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Abstract

The present paper considers a canonical revenue management problem wherein a monopolist
seller seeks to maximize revenues from selling a fixed inventory of a product to customers who
arrive over time. We assume that customers are forward looking and strategize on the timing
of their purchase, an empirically confirmed aspect of modern customer behavior. In the event
that customers were myopic, foundational work by Gallego and Van Ryzin [1994] established
that static prices are asymptotically optimal for this problem. In stark contrast, for the case
where customers are forward looking, available results in mechanism design and dynamic pricing
suggest a substantially more complicated prescription, and are often constrained by restrictive
assumptions on customer type.

The present paper studies this revenue management problem while assuming that customers
are forward looking and strategic. We demonstrate that for a broad class of customer utility
models, static prices surprisingly continue to remain asymptotically optimal in the regime where
inventory and demand grow large. We further show that irrespective of regime, an optimally
set static price guarantees the seller revenues that are within at least 63.2% of that under an
optimal dynamic mechanism. The class of customer utility models we consider is parsimonious
and enjoys empirical support. It subsumes many of the utility models considered for this problem
in existing mechanism design research; we allow for multi-dimensional customer types. We also
allow for a customer’s disutility from waiting to be positively correlated with his valuation. Our
conclusions are thus robust and provide a simple prescription for a canonical RM problem that
is near-optimal across a broad set of modeling assumptions.

1. Introduction

Consider the following canonical revenue management (RM) problem: a monopolist seller is en-

dowed with an inventory of a product that she must sell over some fixed horizon via an anonymous,
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posted price mechanism. Customers arrive over time and consider purchasing this product. Should

a customer choose to make a purchase, he must pay a price equal to that posted at the time of his

purchase. The goal of the seller is simply to maximize expected revenue from sales of the product.

The problem above is incredibly well understood in the setting where customers are myopic.

Myopic customers either choose to make a purchase immediately upon arrival or else forego the

opportunity to purchase the product and ‘leave the system’. Indeed, given the appropriate assump-

tions on the customer arrival process, this problem can be solved as a simple dynamic program. In

fact, the seller can get away with doing something even simpler. Specifically, in an early founda-

tional paper on revenue management, Gallego and Van Ryzin [1994], established that if the seller

chose to maintain prices fixed at an appropriate level over the selling horizon, she was guaranteed

to earn revenues that were close to those under an optimal dynamic pricing policy. Specifically,

they showed that such a policy was asymptotically optimal in a regime where the seller had a large

inventory and faced commensurately large demand. Gallego and van Ryzin’s insight is not merely

theoretical; it has been borne out in a host of practical applications of revenue management ranging

from the problem discussed above to substantially more complicated RM problems.

Technological changes have brought into question the basic assumptions made by Gallego and

Van Ryzin [1994]. Specifically, thanks to the internet the search costs associated with ‘finding a deal’

have reduced dramatically. Consumers have the ability to monitor prices, obtain historical prices,

and in certain cases, have access to tools that recommend the optimal timing of a purchase. A

burgeoning body of empirical work has established that forward looking customers are fast becoming

the norm. In summary, it is not uncommon for customers in the digital realm to strategize on the

timing of their purchase. Forward looking customers must trade off the cost of delaying a purchase

against the potential value of securing a discount. Any heterogeneity across customers in the

nature of this trade-off introduces the potential for inter-temporal price discrimination on the part

of the seller; a feature essentially absent from the model with myopic customers. Substantially less

is known about the RM problem studied by Gallego and Van Ryzin [1994] in the setting where

customers are forward looking. Indeed, if one were to take the path of assuming that customers

were strategic1, research on this problem divides broadly into two threads:

• One thread adopts the lens of dynamic mechanism design. In a nutshell, the research here

has led to optimal (but complicated) mechanisms in models that require that all customers

are homogenous in how they value their time. Loosening this assumption appears to lead

to intractable mechanism design problems with multi-dimensional types. Approximation
1as opposed to some boundedly-rational model of behavior
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algorithms for the problem have also recently been proposed, but the mechanisms remain

sophisticated with restrictive assumptions on customer utility models.

• A second thread of research forgoes optimal mechanisms, focusing instead on dynamic pricing

policies with pre-announced price schedules. In the absence of inventory constraints, there

has been progress in computing and characterizing the structure of optimal price schedules

for several classes of customer utility models.

Against this backdrop, the present paper makes the following contribution:

We demonstrate that for a broad class of customer utility models, the fixed price policy is asymp-

totically optimal in the regime where inventory and demand grow large. We further show that

irrespective of regime, an optimally set fixed price guarantees the seller revenues that are within at

least 63.2% of that under an optimal dynamic mechanism.

This work thus bears a strikingly simple economic message: the asymptotic optimality of static

prices established by Gallego and Van Ryzin [1994] extends to a general setting where customers

are forward looking. For a broad class of customer utility models, the seller can only expect to gain

a vanishingly small amount from dynamic policies and/or mechanisms that attempt to exploit the

fact that customers may strategize on the timing of their purchase. As we will see, the class of

customer utility models we consider is parsimonious. It subsumes a plurality of models considered

in earlier research, some of which enjoy empirical support. At the outset we note two important

features for the class of models we study: First, we permit the disutility incurred by a customer

from delaying a purchase to be positively correlated with his valuation. Second, we allow for multi-

dimensional customer types which permits for heterogeneity in both valuation as well as the cost

of a delay. As we shall see, these features lend robustness to our conclusions.

We delay a detailed discussion of our contributions vis-a-vis the extant literature to Section 1.1.

We note here that relative to mechanism design research on this problem, we not only derive near-

optimal mechanisms for what has been thought to be a very difficult model, but in addition show

that this can surprisingly be achieved with a simple fixed price policy. Relative to the dynamic

pricing research on the special case of this problem that ignores inventory, we provide a crisp

understanding of when static pricing policies suffice.

The paper proceeds as follows. Section 2 presents our model. That section discusses the key

features of the utility model assumed for customers and establishes the parsimony of the model

assumed. Section 2 also makes precise the problem solved by the customer and seller respectively.
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Section 3 formulates the more general problem of designing a dynamic mechanism for the problem

at hand and states our main performance guarantees for the fixed price policy. In establishing these

results, our first step is to relax this mechanism design problem. This relaxation is presented in

Section 4. In Section 5 we establish our performance guarantees by demonstrating lower bounds on

the fixed price policy that are directly comparable to the upper bound derived from our relaxation.

Section 6 provides a problem instance showing that our uniform performance guarantee is, in fact,

tight. That section also seeks to illustrate the limits of our analysis by demonstrating a class

of utility models that do not satisfy our assumptions and for which static prices can indeed be

improved upon, even in the fluid regime. Finally, Section 7 concludes with comments on extensions

to our results, as well as research questions that remain.

1.1. Related Literature

Revenue management is today a robust area of study with applications ranging from traditional

domains such as airline and hospitality pricing to more modern ones, such as financial services.

Among others, the text by Talluri and Van Ryzin [2006] and Özer and Phillips [2012] provide

excellent overviews of this area.

As already discussed, Gallego and Van Ryzin [1994] is a foundational revenue management

paper that is particularly pertinent to the present paper. Those authors introduce a model akin

to the one we study here, except with myopic customers. The main insight in this foundational

paper is that appropriately set static prices are asymptotically optimal in a setting where available

inventory and demand grow large. It has become amply clear that the assumption of myopia is

fast becoming untenable in revenue management. Specifically, empirical work, most notably by

Moon et al. [2015] and Li et al. [2014], has established that this forward looking behavior is highly

prevalent. Interestingly, the paper by Moon et al. [2015] directly estimates a customer utility model

that is a special case of the model studied in this paper. The present paper can thus be seen as

extending the conclusions of Gallego and Van Ryzin [1994] to the setting where customers are

forward looking, for a broad class of customer utility functions.

As described earlier, the antecedent literature most relevant to the present paper divides roughly

into two groups. The first of these studies the problem from a mechanism design perspective,

whereas the second focuses attention on the design of optimal price schedules.

Dynamic Mechanism Design: The problem we study can naturally be seen as one of dynamic

mechanism design. An early paper by Vulcano et al. [2002] considers short-lived but strategic
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customers arriving in sequential batches over a finite horizon and proposes running a modified

second price auction in each period (as opposed to dynamic pricing). Gallien [2006] provides what

is perhaps the first tractable dynamic mechanism for a classical revenue management model with

forward looking customers. The model he considers is the discounted, infinite horizon variant of

the canonical RM model, and he shows that the optimal dynamic mechanism can be implemented

as a dynamic pricing policy in this model. This work assumes that a customer’s value for the prod-

uct depreciates exponentially at a constant rate that is common knowledge. Board and Skrzypacz

[2013] consider a discrete time version of the same model, and assuming a finite horizon, compute

the optimal dynamic mechanism. Board and Skrzypacz [2013] also require that all customers dis-

count at a homogenous rate that is common knowledge. The mechanism they propose consists of a

‘hybrid’ of a dynamic pricing mechanism with an end-of-season ‘clearing’ auction. The homogeneity

required for discount rates in these models is limiting. Besbes and Lobel [2015] make the excellent

point that not permitting heterogeneity in customers’ sensitivity to a delay might artificially limit

the impact of inter temporal price discrimination, and consequently artificially mitigate the need

for dynamic pricing.

Pai and Vohra [2013] consider a substantially more general model of (finite horizon) RM with

forward looking customers. Customers in their model have heterogenous ‘deadlines’ as opposed

to discounting. When these deadlines are known to the seller (a strong assumption), the authors

characterize the optimal mechanism completely and show that it satisfies an elegant ‘local’ depen-

dence on customer reports. On the other hand, when deadlines are private information, the authors

illustrate that the optimal dynamic mechanism is substantially harder to characterize.

In recent work, Chen and Farias [2015] consider a model that allows for heterogeneity in cus-

tomers’ disutility from delaying a purchase. The authors introduce a class of ‘robust’ dynamic

pricing policies which they show are guaranteed to garner expected revenue that is at least 29%

of the revenue yielded under the seller’s optimal direct dynamic mechanism. The class of utility

models we study subsumes those studied by Chen and Farias [2015], and as already discussed we

allow for a customers valuation and his disutility from a delay to be positively correlated which

is something Chen and Farias [2015] do not permit. Another relevant mechanism design paper is

by Haghpanah and Hartline [2015]. Their work can be seen as an elegant generalization to the

celebrated result of Stokey [1979]. One (coarse) interpretation of their result in the RM context is

as follows: They establish in the setting where inventory is infinite that myopic behavior is optimal

on the customers part with the corresponding optimal mechanism for the seller being an anony-

mous posted price set to the static revenue maximizing price. They do so while assuming that
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the customers’ loss in value from a delay is private information. There is of course no competition

among customers in this setting – a fact that is essential to the result. In our setting, inventory

is finite and this makes for a fundamental change to the problem. A customer must now compete

with other customers (as opposed to just future versions of himself). And he must do so with

asymmetric information.

Relative to this past work that takes a mechanism design approach, and ignoring distinctions

such as discrete time modeling vs. continuous time modeling etc., we consider a general setting.

Specifically, we allow for a rich class of customer utility models. We allow for heterogeneity in the

sensitivity to delay and we allow for inventory to be limited. Despite this generality, we show that a

simple policy – a fixed price – is asymptotically optimal, while simultaneously providing a uniform

performance guarantee.

Setting Price Schedules in the Presence of Strategic Customers: A second stream of

relevant literature foregoes optimal mechanisms to focus exclusively on committing to (potentially

time varying) price schedules. Among the first papers in this vain is Stokey [1979]. She consid-

ered a class of customer utility functions subsumed by the model we study wherein the functional

form prescribing a customers sensitivity to delay is common knowledge. Her paper arrives at ‘the

unexpected conclusion’ that the seller will forego the opportunity to price discriminate entirely,

setting prices at the static revenue maximizing price. As discussed above, those conclusions have

been strengthened substantially by Haghpanah and Hartline [2015] using cutting edge techniques

from dynamic mechanism design. Our work can be seen as taking this insight further to the harder

revenue management setting (where inventory is a constraint) while simultaneously allowing for a

very general class of utility models and customer heterogeneity along multiple dimensions.

Borgs et al. [2014] is among the first RM papers that consider a monopolist with the power to

commit to a price schedule. The authors consider a setting where a firm with time varying capacity

sets prices over time to maximize revenues in the face of strategic customers. Inventory cannot be

carried over from one epoch to the next (modeling a service system). Customers have arrival times,

deadlines and valuations; valuations are assumed independent of the arrival time and deadline. In

addition, the seller knows the fraction of customers corresponding to each arrival time-deadline

pair. Borgs et al. [2014] show how to compute the optimal price schedule for this setting. It is

worth mentioning that Said [2012] considers and solves a mechanism design problem for a setting

similar to Borgs et al. [2014] with the exception that customers have discount rates (as opposed to

deadlines) that are homogeneous and known, and valuations remain unobserved.
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Continuing on this theme, Besbes and Lobel [2015] consider an infinite horizon model wherein

customers arrive to the system over time and strategize on their time of purchase. Inventory

constraints are not considered. Customers have valuations and a willingness to wait that may

be correlated with their valuation. The authors establish an elegant result – they characterize the

optimal price schedule as being cyclic and also provide an efficient algorithm for its computation. In

our lexicon, the disutility model considered by the authors is effectively a step function – a customer

incurs no disutility if he makes the purchasing decision before the deadline, otherwise, his disutility

is equal to his valuation. Consequently, viewed as function of valuation for some fixed allocative

decision, the disutility function contains ‘jumps’. A key requirement for our result will be that for

a given allocative decision, disutility not increase ‘too quickly’ with valuation; a requirement that

such a function clearly cannot fulfill. In fact, we will later show that the sufficiency of static prices

rests precisely on the rate of at which disutility increases with valuation. Loosely speaking, as

long as this increase is sub-linear (a condition we will see is implied by a large number of models

considered in the theoretical and empirical literature), static prices suffice. If on the other hand,

the increase can be rapid (such as a step function) we show that in fact static prices do not suffice,

even in an asymptotic regime.

There are a number of additional examples of this theme in recent RM literature. Caldentey

et al. [2015] take a novel view of uncertainty and consider the dynamic pricing problem in a minimax

setting that allows those authors to capture uncertainty in customer valuation as well as arrival

times, thereby taking a ‘robust’ view of custom type as opposed to the prior driven view taken by

all of the other literature we have discussed, as well as the present paper. Liu and Cooper [2015]

and Lobel [2017] both study settings where as opposed to being strategic, customers are ‘patient’, a

behavioral model in the mould of satisficing. Both those papers identify and show how to compute

optimal cyclic pricing policies. It is interesting to note that other researchers have motivated cyclic

pricing policies by considering price reference effects; see Hu et al. [2016], Wang [2016].

Vis-a-vis the work above on setting optimal price schedules, our work sheds light on the conun-

drum of when to use ‘promotions’ (or non-static price paths) versus ‘everyday low prices’ (or static

prices). We provide a crisp understanding of when the latter suffices for RM problems. The con-

ditions we identify for the sufficiency of static prices are evidently fairly general insomuch as they

capture modeling assumptions in antecedent literature: We allow for customers to be heterogenous

in both their valuation as well as parameters impacting their sensitivity to a delay. We assume

inventory is limited. We also permit a customer’s disutility from waiting to be positively correlated

with his valuation. In summary, we establish that a simple fixed price policy is, to a first order,
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optimal for a broad set of assumptions around the canonical RM problem with strategic customers.

2. Model

We are concerned with a seller who is endowed with x0 units of inventory of a single product, which

she must sell over the finite selling horizon [0, T ] via an anonymous posted price mechanism, all

of which is common knowledge. We denote the price posted at time t by πt. With a slight abuse

of notation2, we denote the inventory process by Xt and the corresponding sales process by Nt.

Of course, Nt = x0 −Xt. We require that πt depend only on the history of the pricing and sales

process3. In addition, we require πt =∞ if Xt− = 0, and πt <∞ otherwise.

Customers arrive over time according to a Poisson process of rate λ; an extension to non-

homogenous processes is presented later. A customer arriving at time t is endowed with a valuation,

v ∈ R+, and a collection of K attributes, θ ∈ RK+ . As we will see shortly, θ and v will jointly

parameterize the customer’s disutility from ‘staying in the system’. We denote by φ, the ‘type’ of

an arriving customer which we understand to be the tuple

φ , (tφ, vφ, θφ) .

Denote by Φ the set of all types φ. In the sequel, we will make the dependence of each component

on φ explicit only when needed. After making a purchase decision, customers exit the system.

Assume that a customer of type φ chooses to delay making a purchase decision to time τφ ≥ tφ. We

let aφ indicate whether the customer leaves having purchased a unit of the product. Specifically,

if the seller has inventory to allocate4 and if a purchase provides the customer greater utility than

no purchase then aφ = 1; otherwise aφ = 0. If aφ = 1, the customer pays the seller the amount

pφ = πτφ . The customer then garners utility

U(φ, yφ) = (vφ − pφ) aφ −M(φ, yφ),

where we define the tuple yφ , (τφ, aφ, pφ). The function M(·, ·) captures the customer’s disutility

from delaying his purchase to time τφ. The structure of M(·, ·) will play a significant role in the

sequel as it encodes the dependence of the customer’s cost to delaying a purchase on his type. We
2The abuse of notation here is that we choose to omit the dependence of Xt and Nt on πt; this will always be

clear from context.
3More formally, we require πt to be left continuous, and adapted to Ft− where Ft = σ(πt, Xt).
4Multiple customers revealing themselves to the seller at the same time are allocated inventory in random order.
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will discuss our assumptions on this structure shortly.

We assume that a customer’s type φ is private information. Recall that a customer’s type is

specified by the tuple (tφ, vφ, θφ). This is in contrast with the typical model that specifies type based

only on time of arrival and valuation, i.e. (tφ, vφ); see, for instance, Aviv and Pazgal [2008], Board

and Skrzypacz [2013], Caldentey and Vulcano [2007], Gallien [2006], Yin et al. [2009]. Putting

aside the technical challenge this creates, doing so is important from a modeling perspective. For

instance, as we shall see it lets us model the fact that customer type is determined not just by

valuation but also sensitivity to delays, something that cannot be modeled via the more restrictive

type specification.

Recall that the arrival times tφ are the points of a Poisson process. We assume that the valuation

vφ is independent of the arrival time tφ. This assumption is in analogy with a large body of the

research on revenue management for strategic customers. Aviv and Pazgal [2008], Besbes and Lobel

[2015], Board and Skrzypacz [2013], Gallien [2006], Vulcano et al. [2002], Yin et al. [2009] all make

such an assumption and point out that a primary motivation for dynamic pricing is inter-temporal

price discrimination which remains relevant despite the assumption.

Since the only quantity dependent on θφ is the disutility function, M(·, ·), we assume that vφ
and θφ are independent. Specifically, we may exchange any assumptions on correlation between

vφ and θφ with assumptions on the structure of M(·, ·). To see how, notice that if indeed these

random variables were dependent, we could always construct a common probability space on which

we write θφ as some function, say h(·, ·), of vφ and θ̂φ where θ̂φ is indeed independent of vφ. We

can then obtain an equivalent problem by employing the disutility function M̂ defined according

to:

M̂
(
(tφ, vφ, θ̂φ), y

)
= M

(
(tφ, vφ, h(vφ, θ̂φ)), y

)
.

Put a different way, any restrictions to the nature of the dependence can simply be captured by

structural assumptions on the disutility function M(·, ·) which we discuss shortly. We prefer the

latter approach as it leads to making the assumptions on the nature of such a dependence concrete.

We make no assumptions on the correlation between tφ and θφ.

We assume that customer valuations have a cumulative density function given by F (·), and have

a density function, denoted by f(·). We denote F̄ (·) , 1− F (·). We make a standard assumption

on the valuation distribution:

Assumption 1. The virtual value function of the valuation distribution, v− F̄ (v)
f(v) , is non-decreasing

in v and has a non-negative root v∗.
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In the remainder of this section, we first discuss the assumptions we place on the disutility

model. We will then move on to presenting the problems faced by a customer in timing his decision

whether and when to purchase as well as that faced by the revenue manager who must dynamically

adjust prices knowing only the history of prices and of purchases made thus far.

2.1. The Disutility Model

The structure of the disutility function M(·, ·) captures precisely the dependence of the customer’s

cost to delaying a purchase on the customers type. We will place a set of structural restrictions on

M(·, ·) that are general enough to capture a variety of realistic models. Specifically, we assume:

Assumption 2. For any type φ ∈ Φ, and any y , (τy, ay, py) with τy ≥ tφ, we have:

1. M(φ, y) ≥ 0.

2. If τy = tφ, then M(φ, y) = 0.

3. M(φ, y) is differentiable with respect to vφ; denote m(φ, y) , ∂
∂vφ

M(φ, y).

4. M(φ, y) is non-decreasing and concave in vφ.

Let us interpret the conditions imposed by the assumptions on M(·, ·): The first assumption

simply formalizes out interpretation of M(·, ·) as a disutility. The second assumption effectively

normalizes the disutility function, requiring it to be zero for a delay of zero. Together with the

first assumption this implies that all else being the same (i.e. for a given allocative decision ay,

and price py), the customer would prefer no delay (τy = tφ) over a positive delay (τy > tφ). The

third assumption is made for analytical convenience and we do not believe it fundamental for the

conclusions in this paper. The assumption simplifies our analysis and lends itself to notational

clarity. The fourth assumption captures the essence of the structure we impose on the disutility

incurred due to a delay, and consists of two components. The first, is that this disutility is increasing

in the customer’s valuation so that high value customers incur a larger cost to delaying a purchase

than those that place a lower value on the product. This assumption is natural and has widespread

support in both theoretical and empirical literature. [Stokey, 1979] is a foundational paper on inter-

temporal price discrimination to make such an assumption. Modern papers in RM and service

operations more generally, also make such an assumption; see, for instance, Afèche and Pavlin

[2016], Aviv and Pazgal [2008], Board and Skrzypacz [2013], Doroudi et al. [2013], Gallien [2006],

Gurvich et al. [2016], Katta and Sethuraman [2005], Kilcioglu and Maglaras [2015], Moon et al.

[2015], Nazerzadeh and Randhawa [2015]. The second part of the assumption can be interpreted as
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controlling the rate at which this disutility can grow with the customer’s value. Our requirement

of concavity implies that this growth must be sub-linear. We will see shortly that this assumption

again finds widespread support in the literature.

As it turns out, a number of concrete examples of disutility functions considered in the literature

fit the assumptions above. We discuss these families of disutility functions next:

Monitoring Cost: Starting with the classical work of Diamond [1971], a common assumption in

the economics literature on pricing that results in the ability to violate the so-called law of one

price, has been the presence of a ‘search’ or monitoring cost. The notion of search cost here could

correspond to any effort the customer might expend in monitoring prices. It is further worth noting

that a search cost model has been empirically verified to provide a good fit in an empirical study

of customer purchasing decisions at a clothing retailer that practices dynamic pricing [Moon et al.,

2015]. A natural model for search cost would simply assume that it grows linearly in the time the

customer monitors prices. Specifically:

M(φ, y) = θφ (τy − tφ)+

where θφ > 0 is the unit-time search cost incurred by a customer of type φ. This is a canonical

model in the economics literature; see for example Anderson and Renault [1999], Rob [1985] or

Ellison and Wolitzky [2012]. Clearly, this model satisfies the requirements of Assumption 2.

Recall that we require that θφ be independent of vφ so the unit time search cost above is

independent of valuation. But one may easily go further and specify an explicit dependence of

search cost on vφ; for instance:

M(φ, y) = θφh(vφ) (τy − tφ)+ .

If h(·) were a non-negative, non-decreasing, concave function, then again, this more general disutility

function satisfies the requirements of Assumption 2. A number of recent pieces of research that

attempt to model customer’s disutility from a delay in service systems, including Afèche and Pavlin

[2016], Doroudi et al. [2013], Gurvich et al. [2016], assume such a model taking h(·) to be a linear

function. Nazerzadeh and Randhawa [2015] and Katta and Sethuraman [2005] assume that h(·) is

sub-linear; a closely related but slightly more general function class than the concave functions we

permit.
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Finally, we could generalize the model further, specifically by taking

M(φ, y) = θφh(vφ)g (τy − tφ) .

If in addition to the earlier requirement on h(·), g(·) were a non-negative function with g(0) = 0,

we would still satisfy the requirements of Assumption 2. This would allow us in turn to capture

models of disutility with more general dependences on delay, such as those in Ata and Olsen [2009]

or Afèche and Mendelson [2004].

Exponential Discounting: In addition to monitoring costs, disutility could also arise because

the product is ‘perishable’ so that its value to the customer decays over time. A canonical model

for this sort of disutility arises as follows: One assumes that the useful lifetime of a perishable

product to a customer of type φ following his arrival is exponentially distributed with parameter

θφ. If the customer actually received the product at a time τy > tφ, his expected disutility from

the delay (due to the loss in the usable lifetime of the product) is then simply

M(φ, y) = vφay (1− exp(−θφ (τy − tφ)) .

Put a different way, this equivalently states that

U(φ, y) = ay (vφ exp (−θφ (τy − tφ))− py)

which in turn is a canonical model both in the economics oriented literature on dynamic pricing

for perishable products such as Board and Skrzypacz [2013] but also the revenue management

literature eg. Aviv and Pazgal [2008], Gallien [2006]. Of course, it is easy to see that this model of

disutility also satisfies the requirements of Assumption 2.

The above are merely examples of disutility functions that satisfy Assumption 2. They serve

to illustrate that while we do indeed need to place some restrictions on the nature of the disutility

function, the assumptions we have placed are capable of capturing important phenomena. We next

discuss the problems faced by the customer and the seller respectively.

2.2. The Customer and Seller Problems

The dynamic pricing policy π utilized by the seller is assumed to be common knowledge. Recall

that this policy can depend only on the sales process and historical prices. In particular, the seller
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does not have the ability to observe customers who have delayed their purchase and remain in

the system nor customers that left without making a purchase, either immediately upon arrival or

after some delay. The seller is assumed to have the power to commit to the pricing policy. This

assumption now enjoys excellent support in the revenue management setting thanks to antecedent

research. See Liu and Van Ryzin [2008] for a comprehensive justification from an RM perspective,

or Board and Skrzypacz [2013] for one from an economic perspective.

Now consider a customer of type φ who decides to reveal himself to the seller and make a

purchase decision at some time t ≥ tφ. Of course, if no inventory is available at that time, the price

posted by the seller is formally infinite, so that the customer will choose to leave without making

a purchase (so that aφ = 0). If inventory is available, so that Xt− > 0 and no other customers

present themselves at time t, the customer chooses to make a purchase (setting aφ = 1) if and only

if doing so yields at least as much utility as not making a purchase. Finally, if multiple customers

present themselves to the seller at time t (an unlikely event but one that cannot be ruled out), the

seller allocates them inventory in random order. If the number of customers exceeds the remaining

inventory, then clearly some customers will not be allocated inventory; denote by Aφt the random

indicator that the seller allocates inventory to customer φ if he presents himself to make a purchase

at time t. Of course, Aφt = 1 is Xt− > 0 and φ is the only customer to request a unit of the product

at time t and Aφt = 0 if Xt− = 0. In summary the maximum utility that customer φ can garner

should he decide to reveal himself to the seller and make a purchasing decision at time t is given

by:

U∗(φ, t) ,


−M (φ, (t, 0, 0)) ∨ (vφ − πt −M (φ, (t, 1, πt))) if Xt− > 0 and Aφt = 1

−M (φ, (t, 0, 0)) otherwise

Customers strategize about the time of their purchase and employ stopping rules contingent on

their type that constitute a symmetric Bayes Perfect Nash equilibrium (BPNE). Such an equilibrium

can be formally defined by a map τπ from types to stopping rules5. In particular, at each point of

time t, all customers can observe historical prices up to time t. For customer type φ, τπ(φ) , τφ

is a stopping rule with respect to the filtration generated by the historical price process Pt =

σ ({πs : s ∈ [0, t]}). The stopping rule is derived as a solution to the optimal stopping problem

sup
τφ≥tφ

E−φ
[
U∗(φ, τφ)|Ptφ

]
,

5In the sequel we will at times, with an abuse of notion, use this map and the corresponding stopping rules
interchangeably
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where the expectation assumes that other customers also employ type dependent stopping rules

given by τπ. We will later demonstrate existence of such an equilibrium stopping rule for a specific

pricing policy. We do not prove existence in general.

Now consider that the seller employs the pricing policy (or process) π, and let τπ be an equi-

librium stopping rule for such a policy. The seller’s revenue is then given by

Jπ,τπ(x0, T ) = E
[∫ τ̂∧T

0
πtdNt

]
,

where τ̂ = inf{t : Xt = 0}. Nt is the sales process where, as noted earlier, we have suppressed

the dependence of Nt on π and τπ. The task of finding an ‘optimal’ policy is an apparently

challenging one. In fact, simpler problems than this are already intractable: First, the customer

stopping rule τπ (upon which Nt depends) is for general pricing policies, a potentially complicated

and hard to characterize function of π. That is, even having fixed a policy π, characterizing

an equilibrium stopping rule is in general a challenging task. Second, the potential presence of

customers in the system over an extended period of time (as they contemplate a purchase) induce

long range dependencies in the pricing process, so that even given a fixed stopping rule (i.e. fixing

customer behavior), finding an optimal pricing policy may not be a simple task in that traditional

dynamic programming approaches fail. In summary, the seller’s problem of finding an optimal

pricing policy (assuming such a policy exists) is intractable for the model we have described so far.

Even assuming we could surmount these challenges, other issues remain. For instance, it may be

difficult to calibrate such a policy to data given that type distributions would need to be inferred

from transactions. If the pricing policy chosen by the seller induced complex equilibrium stopping

rules, the predictive power of the model might be an issue.

So motivated, we will in the next Section, take the approach of computing an upper bound

on any pricing policy, and illustrate the power of a simple, fixed price policy by comparing the

revenues the seller can hope to earn under that policy to our upper bound. Our approach to

computing an upper bound will be driven by viewing the seller’s problem through the lens of

dynamic mechanism design. Since the class of dynamic mechanisms subsumes the class of dynamic

pricing policies, we can construct a dynamic mechanism design problem that yields an upper bound

to the seller’s revenue under any dynamic pricing policy. We illustrate that fixed prices continue

to remain powerful in the setting where customers are forward looking.
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3. Static Prices and an Optimal Dynamic Mechanism Benchmark

As discussed in the introduction, Gallego and Van Ryzin [1994] proposed, in a seminal piece of

work, the use of a simple static price policy for revenue management problems of the type we have

just discussed. They showed that in the setting where inventory and the customer arrival rate

grow large, such a policy is asymptotically optimal. The paper is considered seminal for its simple

message to practitioners: static prices are to a first order, optimal; dynamic pricing can only hope

to capture second order benefits. Of course, in settings where customers strategize on the timing of

their purchase – the topic of this paper – it is no longer clear that static prices retain this desirable

property. In fact, the raison d’être for ‘promotional pricing’ is inter-temporal price-discrimination

that seeks to arbitrage differences in the disutility incurred by customers from a delayed purchase.

The primary economic insight of this paper is that, in fact, the value of this inter-temporal

price discrimination is limited for the class of utility models we consider. Specifically, it continues

to be the case that the static pricing policy is, to a first order, optimal – it approaches the revenues

earned under an optimal dynamic mechanism in the very regime studied by Gallego and Van Ryzin

[1994]. In addition, we will show that such a policy is also guaranteed to earn a constant factor

(roughly 63%) of the revenue of an optimal dynamic mechanism irrespective of regime.

In what follows in this Section, we first recall the static price policy proposed by Gallego and

Van Ryzin [1994]. Under this policy, it is a dominant strategy for customers to not delay a purchase

decision – an attractive property from the perspective of the seller. We will then turn to producing

upper bounds on performance under any pricing policy and to that end consider the still more

general task of producing an optimal dynamic mechanism. Finally, we will state our main results.

Subsequent sections are devoted to establishing these results.

3.1. A Candidate Static Price Policy

We define and briefly motivate static price policies: Let π̂ be an arbitrary measurable function from

[0, T ] to R+, and consider the following ‘fluid’ optimization problem:

max
π̂

∫ T

0
λπ̂tF̄ (π̂t)dt (1)

s.t.
∫ T

0
λF̄ (π̂t)dt ≤ x0

This problem treats customers as myopic and infinitesimal (hence ’fluid’). It is easy to show (see

Gallego and Van Ryzin [1994]) that the optimal solution to this program is given precisely by the
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static price policy {πFP
t : t ∈ [0, T ]} defined according to6

πFP
t = F̄−1

(
min

{
x0
λT

, F̄ (v∗)
})
, πFP

so that the optimal value of the program is precisely λTπFPF̄ (πFP). Now observe that if the seller

implements πFP, it is a (weakly) dominant strategy for customers to not delay a potential purchase

(or leave immediately if no purchase is made):

Lemma 1. For the static pricing policy, πFP, the myopic stopping rule, τFP
φ = tφ is weakly dominant.

The proof of this fact is immediate from the definition of U∗(φ, t): under any fixed price policy,

U∗(φ, t) is non-increasing on t ≥ tφ on every sample path. In fact, if the disutility function M(·, ·)

were strictly positive for positive delays, myopic behavior is a strongly dominant strategy.

Now observe that if customers behaved myopically (so that τφ = tφ), then the event that two cus-

tomers present themselves simultaneously to the seller has measure zero, and aFP
φ = 1

{
vφ ≥ πFP

}
.

Consequently, the sales process is a Poisson process with intensity λF̄ (πFP) so that

JπFP,τFP (x0, T ) = πFPE
[
min

(
NλT
πFP , x0

)]
where NλT

πFP is a Poisson random variable with mean λT F̄
(
πFP

)
. We next set out to construct a

benchmark policy with which to compare the revenue under this fixed price policy.

3.2. A Dynamic Mechanism Design Benchmark

As discussed earlier, the task of optimizing over pricing policies is a non-trivial one and even

characterizing the optimization problem appears to be a challenging task. As such, our goal in this

section is to produce an upper bound, which we will denote J∗(x0, T ), on the revenue under any

pricing policy. Specifically, we require that for any pricing policy π, and an associated stopping

rule τπ,

Jπ,τπ(x0, T ) ≤ J∗(x0, T ).

We will produce this upper bound by allowing the seller to employ a general dynamic mechanism for

the problem at hand. Specifically, dynamic mechanisms subsume dynamic pricing policies (in the

sense of strategic equivalence), so that the seller’s revenue under the optimal dynamic mechanism

serves as an upper bound on the revenue the seller can earn under any dynamic pricing policy.

We care about the dynamic mechanism design problem only in so much as it yields a useful upper
6We will abuse notation slightly by also using πFP to denote the static price policy itself.
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bound so that issues concerning the practical relevance of a general dynamic mechanism are not

relevant to our discussion.

To set up the dynamic mechanism design problem, we begin by introducing some relevant

notion. We denote by ht , {φ : tφ ≤ t} the set of customer types that arrive prior to time t. We

restrict ourselves to direct mechanisms. A mechanism specifies an allocation and payment rule that

we encode as follows: customer φ is assigned

yφ , (τφ, aφ, pφ) ,

where τφ ≥ tφ is the time of allocation, aφ is an indicator for whether or not a unit of the product is

allocated and pφ is the price paid by the customer. Note that unlike the dynamic pricing setting the

customer must explicitly report his type φ to the seller in this setup (although he may potentially

lie). The seller then determines whether the customer is allocated a good, when he is allocated the

good, and at what price according to yφ. Note that yφ may depend on the reports of some subset of

customers, but the structure of this dependence must be causal and satisfy other constraints that

we now formalize.

Denote by yt , {yφ : τφ ≤ t} the set of decisions made up to time t. Finally denote the seller’s

information set by Ht, the filtration generated by the customer reports made up to time t and

allocation decisions prior to time t. Specifically, Ht = σ
(
ht, yt−

)
. A feasible mechanism satisfies

the following properties:

1. Causality: τφ is a stopping time with respect to the filtration Ht. Moreover, aφ and pφ are

Hτφ-measurable.

2. Limited Inventory: The seller cannot allocate more units of product than her initial allocation:∑
φ∈hT aφ ≤ x0, a.s.

3. Customers pay nothing to participate, so that pφ = 0 if aφ = 0.

We denote by Y, the class of all such rules, yT . The seller collects total revenue

Π
(
yT
)
,
∑
φ∈hT

pφ,

whereas the utility garnered by customer φ is U(φ, yφ). The utility garnered by customer φ when

he reports his true type as φ̂ is then given by U(φ, yφ̂), where customer φ can only reveal his arrival

no earlier than his true arrival (i.e., tφ̂ ≥ tφ).
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The seller now faces the following optimization problem that seeks to find an optimal dynamic

mechanism.

maxyT∈Y E
[
Π
(
yT
)]

subject to E−φ [U(φ, yφ)] ≥ E−φ
[
U(φ, yφ̂)

]
, ∀ φ, φ̂, s.t. tφ̂ ≥ tφ (IC)

E−φ [U(φ, yφ)] ≥ 0 , ∀ φ. (IR)

(2)

Denote by J∗(x0, T ) the optimal value obtained in the problem above. Chen and Farias [2015]

establish that for any dynamic pricing policy there exists a direct dynamic mechanism that satisfies

the constraints of (2) and has objective value equal to the seller’s revenue under the dynamic pricing

policy, thereby establishing the following lemma:

Lemma 2. (Valid Benchmark) For any pricing policy and corresponding stopping rule, (π, τπ), we

have that

Jπ,τπ(x0, T ) ≤ J∗(x0, T ).

The upshot of this result is that we now have an upper bound on what the seller can hope to

attain under any dynamic pricing policy that we can characterize as the optimal value to a more

familiar – but still challenging – optimization problem, namely (2). In a subsequent section, we

will further analyze this upper bounding optimization problem to facilitate a comparison with the

revenues under the static pricing policy described in the previous section. The second salient point

worth discussing here is that the upper bound we have set up is with respect to a substantially

broader class of mechanisms than simply those that correspond with anonymous dynamic pricing.

As revenue management evolves, it stands to reason that sellers may want to experiment with

approaches to selling that transcend the traditional anonymous posted price approach; in practice

we see experiments with rebates, auction formats, and the like. Assuming, we are able to show

that static price revenues compare favorably with our upper bound, we will have established that

such pricing policies are desirable not just in comparison with general dynamic pricing policies, but

with respect to any (reasonable) mechanism the seller might hope to concoct.

3.3. Principle Results

Our principle results establish that static pricing policies offer surprisingly strong performance,

even in the face of strategic customers. Specifically, we compare the revenue the seller may hope

to earn under the static pricing policy, namely the quantity J
πFP,τπFP (x0, T ), with an upper bound

on the revenue she may hope to earn under essentially any reasonable selling mechanism, namely
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J∗(x0, T ). We will consider two types of performance bounds. The first, will be in the ‘fluid’ regime

studied originally by Gallego and Van Ryzin [1994], where inventory and the scale of demand grow

large simultaneously. Now our setting mimics that of Gallego and Van Ryzin [1994] with the obvious

exception that we allow customers to be forward looking (as opposed to myopic and short lived).

Consequently, given the broad impact of the original performance guarantee provided by Gallego

and Van Ryzin [1994], a performance guarantee in the fluid regime has obvious value. Other au-

thors have already noted that this sort of scaling preserves the potential relevance of inter-temporal

price discrimination and mechanism design more generally eg. [Besbes and Lobel, 2015, Liu and

Cooper, 2015]. Our second performance guarantee will be uniform and non-asymptotic, i.e. it will

be relevant over all parameter regimes. We will show that this latter guarantee is also tight in the

sense that a specific problem instance achieves the bound implicit in the guarantee.

The Fluid Regime: Following Gallego and Van Ryzin [1994], we consider a sequence of prob-

lems, parameterized by n. In the nth problem, we have initial inventory x(n)
0 = nx0, and customers

arrive at the rate λ(n) = nλ. We denote by a superscript (n) quantities relevant to the nth model

in this scaling. So, for instance, J (n)
πFP,τπFP (nx0, T ) denotes the revenue under the static price policy

in the nth model. Colloquially, as n grows, we are scaling the inventory and volume of demand in

the problem instance. All other aspects of the model – namely the customer utility model, and the

horizon T , stay unchanged. Our main result is a guarantee that shows that in the ‘fluid regime’,

the static price policy is asymptotically optimal. Specifically:

Theorem 1. Provided Assumptions 1 and 2 are satisfied, we have:

J
(n)
πFP,τπFP (nx0, T )

J∗,(n)(nx0, T )
= 1−O

( 1√
n

)
.

This result makes a strikingly simple economic statement. Static pricing policies constitute, to

a first order, an optimal selling mechanism; any gains one may hope to make from dynamic pricing

and/or sophisticated selling mechanisms must necessarily contribute a vanishingly small incremental

revenue to the seller. Theorem 1 provides a significant generalization to the conclusions drawn by

Gallego and Van Ryzin [1994]. Whereas their conclusion rested heavily on the assumption that

customers were myopic and short-lived, Theorem 1 shows that those conclusions are robust to

potentially long lived customers that strategize on the timing of their purchase.

Our second result, relaxes the requirement of a fluid regime and applies uniformly across all

parameter regimes:
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Theorem 2. Provided Assumptions 1 and 2 are satisfied, we have:

J
πFP,τπFP (x0, T )
J∗(x0, T ) ≥ 1− 1

e
.

In addition, there exists a problem instance for which this lower bound on performance is achieved.

This result complements our fluid regime result by stating that irrespective of regime or param-

eter settings, the static price policy will always achieve at least ∼ 63.2% of the revenue the seller

can hope to earn under any dynamic mechanism. This analysis is, in fact, tight so that we can

construct a problem instance that achieves this bound. Constant factor guarantees of this nature

have assumed a place of prominence in a number of operational problems ranging from revenue

management to inventory and supply chain management. We interpret this guarantee as a strong

indicator of the robustness of static prices across parameter regimes.

The remainder of this paper is dedicated predominantly to establishing the two principle results

above. We proceed in two broad steps. First, in Section 4 we analyze the dynamic mechanism design

problem, (2) that provides us with our benchmark. Then in Section 5, we explicitly compare the

revenue under the static price policy to this benchmark using the tools developed in Section 4

among other techniques. Finally, in a concluding Section we discuss the limitations of our analysis

(or equivalently the family of disutility functions that our analysis is restricted to), and present a

simple computational experiment to illustrate the spectrum of performance possible between our

constant factor lower bound, and our asymptotic optimality result.

4. Analyzing the Dynamic Mechanism Design Problem

The optimal dynamic mechanism design problem that serves to yield the upper bound for our

setting, (2) is challenging and has resisted optimal solution as discussed in the literature review.

Here we find it convenient to relax problem (2) with the goal of computing tractable upper bounds.

We obtain our upper bound as follows: we consider a simpler, upper bounding, one-dimensional

mechanism design problem where customers can only misrepresent their valuation. This mechanism

design problem serves as a relaxation to the optimal mechanism design problem defining J∗(x0, T ).

We derive an upper bound on the optimal value of this simpler mechanism design problem using a

Myersonian approach. Put very loosely, our upper bounding problem is stated in terms of a ‘virtual

allocation’ rule āφ that is a function of the allocation rule aφ and the disutility of customer φ. Our

task will then be one of finding a dynamic ‘virtual allocation’ policy that maximizes the expected
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sum of virtual values that are ‘virtually’ allocated, subject to an inventory constraint that must be

met in expectation. Put more precisely, let us define the ‘virtual allocation’ rule

āφ , E−φ [aφ −m (φ, yφ)]

where we recall that m(φ, y) , ∂
∂vφ

M(φ, y). Consider the following problem, whose optimal value

we denote by J̄∗(x0, T ):

max
yT∈Y

E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ)

)
āφ

 (3)

s.t. E

 ∑
φ∈hT

āφ

 ≤ x0

āφ ∈ [0, 1], ∀φ with vφ > 0

Our main result in this section is that the optimal value of this program, J̄∗(x0, T ) is an upper

bound on J∗(x0, T ). The value of this result lies in the structure of the program (3) which is sub-

stantially more tractable than the program defining the optimal dynamic mechanism. Specifically

by appropriately ‘dualizing’ the inventory constraint in this program in the next Section, we will

be able to directly compare J̄∗(x0, T ) with the revenue under the static price policy.

4.1. A Relaxed Problem

Let us denote by φv′ the report of customer φ when he distorts his valuation to v′. In particular,

let

φv′ ,
(
tφ, v

′, θφ
)

and consider the following weaker incentive compatibility constraint:

E−φ [U(φ, yφ)] ≥ E−φ
[
U(φ, yφv′ )

]
, ∀ φ, v′ (IC’)

(IC’) is a relaxation of (IC) since we only allow for distortions of valuation. We now derive an upper

bound on the expected price paid by customer φ for any feasible mechanism that satisfies (IR) and

(IC’). The result lies on an appropriately general envelope theorem and uses our assumption on

the concavity of M(·, ·) in vφ.
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Lemma 3. If (IC’) and (IR) hold, then for any φ,

E−φ [pφ] ≤ vφāφ −
∫ vφ

v′=0
āφv′dv

′.

Proof. First, we show that (IR) implies that

E−φ [U (φ0, yφ0)] = 0. (4)

To see this notice that by definition and Assumption 2, Part (1),

E−φ [U (φ0, yφ0)] = 0 · E−φ [aφ0 ]− E−φ [pφ0 ]− E−φ [M(φ0, yφ0)] ≤ 0.

But since (IR) requires E−φ [U (φ0, yφ0)] ≥ 0, we must have (4).

Now, define u(φ, y) , ∂
∂vφ

U(φ, y). Applying the envelope theorem, we have:

E−φ [U (φ, yφ)] =
∫ vφ

v′=0
E−φ

[
u
(
φv′ , yφv′

)]
dv′ + E−φ [U (φ0, yφ0)]

=
∫ vφ

v′=0
E−φ

[
aφv′ −m

(
φv′ , yφv′

)]
dv′ + E−φ [U (φ0, yφ0)]

=
∫ vφ

v′=0
E−φ

[
aφv′ −m

(
φv′ , yφv′

)]
dv′ (5)

The first equality follows from Fubini’s theorem and the envelope theorem (specifically, Theorem

2 of Milgrom and Segal [2002]). The second equality follows the definition of u(·), and the final

equality follows from (4). Consequently,

E−φ [pφ] = vφE−φ [aφ]− E−φ [U(φ, yφ)]− E−φ [M(φ, yφ)]

= vφE−φ [aφ]−
∫ vφ

v′=0
E−φ

[
aφv′ −m

(
φv′ , yφv′

)]
dv′ − E−φ [M(φ, yφ)]

≤ vφE−φ [aφ −m (φ, yφ)]−
∫ vφ

v′=0
E−φ

[
aφv′ −m

(
φv′ , yφv′

)]
dv′

The first equality follows from the definition of U(·) and the fact that by the definition of feasible

policies (i.e. since y ∈ Y), aφpφ = pφ. The second equality follows from our application of

the envelope theorem above. Finally, by the assumed concavity of M(·) in vφ, we have M(φ, y) ≥

vφm(φ, y)+M(φ0, y), which, with the fact that M(φ0, y) ≥ 0, yields first inequality. This completes

the proof. �

We next prove a corollary to this Lemma that allows us to replace the objective in the optimal
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mechanism design problem, (2), with an analytically tractable quantity. Specifically, we have:

Lemma 4. If (IC’) and (IR) hold, then for any φ,

E

 ∑
φ∈hT

pφ

 ≤ E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ)

)
āφ

 .
Proof. We observe that Lemma 3 implies:

E

 ∑
φ∈hT

pφ

 = E

 ∑
φ∈hT

E−φ [pφ]


≤ E

 ∑
φ∈hT

vφāφ −
∫ vφ

v′=0
āφv′dv

′

 .
We now prove that the right hand side is the required quantity by changing the order of integration:

E

 ∑
φ∈hT

vφāφ −
∫ vφ

v′=0
āφv′dv

′

 = E

 ∑
φ∈hT

Evφ
[
vφāφ −

∫ vφ

v′=0
āφv′dv

′
]

= E

 ∑
φ∈hT

∫ ∞
vφ=0

(
vφāφ −

∫ vφ

v′=0
āφv′dv

′
)
f(vφ)dvφ


= E

 ∑
φ∈hT

∫ ∞
vφ=0

vφāφf(vφ)dvφ −
∫ ∞
v′=0

āφv′

∫ v′

vφ=0
f(vφ)dvφdv′


= E

 ∑
φ∈hT

∫ ∞
vφ=0

(
vφ −

F̄ (vφ)
f(vφ)

)
āφf(vφ)dvφ


= E

 ∑
φ∈hT

Evφ

[(
vφ −

F̄ (vφ)
f(vφ)

)
āφ

]
= E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ)

)
āφ

 .
Here the second equality follows from the fact that vφ is independent of θφ and tφ, the third equality

follows from an exchange in the order of integration, and the fifth equality again employs the fact

that vφ is independent of θφ and tφ. This completes the proof of the lemma. �

The next lemma establishes a second implication of the constraints (IC’) and (IR).

23



Lemma 5. If (IC’) and (IR) hold, then for any φ with vφ > 0, we have:

āφ ∈ [0, 1].

Proof. Consider any φ ∈ Φ and any v, v′ ∈ R+. (IC’) implies E−φ [U (φv, yφv)] ≥ E−φ
[
U
(
φv, yφv′

)]
and E−φ

[
U
(
φv′ , yφv′

)]
≥ E−φ [U (φv′ , yφv)]. Adding these two inequalities, and writing them ex-

plicitly (using the definition of U(·)), yields:

(v − v′)
(
E−φ [aφv ]− E−φ

[
aφv′

])
≥
(
E−φ

[
M
(
φv′ , yφv′

)]
− E−φ

[
M
(
φv, yφv′

)])
+ (E−φ [M (φv, yφv)]− E−φ [M (φv′ , yφv)])

Now the concavity of M(·) in v from Assumption 2 yields

E−φ
[
M
(
φv′ , yφv′

)]
− E−φ

[
M
(
φv, yφv′

)]
≥ E−φ

[
m
(
φv′ , yφv′

)] (
v′ − v

)
and

E−φ [M (φv, yφv)]− E−φ [M (φv′ , yφv)] ≥ E−φ [m (φv, yφv)]
(
v − v′

)
which upon substitution in the previous inequality yields:

(
v − v′

) (
E−φ [aφv −m (φv, yφv)]− E−φ

[
aφv′ −m

(
φv′ , yφv′

)])
≥ 0

so that we may immediately conclude that E−φ [aφv −m (φv, yφv)] is non-decreasing in v. But (5)

and (IR) imply that for any vφ ≥ 0,

E−φ [U (φ, yφ)] =
∫ vφ

v′=0
E−φ

[
aφv′ −m

(
φv′ , yφv′

)]
≥ 0.

which with the fact that E−φ [aφv −m (φv, yφv)] is non-decreasing in v immediately lets us conclude

that

E−φ [aφv −m (φv, yφv)] ≥ 0

for all v > 0. On the other hand, the fact that aφ ∈ {0, 1} and m (φ, yφ) ≥ 0 implies

E−φ [aφ −m (φ, yφ)] ≤ 1

for all φ. Together, these two inequalities establish the claim. �
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The next lemma establishes a final consequence of the fact that we cannot allocate more inven-

tory than available:

Lemma 6. For any feasible policy yT ∈ Y, we have:

E

 ∑
φ∈hT

aφ −m (φ, yφ)

 = E

 ∑
φ∈hT

āφ

 ≤ x0.

Proof. Since for any feasible policy we have
∑
φ∈hT aφ ≤ x0, and since m (φ, yφ) ≥ 0 under As-

sumption 2 Part 3, the claim is immediate. �

We are now ready to revisit our relaxation to the optimal dynamic mechanism design prob-

lem (2). Specifically, recall the relaxed problem, (3), that we presented at the outset of this section,

whose optimal value we denote by J̄∗(x0, T ):

max
yT∈Y

E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ)

)
āφ


s.t. E

 ∑
φ∈hT

āφ

 ≤ x0

āφ ∈ [0, 1], ∀φ with vφ > 0

Now, Lemmas 4, 5, and 6, immediately yield the main result for this section:

Proposition 1. The optimal value of the problem (3) is an upper bound to that of the optimal

mechanism design problem, (2):

J̄∗(x0, T ) ≥ J∗(x0, T ).

As it turns out this relaxed problem will permit an exact analysis that we delve into in the

next section. That analysis will in turn permit a comparison with the expected revenues under the

static price policy.

5. Static Prices: Asymptotic Optimality and Tight Uniform Guarantee

As discussed in Section 1, Gallego and Van Ryzin [1994], in a seminal piece of research demonstrated

the efficacy of static prices. That research has formed the basis of a large body of RM research

since. Here we ask whether those conclusions remain valid when customers are forward looking by

completing the proofs of our main results, Theorems 1 and 2. Recall the the static price policy is
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defined according to:

πFP
t = F̄−1

(
min

{
x0
λT

, F̄ (v∗)
})
, πFP

for all t such that Xt− > 0. Further, recall that since it is dominant strategy for customers to

make myopic purchasing decisions when prices stay constant (Lemma 1), the sales process is, in

fact Poisson with intensity λF̄ (πFP), so that the revenue under such a static pricing policy is

JπFP,τFP (x0, T ) = πFPE
[
min

(
NλT
πFP , x0

)]
Our goal in this Section will be to complete the proofs for our main theoretical guarantees, The-

orems 1 and 2. We will proceed by comparing JπFP,τFP (x0, T ) with J̄∗(x0, T ), the upper bound

derived in Proposition 1.

5.1. The Asymptotic Optimality of Static Prices: Proof of Theorem 1

In this section we complete the proof of Theorem 1. Recall that in the fluid regime, we consider a

sequence of problems parameterized by n. In the nth problem, we have x(n)
0 = nx0, and λ(n) = nλ

and denote by a superscript (n) quantities relevant to the nth model in this scaling. All other

aspects of the model – namely the customer utility model, and the horizon T , stay unchanged. Our

goal is to establish that
J

(n)
πFP,τπFP (nx0, T )

J∗,(n)(nx0, T )
= 1−O

( 1√
n

)
.

Our key task in this section is to establish that the optimal value of the relaxed mechanism design

problem (3), J̄∗(x0, T ) is upper bounded by the optimal value to the fluid program, λTπFPF̄ (πFP).

Then using the fact (see, for instance Gallego and Van Ryzin [1994]) that

πFPE
[
min

(
NnλT
πFP , nx0

)]
nλTπFPF̄ (πFP)

= 1−O
( 1√

n

)

we will have completed a proof of Theorem 1.

Lemma 7. The optimal value attained in the fluid customer optimization problem (1) is an upper

bound to the optimal value of the relaxed mechanism design problem (3):

λTπFPF̄ (πFP) ≥ J̄∗(x0, T ).
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Proof. Consider the following Lagrangian relaxation of the relaxed mechanism design problem (3):

max
yT∈Y

E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ) − η

)
āφ

+ ηx0 (6)

s.t. āφ ∈ [0, 1], ∀φ with vφ > 0

and denote by J̄∗,η(x0, T ) its optimal value. Now for any feasible mechanism yT ∈ Y in the relaxed

mechanism design problem (3), and any η ≥ 0, we have

η

x0 − E

 ∑
φ∈hT

āφ

 ≥ 0.

It follows that minη≥0 J̄
∗,η(x0, T ) ≥ J̄∗(x0, T ); a statement of weak duality. Now, for any feasible

yT to the program above, (6), we require āφ ∈ [0, 1] if vφ > 0. So for all such φ, such that vφ > 0,

we have (
vφ −

F̄ (vφ)
f(vφ) − η

)
āφ ≤

(
vφ −

F̄ (vφ)
f(vφ) − η

)
1
{
vφ −

F̄ (vφ)
f(vφ) ≥ η

}

Moreover, the set on which vφ = 0 is of measure zero by assumption, so that for any η ≥ 0, we

immediately have:

J̄∗,η(x0, T ) ≤ E

 ∑
φ∈hT

(
vφ −

F̄ (vφ)
f(vφ) − η

)
1
{
vφ −

F̄ (vφ)
f(vφ) ≥ η

}+ ηx0

= λT E
[(
vφ −

F̄ (vφ)
f(vφ) − η

)
1
{
vφ −

F̄ (vφ)
f(vφ) ≥ η

}]
+ ηx0

where the first equality is Wald’s identity. Now, let η̂ = πFP − F̄ (πFP)
f(πFP) in the above inequality and

observe that

J̄∗,η̂(x0, T ) ≤ λT E
[(
vφ −

F̄ (vφ)
f(vφ) − η̂

)
1
{
vφ −

F̄ (vφ)
f(vφ) ≥ η̂

}]
+ η̂x0

= λT

∫ ∞
0

(
v − F̄ (v)

f(v) − η̂
)+

f(v)dv + η̂x0

= λT

∫ ∞
v=πFP

(
v − F̄ (v)

f(v) − η̂
)
f(v)dv + η̂x0

= λTπFPF̄
(
πFP

)
+ η̂

(
x0 − λT F̄

(
πFP

))
= λTπFPF̄

(
πFP

)
.
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The second equality above uses the fact that v − F̄ (v)
f(v) is non-decreasing by Assumption 1. The

third equality uses the fact that
∫∞
v=p vf(v) − F̄ (v)dv = pF̄ (p). For the final equality (essentially,

a complementary slackness condition), notice that we must have by definition of πFP that x0 −

λT F̄
(
πFP

)
≥ 0 and that when x0 − λT F̄

(
πFP

)
> 0 we have πFP = v∗, so that η̂ = 0. We have

thus shown that

λT F̄
(
πFP

)
≥ J̄∗,η̂(x0, T ) ≥ min

η≥0
J̄∗,η(x0, T ) ≥ J̄∗(x0, T )

which is the result. �

We are now in a position to establish the asymptotic optimality of the static price policy.

Specifically, Theorem 3 of Gallego and Van Ryzin [1994] establishes

πFPE
[
min

(
NλT
πFP , x0

)]
λTπFPF̄ (πFP)

≥ 1− 1√
min

(
x0, λT F̄ (v∗)

) ,

and recall that J
πFP,τπFP (x0, T ) = πFPE

[
min

(
NλT
πFP , x0

)]
. Now, in the nth problem, we consider

an arrival rate of nλ, and initial inventory of nx0, so that

J
(n)
πFP,τπFP (nx0, T )

nλTπFPF̄ (πFP)
≥ 1− 1√

nmin
(
x0, λT F̄ (v∗)

) .

We establish in Lemma 7 that nλTπFPF̄
(
πFP

)
≥ J̄∗,(n)(nx0, T ), and Proposition 1 shows that

J̄∗,(n)(nx0, T ) ≥ J∗,(n)(nx0, T ), so that we have shown

J
(n)
πFP,τπFP (nx0, T )

J∗,(n)(nx0, T )
≥ 1− 1√

nmin
(
x0, λT F̄ (v∗)

) .

This completes the proof of Theorem 1.

5.2. A (Tight) Constant Factor Guarantee for Static Prices

While the previous section established a performance guarantee in the fluid regime, it is also possible

to obtain a constant factor guarantee that is valid uniformly in all model parameters. We do this

by directly showing that
πFPE

[
min

(
NλT
πFP , x0

)]
λT F̄ (πFP)

≥ 1− 1
e
.
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Interestingly, this intermediate result also yields a uniform performance guarantee on the static

price policy in the setting of myopic customers, i.e. the setting studied by Gallego and Van Ryzin

[1994]. Given the long history of the problem, and the lack of any such constant factor guarantee

in antecedent literature, this intermediate result is of independent interest.

Lemma 8.
πFPE

[
min

(
NλT
πFP , x0

)]
λTπFPF̄ (πFP)

≥ 1− 1
e
.

Proof. For brevity of notation, denote λ̄ , λT F̄ (πFP) and N̄ , NλT
πFP throughout this proof. The

definition of πFP implies λ̄ ≤ x0. We have:

E
[
min

(
NλT
πFP , x0

)]
λT F̄ (πFP)

,
1
λ̄

E
[
min

(
N̄ , x0

)]
= 1
λ̄

(
E
[
N̄
]
− E

[(
N̄ − x0

)+
])

= 1− E
[(
N̄ − x0

)+
]
/λ̄

= 1−
∞∑
n=1

n
e−λ̄λ̄x0+n−1

(x0 + n)!

(7)

Now λ̄ ≤ x0 by the definition of πFP. Further, e−λ̄λ̄x0+n−1 is non-decreasing in λ̄ on n ≥ 1 since

∂

∂λ̄
ln
(
e−λ̄λ̄x0+n−1

)
= −1 + x0 + n− 1

λ̄
≥ 0

provided n ≥ 1. Thus, (7) yields

E
[
min

(
NλT
πFP , x0

)]
λT F̄ (πFP)

≥ 1−
∞∑
n=1

n
e−x0xx0+n−1

0
(x0 + n)!

= 1−
∞∑
n=1

((x0 + n)− x0)e
−x0xx0+n−1

0
(x0 + n)!

= 1−
∞∑
n′=0

e−x0xx0+n′
0

(x0 + n′)! +
∞∑
n=1

e−x0xx0+n
0

(x0 + n)!

= 1− e−x0xx0
0

x0!

≥ 1− 1
e

where the last inequality follows from that fact that e−x0x
x0
0

x0! is non-increasing in x0 on x0 ≥ 1. This
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completes the proof. �

We established in Lemma 7 that λTπFPF̄
(
πFP

)
≥ J̄∗(x0, T ), and Proposition 1 showed that

J̄∗(x0, T ) ≥ J∗(x0, T ), so that with Lemma 8, we have:

J
πFP,τπFP (x0, T )
J∗(x0, T ) ≥ 1− 1

e
.

This completes the proof of Theorem 2.

Interestingly, this constant factor guarantee also implies a stronger guarantee for the class of

‘Robust Pricing Policies’ proposed by Chen and Farias [2015]. In that paper the authors establish

that so-called robust pricing policies provided at least 29% of the revenue under an optimal mech-

anism. The class of utility models considered in the present paper subsumes the class of utility

models studied in Chen and Farias [2015], and the static price policy is trivially a robust pricing

policy thereby improving the Chen and Farias [2015] guarantee from 29% to ∼ 63.2%.

Let us summarize what we have established in this section. We set out to compare the per-

formance of static price policies against a family of selling mechanisms that subsumed dynamic

pricing. Specifically, our benchmark, which is the optimal dynamic mechanism for the problem at

hand, includes virtually any selling format one may imagine. Antecedent research suggests that this

dynamic mechanism design problem is essentially intractable [Pai and Vohra, 2013]. The principle

insight in this paper is the surprising fact that a mechanism as simple as a static posted price is,

to a first order, optimal. We made this notion precise by showing that the expected revenue under

an optimally set static price is optimal in the regime where inventory and demand grow large. We

complemented this result with a uniform performance guarantee that is valid in any regime. To

further round out these results, we explore the tightness of our analysis and the necessity of our

modeling assumptions in the next section.

6. Tight Problem Instances and Sub-Optimality for General Disutilities

This section seeks to answer two key questions, both of which are related to the tightness of our

analysis and the applicability of our results. Specifically, we ask:

1. Is our uniform performance guarantee (Theorem 2) tight? Foreshadowing the answer to this

question (we show the guarantee is in fact tight) we will also explore computationally how

‘quickly’ one gets from the level of performance loss in that guarantee to the optimality

suggested by Theorem 1.
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2. Were our assumptions on the customer disutility function M(·, ·) necessary? Here we give

an example of a disutility function for which our guarantees do not hold. The example will

serve to illustrate what can go wrong if customer disutility grows sufficiently ‘rapidly’ with

valuation.

6.1. A Tight Problem Instance

Theorem 2 shows that the expected revenue under the static price policy πFP is at least within

a factor of 1 − 1/e of that under an optimal dynamic mechanism. This analysis is potentially

loose for a number of reasons, the most important one perhaps being that we compared ourselves

against an upper bound derived via a relaxation to the optimal dynamic mechanism design problem.

Surprisingly, the guarantee is in fact tight, as we now illustrate.

Example 1. (Tight Problem Instances) As an example of a tight problem instance, we consider a

problem with the following desiderata. First, there is a single unit of inventory; x0 = 1. Second,

customer values are uniformly distributed on the unit interval so that F (v) = v for v ∈ [0, 1].

Finally, all customers are ‘fully patient’ so that M(φ, y) = 0 for all (φ, y) with τy ≥ tφ. We

continue to parameterize by λ the rate of customer arrival.

As we will discuss momentarily, the optimal dynamic mechanism for the problem instance above

is simply conducting a Myerson auction. Using this fact, we can establish that the performance

guarantee in Theorem 2 is tight for the family of examples above.

Proposition 2. For the family of problems defined in Example 1, we have:

lim sup
λ→∞

J
πFP,τπFP (x0, T )
J∗(x0, T ) ≤ 1− 1

e

Proof. Let N be a Poisson random variable of rate λT . We first show that:

J∗(x0, T ) ≥
(

1− 4
λT

)
P
(
N >

λT

2

)

Observe that for the example at hand, an optimal mechanism is simply for the seller to wait until

time T and proceed to conduct a (static) revenue maximizing auction at this time for all arrivals

prior to that time; for concreteness let us assume the auction conducted is the Myerson auction

(second price with reserve). This is clearly a feasible mechanism. To see why this is optimal, we

note that in this setting, any yT ∈ Y can be interpreted as a randomized allocation and payment
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rule for a static revenue maximizing auction with N bidders and a single product. We conclude

J∗(x0, T ) = E

1−
2
(
1− 2−(N+1)

)
N + 1

 .
But,

E

1−
2
(
1− 2−(N+1)

)
N + 1

 ≥ E
[
1− 2

N

]

≥ E
[
1− 2

N

∣∣∣N >
λT

2

]
P
(
N >

λT

2

)
≥
(

1− 4
λT

)
P
(
N >

λT

2

)
.

(8)

We next establish an upper bound on the performance of the static price policy. Observe that by

definition of the static price policy we have that for λ > 2/T , F̄ (πFP) = 1/λT . Consequently, for

λ > 2/T , we have:

J
πFP,τπFP (x0, T ) = πFPE

[
1−

(
1− F̄ (πFP)

)N]
≤ E

[
1−

(
1− F̄ (πFP)

)N]
= E

[
1−

(
1− 1

λT

)N]

≤ 1−
(

1− 1
λT

)λT
,

(9)

where the first inequality follows from the property that πFP ≤ 1, the second inequality follows from

the property that the function aN is convex for any a > 0, Jensen’s inequality, and the property

that E[N ] = λT . The result now follows from (8) and (9), since limλ→∞
(
1− 1

λT

)λT
= 1

e and

limλ→∞ P
(
N > λT

2

)
= 1. �

The result above shows an example where the gap between the static-price revenue and that

under an optimal dynamic mechanism is indeed approximate 37% so that the bound in Theorem 2 is

tight. In contrast, Theorem 1 suggests that the static price is optimal in the fluid regime. As such,

one is led to wonder whether the performance loss exhibited in the above example quickly mitigates

as we change problem parameters, allowing, say inventory to grow large. With that in mind,

consider the following numerical experiment: we assume customer valuations are exponentially

distributed with unit rate. Further we assume λ = 1 and T = 10. We then numerically compare
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the performance of the fixed price policy to an upper bound on the value of an optimal dynamic

mechanism, reporting the performance metric:

LBFP(x0, T ) ,
J
πFP,τπFP (x0, T )
λTπFPF̄ (πFP)

.

(Recall that Lemma 7 and Proposition 1 together established that J∗(x0, T ) ≤ λTπFPF̄ (πFP)).

Table 1: Performance of the Static Price Policy πFP.

x0 1 2 4 8
LBFP(x0, T ) 0.63 0.72 0.84 1.00

Notice that for an inventory level of one unit, the performance loss implied by the table above is

again ∼ 37%. However, this quickly declines with further units of inventory. We see that even in a

decidedly non-asymptotic setting, the static price policy already leaves little room for improvement.

In fact, this is the core reason, the very intuitive results of Gallego and Van Ryzin [1994] have proved

so influential in revenue management.

We next turn our attention to the modeling assumptions we made on customer disutility in

Section 2.1 with the goal of developing a better understanding of the aspects of our assumptions

that appear crucial to our guarantees.

6.2. Sub-Optimality In The Face of General Disutilties

Recall from our discussion on the modeling of customer disutility (i.e., the function M(·, ·)) in

Section 2.1 that we required that a customer’s disutility be concave and non-decreasing in customer

valuation (part 4 of Assumption 2). As we discussed there, the key restriction in that assumption

(as implied by the condition of concavity) is in requiring that customer disutility not increase ‘too

fast’ with valuation. While in Section 2.1 we provided a number of examples of disutility functions

in the literature (both theoretical and empirical) that satisfy our assumptions, we seek to go in the

opposite direction in this section. We ask what happens if customer disutility did in fact increase

super-linearly in valuation. To that end, consider the following class of deadline-based disutilities,

given by:

M(φ, y) = vφ1{τφ−tφ>d(vφ)},

where d(·) maps valuations to a ‘deadline’. It is easy to see that for a suitable choice of the function

d(·), this specification leads to a discontinuity in the dependence of disutility on valuation wherein

keeping y and the other components of φ fixed, M(φ, y) jumps from 0 to v, as v is increased beyond
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a threshold. Putting aside the relative merits and de-merits of this specification for now, we first

focus on showing that static prices are sub-optimal for a specification such as the one above7. To

that end, consider a setting where v is uniformly distributed on the unit interval, and the ‘deadline

function’ is,

d(v) = T1{v≤1/2},

so that customer with valuations less than one half are fully patient, while the remaining customers

are fully myopic. Figure 1 plots the relationship between M(φv, y) and v for any fixed y with

τy > tφv . Under this model, the customer disutility function M(φv, y) is not concave in v, i.e.,
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Figure 1: Relationship between M(φv, y) and v when τy > tφv .

Assumption 2 is violated. Specifically, keeping y and all other components of φ fixed, the disutility

jumps from 0 (for any value of v < 1/2) to 1/2 at v = 1/2, and then increases linearly from there.

To further simplify our analysis of what could go wrong here, let us consider the situation

where inventory is unlimited so that x0 =∞. Now, in this setting the static price policy would set

πFP = 1/2, which will garner expected revenue

λTπFPF̄ (πFP) = 1
4λT.

Now consider the following alternative pricing policy that instantaneously drops prices at the very

end of the horizon:

π̂t =

 1/2 if t < T

1/4 if t = T
.

7Of course, we require that the deadline function d(·) has a non-trivial dependence on v. Else, the requirements
of Assumption 2 are trivially satisfied
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It is simple to verify that under policy π̂, a candidate equilibrium stopping rule is

τ π̂φ =

 tφ if vφ < 1/4 or vφ ≥ 1/2

T if vφ ∈ [1/4, 1/2)

That is, customers with utility greater than 1/2 will purchase immediately, customers with utility

between 1/4 and 1/2 will wait until the end of the horizon and then purchase, while customers with

utility less than 1/4 will leave immediately upon arrival without a purchase. This yields expected

revenue:
1
2 · λT

1
2 + 1

4 · λT
1
4 = 5

16λT.

which improves on the static price revenue by a factor of 25%. Since this relative improvement is

independent of the value of λ, and since x0 was chosen to be unbounded, we see that one cannot

hope for asymptotic optimality in this setting. We have thus identified a class of disutility functions

that do not satisfy our assumptions, and for which static prices are not asymptotically optimal. It

makes sense to pursue the design of more sophisticated pricing policies or more general mechanisms

in such a setting.

The deadline based disutility functions above have some interesting features – for instance, they

allow us to ‘ignore’ customers who arrived prior to a finite time in the past and thereby allow for

a succinct representation of state in dynamic programming analyses. On the other hand, such a

specification implies that a customer prefers lotteries (as opposed to a deterministic outcome) with

respect to the time of assignment τφ which is potentially unrealistic (Azevedo and Gottlieb [2012]).

As discussed earlier, the deadline based disutility function has a ‘jump’ when viewed as a function of

valuation, keeping other quantities fixed. The crux of Assumption 2 was the requirement that this

same function be concave thereby placing a restriction on the rate at which disutility may grow with

valuation. Succinctly, provided disutility grows sufficiently slowly (essentially, sub-linearly) with

valuation, static prices suffice. If on the other hand, we permitted disutility to grow rapidly with

valuation (exemplified by the jump in the deadline-based disutility function), more sophisticated

policies are called for.

7. Concluding Remarks

This paper has focused on a canonical problem of revenue management and shown that static prices

are, to a first order, optimal for a broad class of customer utility functions. The economic message

here is simple and clear and reinforces the message that static pricing policies – or ‘everyday low
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prices’ in the vernacular of the dynamic pricing literature – can be surprisingly effective. This

message was first delivered by Gallego and Van Ryzin [1994] at a time when search costs were in

effect high (e-commerce and the widespread use of the internet did not exist at the time). As such

at that time, it was fair to assume that customers were effectively myopic since strategizing on the

timing of a purchase was hard. That assumption has become increasingly questionable in the last

decade, and with it the key message on the efficacy of static prices. The present paper resolves that

conundrum for what we believe is a broad class of utility models that find a broad base of support

in multiple streams of literature. There are several remarks that are worth making in concluding:

Non-Stationary Arrival Rates: It is possible to generalize our analysis to the setting where cus-

tomers arrive according to a Poisson process with a non-homogenous rate λt. To begin, there is no

change required in the proof of Proposition 1. The rest of the changes essentially follow those made

by Gallego and Van Ryzin [1994] in their own extension to non-stationary arrival rates. Specifically,

replacing λ by 1
T

∫ T
0 λtdt in the definition of πFP yields a static price policy that is optimal for (1)

as shown by Gallego and Van Ryzin [1994]. That same substitution can be made with no further

argument in the proof of Lemma 7, and finally, we rely on the extension to non-stationary arrival

rates provided by Gallego and Van Ryzin [1994] to their main result (Theorem 3) to complete the

proof of our Theorem 1 for non-stationary arrival rates. The proof of Lemma 8 (which immediately

yields our Theorem 2) again follows from the observation made by Gallego and Van Ryzin [1994]

(via a change of clock argument) that the expected revenue under a fixed price policy, for any price

p, is given by pE
[
min(N̄ , x0)

]
where N̄ is a Poisson random variable with rate

∫ T
0 λtF̄ (p)dt.

The Power to Commit: Any analysis invoking the principles of mechanism design will typically

call for an assumption that the seller has the ability to credibly ‘commit’ to a mechanism. Indeed,

this is true of even the simplest mechanisms (such as the design of the optimal static auction).

As already discussed, antecedent literature in revenue management (and more generally, in mech-

anism design) has provided a variety of arguments in support of the power to commit so that the

assumption is broadly accepted. Nonetheless, it is worth noting that in the absence of the ability

to verify (after the fact) that the seller has indeed stuck to her commitment, such an assumption

is less palatable. In the case of dynamic mechanisms it is often the case that such a verification is

difficult without the seller revealing a great deal of information (including at least the history of

all customer allocations). Happily, in the case of a static price, the situation is a lot simpler. In

particular, it is trivial for any customer to verify at the end of the selling season that the seller
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has deviated from a static price mechanism simply by having observed the price trajectory over

the season. Given that myopic behavior is dominant under a static price, the seller may as well

employ the optimal static price, so there is no need for the buyer to verify whether the price used

was indeed optimal.

Further Research Questions: We believe the present paper sets the stage for an exciting set

of further research questions. For instance, how well can one approximate a general disutility func-

tion by one in the class we permit? Can we extend our analysis to sub-linear dis-utilities? Another

direction is considering more general revenue management problems. Perhaps, most obviously, the

Gallego and Van Ryzin [1994] analysis showing the asymptotic optimality of static prices led to

follow-on analysis of a similar pricing policy in the ‘network’ revenue management setting. What

can one say in such a setting when customers are strategic? Would a similar fixed price policy work

well? It is clear that the more general setting creates a few new complications, namely, the ability

to substitute across products and the fact that we have multiple resources to name two. Given the

vast landscape of RM techniques motivated by the original ideas in Gallego and Van Ryzin [1994],

we see this latter direction for future work as particularly exciting.
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