,T,ES,T ), where ES,T = {(i, j)∈E : i∈ S and j ∈ T}. The lemma below asserts that

the partition of G[S,T ] into its connected components captures a decomposition of the instance

(S,T ) into several subproblems that can be solved independently. This decomposition scheme,

represented in Figure (1a), is key to our recursion.

Lemma 1. Assuming that the connected components of G[S,T ] are described by the collection of

subgraphs (G[Su, Tu])u∈[r], where Su denotes a subset of product nodes in S and Tu is a subset of

type nodes in T , then J(S,T ) =
∑r

u=1 J(Su, Tu).

Proof It is sufficient to prove that the expected revenue generated in (S,T ) by any assortment

A⊆ S decomposes into the sum over u∈ [r] of the revenues generated in each subproblem (Su, Tu)

by the respective assortment Au =A∩Su. Let j be a customer-type in Tu. The main observation

is that customer-type j’s most preferred product within the assortment A is the same as the one

he prefers when faced with the assortment Au. Indeed, by connectivity, any product in Cj ∩S that

is considered by customer j, necessarily belongs to Su. Since (Su)u∈[r] forms a partition of S, an

optimal assortment A for subproblem (S,T ) is the union of optimal assortments Au ⊆ Su for each

subproblem (Su, Tu). �
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Base case. If S = [N ] and T = [K], then J(S,T ) corresponds to the original problem we wish

to solve. Using Lemma 1, this problem can be broken-down into separate optimization problems

according to the connected components partition. From this point on, we may assume without loss

of generality that connectivity is an invariant of the subgraphs examined by the recursion.

Recursive step. We consider the subproblem (S,T ) such that G[S,T ] is a connected subgraph.

We define i as the most preferred product among product nodes S, i.e., i= min(S). The decision

(or action) made by the dynamic program for state (S,T ) is whether to stock product i in the

assortment or not. Next, we describe graph operations on G[S,T ] that correspond to each alter-

native. As these graph operations decompose G[S,T ] into more refined connected components, a

natural recursion consists in examining the immediate reward and reward-to-go induced by each

stocking decision.

Case 1: Product i is stocked. Let T (i) be the customer-types whose consideration sets contain

product i. The unique-ranking order implies that any product added to the assortment at some

later point of the recursion is less preferred than i by any customer-type in T (i). As a result, we

can compute the expected revenue generated by their purchase of product i. In addition, since

i is more preferred than any product that is stocked at some later point of the recursion, the

customer-types T (i) can be discarded from this point on. Thus we represent the reward-to-go as

the optimal expected revenue associated with the residual subproblem (S \ {i}, T \ T (i)). In the

graph representation, the decision to include i in the assortment corresponds to removing node

i and its adjacent edges from the graph as well as deleting all nodes in T (i) and their adjacent

edges. Due to these graph operations, the residual subgraph G[S \ {i}, T \ T (i)] is potentially not

connected anymore. By Lemma 1, the subproblem can be broken-down according to the connected

components partition. If (S+
u , T

+
u )u∈[r(+)] are the resulting subproblems, the expected revenue is

Pi ·
∑

j∈T (i) λj +
∑r(+)

u=1 J(S+
u , T

+
u ) .

Case 2: product i is not stocked. All the customers in T remain unsatisfied and the reward-

to-go is that associated with subproblem (S \ {i}, T ). The corresponding graph operation is the

deletion of node i and its outgoing edges, and consider the residual subgraph G[S \ {i}, T ]. Let

(G[S−u , T
−
u ])u∈[r(−)] describe the connected components of the residual subgraph. Then, by Lemma 1

it follows that the expected revenue is
∑r(−)

u=1 J(S−u , T
−
u ) .

Combining the two decisions, the dynamic programming recursion is:

J(S,T ) = max

Pi · ∑
j∈T (i)

λj +

r(+)∑
u=1

J(S+
u , T

+
u ) ,

r(−)∑
u=1

J(S−u , T
−
u )

 . (1)
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State space collapse. In a naive implementation of the algorithm, one could solve the problem

for all possible pair (S,T ). However, this approach is inherently intractable and could be in the worst

case as bad as 2N+K . However, the dynamic program does not need to examine all corresponding

subproblems to solve the initial instance. In fact, the recursion formula provides an algorithmic

procedure to determine the precise ‘minimal’ number of subproblems needed to be solved. In

contrast to a standard dynamic program, we will not assume that the state space is known a priori,

and carefully generate a computational tree by processing the products from 1 to N (i.e., according

to the unique order σ) adding nodes to the tree based on the recursion described above. The

algorithm requires a two-pass implementation: first the computational tree is built by generating

all subproblems of interest, using the recursive formula (1), then an optimal assortment is obtained

by a backward induction.

Complexity analysis. We let S denote henceforth the exact state space that proceeds from

the previous observation. Namely, S represents a collection of distinct subproblems, each of which

belongs to the computational tree generated by the recursion. We now argue that the running

time complexity is O(NK · |S|). Indeed, building each node of the computational tree requires at

most O(NK) operations. This is the number of operations required to update the graph, compute

the new connected components in O(NK) operations and check whether each new subproblem

already belongs to the computational tree in O(N+K) operations using an appropriate search data

structure, where each subproblem is encoded by an N +K-binary string. Then, the subproblems

are solved backwards using the recursive formula with a total running time complexity of O(K · |S|),
taking O(K) operations at each step to solve Equation (1). As a result, the complexity analysis

boils down to estimating the size of the state space S.

In the worst case, the number of connected subgraphs is still exponential. However, we establish

in the next theorem that the state space is at most min(2N ,N · 2K), instead of the naive 2N+K .

Hence, the algorithm is efficient for applications in which the distribution over preference lists has

a sparse support. It is worth noting that the running time is polynomial for K =O(log(N)). Also,

for K =O(1), the running time is quadratic in the number of products, instead of the brute force

approach in time O(NK).

Theorem 1. The size of the state space is at most min(2N ,N ·2K). The running time complexity

is quadratic in N for a constant number of types K, and polynomial for K =O(log(N)).

To the end of proving Theorem 1, we introduce a characterization of the state space, which

considerably simplifies the analysis of the algorithm. We define a projection Φ from the collection
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of subproblems S (i.e., subproblems in the computational tree) onto the collection of subsets of

{1 . . .N} as follows:

Φ : S →P([N ])

(S,T ) 7→ [min (S)]
⋂ (⋃

u∈T
Cu

)
.

We establish below that Φ is injective, meaning that the size of the state space is equal to |Φ〈S〉|.

Proposition 1. Φ is injective, and as a result: |S|= |Φ〈S〉|.

Proof We assume (S1, T1), (S2, T2) are two subproblems that are generated by the recursion,

such that Φ(S1, T1) = Φ(S2, T2). By construction, G1 =G[S1, T1] and G2 =G[S2, T2] are two con-

nected subgraphs.

Because G1 is connected, there exists u ∈ T1 such that (min(S1), u) is an edge of G1, meaning

that min(S1)∈Cu. As a result, min(S1) = max(Φ(G1)). By symmetry, we obtain:

min(S2) = max(Φ(G2)) = max(Φ(G1)) = min(S1) .

We infer from the connectivity of the subgraph G[S1, T1] that S1 ⊆ ∪u∈T1Cu. Since the set of

products examined at previous steps of the recursion is exactly [min(S1)−1], we infer the equality

S1 =∪u∈T1 (Cu ∩ [min(S1),N ]). By a symmetric argument, S2 =∪u∈T2 (Cu ∩ [min(S2),N ]).

As a result, what remains to be proven is simply that T1 = T2. Assume ad absurdum that

T2 \T1 6= ∅ and let u′ ∈ T2 \T1. Under this assumption, we establish the following property.

Claim 1. Cu′ ∩S1 = ∅.

Proof of Claim 1 We assume otherwise and prove a contradiction. Because the two subgraphs

G1, G2 both contain product node min(S1), they initially lied in the same connected component of

G. As a result, by looking at the sequence of algorithm iterations that generates G1, we can define

i as the minimal product examined by the algorithm after which u′ gets disconnected from G1.

Then, product i has necessarily been added to the assortment, while node u′ has been removed

from the graph. Indeed, otherwise u′ would still be connected to S1 by hypothesis. Therefore, we

obtain that i ∈ Cu′ . It follows that i ∈ Φ(S2, T2) and thus i ∈ Φ(S1, T1). On the other hand, it is

clear that i does not belong to ∪u∈T1Cu otherwise some customer-types in T1 would be discarded

when i is selected in the assortment. This yields the desired contradiction. �

The latter claim implies that there exists no edge between customer-types in T2 \T1 and product

nodes S1 ∩S2. In addition, there exist no edges between customer-type nodes T2 ∩T1 and product

nodes S2 \S1. Indeed, there would exist otherwise u∈ T1 and i∈Cu∩S2, such that i /∈ S1. Because
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min(S2) = min(S1) we infer that i∈Cu∩ [min(S1),N ]. By construction of our recursion, we obtain

i ∈ S1, which gives a contradiction. To conclude, as shown in Figure (1b) we observe that G[S2 \
S1, T2 \ T1] and G[S2 ∩ S1, T2 ∩ T1] are distinct connected components of G[S2, T2], contradicting

the connectivity of the latter subgraph. �

Finally, we derive a parametric bound on the state space, as a function of the consideration sets

diameter. To this end, we define Diam(C) as the maximal diameter of a consideration set in C:
Diam(C) = max{maxC −minC : C ∈ C}. The next claim comes as an immediate consequence of

Proposition 1.

Corollary 1. The size of the state space is at most 2Diam(C). Hence, the running time com-

plexity is polynomial when Diam(C) =O(log(N)).

4. Modeling the Consideration Sets

In this section, we identify several consideration set models that stem from behavioral assumptions,

for which |S| is polynomial in the input size.

4.1. Induced Intervals Structure

Definition 1. A collection of consideration sets C is a family of induced intervals if it forms a

collection of intervals when numbered according to some arbitrary permutation π : [N ]→ [N ], i.e.,

π〈Cj〉 is an interval for any customer-type j ∈ [K].

Using the screening rule formalism of Section 2, it can be verified that this property arises when

the consideration sets are formed as a conjunction of two screening rules, meaning that each

consideration set in C is of the form {i∈ [N ] : x
(i)
1 ≥ t1 ∧x(i)

2 ≥ t2} for some cut-off levels t1, t2, and

the corresponding features are inversely related, i.e., for any products i1, i2 ∈ [N ], x
(i1)
1 ≥ x

(i2)
1

implies that x
(i1)
2 ≤ x(i2)

2 . As a practical example, price and quality are significant drivers of the

customers’ choices, who might use the following screening rules:

• Budget constraint: Customers would eliminate at an early stage of the purchasing process

the products that they cannot afford (Fisher and Vaidyanathan 2009, Jagabathula and Rus-

mevichientong 2016).

• Perceived quality cut-off: There is empirical evidence that price is used as a cue for qual-

ity (Zeithalm 1988, Posavac et al. 2005), hence customers would eliminate all products cheaper

than the given cut-off level.

The consideration sets emanating from a conjunction between budget constraints and perceived

quality cut-offs are intervals with respect to the price order. Also, it is worth noting that induced

interval consideration sets with unique-ranking subsumes the downward substitution model pro-

posed by Pentico (1974) and Honhon et al. (2012) as the special case where the preference order
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Σ = {σ} coincides with {π}. In contrast, for the induced intervals in question, the preference order

σ is generally distinct from the inducing permutation π. We now prove that the dynamic program-

ming algorithm runs in polynomial time under this class of distributions, by bounding the number

of connected subgraphs generated along the dynamic program. Intuitively, our counting argument

utilizes the observation that a union of overlapping intervals is itself an interval.

Theorem 2. Under induced intervals consideration sets, the dynamic program has a running

time of O(N 4K). Using a specific data-structure, the running time complexity is O(N 2K · log(K))

in the special case of the downward substitution model.

Proof Given that the function Φ is injective according to Proposition 1, it is sufficient to upper

bound |Φ〈S〉|. To this end, we let (S,T ) designate a subproblem of S. The key observation is that,

due to the connectivity of G[S,T ], the union of the consideration sets in T is itself an interval

according to the ordering π. Indeed, assume ad absurdum that there exists products i, j ∈ S ∩ [N ]

and a product α∈ [N ] \S such that π(i)<π(α)<π(j). Then, for any customer-type j in T , since

π〈Cj〉 is an interval, we infer that either π〈Cj〉 ⊆ [π(α)− 1] or π〈Cj〉 ⊆ [π(α) + 1,N ]. Denoting by

T1 the customer-types that satisfy the former inclusion, and T2 the latter one, we conclude that the

subgraph G[S,T ] decomposes into distinct connected components G[S1, T1] and G[S2, T2], where S1

is the subset of products whose π-indices belong to [π(α)− 1] and S2 corresponds to the π-indices

in [π(α) + 1,N ]. This contradicts the connectivity of G[S,T ].

Since Φ(S,T ) = [min(S)]∩∪j∈TCj, and we have proven that π〈∪j∈TCj〉 is an interval, we conclude

that the image of Φ is a collection at most N 3 distinct subsets of [N ]. For the special case of

downward substitution, i.e., Σ = {π}, Φ(S,T ) is an interval of the form [α,min(S)], meaning that

the state space has a cardinality of O(N 2). In this case, using an interval tree data-structure, it is

known that the connected components can be computed in a running time of O(K log(K)) (Samet

1990), leading to a total running time of O(N 2K log(K)). �

4.2. Laminar properties

Definition 2. A collection of consideration sets C is said to be laminar if, for any two customer-

types j, j′ ∈ [K] such that Cj ∩Cj′ 6= ∅, the consideration sets are nested, i.e., Cj ⊆Cj′ or Cj′ ⊆Cj.
Elimination-by-Aspect. Such laminar structures arise in Elimination-by-Aspect (EBA)

choice-making processes, which were first introduced by Tversky (1972a,b). To this end, we assume

that the feature space is discrete, i.e., without loss of generality x(i) ∈ {0,1}d, and each screening

rule on feature e ∈ [d] is expressed as a constraint of the form x(i)
e = t with a cut-off level t ∈

{0,1}. EBA models assume that a customer picks features iteratively, entailing a random sequence

e1, . . . , eM ∈ [d]M , where M is random. At each step k ∈ [M ], the customer selects a level tek , and

eliminates all products i not satisfying x(i)
ek

= tek . The sequence of features could be deterministic
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(this is known as the lexicographic order) or random. One probabilistic structure used to describe

these processes in related models rests on a tree structure (Tversky and Sattath 1979): the next

feature chosen by an individual in the sequence of eliminations is deterministic conditional to the

prefix of levels that he chose prior. That is, ek is a deterministic function of (e1, te1), . . . , (ek−1, tek−1
).

Assuming this property, it can be verified that the corresponding distributions over consideration

sets necessarily have a laminar support (see Figure 2 for a pictorial representation).

Style

Shoes

Boots Sandals Heels

French Italian

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

5 6 7 8

5 6 7 83 41 2

5 6 7 83 41 2
Type

Figure 2 An Elimination-by-Aspect screening process and the corresponding laminar tree, for the example of

purchasing ‘shoes’, with two features: ‘type’ and ‘style’.

The following theorem suggests that the induced intervals structure defined in Section 4.1 is

rather general as it subsumes laminar consideration sets as a special case.

Theorem 3. The class of laminar consideration sets is a special case of induced intervals. The

corresponding running time complexity is O(N 2K2).

Proof Let C denote a laminar consideration set system. Without loss of generality, we may

assume that each consideration set corresponds to a unique customer-type (otherwise if two

customer-types share the same consideration set, we represent them by a single type and aggregate

their arrival probabilities) and there exists a consideration set comprised of all products [N ] in

C (its arrival probability can be set to 0). We seek to prove that C is a family of intervals if the

products are numbered according to some appropriate permutation π : [N ]→ [N ].

Laminar tree. It is known that any laminar collection of subsets admits a rooted tree repre-

sentation (Edmonds and Giles 1977). That is, we can build an directed tree (V,E), wherein each

customer-type is represented by a single node, i.e., V = [K], and there exists a directed edge (j, k)∈
E if k is the customer-type with a maximal consideration set contained in Cj. In other terms, we

have Ck ⊂Cj and there exists no other l ∈ [k] such that Ck ⊂Cl ⊂Cj. The root corresponds to the

customer-type with consideration set [N ].
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Depth first order. Now, for any j ∈K, we define o(j) as the offspring of node j in (V,E). Also, we

introduce the list of products s(j) formed by the difference between Cj and the products associated

with the children of j, i.e. s(j) =Cj \ ∪j′∈o(j)Cj′ . Next, the permutation π is defined through the

ranked list of products obtained as a concatenation of the lists s(j) in a depth-first traversal of the

laminar tree. It can be proven inductively that π〈Cj〉 is an interval for any j ∈ [K]. Indeed, if a

node j is a leaf of the laminar tree, then s(j) =Cj, and the concatenation procedure preserves the

connectivity of s(j). The inductive argument proceeds from the following observations.

1. By definition of s, for any given customer-type j ∈ [K], Cj = (∪j′∈o(j)Cj′)∪ s(j).
2. The collections of products associated with the children nodes are examined consecutively in a

depth-first traversal. Hence, the inductive hypothesis implies that π〈∪j′∈o(j)Cj′〉 is an interval.

3. Since this interval gets concatenated to s(j), observation 1 above implies that π〈Cj〉 is an

interval. �

Weakly laminar consideration sets. To demonstrate the generality of our algorithmic

approach, we now introduce an extension of this model, dubbed weakly laminar consideration sets,

which does not reduce to induced intervals, but still admits a polynomial running time guarantee.

Definition 3. A collection of consideration sets C is said to be weakly laminar if any two con-

sideration sets that intersect are nested up to the maximal product of their intersection. That

is, for any customer-types a, b ∈ [K] such that Ca ∩ Cb 6= ∅, if i = max(Ca ∩Cb), then, either

Ca ∩ [i]⊆Cb ∩ [i] or Cb ∩ [i]⊆Ca ∩ [i].

This model captures the conjunction of any laminar consideration sets with any arbitrary screen-

ing rule, such as the budget and quality constraints mentioned in Section 4.1. In addition, it sub-

sumes (strictly) other choice models in related literature, notably the above-mentioned downward

substitution model, as well as the out-tree model proposed by Honhon et al. (2012).

Theorem 4. Under weakly laminar consideration sets, the dynamic program runs in time

O(N 2K2).

Proof To analyze the size of the state space |S| under this model, we first exhibit a structural

property satisfied by the recursion, namely the existence of a ‘maximal’ consideration set with

respect to some well-chosen inclusion order, in each connected subgraph examined by the recursion.

Lemma 2. Assume that (S,T )∈ S is a subproblem generated by the recursion. Then, there exists

a customer-type j∗ ∈ T such that Cj ∩ [min(S)]⊂Cj∗ ∩ [min(S)] for any customer-type j ∈ T .

This property is proven in Appendix A. Consequently, we can upper bound |Φ〈S〉|. Let (S,T )

be a subproblem in the state space S. By Lemma 2, we obtain

Φ(S,T ) =
⋃
j∈T

(
Cj
⋂

[min (S)]
)

=Cj∗
⋂

[min (S)]

For a fixed value of min(S), there are at most K subsets Φ(S,T ), meaning that |Φ〈S〉| ≤NK. �
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4.3. Disjunctive consideration sets

The consideration set models discussed in the previous sections proceed from a conjunction of

screening rules. As mentioned in Section 2, another decision-making model proposed in the mar-

keting literature posits that the consideration sets are formed in a disjunctive fashion.

Definition 4. For any d ∈N, a collection of consideration sets C is said to be d-disjunctive if

the feature space is d-dimensional and all consideration sets in C are generated as a disjunction of

screening rules. That is, each customer-type j ∈ [K] is characterized by a cut-off vector denoted by

t(j) ∈Rd, such that

Cj =
{
i∈ [N ] :

(
x(i)

1 ≥ t(j)1

)
∨ · · · ∨

(
x(i)

d ≥ t(j)d
)}

.

We now prove that the size of the state space |S| is polynomially bounded for a fixed parameter

d. Since the d-disjunctive model can replicate arbitrary consideration set structure C for a large

enough d, the next theorem expresses an explicit tradeoff between modeling power and tractability.

In practice, one would expect that customers make use of few screening rules (Hauser et al. 2009).

Theorem 5. Under d-disjunctive consideration sets, the dynamic program has a running time

of O(N 2Kd+1).

5. The General Dynamic Program

In this section, we relax the assumption that Σ is a singleton and describe a dynamic program

that applies to arbitrary preference list distributions. The key ingredients of the algorithm remain

unchanged. Specifically, products are processed sequentially, which entails a decomposition of the

graph representation into increasingly refined connected components, in a divide-and-conquer fash-

ion. However, unlike the unique-ranking case, the processing order does not necessarily coincide

with the customer’s preference order. Thus, it is not immediate which subset of customer-types

gets allocated to a given product at the time a DP decision is made. As a result, the DP action

space needs to be enlarged to account for any feasible allocation of a product to a subset of

customer-types. At face value, there are exponentially many potential allocations, and the approach

appears to be subject to the curse of dimensionality. We work around this difficulty by proposing

an auxiliary algorithm, used at each step of the recursion, that can yield tractable solutions.

Processing order. We begin by defining a processing order σ on the products, according

to which the dynamic program makes sequential decisions (or actions). The correctness of the

dynamic program does not depend on σ although, as shown in next subsections, an appropriate

choice of σ may significantly reduce the running time complexity. Here, σ is chosen as an arbitrary

permutation and the products are numbered accordingly (i.e., product 1 is processed first, and so

on) such that the reference to the processing order is made implicit throughout the present section.
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State space and value function. The state space is described by the parameters (S,T,L),

where S is a subset of products in [N ], T is a subset of customer-types in [K] and L ∈ ZK+ is a

nonnegative integer valued vector, named the truncation vector. We let J(S,T,L) be the maximum

expected revenue that can be attained from customer-types in T using an assortment within prod-

ucts in S, and assuming that, each customer-type j ∈ T is willing to purchase only products of rank

at most Lj within his consideration set. That is, customer-type j will only purchase products in the

set Cj(Lj) = {i ∈ Cj : σj(i)< Lj}. (Recall that each customer-type j is associated with a ranking

function σj ∈ Σ.) We note that only the T -coordinates of L, i.e., the sub-vector L[T ], matter in

the definition of J(S,T,L). However, to lighten the notation we use the entire vector and assume

that the unnecessary coordinates are set to 0.

DP bipartite graph. Similar to the unique-ranking case, we define the bipartite graph G that

has a node, for each product i ∈ [N ], on one side, and a node, for each customer-type j ∈ [K], on

the other side. There is an edge between a product node and customer-type node if the preference

list of the latter contains the former. Each subproblem of the state space (S,T,L) is associated

with the subgraph GL[S,T ] with (i) product nodes in S; (ii) customer-type nodes in T ; (iii) there

exists an edge between any i ∈ S and j ∈ T if i ∈ Cj(Lj). Similar to the unique-ranking case, the

connected components of the subgraph capture a decomposition into independent instances. The

proof, in the same spirit as that of Lemma 1, is omitted.

Lemma 3. For each subproblem (S,T,L), assuming that the connected components of GL[S,T ]

are described by the collection of subgraphs (GL[Su, Tu])u∈[r] where Su denotes a subset of product

nodes in S and Tu is a subset of type nodes in T , then J(S,T,L) =
∑r

u=1 J(Su, Tu,L).

Dynamic programming decisions and graph operations. We consider a subproblem

(S,T,L) and i is the next product to be processed i= min(S). We define T (i)⊆ T as all customer-

types whose preference list contains i, i.e., T (i) = {j ∈ T : i∈Cj(Lj)}.
Assume we decide to allocate product i to a subset of customers V ⊆ T (i), meaning that i is the

most preferred product made available to the customer-types in V . We describe below some natural

operations on the graph GL[S,T ] to enforce the decision of allocating product i to customer-types

V . In particular, we make sure that the decision to satisfy V with product i is consistent with

future decisions, and that it is feasible irrespective of the subsequent decisions. Specifically, we

perform the following operations on the bipartite graph:

1. T -nodes deletion. Because they are already satisfied with a product, the nodes corresponding

to consumer-types V should be discarded, we define T (V ) = T \V as the remaining customer-

types.
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2. S-nodes deletion. For each satisfied customer-type j ∈ V , we should remove from S the nodes

of all items he prefers more; indeed, these products cannot be stocked in the assortment

otherwise they would have been chosen by customer-type j over product i. Thus we define

S(V ) as the residual set of products:

S(V ) = S \
⋃
j∈V
{x∈Cj(Lj) : σj(x)<σj(i)} , (2)

3. Edges deletion. Finally, if a customer-type whose preference list contains product i, is not

allocated to this product, he can only purchase a product product he prefers more at some

later point of the recursion. As a result, we need to truncate his preference list by updating

the vector L:

∀j ∈ T (V ), L′j =

{
Lj if j 6∈ T (i)

min(Lj, σj(i)) otherwise .
(3)

We can easily verify the correctness of the above graph operations. That is, the expected revenue

obtained by summing the immediate-reward, formed by the allocation of product i to customer-

types V , with the reward-to-go, generated by the subproblem associated with the residual subgraph

GL′ [S(V ), T (V )], is feasible. We now formally describe the recursion.

Base case. If we set S = [N ], T = [K] and Lj = N + 1, then J(S,T,L) reflects the original

problem we are interested to solve. Using the Lemma 3, an optimal assortment is obtained by

solving independently the subproblems associated with each connected component of G. From this

point on, connectivity is an invariant of the subproblems examined by the recursion.

Recursive formula. We consider the subproblem (S,T,L) such that GL[S,T ] is a connected

subgraph. Recall that i denotes the next product to be processed (the minimal element of S) and

T (i) are all customer-types who consider product i. The decision made by the dynamic program

consists in the subset of customer-types V ⊆ T (i) allocated to product i. Without loss of gener-

ality, we can assume that an empty allocation V = ∅ means that he product i is not stocked in

the assortment. In this case, the residual subgraph is GL[S \ {i}, T ], which decomposes into the

connected components (GL[Su, Tu])u∈[r]. Each corresponding subproblems is solved independently

according to Lemma 3, generating a total revenue of
∑r

u=1 J(Su, Tu,L).

For each choice of V ⊆ T (i), where V 6= ∅, the allocation generates an immediate-reward Pi ·∑
j∈T λi. Next, we consider the residual subgraph GL′ [S(V ), T (V )] after performing the operations

previously described. Namely, we remove the most preferred products according to Equation (2)

while we delete edges according to L′ defined in Equation (3), where the vector L′ does not

depend on the choice of the allocation V ⊆ T (i). Using Lemma 3, the subgraph GL′ [S(V ), T (V )] can



Author: Assortment Optimization Under Consider-Then-Choose Choice Models
Article submitted to Management Science; manuscript no. MS-16-00074.R1 21

be decomposed into its connected components (GL′ [S(V )
u , T (V )

u ])u∈[r(V )]. Therefore, the optimality

conditions yield the following the recursive formula:

J(S,T,L) = max

(
r∑

u=1

J(Su, Tu,L) , max
V⊆T (i)

Pi ·
∑
j∈V

λj +

r(V )∑
u=1

J
(
S(V )
u , T (V )

u ,L′
))

(4)

Preliminary complexity analysis. In a naive implementation of the algorithm, one would

solve the problem for all possible tuple (S,T,L). Similar to the dynamic program presented in

Section 3, the effective computational tree is in fact comprised of a much smaller fraction of the

state space. However, in contrast to the unique-ranking case, the recursive formula (4) describes a

maximization problem over exponentially many allocations V ⊆ T (i), each associated by a family

of descendant subproblems of the form (S(V )
u , T (V )

u ,L′). As a result, we cannot readily leverage this

formula to build the computational tree. In addition, even if one tightly characterizes the state

space, it is still not obvious how to solve efficiently the optimization problem described by (4).

The marginalized algorithm. We address the difficulty raised at the end of the previous

section by proposing an efficient algorithm to generate the computational tree and solve the recur-

sive formula (4), while avoiding an enumeration over all allocations V ⊆ T (i). Because the detailed

exposition is rather technical, we only provide the high-level idea, and state the resulting com-

plexity analysis. The specifics of this auxiliary algorithm are detailed in Appendix B. The crux of

our approach is to observe that the descendant subproblems in equation (4) are not necessarily

distinct and may very well be equivalent: there is potentially overlap in the offspring generated

across all choices of V ⊆ T (i). Most of the redundancy that happen in a brute force enumeration

can in fact be eliminated (up to a polynomial factor) by marginalizing the allocation decision.

That is, the choice of the allocation V ⊆ T (i) is broken-down into a sequence of binary decisions,

each of which applies to a single customer-type in T (i). These binary allocation decisions are made

sequentially, entailing refined connected subgraphs and potentially new descendant subproblems in

the computational tree. By constructing and updating an appropriate data-structure, we avoid the

unnecessary exploration of equivalent subproblems. As a result, the marginalized algorithm runs

in time polynomial in N,K and |S|, yielding the following complexity result.

Proposition 2. The running time complexity of the marginalized dynamic program is polyno-

mial in the size of the state space S and the input size. In addition, in the worst case, we have

|S|≤N · 2N .

6. Consider-then-Choose Models with Ranking Heterogeneity

We now investigate models which combine consideration set heterogeneity along with ranking

heterogeneity, thereby extending the computational settings studied in Section 4.
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6.1. Similar rankings

In this section, we relax the unique-ranking assumption, and derive parametric computational

bounds for the consideration set models studied in Section 4 when the rankings are similar, i.e., Σ

is formed by small perturbations of a central permutation σ. Namely, assuming that SN designates

the set of all permutations of [N ], we let B(σ,d) designate the L∞-ball of radius d centered on σ.

That is,

B(σ,d) = {σ′ ∈ SN : ∀i∈ [N ]|σ′(i)−σ(i)|≤ d} .

This definition implies that for any permutations σ1, σ2 ∈B(σ,d), two products i, j ∈ [N ] such that

|σ(i)− σ(j)|≥ 2d necessarily have the same relative order in σ1 and σ2. In other terms, only local

‘swaps’ may occur between products at distance less than 2d. This structure is somewhat similar

to the d-sorted pricing structure proposed by Jagabathula and Rusmevichientong (2016).

The next theorem, proven in Appendix C, asserts that, for a fixed parameter d, the state space

complexity associated with unique-ranking Σ = {σ} is preserved up to a polynomial factor under

the generalization Σ =B(σ,d). In particular, the polynomial running time guarantees established

in Section 4 carry over to Σ = B(σ,d). Again, this result permits a parametric tradeoff between

modeling power and tractability.

Theorem 6. Let S(C, σ) denote the state space under a collection of consideration sets C and a

unique-ranking function Σ = {σ}. Then, the size of the state space of the general dynamic program

with processing order σ under the consideration sets C with rankings Σ =B(σ,d) is at most 24d−2 ·
|S(C, σ)|.

6.2. Quasi-convex preference lists

We now study a class of preference list distributions that allows for high levels of heterogeneity in

the ranking decisions, but the ranking functions exhibit a quasi-convex structure.

Definition 5. Suppose that the product indices are numbered according to a central permu-

tation σ over products. A distribution over preference lists belongs to the quasi-convex model if

the consideration sets C are intervals and the ranking functions Σ are quasi-convex. That is, for

all j ∈ [K], there exists i ∈ Cj such that σj is decreasing over {1, . . . , i} ∩Cj and increasing over

[i,N ]∩Cj.
The quasi-convex property captures several common preference patterns. To flesh out this model

with practical examples, suppose that the consideration sets are formed as a conjunction of the

screening rules relative to price and perceived quality described in Section 4.1. The quasi-convex

family simultaneously captures a variety of ranking behaviors: customers can be price-driven, or

quality-driven, or maximize any price/quality ratio function which is quasi-convex in price.
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It is worth noting that the quasi-convex model subsumes the one-dimensional locational choice

model (Lancaster 1966, 1975). In the latter model, customer-types and products are each repre-

sented by a scalar value, and a customer-type picks the closest product to him made available in

the assortment (i.e., with minimal absolute distance between their respective scalars). It is not

difficult to show that the ranking functions arising from this model are quasi-convex with respect

to the central permutation formed by increasing scalars.

Observe that the quasi-convex model substantially ‘enriches’ the degree of freedom of the distri-

butions up to O(2N) - in comparison to the O(N 2) parameters of the intervals model or the O(N 3)

parameters associated with the locational model (see Claim 2 proven in Appendix D).

Theorem 7. Under the quasi-convex model with central permutation σ, the dynamic program

with processing order σ has a state space of size O(N 3).

Proof We construct an injective mapping from any connected subgraph generated along the

recursion, i.e., belonging to the computational tree, onto 3-tuples of products. Specifically, Ψ maps

any subproblem (S,T,L) to the tuple (a, b, c) where (a, b) is the ordered pair of the last products

stocked along the recursion before generating (S,T,L) while c is the next product to be pro-

cessed in S, i.e., c= min(S). To prove that this mapping is injective, we consider (S1, T1,L) and

(S2, T2,L
′)∈ S two subproblems of the computational tree such that

(a, b, c) = Ψ(S1, T1,L) = Ψ(S2, T2,L
′) . (5)

Now, assume ad absurdum that T1 \T2 6= ∅. Without loss of generality, we can pick a customer-

type j in T1 \T2 whose consideration set Cj has been truncated, meaning that Lj <N + 1. Indeed,

T1 \T2 would otherwise be comprised of customer-types not affected by the decisions made at the

parent nodes of the computational tree, relative to products in [b]. But this contradicts that at

least one node in T1 \T2 gets disconnected from the subgraph GL′ [S2, T2] along the recursion.

Since Lj < N + 1, there exists a product in Cj ∩ [c − 1], which is processed before attaining

subproblem (S1, T1,L). By connectivity, Cj(Lj) ∩ S1 is not empty, meaning that Cj contains a

product in [c,N ] as well. Given that Cj is an interval, this implies that c∈Cj. Also, the preference

order between the products {a, b, c} is given by σj(c)<σj(b)<σj(a). Indeed, the ranking function

being quasi-convex, any product with index larger than b would otherwise be less preferred than

a and b, and as a result the truncated consideration set Cj(Lj) would not intersect with S1. This

shows that customer-type j prefers product c over all products in [b]. Since j /∈ T2 and c ∈ Cj,
the customer-type node j necessarily gets disconnected from the subgraph GL′ [S2, T2] along the

recursion through an allocation to some product i∈ [b]. However, had this allocation been decided

at a parent node of the computational tree, all products that customer-type j prefers over i would
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have been discarded by now. In particular, product c would not belong to S2, which contradicts

equation (5).

Finally, we remark that the truncation of preference lists only depends on the last product being

stocked. Indeed, as previously shown, for any remaining preference lists j ∈ T1 such that Lj <N+1,

then product b lies in Cj and σj(b)< σj(a). Quasi-convexity induces that b is preferred over any

other product stocked before a. Thus, Lj = σj(b) =L′j. We conclude by observing that

S1 =
⋃
j∈T1

Cj(Lj) =
⋃
j∈T2

Cj(L
′
j) = S2 . �

6.3. Two-feature compensatory model

We consider a preference list-based model where the screening rules are combined in a compensatory

fashion (Einhorn and Hogarth 1975, Dawes 1979). Here, low levels on a given feature can be offset

by high levels on other features as discussed in Section 2. Specifically, preference lists are formed

according to utility maximization, as illustrated by Figure 3.

feature x1 

feature x2

O

uj

Consideration set Ranking decisions

Products

Assortment
Consideration set

Assortment 
polytope

 x1 

x2

O

uj

Figure 3 Consideration sets and ranking decisions driven by linear utility maximization in a two-featureal

feature space.

Definition 6. Suppose that the feature space has dimension d= 2. An instance belongs to the

two-feature compensatory model if each customer-type j ∈ [K] can be described by a utility vector

u(j) ∈R2 and a cut-off level tj such that (i) Cj contains all products which utility is above the cut-

off tj, i.e., Cj = {i ∈ [N ] : u(j) · x(i) ≥ tj}, and (ii) for any pair of products i, k ∈ [N ], σj(i)< σj(k)

if and only if u(j) ·xk <u(j) ·xi (we assume there are no ties between products).

By exploiting the geometric structure of this model, we prove that the state space is of polynomial

size under the class of preference list distributions described by the two-feature linear model. The

proof, detailed in Appendix E, is of same spirit as that of Theorem 7: we construct an injective
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mapping of subproblems in S onto the last dynamic programming decisions in the computational

tree.

Theorem 8. Under the two-feature compensatory model, for any arbitrary processing order, the

size of the state space is of O(N 3K2).

7. Empirical performance

In this section, we demonstrate that our approach yields superior predictive and computational

performance against several benchmarks. In Section 7.1, we demonstrate that the dynamic pro-

gramming approach is computationally efficient, even in comparison to a state-of-the art integer

programmer solver. In Section 7.2, we show that the quasi-convex model has the ability to accu-

rately replicate and predict the choice outcomes on synthetic and real industry datasets, against

several parametric choice models.

7.1. Computational performance

7.1.1. Computational benchmark: integer programming. The assortment optimization

problem can be formulated as 0− 1 binary program. We define the binary decision variables yi to

decide whether a product is added to the assortment, xi,j encodes the assignment of product i∈Cj
to customer-type j ∈ [K] . The problem is formulated as follows:

max
N∑
i=1

K∑
j=1

Pi ·λj ·xi,j

s.t. xi,j ≤ yi ∀(i, j)∈ [N ]× [K] (6)

xi,j + yl ≤ 1 ∀j ∈ [K], l ∈Cj and i∈ {x∈Cj : σj (l)<σj (i)} (7)∑
i∈Cj

xi,j ≤ 1 ∀j ∈ [K] (8)

xi,j, yi ∈ {0,1} ,

where the coupling constraints (6) enforce that a customer may only pick a product made available

in the assortment while the inequalities (7) ensure that a given customer-type could only choose

the highest rank product made available to him. Finally, the constraints (8) mean that at most

one product is assigned to each customer. The additional constraints (8) tighten the relaxation

of the binary program. It is worth noting that that similar formulations were introduced prior

to this work by McBride and Zufryden (1988) and Anupindi et al. (2009). This integer program

(IP) is implemented on a commercial solver GUROBI (Gurobi Optimization 2015), which arguably

combines state-of-the-art methodologies and implementation.
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7.1.2. Computational set-up. The experiments are conducted using a MacBook Pro with

processor 2.5 GHz Intel Core i5 (two cores). Our dynamic program is implemented using the

programming language Julia. The commercial solver GUROBI (v.6.5) is run in parallel mode. We

impose termination when the incumbent solution has an optimality gap of 1%, or after the running

time reaches 1000 seconds for computational convenience. In contrast, our algorithm provides exact

solutions for all instances. We run two series of experiments with different generative models. In

the former, we generate instances of the quasi-convex model described in Section 6, arguably one

of the ‘richest’ consider-then-choose model discussed in previous sections that admits a provable

polynomial running time guarantee. In the latter, we compare the algorithms on generic instances

with unique-ranking preferences, not pertaining to any specific structure of consideration sets. The

consideration sets arise from i.i.d Bernoulli trials with a parameter α ∈ (0,1). In Appendix G, we

describe more precisely our generative models and provide additional details on the implementation.

Table 2 Runtime of our algorithm (DP) against the commercial solver (IP) under the quasi-convex preference model.

Parameters Average runtime (s) Coeff. of var (%)

N K DP IP DP IP

50 500 0.9 45.9 17.0 47.4
50 1000 1.2 398.5 6.2 52.4
50 2000 1.8 777.1 < 10−3 46.2
50 2500 2.4 > 103 < 10−3 -
100 2500 16.8 > 103 < 10−3 -
200 2500 138.9 > 103 < 10−3 -

The IP is terminated after 1000 seconds. Each entry is obtained by sampling 50 instances unless the average running time

exceeds 800 seconds, in which case we sample 20 instances.

7.1.3. Numerical results. Our numerical results indicate that our algorithmic approach sub-

stantially outperforms the IP solver in several regimes of parameters (see Table 2 and Figure 1).

The dynamic programming approach shows more running time stability across instances due to its

combinatorial nature, while one potential shortcoming of the IP approach for practitioners resides

in the large variability of running time across instances.

Under the quasi-convex model. As shown in Table 2, the dynamic program dominates the com-

mercial solver by an order of magnitude. The IP approach scales unfavorably with the number of

customer-types K and it becomes intractable for large scale instances (e.g., with 200 products)

where the dynamic program is still very efficient.

Under arbitrary consideration sets. Recall that in this general setting the problem is NP-hard

even to approximate within O(N 1−ε). In several cases, our approach dominates the IP as shown in

Figure 4.
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Figure 4 Average runtime of our algorithm (DP) against the commercial solver (IP) on synthetic instances.
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Note. Note that the asymptotic complexity of the IP is not captured here since we impose termination after 1000

seconds. The running time is averaged over 50 instances. Recall that α is the Bernoulli parameter that controls the

size of the consideration sets.

Similar to the quasi-convex model, the IP solver scales poorly with the number of customer types.

That is, for a fixed number of products (N = 20), the running time of the IP is highly affected by

the number of customer types K. The difference between the algorithms is more pronounced for

larger consideration sets (larger Bernoulli parameter α). On the other hand, as one would expect,

the dynamic program is less efficient when N >>K, since our algorithm enumerates over product

stocking decisions. The results obtained for large consideration sets (α = 0.7) suggest that the

dynamic program could asymptotically dominate the IP solver in this regime.

The observed computational efficiency proceeds from the state space collapse performed by our

algorithm. When comparing our approach to a “naive” recursion, the state space is reduced by a

factor ranging between 75% to over 99% (see Table 5 in Appendix I).

7.2. Modeling Power

Practical applications of choice modeling, such as the assortment optimization problem studied

here, begin with transactional data. The generic approach is to fit a specific type of choice model to

this data and then employ an assortment optimization algorithm designed for that choice model.

As such, the choice model employed must strike a balance between its ability to fit the data on the
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one hand, and admit efficient algorithms for assortment optimization on the other. In this regard

it is well known that the MMNL model has the ability to represent any choice model satisfying the

strong axiom of revealed preferences, that is, arbitrary distributions over preference lists (McFadden

and Train 2000). Of course, this expressive power comes at a price: assortment optimization under

the MMNL model is difficult in all but a restricted set of cases. Specifically, Désir and Goyal (2014)

provide an algorithm for assortment optimization under the MMNL model whose complexity scales

exponentially with the number of customer segments2. Consequently, optimization is practical only

for a mixture over a relatively ‘small’ number of customer segments (a notion we will make precise

shortly). In summary, one may regard MMNL models with a small number of customer segments

as a valid alternative to the models (and corresponding algorithms) we consider in this paper.

The goal of this section is to flesh out this comparison. Specifically, we consider the following

experiments on synthetic and industry data:

1. Synthetic data from an MMNL model: Using a synthetic dataset generated from an MMNL

model with a relatively large number of customer segments, we fit two types of models to

this data: (i) an MMNL model with a small number of customer segments and (ii) the quasi-

convex consider-then-choose model studied in Section 6.2. We show that in several cases the

latter model provides a better fit to the data (out-of-sample) under a variety of metrics. In

particular, we show that the quasi-convex model does an excellent job of capturing choice

patterns that may have arise from an MMNL model.

2. Synthetic data from a consider-then-choose model: As a counterpart to synthetic data from an

MMNL model, we consider fitting both types of model in the experiment above to synthetic

data generated this time from a simple, intervals-based consider-then-choose model. As one

would expect, the quasi-convex model provide a better fit by a large margin. In particular, we

show that MMNL models with a small number of customer segment do not do an adequate

job of fitting choice data arising from consider-then-choose behavior.

3. Real industry data: Using transactional data across a panel of hundreds of thousands of cus-

tomers in three distinct product categories (containing hundreds of products) collected by an

industry partner, we again run the same experiment, and evaluate predictive power on a hold-

out sample. Again we show that the quasi-convex consider-then-choose model provides a very

significant improvement in predictive accuracy on the hold out set. This improvement can be

as high as 60% in certain categories, and never lower than 4% – a striking improvement.

In the sequel, we designate by MMNL(c) the class of mixtures with c customer segments. The

MMNL instances (and the MNL as a special case) are parametrized by the preference weights

2 Their algorithm constitutes a fully polynomial-time approximation scheme for a fixed number of customer segments
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wi,j ∈R+ where i, j ∈ [N ]× [c], along with the probability vector (µ1, . . . , µc) of the mixture. Here

N is the number of products and c is the number of customer segments. With this definition at

hand, the purchase probability for product i in an assortment A ⊆ [N ] is, under the MMNL(c)

model, expressed as:

Pr (i|A) =
c∑

α=1

µα ·
wi,α

1 +
∑

j∈Awj,α
.

7.2.1. Synthetic data. In this section, we evaluate the predictive power of the quasi-convex

model on synthetic datasets, against MMNL models with up to 3 customer segments. Assortment

optimization with a larger number of segments is effectively impractical as noted earlier (the compu-

tational complexity scales exponentially with the number of segments). Against such benchmarks,

we demonstrate the predictive power of the quasi-convex model. We first explain how the synthetic

datasets are generated, and then describe our numerical results. The experiments are conducted

on random instances, with a fixed number of products N = 50. The dataset is constructed by ran-

domly generating 100 assortments A1, . . . ,A100, each formed by drawing N independent Bernoulli

trials with probability of success 0.5. To generate the purchase probability data, we make use of

the following ground truth models:

• MMNL models: For our first set of synthetic data, we generate random MMNL(5) instances.

It is worth noting that assortment optimization against a 5 segment model is effectively

impractical, and as such we will eventually fit an MMNL model with a smaller number of

segments to this data. The preference weights wi,j are drawn independently from a log-normal

distribution of scale σ, where σ is varied in the set {1,10,20,40}. Each customer segment occurs

with probability µ1 = · · ·= µ5 = 1/5. Here, σ intuitively controls the amount of heterogeneity

in choice behavior across segments; we will momentarily see that predictive performance is

sensitive to this parameter.

• Consider-then-choose model: For our second set of synthetic data, the purchase probabilities

arise from the intervals model introduced in Section 4.1. Indexing the set of all possible

intervals by k ∈ {1,2, . . . ,K}, the probability vector (λ1, . . . , λK) is drawn uniformly at random

from the unit simplex.

Given the above generative settings, our datasets takes the form of a random matrix

(pij)i∈[N ],j∈[100], where the entry pij is the empirical probability of purchases of product i within

the assortment Aj according to the ground truth choice model. As discussed earlier, we fit to these

datasets a suite of choice models, including MMNL models with up to 3 customer segments, as

well as the quasi-convex model. To calibrate these models with the data, we use known estimation

methods in the literature (McFadden 1973, Talluri and Van Ryzin 2006, van Ryzin and Vulcano

2014, Bertsimas and Mǐsic 2015). Specifically, we make use of a column generation algorithm to
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Table 3 Prediction errors of the models estimated from the synthetic data, in different generative settings.

Ground truth
Quasi-convex MNL MMNL(2) MMNL(3)

MSE MAPE MSE MAPE MSE MAPE MSE MAPE

MMNL(5)

σ= 1 0.059 0.204 0.005 0.050 0.002 0.048 0.004 0.048
σ= 10 0.169 0.463 0.207 0.529 0.204 0.510 0.197 0.511
σ= 20 0.197 0.489 0.224 0.520 0.217 0.518 0.216 0.514
σ= 40 0.199 0.472 0.245 0.533 0.240 0.524 0.226 0.519

Intervals 0.003 0.010 0.286 0.509 0.229 0.442 0.225 0.437

Recall that σ is the scale of the log-normal generator used to draw the preference weights in the MMNL instance.
Each entry is obtained by sampling 10 random instances. After learning the quasi-convex lists through column
generation, the final model is calibrated using the `1 or the `2-norm, based on cross-validation.

generate the quasi-convex preference lists and use standard maximum likelihood estimators to learn

the MMNL family; the description of the estimation algorithms is deferred to Appendix H.

Prediction task and error metrics. For each dataset thus formed, we carried out a 5-fold cross-

validation to estimate the prediction accuracy of the different models out-of-sample. We report two

prediction error metrics: the mean square error (MSE), expressed in normalized form as a percent-

age of the total variance of the data and the mean absolute percentage error (MAPE). Specifically,

letting OS ⊆ [100] designate the collection of out-of-sample assortments and (p̂ij)i∈[N ]j∈OS be the

prediction matrix, we have:

MSE =

∑
j∈OS

∑
i∈Aj (p̂ij − pij)

2∑
j∈OS

∑
i∈Aj p

2
ij

,

and

MAPE =
∑
j∈OS

1

|OS|·|Aj|
·
∑
i∈Aj

|p̂ij − pij|
0.01 + pij

.

Results. The numerical results, show that the quasi-convex family has relatively accurate predic-

tions in all generative settings, and outperforms the parametric models in the plurality of cases. As

one might expect, when the intervals model is posited as ground truth, the estimated quasi-convex

instances provide low prediction errors out-of-sample. On the other hand, the out-of-sample errors

incurred under any of the MMNL models is substantially larger.

More interestingly, when data is generated according to an MMNL model, we see that as the

scale parameter that controls customer heterogeneity across segments, σ, grows (i.e., σ ≥ 10), the

quasi-convex model provides more accurate out of sample predictions than the estimated MNL,

MMNL(2) and MMNL(3) instances. For example, for σ = 10, the MSE is smaller by a factor of

between 14 and 22%, while the MAPE is smaller by a factor of 10% to 12%. The cases where

the MMNL models provide an improvement in prediction error are when σ ≤ 5. In such cases the

heterogeneity in choice across distinct segments is so small that an MNL model would be expected

to provide a good fit to the data – a fact that is borne out in the experiment. In this setting the

absolute prediction errors are relatively small across all models, including the quasi-convex model.
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Table 4 % Improvements in the predictive accuracy of our quasi-convex model against the chosen benchmarks.

(% Improvement) MNL MMNL(2) MMNL(3)

Datasets MSE MAPE MSE MAPE MSE MAPE

Dog Food &
Dog Treats

k= 2 12% 28% 7.5% 14% 6.8% 14%
k= 5 21% 23% 13% 15% 15% 12%

Bath tissue
k= 2 79% 59% 71% 50% 65% 42%
k= 5 67% 35% 58% 31% 51% 26%

Shampoo &
Conditioners

k= 2 15% 22% 9.3% 13% 11% 13%
k= 5 12% 18% 8.2% 14% 4.0% 10%

Note: k is the cross-validation parameter. Each entry is computed by averaging over 10 cross-validation estimates.

7.2.2. Purchase panel data. Our industry partner tracks the daily transactions made by

hundreds of thousands of consumers across several product categories and retailers. In order to form

our input datasets, we had access to three product categories with frequent purchases, namely Bath

tissue, Shampoo and Conditioners, and Dog Food and Treats. In each category, the time horizon

considered varies from 2 to 5 months to obtain around 1 million transactions. Transactions are

aggregated at the brand level. Each assortment corresponds to the combination of a retail chain

and a US state 3: it is defined as the collection of products with at least one transaction. Having

specified the assortments A1, . . . ,As, the purchase probabilities pij are obtained by computing the

market shares of products according to the observed transactions. For any given state and product

category, we only consider those retailers with greater than 500 transactions in that state for that

category. Hence, the Bath tissue, Dog Food and Treats, and Shampoo and Conditioners datasets are

respectively formed by 58, 211 and 257 assortments. To verify the robustness of our conclusions,

multiple experiments were conducted by randomly sub-sampling 50 products in each category.

Results. Table 4 reports the percentage improvement in predictive accuracy for each metric

and product category. For example, denoting by MSEQ the chi-square errors on the predictions

of the quasi-convex model and MSEMNL those associated with the MNL model, the percentage

improvement relative to the MNL model is given by

MSEMNL−MSEQ

MSEMNL

.

The table reports these quantities averaged across multiple experiments (each experiment obtained

via a random sampling of products), and each cross-validation fold. Our quasi-convex modeling

approach outperforms the parametric benchmark models by providing smaller out-of-sample pre-

diction errors in all cases. The gain is smallest (as expected) for the MMNL(3) model, but remains

substantial in absolute terms – as large as 60% for certain product categories. Our results are

3 Retailers in the dataset carry near identical assortments in a given state over the time periods considered.
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robust to using other metrics (not reported here) such as chi-square. In summary, we conclude

that the quasi-convex consider-then-choose model provides strong predictive power on real-world

choice data.

8. Concluding Remarks

General objective function. A close examination of the algorithm reveals that our results

apply in fact to a more general class of objective functions that we describe below. We introduce

the pay-off function f : [N ]× [K]→ R, where f(i, j) is the contribution to the objective due to

the purchase of product i by the preference list j. Letting i(A, j) denote the product purchased

by preference list j when faced with assortment A, the objective value for the assortment A is

given by the expected pay-off:
∑

j∈[K] λj · f(i(A, j). We may mention two application of practical

interest captured by this more general family of objective functions. It accounts for potentially

heterogeneous per-selling price over customer-types, e.g., targeted promotions or loyalty programs.

Another interesting problem formulation consists in maximizing the customers’ utility. In this case

f(i, j) is interpreted as the utility garnered by customer j ∈ [k] when purchasing product i∈ [N ].

Future work. This work opens exciting perspectives for future research. A natural lead is to

further investigate the interplay between the behavioral heuristics identified by the marketing lit-

erature and the running time complexity of our dynamic program. In addition, the implementation

allows for several refinements, such as using heuristics to prune the computational tree or explor-

ing the subproblems in parallel. Another important question is to investigate the identifiability of

the models discussed in this work from data, in particular the quasi-convex model, and study the

computational and sample complexity associated with the estimation problem.

Appendix A: Modeling the Consideration Sets

Proof of Lemma 2 To ease the exposition, we define i as the minimal product in S, and let v designate a

customer-type in T . By definition, there exists a customer-type u∈ T such that i∈Cu. Also, since G[S,T ] is

a connected subgraph,give there exists a path between v and u. We now define v∗ ∈ T as the customer-type

in T which satisfies i ∈Cv∗ and has the shortest path with v. In other terms, v∗ minimizes the length of a

path between v and x over all x∈ T such that i∈Cx. This set is not empty because it contains customer-type

u. We are going to prove that Cv ∩ [i]⊂Cv∗ ∩ [i].

Let j1, j2,... jl be sequence of customer-type nodes in G[S,T ] corresponding to the shortest path between v

and v∗: {
j1 = v∗ and jl = v

∀r ∈ [l− 1], ∃a∈ S s.t. (jr, a, jr+1) is a path of G[S,T ]

Let a1, a2...,al−1 be the corresponding sequence of maximal intersections of the consideration set of each two

subsequent customer-types along this path:

∀2≤ r≤ l, ar = max[Cjr ∩Cjr−1
]
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By convention, we set a1 := i. We now prove by induction over r, 2≤ r ≤ l, that ar > ar−1 and Cjr ∩ [ar]⊂
Cjr−1

∩ [ar].

• Base case (r= 2). We first note that a1 <a2. Indeed, since i is the minimal element of S, we can infer

that a2 ≥ i. These indices can not be equal otherwise i ∈ Cj2 and we would obtain a strictly shorter

path between v and j2 by considering the path (j2, a3, . . . , al, jl) and this contradicts the minimality

of l. We now prove the inclusion. We infer from the definition of weakly laminar consideration sets

that either Cj1 ∩ [a2] ⊂ Cj2 ∩ [a2] or Cj2 ∩ [a2] ⊂ Cj1 ∩ [a2]. In addition, item i is contained in Cj1

and i /∈Cj2 , otherwise it would contradict the minimality of the path. Since i /∈Cj2 , we can infer that

Cj2 ∩ [a2]⊂Cj1 ∩ [a2], which leads to the desired result.

• Inductive step r > 2. We begin by assuming that ar > ar−1. Again, by definition, either

Cjr ∩ [ar]⊂Cjr−1
∩ [ar] or Cjr−1

∩ [ar]⊂Cjr ∩ [ar]. We assume that the latter is satisfied to prove a

contradiction. Since we assume that ar > ar−1, the latter set inclusion leads to ar−1 ∈ Cjr . There-

fore, Cjr−2
and Cjr both contain product ar−1 and (jr−2, ar−1, jr) is a path of G[S,T ]. Thus, we can

obtain a path between v∗ and v of strictly smaller length using the shortcut (jr−2, ar−1, jr) instead of

(jr−2, ar−1, jr−1, ar, jr). However, this would contradict the minimality of l. Thus: Cjr ∩ [ar]⊂Cjr−1
∩

[ar].

In order to prove the above assumption that ar > ar−1, we now assume that ar ≤ ar−1 and prove that it

leads to a contradiction. By the induction hypothesis, we know that Cjr−1
∩ [ar−1]⊂Cjr−2

∩ [ar−1]. Thus, if

ar ≤ ar−1, it follows that ar ∈Cjr−1
∩ [ar−1]. From the above inclusion, we obtain that ar ∈Cjr−2

. Therefore,

there is an edge between jr−2 and ar and (j1, a2, j2, . . . , jr−2, ar, jr, . . . , jl) would form a path between v∗ and

v of strictly smaller length, which contradicts the minimality of l. We can thus obtain that ar >ar−1.

So far, for any given v ∈ T , we have proven the existence of v∗ ∈ T such that Cv∩ [i]⊂Cv∗ ∩ [i] and i∈Cv∗ .
Defining T (i) as the subset of customer-types in T that consider product i, we may verify that the collection

of subsets Cj ∩ [i] where j ∈ T (i) is nested. As a consequence, this collection admits a maximal element, that

corresponds to a customer-type j∗ ∈ T . Thus, we conclude that Cv ⊆Cj∗ for any v ∈ T .

Proof of Theorem 5 The proof is analogous to the previously considered models. We seek to upper-bound

the quantity |Φ〈S〉|. To this end, we let (S,T ) be a subproblem of S. We have

Φ(S,T ) = [min(S)]
⋂ (⋃

j∈T

Cj

)

= [min(S)]
⋂⋃

j∈T

⋃
e∈[d]

{
i∈ [N ] : x(j)

e ≥ t(j)e
}

= [min(S)]
⋂⋃

e∈[d]

⋃
j∈T

{
i∈ [N ] : x(i)

e ≥ t(j)e
}

= [min(S)]
⋂⋃

e∈[d]

{
i∈ [N ] : x(i)

e ≥min
j∈T

t(j)e

} ,

where the second equality follows from Definition 4, and the third equality proceeds by changing the union

order. We conclude by observing that for each e ∈ [d], the quantity minj∈T t
(j)
e can take at most K distinct

values. Therefore, we obtain that |Φ〈S〉| ≤N ·Kd. �
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Appendix B: Marginalization

We give here the specifics of the marginalization algorithm described in Section 5.

Informal sketch. By constructing and updating an appropriate data-structure, denoted by

D(S,T,L)∼D, we prevent the redundant exploration of the children subproblems appearing in equation (4).

Specifically, we construct recursively a directed graph D, illustrated by Figure (5). To this end, each node

inserted in D is labelled by a combination of a child subproblem, and the index of the last customer-type in

T (i) that has been processed, termed the layer of the node. At each step, we consider all unmarked nodes,

and process their next customer-type in T (i) according to the increasing index order. The dynamic program

decides whether the current customer-type is allocated to product i or not. Each decision entails a graph

decomposition into children subproblems according to Lemma 3. The corresponding nodes, with the respec-

tive customer-type layer, are inserted in D as unmarked nodes. Also, we add directed edges connecting the

father node to its respective children nodes. The procedure terminates when it attains the maximal layer

index.

Layers:   ̀

Allocation:  ̀ 2 V

No allocation:  ̀ /2 V

(s, t, L0)

(s, t \ {`}, L0)

(s1, t1, L
0)

(s2, t2, L
0)

(s3, t3, L
0)

(s, t, L0)

Decomposition of 

`1 > ` `2 > `1 `3 > `2

Figure 5 Recursive step of the procedure that constructs D(S,T,L).

Generation of the computational tree. More formally, we assume that the customer-types T (i)

are reindexed in an arbitrary order T (i)∼ [l] where l= |T (i)|. We introduce a directed graph data-structure

D(S,T,L), initially set empty. (In the following, unless ambiguity arises, it is simply denoted D for ease of

exposition.) Each node we add to D is uniquely labelled by a tuple (j, s, t)∈ [l]×P(S)×P(T ) where (s, t,L′)

is a child subproblem appearing in equation (4) and generated by an allocation contained in [j]. The nodes

are generated by an iterative procedure described below:

• Base case. We start with an empty graph D←∅. The first nodes that we add correspond to the empty

allocation V = ∅. Namely, for each connected components GL′ [S(∅)
u , T (∅)

u ], we insert a node in D labelled

(S(∅)
u T (∅)

u ,0). We refer to them as the roots of D.
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• Recursive step. Assume that a node with label (s, t, j) has been added to D. The next customer-type

we consider, denoted j′, is the minimum of t ∩ [j + 1, l]. The decision made at this stage is whether

customer-type j′ gets allocated to product i or not. In the latter case, a node (s, t, j′) is inserted in D
unless it already belongs to the data-structure. Also, we create a directed edge between the parent node

labelled (s, t, j) and its descendant (s, t, j′). Conversely, in case j′ is allocated to product i, we derive

the residual graph GL′ [s, t \ {j′}] and compute its connected components. Each connected component

GL′ [su, tu] leads to the insertion of a new node (su, tu, j
′) unless it already belongs to D. Also, directed

edges are added between the parent node and its descendants in D.

The graph D built via this recursive procedure is a directed forest – a cycle-free directed graph. Indeed, the

only edges are between father nodes and their offspring. Because the customer-type index in the node label

is monotonic (j′ > j), there cannot be any cycle. Finally, we observe that the leafs of D uniquely represent

all subproblems generated by the allocations V ⊆ T (i). Indeed, any V corresponds to a sequence of binary

decisions in [l]. This sequence of decisions defines a collection of paths in D starting from the root nodes. By

construction, the subproblems described by the labels of the terminating leafs are exactly the subproblems

generated by V .

In terms of running time, each distinct subproblem shows up in at most l nodes of D (and l is smaller

than K). Therefore, the total running time to generate the DP computational tree is upper bounded by

O(NK2 · |S|).
Solving equation (4). Once the DP computational tree has been drawn, the subproblems are solved

backwards using the recursive formula (4). By exploiting the data-structure D(S,T,L), we show in this

paragraph that the maximization problem (4) can be recast as a low dimensional dynamic program that

can be solved efficiently. That is, at each recursive step of the master dynamic program, we solve a separate

dynamic program, termed the marginalized dynamic program.

We consider a fixed instance (S,T,L). Suppose that all subsequent subproblems have been solved as we

move backwards over the computational tree. For ease of exposition, the reference to the parameters (S,T,L)

is omitted when introducing the marginalized dynamic program, and the notations i, T (i),L′, l and D are

consistent with the previous definitions.

By construction, we note that for each node of D, with label n= (s, t, j), the corresponding subproblem

(s, t,L′) has been generated by at least one allocation V ⊆ [j], that we designate as V (n). We define the value

function F (n) as the optimal expected revenue from customer-types t in the subproblem (S,T,L) under

the constraints that (i) product i is stocked and (ii) the allocation of this product V ⊆ T (i) satisfies the

constraint V ∩ [j] = V (n), i.e., the projection of V on [j] is V (n). Let j′ be the next customer-type for which

a decision is made when examining node n, i.e., j′ = min([j + 1, l] ∩ T ). Letting N (n) denote the children

nodes of n if j′ is allocated to product i and n′ be the child node of n otherwise, we obtain:

F (n) = max

F (n′) , λj′ ·Pi +
∑

u∈N(n)

F (u)


Indeed, if customer-type j′ is allocated to product i, it generate a revenue of λj′ ·Pi and the residual graph

decomposes into the connected subgraphs described by N (n). Conversely, if j′ is not allocated to product i,
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the connected subgraph is not modified further and the revenue is that of F (n′). This is consistent with the

constraint (ii) as V (n′) = V (n) when j′ is not added to the allocation.

By applying this formula inductively from the leafs of D, we compute F (n1),...,F (nr(∅)) where n1,...,nr(∅)

are the root nodes of D. Conditional on the fact that i is stocked, we conclude that:

J(S,T,L) =

r(∅)∑
u=1

F (nu)

Therefore, equation (4) is equivalent to:

J(S,T,L) = max

(
r(−)∑
u=1

J(S−u , T
−
u ,L) , max

[
r(∅)∑
u=1

F (nu)

])
Example with the in-tree model. To flesh out our marginalized algorithm through a concrete model, we

argue now that this approach allows to solve efficiently the in-tree model proposed by Honhon et al. (2012).

Here, each product is represented by a node in a rooted tree T . Each consideration set in C corresponds to

a path from the root to a given node – we will denote by Cv the consideration set formed by the path from

the root to node v ∈ T . We further assume that such directed paths define the increasing preference order,

namely, the farther from the root, the more preferred is a product, thus leading to some (non-unique) ranking

function σ. The processing order is chosen as the reverse permutation σ̄, that is, products are processed from

the root to the descendant nodes. To argue that the marginalization is efficient, it is sufficient to show that,

for any product i∈ [n], we can restrict attention to allocations V ⊆ T (i) corresponding to subtrees of product

nodes (here, by abuse of language, we mix each customer-type with his corresponding consideration set and

product node in T ). To arrive at a contradiction, suppose we have an allocation V ⊆ T (i) with Ci,Cj ∈ V ,

where j is a descendent of i, and k is on the path from i to j although Ck /∈ V . Since product i has been

allocated to customer-type associated with Cj , who prefers product k over i according to σ, it follows that

product k is not contained in S(V ). Consequently, all product nodes between j and k have been eliminated

from the residual graph, and therefore the customer-type node of Ck is disconnected from any (non-trivial)

connected component. Thus, we can assume without loss of generality that Ck ∈ V .

Complexity Analysis. We now derive a general upper bound on the running time.

Proof of Proposition 2 The proof of the first claim follows from our previous observations. At each node

(S,T,L) of the computational tree, the running time for generating the graph D(S,T,L) along with the

running time for solving the marginalized DP is at most O(N ·K2 · |S|). Summing over all the nodes of the

DP computational tree, we obtain a total running time of O(N ·K2 · |S|2).

We now derive an upper-bound on the state space size. To this end, we construct a function Φ that maps

any subproblem generated along the recursion to a subset of products as well as a product within this set.

By definition, any subproblem (S,T,L) ∈ S has been generated by a sequence of decisions whereby some

products in {1, . . . ,min (S)− 1} have been stocked. We define A(S,T,L) as a partial assortment of products

corresponding to a sequence of decisions prior to generating subproblem (S,T,L). The mapping is described

as follows:

Φ : S →P([N ])× [N ]

(S,T,L) 7→ (A (S,T,L)∪S,min (S))
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It is sufficient to show that this function is injective to obtain the desired result. Assume that two subproblems

satisfy Φ (I1) = Φ (I2) where I1 = (S1, T1,L1) and I2 = (S2, T2,L
′). Then, by definition:

S1 = Φ(1) (I1)∩ [Φ(2) (I1) ,N ]

= Φ(1) (I2)∩ [Φ(2) (I2) ,N ]

= S2 .

This proves that the two subproblems have the same subsets of products. By similar observations, we can

claim that both I1 and I2 are generated by the same sequence of decisions, or equivalently the same assort-

ment A⊆Φ(1) (I1)∩ [Φ(2) (I1)− 1]. We also know that L = L′ because the truncation vector is determined

by the previous stocking decisions. As a result, the only difference between the two subproblems could only

be caused by a different sequence of allocations. Therefore, it is sufficient to prove that the set of customer-

types remaining in the two connected subgraphs are exactly the same in order to obtain that I1 = I2. Ad

absurdum, assume j ∈ T1 \ T2. Because S1 = S2, this means that customer-type j is still unsatisfied in I1
whereas it was allocated to a product in the sequence of decisions that generates the subproblem I2. Since

j has been satisfied along the generation of the subproblem I2, there exists a product i in A that belongs

to Cj . In addition, since GL[S1, T1] is a connected subgraph, this means there exists an edge between node

j and a product node i′ ∈ S1. Along the generation of subproblem I1, i has been made available to j but it

was not allocated to customer-type j - as a result its consideration set has been truncated to only account

for products more preferred than i: Lj < σj(i). Thus customer j necessarily prefers i′ over product i. On

the other hand, as product i was allocated to customer-type j when generating I2, the product i′ has been

deleted because he prefers it over i. Thus i′ /∈ S2 and since S1 = S2, we obtain a contradiction: i′ /∈ S1.

Appendix C: Proof of Theorem 6

We construct a function Ψ that maps any subproblem generated along the recursion to a tuple that lies in

a space of size 22d−2h. By showing that Ψ is injective, we obtain the upper bound on the size of the state

space.

Specifically, assuming that (S,T,L) ∈ S, we define i as the next product to be processed in S and A
corresponds to the assortment decisions in [i− 1] which generate this subproblem. The image of (S,T,L) by

Ψ is defined as the tuple (S0, T0,x,y) where:

• (S0, T0) is the subproblem of the unique-ranking dynamic program generated by the sequence of stocking

decisions A∩ [i− 2d] over [i− 1] and such that T ∩T0 6= ∅,

• x =A∩ [i− 2d+ 1, i− 1].

• and y = S ∩ [i+ 1, i+ 2d− 1].

To prove that this mapping is injective, we show that each subproblem (S,T,L) is uniquely determined by

the tuple (S0, T0,x,y).

We begin by remarking that all preference lists j in T do not intersect with A∩ [i− 2d]. Otherwise, we

define α as an arbitrary product of the intersection of A∩ [i−2d] with Cj . Then, by construction, Lj ≤ σj(α).

In addition, given that σj ∈B(σ,d), any product in [i− 2d] is preferred over products in S (recall that the
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products are numbered according to the central permutation σ, meaning that σ is the identity). As a result,

σj(α)< σj(β) for all product β ∈ S, meaning that Cj(Lj) does not intersect with S which contradicts the

connectivity of the subgraph GL[S,T ].

Uniqueness of L. We now argue that L is uniquely determined by x. Indeed, if j ∈ T , then by the above

remark, Cj does not intersect with the projection of A on [i−2d] and as result Lj is a deterministic function

of x:

Lj = min{σj(α) : α∈x}

Uniqueness of T . We first show that T ⊆ T0. Assume that j ∈ T . Using the above remark again, we infer

that j is not satisfied and eliminated by the decisions of stocking A∩ [i−2d] in the unique-ranking DP. As a

result, T is included in the set of customer-type nodes of the residual graph obtained in the unique-ranking

DP after performing the graph operations associated with the sequence of stocking decisions A∩ [i− 2d].

Thus, it is sufficient to verify that T lies in a connected component of the residual graph in order to prove

that T ⊆ T0. The key observation is that the residual graph obtained by the stocking decisions of A under

the general DP is a subgraph of the residual graph generated by the decisions of stocking A∩ [i− 2d] in

the unique-ranking DP. Indeed, the graph operations performed by the unique-ranking algorithm are also

performed at some step of the recursion of the general DP:

• Customer-type node deletions: by the above remark, any preference list that is discarded as a result

of the stocking decisions A∩ [i− 2d] in the unique-ranking DP is also discarded at some point of the

decision sequence associated with A in the general DP.

• Product node deletions: in the unique-ranking case, a product node is deleted when it is processed.

Given that the two algorithms follow the same processing order, any product deleted in the unique-

ranking case has also been deleted in the general DP.

Therefore, because (S,T,L) is connected in the residual graph of the general DP, it is also connected in the

residual graph of the unique-ranking DP. Thus, T ⊆ T0 and what remains to be proven is the uniqueness of

T0 \T conditional to Ψ(S,T,L). In fact, it is immediate that T0 \T corresponds to the subset of preference

lists nodes that get deleted (or disconnected) due to the allocation of products x=A∩ [i−2d+ 1, i−1]. Let

j be a preference list of T0 that satisfies x∩Cj 6= ∅ while customer-type j still belongs to T , meaning that

j has not been satisfied with any product of x. Let α ∈ x be the most preferred product of customer-type

j in x. Then, there necessarily exists at least one product in S ∩ Cj preferred over product α otherwise

Cj(Lj) ∩ S = ∅ and the subgraph would not be connected. In fact, because the preference rankings σj are

contained in B(σ,d), this product is at distance at most 2d from α, meaning that it belongs to y. Reciprocally,

if there exists a product in y ∩ Cj preferred over α, then it follows that j has not been allocated to any

product of x. In particular, since Cj(Lj) ∩ S 6= ∅, the customer-type node j is connected with S and thus

j ∈ T . This shows that T0 \T is uniquely determined as a function of the subsets x and y, which proves the

desired result.

Uniqueness of S. In general, we have:

S =
⋃
u∈T

Cj(Lj) .

It immediately follows that the uniqueness of S can be inferred from the uniqueness of T and L. �
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Appendix D: Quasi-convex preference lists

Claim 2. For a fixed central permutation, there exists 2N+1−N − 2 quasi-convex preference lists.

Proof Let Σ(N) be the set of quasi-convex preference lists over N products. The preference lists are

uniquely defined by their consideration set and the quasi-convex ranking function. For any fixed interval

of length ` ∈ [N ], the ranking function can be viewed as a permutation over ` elements: [`]→ [`]. We now

construct a mapping φ from any subset S ⊂ [2, `] to a quasi-convex permutation over the interval [`]. φ(S) is

defined as follows:{
φ(S) is decreasing over [|S|] with φ(S)〈|[|S|]〉= S

φ(S) is increasing over [|S|+ 1,N ] with Φ(S)〈[|S|+ 1,N ]〉= [`] \S
Indeed, the quasi-convex permutation φ(S) is uniquely defined given its monotonicity on each interval. It can

be verified that this mapping is surjective (by taking S equal to the set of image values of the quasi-convex

permutation on its decreasing interval excluding the minimal value 1). Finally, it is injective by observing that

if φ(S1) and φ(S2) are equal, in particular they share the same decreasing segments and S1 = S2. Therefore,

the cardinality of quasi-convex ranking functions over an interval of length ` is 2`−1. By remarking that there

exists N − `+ 1 distinct intervals of length `, we obtain:

|Σ(N)|=
N∑
`=1

(N − `+ 1) · 2`−1

= (N + 1) ·
N−1∑
`=0

2`−
N∑
`=1

` · 2`−1

= (N + 1) ·
(
2N − 1

)
− (N − 1) · 2N − 1

= 2N+1−N − 2 . �

Appendix E: Proof of Theorem 8

The processing order can be chosen as an arbitrary permutation - but to fix ideas, we process the products

in the increasing index order.

We incorporate to the model a ‘dummy’ preference list denoted by index 0 associated with the null utility

vector u0 = ~0 as well as a ‘dummy’ product corresponding to x0 = ~0. Also, note that in what follows, by

abuse of language, a product may refer to the corresponding graph node or its representation in the feature

space.

Inductive hypothesis. We prove that each DP subproblem is characterized by a polytope in the feature

space defined by a constant number of facets, chosen among a polynomial set of affine constraints. Specifically,

we prove the following property inductively. Suppose that (S,T,L) is generated along the recursion. Then,

GL[S,T ] is the connected component of GL[S′, T ′] that contains product node i= min(S), where:

• There exists (a, b, c, d)∈ [N ]2× [K]2 such that S′ is defined as follows:
z =Rot

(π
2
,xb−xa

)
,

H(a, b, c, d) =
{
x∈R2 :x ·uc ≤uc ·xa, x ·ud ≤ud ·xb, x · z ≥xa · z

}
,

S′ = {j ∈ [i,N ] : xj ∈H(a, b, c, d) \ ∂H(a, b, c, d)} .
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• The set T ′ is formed by all customer-types whose utility vector belongs to the cone with extreme rays

(uc,ud) (where the rays are ordered in the anti-trigonometric order):

T ′ =
{
j ∈ [K] : ∃λ1, λ2 > 0 s.t. u(j) = λ1uc +λ2ud

}
.

• The truncation vector L is given by:

∀j ∈ T ′, Lj = min(σj(a), σj(b)) .

Before proving this result, observe that this property implies that there exists an injective mapping from the

state space S to the space of 5-tuples, described by a 3-tuple of products and a pair of customer-types. As

a result, we conclude that |S|=O(K2N3).

Base case. If (S,T,L) is one of the roots of the DP computational tree, no products has been examined yet

and GL[S,T ] is a connected component of G. Then, we set a= b= c= d= 0 and i= min(S). The polyhedron

H(a, b, c, d) describes to the entire space R2, S′ = [N ] and T ′ = [K]. The above property is immediately

satisfied.

Recursive step. We assume that (S,T,L) satisfies the above properties with respect to the tuple (a, b, c, d)

and (S′, T ′,L). Let i= min(S) be the next item to be examined.

If i is not stocked in the assortment, we only need to discard product node i from the graph and compute the

connected components of GL[S \ {i}, T ] to obtain the children subproblems. Equivalently, by the induction

hypothesis, any child subproblem is a connected component of GL[S′ \ {i}, T ′]) and the above property is

satisfied.

On the other hand, if the product i is allocated to a subset of customer-types V ⊆ T (i). We define α,β as

the indices corresponding to the extreme lines of the cone conv{uh : h ∈ V } - such that uα,uβ are ordered

in the anti-trigonometric order. Using previous notation, any subproblem generated by the allocation V is

a connected component of (S(V ), T (V ),L′). We prove that it satisfies the desired inductive property, either

with respect to the parameters (a, i, c,α), or with respect to (i, b, β, d), as illustrated by Figure 6. In what

follows, note that, by abuse of language, utility vectors refer indifferently to vectors in the feature space, and

to the corresponding customer-types.

We begin by proving that the allocation V necessarily corresponds to the cone of utility vectors (uα,uβ),

meaning that T (V ) is either contained in the cone (uc,uα) or in the cone (uβ,ud). To this end, assume that a

preference list j ∈ T ′ has its utility vector included in the cone (uα,uβ), we seek to prove that j 6∈ T (V ). This

preference list would only pick a product whose scalar product is greater than xi ·u(j). Indeed, either product

i lies the consideration set Cj , thus customer-type j would only pick a product preferred over i, or it does not

belong to Cj and any product it chooses has its scalar product larger than the customer’s cut-off level. Given

that customer-types α,β are both satisfied with product i, then, all products which satisfy x ·uα ≥xi ·uα
or x ·uβ ≥xi ·uβ have been removed. By Farkas lemma, since u(j) is contained in the cone (uα,uβ), then

any product x which satisfies x ·u(j) ≥ xi ·u(j) would satisfy either x ·uα ≥xi ·uα or x ·uβ ≥xi ·uβ. As a

result, customer-type j does not prefer any product of S(V ) over i, meaning that customer-type node j is

disconnected from S(V ). Hence, without loss of generality, we may assume that j /∈ T (V ).
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Figure 6 Recursive step: the allocation of product i to the cone (uα,uβ) gives rise to independent

subproblems, either contained in the polyhedra H(a, i, c,α), or H(i, b, β, d).

We now prove that the products of S(V ) either lie in the polyhedron H(a, i, c,α), or within H(i, b, β, d).

Since all products that the customer-types α and β prefer over i have been discarded, we already know that

S(V ) is contained in the set H̄:

H̄ =H(a, b, c, d) \
({

x∈R2 : x ·uα ≥xi ·uα
}⋃{

x∈R2 :x ·uβ ≥xi ·uβ
})

Let j ∈ T (V ) designate a preference list in the residual graph. Since a, b and i are stocked in the assortment,

the products contained in the truncated consideration set Cj(L
′
j) necessarily have a scalar product with u(j)

greater than the following quantities: xa · u(j), xi · u(j) and xb · u(j). Equivalently, they lie in the affine

half-space defined by x ·u(j) ≥ y, where:

y= max
({

xa ·u(j),xb ·u(j),xi ·u(j)
})

.

By construction of the polyhedron H(a, b, c, d), if u(j) ∈ (uc,uα), then customer j’s most preferred product

among {a, i, b} is either a or i. Also, the intersection of H̄ with the half-space {x :x ·u(j) ≥ y} is included in

H(a, i, c,α) and it has no product in common with H(i, b, β, d). Therefore Cj(L
′
j) is included in H(a, i, c,α)

and it does not contain any product in H(i, b, β, d). Conversely, if u(j) ∈ (uβ,ud), then customer j’s most

preferred product among {a, i, b} is either b or i. In this case, Cj(L
′
j) is included in the intersection of the

affine half-space {x : x ·u(j) ≥ y} with H̄, thus it is contained in H(i, b, β, d). Also, it does not contain any

product in H(a, i, c,α). Combining the above two observation, since S(V ) is equal to the union of Cj(L
′
j)

over j ∈ T (V ), we infer that any connected component of (S(V ), T (V ),L′) has its products either included in

H(i, b, β, d) or contained in H(a, i, c,α).

To prove the desired inductive property, it remains to show that the allocation information is fully captured

by each polyhedron. By symmetry, we may focus on H(i, b, β, d). Observe that the customer-type deletions

give rise to the cone (uβ,ud), such that each customer-type whose utility vector lies in this cone is not

discarded at the moment. Similarly, the constraints of the polyhedra H(i, b, β, d) with left-hand side x · uβ
and x · ud capture all the product deletions active in the polyhedron H(i, b, β, d). Finally, since b and i are

the most preferred products among all products stocked prior for any customer-type j in the cone (uβ,ud),

the truncation of its consideration sets is captured by the equality Lj = min(σj(i), σj(b)). �
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Appendix F: Capacitated Optimization

The approach that we have described extends to the capacitated variant of the problem. Specifically, we

consider the assortment planning problem wherein at most B products can be stocked. This constraint

represents storage or display space constraints, or the limited number of spots of a web page in the context

of e-retail and online advertising.

The complexity performance for the different model specifications analyzed in Sections 4 and 6 carries

over to the constrained setting, up to a polynomial factor. Specifically, the problem is solved by an extension

of our dynamic program. We add a single state variable that encodes the remaining ‘capacity’ budget

for each subproblem, i.e., subproblems are duplicated to account for all possible budget values [B]. The

new computational tree is inferred by adding edges between any pair of duplicated subproblems that were

previously linked by the recursive formula, as long as the budget of the child subproblem is smaller than that

of the father subproblem. The recursive formula decides on how to spread the remaining capacity budget

across the children subproblems. We prove that, at each step of the recursion, the optimal capacity allocation

is determined by solving a shortest path problem that we explicitly describe below. For sake of clarity we will

only consider the unique-ranking case wherein (S,T,L)∼ (S,T ), but the reasoning is similar for the general

algorithm.

State space. The state space is described by the 3-tuple (S,T, b) where b is a new variable that encodes

the maximal capacity budget. In this notation, J(S,T, b) designates the maximal expected revenue garnered

from customer-types T with an assortment of at most b products in S. The graph and subproblem notations

remain unchanged.

Recursion formula. The recursion formula should be generalized to account for all potential different

budget allocations. Hence, we introduce B(b, r) the set of all feasible allocations of a capacity of b products

between r classes of customers: B(b, r) = {b∈Nr | ∑r

j=1 bj = b}. The recursive formula between subproblems

becomes:

J(S,T ) = max

[
Pi ·

∑
j∈T (i)

λj + max
b∈B(b−1,r(+))

r(+)∑
u=1

J(S+
u , T

+
u , bu) , (9)

max
b∈B(b,r(−))

r(−)∑
u=1

J(S−u , T
−
u , bu)

]
(10)

Resource allocation problem. We observe that finding the optimal budget allocations in each max-

expression (10) and (9) boils down to solving a simple allocation problem of the form

max∑k
i=1 bi≤b

k∑
i=1

f(i, bi) ,

where the integral non-negative decision variables bi are coupled by a single constraint. It is well known that

this problem can be efficiently solved by means of dynamic programming; see for instance Katoh and Ibaraki

(1998).
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Appendix G: Synthetic computational experiments

Generative models. The prices of products are sampled independently and identically from a log-normal

distribution. The scale parameter is calibrated to reflect realistically the variability of prices in the Shampoo

product category. The probability vector is drawn uniformly at random from the unit simplex. To gener-

ate instances of the quasi-convex model, the collection of preference lists is formed by independent and

uniformly-distributed samples over the class of quasi-convex permutations. To construct instances with arbi-

trary consideration sets, we use a random Bernoulli generator, as explained in Section 7.1.2. The ranking

function is given by the increasing price order.

Implementation of our algorithm. We use a ‘plain’ implementation of our algorithm which follows the

two-pass approach explained in Section 3. First, we generate the computational tree using the recursive

equations. Next, we compute the value function by solving a maximum flow problem. In the quasi-convex

case, each subproblem is simply encoded by the latest three dynamic programming decisions, leading to an

implementation in time O(N3K).

Appendix H: Estimation methods

For each model, we leverage existing estimation methods, which are described below. Recall that the data is

formed by a collection of assortments {A1, . . . ,As}, with corresponding purchase probability pij of product

i in the assortment Aj , for each i∈ [N ] and j ∈ [s]. Also, we let P designate the probability vector obtained

by flattening the matrix (pij)ij in column-major order.

Quasi-convex model. In order to calibrate the quasi-convex model with data, we make use of the column

generation ideas developed in related literature by van Ryzin and Vulcano (2014) and Bertsimas and Mǐsic

(2015). To this end, let L = {L1, . . . ,Lm} be the collection of all quasi-convex preference lists for a given

instance (the dependency of m on N has been made explicit by Claim 2). To ease the notation, we assume

that the no-purchase option is captured by an alternative in [N ]. Hence, we introduce the observation tensor

O= (Oi,j,k)∈ {0,1}[s]×[N]×[m], where Oi,j,k = 1 if the preference list Lj purchases product i in the assortment

Ak, and Oi,j,k = 0 otherwise. In what follows, by abuse of notation, O will also designate the corresponding

s ·N -by-m matrix (known as the mode-3 unfolding).

In order to estimate a probability distribution Λ = (λ1, . . . , λm) over the quasi-convex preference lists,

ideally we would like to solve the following convex program:

max ‖O ·Λ−P‖1
s.t. ‖Λ‖1≤ 1

Λ≥ 0 .

Through standard techniques, the latter problem can be recast a linear program with O(s · N) equality

constraints. However, the dimensionality (i.e., number of variables) of the resulting linear program remains

exponential. Indeed, although quasi-convex preference lists are fewer than the (N + 1)! potential lists, m

still grows exponentially in the number of products according to Claim 2. On the other hand, the number of

equality constraints is small, thus, one could resort to a column generation procedure. Since our procedure
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is nearly-identical to that of Bertsimas and Mǐsic (2015), we refer the reader to their paper for a detailed

technical description. At a high level, the algorithm alternates between solving a master problem and a

column generation subproblem. At step t∈N, given an incumbent collection Ct ⊆L of quasi-convex preference

lists, the master problem solves the `1-minimization program to find a distribution over Ct that best fits the

data. Next, the subproblem attempts to identify a new quasi-convex list L∈L\Ct with lowest reduced cost.

Although the column generation step is hard, we solve it approximately through sampling. It is worth noting

that, for simplicity, we do not attempt to optimize the central permutation of the quasi-convex structure: as

a heuristic, we choose the increasing (average) price order. To control for the risk of over-fitting, our stopping

criterion picks the ‘best’ final step out of {100,200,300,400,500,600} through cross-validation.

MNL and MMNL models. In order to estimate the MNL and MMNL parameters from data, we use

standard maximum likelihood estimation (McFadden 1973, Talluri and Van Ryzin 2006). The corresponding

maximum log-likelihood problem is implemented using the optimization software Ipopt (Wächter and Biegler

2006). Contrary to the MNL model, the log-likelihood function associated with the MMNL model is non-

concave, and global optimization in this setting is not guaranteed. This estimation method is the standard

approach used to calibrate discrete mixtures of MNL (Bierlaire 2003, Hess et al. 2007) .

Appendix I: State space collapse

Table 5 Relative size of the collapsed state space in comparison to naive enumeration.

N K α= 0.3 α= 0.5 α= 0.7

20 1000 17.8% 4.8% 1.7%
20 2000 22.5% 8.0% 3.6%
100 20 − < 0.1% < 0.1%

.
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